[VIP专享]材料力学 组合变形及连接部分计算答案
材料力学 组合变形及连接部分计算答案

8-1 14号工字钢悬臂梁受力情况如图所示。
已知m,,,试求危险截面上的最大正应力。
解:危险截面在固定端==返回8-2 受集度为的均布荷载作用的矩形截面简支梁,其荷载作用面与梁的纵向对称面间的夹角为,如图所示。
已知该梁材料的弹性模量;梁的尺寸为m,mm,mm;许用应力;许可挠度。
试校核梁的强度和刚度。
解:=,强度安全,==刚度安全。
返回8-3(8-5)图示一悬臂滑车架,杆AB为18号工字钢,其长度为m。
试求当荷载作用在AB的中点D处时,杆内的最大正应力。
设工字钢的自重可略去不计。
解:18号工字钢,,AB杆系弯压组合变形。
,,====返回8-4(8-6)砖砌烟囱高m,底截面m-m的外径m,内径m,自重kN,受的风力作用。
试求:(1)烟囱底截面上的最大压应力;(2)若烟囱的基础埋深m,基础及填土自重按计算,土壤的许用压应力,圆形基础的直径D应为多大?注:计算风力时,可略去烟囱直径的变化,把它看作是等截面的。
解:烟囱底截面上的最大压应力:==土壤上的最大压应力:即即解得:m返回8-5(8-8)试求图示杆内的最大正应力。
力F与杆的轴线平行。
解:,z为形心主轴。
固定端为危险截面,其中:轴力,弯矩,=A点拉应力最大==B点压应力最大==因此返回8-6(8-9) 有一座高为1.2m、厚为0.3m的混凝土墙,浇筑于牢固的基础上,用作挡水用的小坝。
试求:(1)当水位达到墙顶时墙底处的最大拉应力和最大压应力(设混凝土的密度为);(2)如果要求混凝土中没有拉应力,试问最大许可水深h为多大?解:以单位宽度的水坝计算:水压:混凝土对墙底的压力为:墙坝的弯曲截面系数:墙坝的截面面积:墙底处的最大拉应力为:==当要求混凝土中没有拉应力时:即即m返回8-7(8-10)受拉构件形状如图,已知截面尺寸为40mm×5mm,承受轴向拉力。
现拉杆开有切口,如不计应力集中影响,当材料的时,试确定切口的最大许可深度,并绘出切口截面的应力变化图。
材料力学(I)第八章 组合变形及连接部分的计算

同,故可将同一截面上的弯矩Mz和My按矢量相加。 例如,B截面上的弯矩
sb
12
M max Fl 。 W 4W
材 料 力 学 Ⅰ 电 子 教 案
第八章 组合变形及连接部分的计算
在FN 和Mmax共同作用下,危险 截面上正应力沿高度的变化随sb和st
ห้องสมุดไป่ตู้
的值的相对大小可能有图d ,e ,f 三种
情况。危险截面上的最大正应力是拉 应力:
s t ,max
Ft Fl A 4W
可见此杆产生弯一压组合变形。现按大刚度杆来计算应力。
15
材 料 力 学 Ⅰ 电 子 教 案
第八章 组合变形及连接部分的计算
2. AC杆危险截面m-m上的最大拉应力st,max和最大压应力
sc,max分别在下边缘f点处和上边缘g点处(图b):
s t ,max
F M FN M max 或 s c ,max N max A W A W
强度条件为
26
s r 3 [s ] 或
s r 4 [s ]
材 料 力 学 Ⅰ 电 子 教 案
第八章 组合变形及连接部分的计算
究竟按哪个强度理论计算相当应力,在不同设计规范中并不
一致。注意到发生扭-弯变形的圆截面杆,其危险截面上危 险点处:
M W
s
T T Wp 2W
2 2
为便于工程应用,将上式代入式(a),(b)可得:
(a)
3. 根据钢管的横截面尺寸算得:
π 2 [ D ( D 2d ) 2 ] 4 40.8 10 4 m 2 π I [ D 4 ( D 2d ) 4 ] 64 868108 m 4 I W 124 10 6 m3 D/2 A
材料力学组合变形及连接部分的计算

F
A y FAy
两相互垂直平面内的弯曲
q
Me 纵 向
对称面
B x
M y F1x M z F2x a
F2
FBy
a
z
x
1
Myz Iy
2
Mzy Iz
x
F1
y
1 2
Myz Iy
Mzy Iz
F2
a
z
1 2
Myz Iy
Mzy Iz
x 中性轴位置:
0
x
F1
y 令y0,z0代表中性轴上任一点的坐标
M y z0 M z y0 0
30kNm
max
FN A
Mz Wz
M z
Wz
查表并考虑轴力的影响:
20a Wz 237cm3 A 35.5cm2
Wz 187.5cm3
max
49.7 103 35.5102
30 106 237 103
140.6MPa
一桥墩如图示。承受的荷载为:上部结构传
递给桥墩的压力F0=1920kN,桥墩墩帽及墩身的 自重F1=330kN,基础自重F2=1450kN,车辆经 梁部传下的水平制动力FT=300kN。试绘出基础 底部AB面上的正应力分布图。已知基础底面积 为b×h=8m×3.6m的矩形。
2m y
F 30kN B
2m
F
x
y
150
Fy F cos Fz F sin
z
Mz
Fy L 4
My
Fz L 4
Wz 692cm3 Wy 70.8cm3
max
My Wy
Mz Wz
152MPa
2000年哈工大
第八章-组合变形及连接部分的计算-习题选解.docx

[8-1] 14号工字钢悬臂梁受力情况如图所示。
已知F2 l.OkN,试求危险截面上的最大正应力。
解:危险截面在固定端,拉断的危险点在前上角点,压断的危险点在后下角,因[8-2]矩形截面木標条的跨度1 4m ,荷载及截面尺寸如图所示,木材为杉木, 弯曲许用正应力[]12MPa , E 9GPa ,许可挠度[w] 1/200 o试校核標条的强度和刚度。
1 0.8m , Fl 2.5kN ,钢材的拉压性能相同, 故只计算最大拉应力:maxMz MyWz Wy Wz Wy式中,Wz , Wy由14号工字钢, 查型钢表得到Wz 102cm^ , Wymax79.1 io'Pa MPa79 J2 102 10 6m3 16.1 10 6 n?■ . , ■ l ・6kN/m ________A 戈HHluq习题8解:(1)受力分析COS1.6 cos26° 34 1.431(/ kN mq z q sin 1.6 sin26°340.716( kN/m)(2)内力分析My .max4qz 1 81 2-q yl 2 8(3)应力分析Mz.max-4 0.716 8-1 1.432 84 2 1.432(kN m) 4? 2.864(kN m) 最大的拉应力出现在跨中截面的右上角点, 最大压应力出现在左下角点。
M y ・ maxz.maxmax式中,160 11026322667 mm?maxWz110 16O 26469333mm^1.432 1()6 N mm2.86425 心隔(4)强度分析 因为max(5)变形分析322667 mm?469333mm310.54MPa , [ ] 12MPa ,即max[所以杉木的强度足够。
最大挠度出现在跨中,查表得:■1-60-1-1^ 17746667 (mn?)12(6)刚度分析 12屮一37546667 mm^12Wcy5qyl4 5 1.431N/mm 4000^ mm^ 384EIz 384 9 1()3 N/mn? 37546667mm^14.12mmwcz5qzl^ 5 0.716N/mm 400()4 mn? 384EIy384 9103 N/mm217746667mm° 14.94.mm (Wc/ \i4.12 214.94220,56(mm)式中,ly12因为WmaxWc 20・56(mm) , [ w]400020(mm),即 Wmax [w],200 200 所以,从理论上讲,变形过大,不符合刚度要求。
蔡中兵《材料力学》8组合变形及连接部分的计算

叠加之后是两个互相垂直方向的平面弯曲的组合。
盐城工学院力学课程组
材料力学
mechanics of materials
F2 a m
z F1 C(y,z)
O
z
my
y
x
m z
O Mz
My m y
求应力:m-m截面上第一象限某点C(y,z)
(1) F2单独作用下 (2) F1单独作用下
M z F2 ( x a)
O1
A(yF,zF)
y
x
FF
z
e
y
Fe
盐城工学院力学课程组
材料力学
mechanics of materials
F 使杆发生拉伸变形
My 使杆发生xOz平面内的弯 曲变形(y 为中性轴)
Mz 使杆发生 xOy 平面内的弯 曲变形(z 为中性轴)
x
F
z
My O1 Mz
y
盐城工学院力学课程组
材料力学
mechanics of materials
M y F1 x,
M z F2 ( x a)
盐城工学院力学课程组
材料力学
mechanics of materials
F2 m
a
z F1 C(y,z)
O
z
my
y
x
m z
O Mz
My m y
在F2 单独作用下,梁在竖直平面内发生平面弯曲, z轴为中性轴。
在F1 单独作用下,梁在水平平面内发生平面弯曲, y轴为中性轴。
具有双对称截 面的梁,它在任何 一个纵向对称面内 弯曲时均为平面弯 曲。
故具有双对称截面的梁在两个纵向对称面内同时承受横向 外力作用时,在线弹性且小变形情况下,可以分别按平面弯曲 计算每一弯曲情况下横截面上的应力和位移,然后叠加。
材料力学习题解答(组合变形)

N Mz
D C
D z 150 100
C z
My
Q
解:(1) 将力 P 和 H 向截面形心简化
M = 25 × 103 × 0.025 = 625 N .m
(2) 截面 ABCD 上的内力
N = − P = −25 kN M y = M = 625 N .m M z = H × 0.6 = 3 kN .m
N
如图作截面取上半部分,由静力平衡方程可得
N = P = 15kN
所以立柱发生拉弯变形。 (2) 强度计算 先考虑弯曲应力
上海理工大学 力学教研室
M = 0.4 P = 6kNm来自4σ t max =
d≥
M 32 M = ≤ [σ t ] πd3 W
3
π [σ t ]
32 M
=
3
32 × 6 × 103 = 120.4 mm π × 35 × 106
yc =
A1 y1c + A2 y2 c A
1.4 − 0.05 − 0.016 ⎞ ⎛ 1.204 × 0.7 + 1.105 × ⎜ 0.05 + ⎟ 2 ⎝ ⎠ = 0.51 m = 0.099
截面对形心轴的惯性矩
1 2 × 0.86 × 1.43 + ( 0.7 − 0.51) × 1.204 = 0.24 m 4 12 1 3 II I zc = × ( 0.86 − 2 × 0.016 ) × (1.4 − 0.05 − 0.016 ) 12
ZA YA P2
YC = P1a / 2 ZC = P2 a / 2
YA = P1a / 2 Z A = P2 a / 2
MzI
(2) 截开 I-I 截面,取左面部分 P1 QzI TI QyI MyI
第八章组合变形及连接部分的计算
P2 a
m
z
x
P1
m
x
y
m
z x
My
m
y
P1 在 m—m 面内产生的弯矩为 My = P1 x (使梁在 XZ 平面内弯曲,y 为中性轴)
P2 a
m
z
x
P1
m
x
y
m
MZ z x
My
m
y
P2 在 m—m 面内产生的弯矩为 MZ = P2 (x-a) (使梁在 XY 平面内弯曲,z 为中性轴)
二 、 梁横截面上的应力分析 (任意点 C(y, z) 的正应力)
z
tg Iy tg
Iz
M
y
梁的挠曲线一般仍是一条空间曲线,故梁的扰曲线方程仍应分别 按两垂直面内的弯曲来计算,不能直接用合成弯矩进行计算。
四、 强度分析
中性轴
Байду номын сангаас
作平行于中性轴的两直线分别与
D1 z
o
横截面周边相切于 D1 、D2两点
,D1 、D2 两点分别为横截面上
最大拉应力点和最大压应力点。
D2
A 截面: D 截面:
(max
)A
M zA Wz
M W
yA y
(21.5103)q
(max
)D
M zD Wz
M yD Wy
(16.02103)q
梁的危险点在 A 截面棱角处
max
(max )A
M zA Wz
M yA Wy
(21.5103)q
[]
160106
[q] 160103 7.44kN/m 21.5
§8-1 概述
一、 组合变形概念 : 构件在荷载作用下发生两种或两种 以上的基本变形,则构件的变形称为组合变形。
材料力学组合变形习题答案
材料力学组合变形习题答案材料力学组合变形习题答案材料力学是工程力学的重要分支之一,研究材料在受力作用下的力学性质和变形规律。
在学习材料力学的过程中,习题是不可或缺的一部分,通过解答习题可以更好地理解和掌握相关的知识。
下面,我将为大家提供一些材料力学中的组合变形习题的答案,希望对大家的学习有所帮助。
习题一:一根长为L的均匀悬臂梁,横截面为矩形,宽度为b,高度为h。
在悬臂梁的自由端施加一个纵向拉力F,求悬臂梁在纵向拉力作用下的最大弯曲应力和最大剪应力。
解答:根据悬臂梁的受力分析可知,最大弯曲应力出现在悬臂梁的根部,最大剪应力出现在悬臂梁的中部。
最大弯曲应力σ_max = (F * L) / (2 * b * h^2)最大剪应力τ_max = (F * L) / (2 * b * h)习题二:一根长为L的均匀悬臂梁,横截面为圆形,直径为d。
在悬臂梁的自由端施加一个纵向拉力F,求悬臂梁在纵向拉力作用下的最大弯曲应力和最大剪应力。
解答:与习题一类似,根据悬臂梁的受力分析可知,最大弯曲应力出现在悬臂梁的根部,最大剪应力出现在悬臂梁的中部。
最大弯曲应力σ_max = (F * L) / (4 * π * (d/2)^3)最大剪应力τ_max = (F * L) / (2 * π * (d/2)^2)习题三:一根长为L的均匀梁,横截面为矩形,宽度为b,高度为h。
在梁的两端分别施加一个纵向拉力F和F',求梁在纵向拉力作用下的最大弯曲应力和最大剪应力。
解答:根据梁的受力分析可知,最大弯曲应力出现在梁的中部,最大剪应力出现在梁的两端。
最大弯曲应力σ_max = (F * L) / (4 * b * h^2) + (F' * L) / (4 * b * h^2)最大剪应力τ_max = (F * L) / (2 * b * h) + (F' * L) / (2 * b * h)习题四:一根长为L的均匀梁,横截面为圆形,直径为d。
材料力学课后习题答案详细
CB
CB E
6.5MPa 10 103 MPa
6.5 104
(4)计算柱的总变形
l AC AC l AC CB lCB (2.5 1500 6.5 1500) 104 1.35(mm)
[ 习 题 2-9] 一 根 直 径 d 16mm 、 长 l 3m 的 圆 截 面 杆 , 承 受 轴 向 拉 力
(2)作轴力图
N33 F 2F 2F F
轴力图如图所示。
1
(c)
解:(1)求指定截面上的轴力
N11 2F N22 F 2F F
(2)作轴力图
N33 2F F 2F 3F
轴力图如图所示。
(d)
解:(1)求指定截面上的轴力
N11 F
N 22
如以 表示斜截面与横截面的夹角,试求当 0o ,30o ,45o ,60o ,90o 时各斜截面
上的正应力和切应力,并用图表示其方
向。
解:斜截面上的正应力与切应力的公式
为:
5
0 cos 2
0 2
sin 2
式中, 0
N A
10000 N 100mm 2
100MPa ,把
AC
N AC A
100 103 N 200 200mm2
2.5MPa 。
CB
N CB A
260 103 N 200 200mm2
6.5MPa ,
(3)计算各段柱的纵向线应变
7
AC
AC E
2.5MPa 10 103 MPa
2.5 104
材料力学第五版课后习题答案修订版
材料力学第五版课后习题答案Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】二、轴向拉伸和压缩2-1试求图示各杆1-1和2-2横截面上的轴力,并作轴力图。
(a)解:;;(b)解:;;(c)解:;。
(d)解:。
2-2 试求图示等直杆横截面1-1,2-2和3-3上的轴力,并作轴力图。
若横截面面积,试求各横截面上的应力。
解:2-3试求图示阶梯状直杆横截面1-1,2-2和3-3上的轴力,并作轴力图。
若横截面面积,,,并求各横截面上的应力。
解:2-4 图示一混合屋架结构的计算简图。
屋架的上弦用钢筋混凝土制成。
下面的拉杆和中间竖向撑杆用角钢构成,其截面均为两个75mm×8mm的等边角钢。
已知屋面承受集度为的竖直均布荷载。
试求拉杆AE和EG横截面上的应力。
解:=1)求内力取I-I分离体得(拉)取节点E为分离体,故(拉)2)求应力75×8等边角钢的面积A=11.5 cm2(拉)(拉)2-5(2-6)图示拉杆承受轴向拉力,杆的横截面面积。
如以表示斜截面与横截面的夹角,试求当,30,45,60,90时各斜截面上的正应力和切应力,并用图表示其方向。
解:2-6(2-8) 一木桩柱受力如图所示。
柱的横截面为边长200mm的正方形,材料可认为符合胡克定律,其弹性模量E=10 GPa。
如不计柱的自重,试求:(1)作轴力图;(2)各段柱横截面上的应力;(3)各段柱的纵向线应变;(4)柱的总变形。
解:(压)(压)2-7(2-9)一根直径、长的圆截面杆,承受轴向拉力,其伸长为。
试求杆横截面上的应力与材料的弹性模量E。
解:2-8(2-11)受轴向拉力F作用的箱形薄壁杆如图所示。
已知该杆材料的弹性常数为E,,试求C与D两点间的距离改变量。
解:横截面上的线应变相同因此2-9(2-12) 图示结构中,AB为水平放置的刚性杆,杆1,2,3材料相同,其弹性模量E=210GPa,已知,,,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
8-1 14号工字钢悬臂梁受力情况如图所示。
已知m,,,试求危险截面上的最大正应力。
解:危险截面在固定端
=
=
返回
8-2 受集度为的均布荷载作用的矩形截面简支梁,其荷载作用面与梁的纵向对称面间的夹角为,如图所示。
已知该梁材料的弹性模量
;梁的尺寸为m,mm,mm;许用应力
;许可挠度。
试校核梁的强度和刚度。
解:
=
,强度安全
,
=
=刚度安全。
返回
8-3(8-5)图示一悬臂滑车架,杆AB为18号工字钢,其长度为m。
试
求当荷载作用在AB的中点D处时,杆内的最大正应力。
设工字钢的
自重可略去不计。
解:18号工字钢,,AB杆系弯压组合变形。
,,
==
==
返回
8-4(8-6)砖砌烟囱高m,底截面m-m的外径m,内径m,自重kN,受的风力作用。
试求:
(1)烟囱底截面上的最大压应力;
(2)若烟囱的基础埋深m,基础及填土自重按计算,土壤的许用压应力,圆形基础的直径D应为多大?
注:计算风力时,可略去烟囱直径的变化,把它看作是等截面的。
解:烟囱底截面上的最大压应力:
==
土壤上的最大压应力:
即
即
解得:m
返回
8-5(8-8)试求图示杆内的最大正应力。
力F与杆的轴线平行。
解:,z为形心主轴。
固定端为危险截面,其中:
轴力,弯矩,
=
A点拉应力最大
==
B点压应力最大
==
因此
返回
8-6(8-9) 有一座高为1.2m、厚为0.3m的混凝土墙,浇筑于牢固的基础上,用作挡水用的小坝。
试求:
(1)当水位达到墙顶时墙底处的最大拉应力和最大压应力(设混凝土的密度为);
(2)如果要求混凝土中没有拉应力,试问最大许可水深h为多大?
解:以单位宽度的水坝计算:
水压:
混凝土对墙底的压力为:
墙坝的弯曲截面系数:
墙坝的截面面积:
墙底处的最大拉应力为:
=
=
当要求混凝土中没有拉应力时:
即
即
m
返回
8-7(8-10)受拉构件形状如图,已知截面尺寸为40mm×5mm,承受轴向拉力。
现拉杆开有切口,如不计应力集中影响,当材料的
时,试确定切口的最大许可深度,并绘出切口截面的应力变化图。
解:
即
整理得:
解得:mm
返回
8-8(8-11) 一圆截面直杆受偏心拉力作用,偏心距mm,杆的直径为70mm,许用拉应力为120MPa。
试求杆的许可偏心拉力值。
解:圆截面面积
圆截面的弯曲截面系数
即:
,
返回
8-9(8-15) 曲拐受力如图示,其圆杆部分的直径mm。
试画出表示A点处应力状态的单元体,并求其主应力及最大切应力。
解:A点所在的横截面上承受弯矩和扭矩作用,其值
它们在点A分别产生拉应力和切应力,其应力状态如图8-15a,其中
注:剪力在点A的切应力为零。
返回
8-10(8-16) 铁道路标圆信号板,装在外径mm的空心圆柱上,所受的最大风载,。
试按第三强度理论选定空心柱的厚度。
解:忽略风载对空心柱的分布压力,只计风载对信号板的压力,则信号板受风力
空心柱固定端处为危险截面,其弯矩:
扭矩:
=
mm
8-11(8-21) 试校核图示拉杆头部的剪切强度和挤压强度。
已知图中尺寸mm,mm和mm,杆的许用切应力,许用挤压应力。
解:
安全
安全
返回
8-12(8-22) 水轮发电机组的卡环尺寸如图所示。
已知轴向荷载
,卡环材料的许用切应力,许用挤压应力。
试校核卡环的强度。
解:剪切面
安全
挤压面
安全
返回
8-13(8-23)正方形截面的混凝土柱,其横截面边长为200mm,其基底为边长a =1m的正方形混凝土板。
柱承受轴向压力,如图所示。
假设地基对混凝土板的支反力为均匀分布,混凝土的许用切应力为,试问为使柱不穿过板,混凝土板所需的最小厚度应为多少?
解:
故
返回
8-14(8-24)图示一螺栓接头。
已知,螺栓的许用切应力
,许用挤压应力。
试计算螺栓所需的直径。
解:按剪切强度计算
故
按挤压强度计算:
故选取的螺栓。
返回
8-15(8-25)拉力的螺栓连接如图所示。
已知b=80mm,mm,d=22mm,螺栓的许用切应力,钢板的许用挤压应力,许用拉应力。
试校核接头的强度。
解:(1)螺栓剪切
(2)钢板挤压
(3)钢板拉伸
第一排截面上应力:
第二排孔截面上拉力与第一排螺钉上的剪力之和等于外力F,其中第一排螺钉上剪力为:
故第二排截面上拉应力合力为
于是
返回
8-16(8-26) 两直径mm的圆轴,由凸缘和螺栓连接,共有8个螺栓布置在mm的圆周上,如图所示。
已知轴在扭转时的最大切应力为
70MPa,螺栓的许用切应力。
试求螺栓所需的直径。
解:
返回
8-17(8-27) 一托架如图所示。
已知外力,铆钉的直径mm,铆钉与钢板为搭接。
试求最危险的铆钉剪切面上切应力的数值及方向。
解:(1)在F力作用下,因为每个铆钉直径相等,故每个铆钉上所受的力
(2)在力偶作用下,四个铆钉上
所受的力应组成力偶与之平衡。
(1)
(2)
联解式(1)、(2)得。