理论力学-碰撞PPT课件

合集下载

碰撞 课件

碰撞 课件

2mEk;E几k 个12 关pv或系p转换2Ev动k 能、动
量.
(3)完全非弹性碰撞: 碰撞过程中动量守恒,碰撞结束后两 物体结合为一整体以相同的速度运动,系统动能损失最大.
(1)当遇到两物体发生碰撞的问题,不管碰撞环 境如何,要首先想到利用动量守恒定律. (2)对心碰撞是同一直线上的运动过程,只在一个方向上列动 量守恒方程即可,此时应注意速度正、负号的选取.
【解题指导】求解此题应把握以下三点:
【标准解答】从两小球碰撞后到它们再次相遇,小球A和B速度
大小保持不变.根据它们通过的路程之比为1∶4,可知小球A和
小球B在碰撞后的速度大小之比为1∶4.设碰撞后小球A和B的
速度分别为v1和v2,在碰撞过程中动量守恒,碰撞前后动能相等:
m1v0
m1v1
m 2 v 2,12
【典例2】在光滑的水平面上,质量为m1的小球A以速度v0向 右运动.在小球A的前方O点有一质量为m2的小球B处于静止状 态,如图所示.小球A与小球B发生正碰后小球A、B均向右运动. 小球B被在Q点处的墙壁弹回后与小球A在P点相遇,PQ=1.5PO. 假设小球间的碰撞及小球与墙壁之间的碰撞都是弹性碰撞,求 两小球质量之比m1/m2 .
5.三种碰撞类型的特点:对于弹性碰撞,碰撞前后无动能损 失;对于非弹性碰撞,碰撞前后有动能损失;对于完全非弹 性碰撞,碰撞前后动能损失最大. (1)弹性碰撞:碰撞过程中不仅动量守恒,而且机械能守恒, 碰撞前后系统动能相等.同时,在碰撞问题中常做动量和动能 的换算. (2)非弹性碰撞:碰撞过程中动量守恒,碰撞结束后系统动能 小于碰撞前系统动能.减少的动能转化为其他形式的能量.
1 2
mBv02
1 2
m A v12
1 2

理论力学-碰撞PPT课件

理论力学-碰撞PPT课件

锤不回跳,此时可近似认为k =0,于是汽锤效率
m2 0.949% 4
m1m2
2021
25
§19-5 碰撞冲量对绕定轴转动刚体的作用 撞击中心
设刚体绕固定轴z 转动,转动惯量为IZ,受到外碰撞冲量
S (e) i
(i1,2, ,n)
的作用。
碰撞开始时 Lz1 I z1
碰撞结束时 Lz2 I z 2
的积分形式为:
m um vS
(1-19)
2021
8
对于有n个质点组成的质点系,将作用于第 i 个质点上的
碰撞冲量分为外碰撞冲量
S
( i
e
)
和内碰撞冲量
S
( i
i
)
,则有:
m iu i m iv i S i(e ) S i(i) ( i 1 ,2 , ,n )
将这n个方程相加, 且Si(i) 0(内碰撞冲量总是成对出现的),故
2021
1
在前面讨论的问题中,物体在力的作用下,运动速度都 是连续地、逐渐地改变的。本章研究另一种力学现象——碰 撞,物体发生碰撞时,会在非常短促的时间内,运动速度突 然发生有限的改变。本章研究的主要内容有碰撞现象的特征, 用于碰撞过程的基本定理,碰撞过程中的动能损失,撞击中 心。
2021
2
第十九章 碰撞 §19–1 碰撞现象及其基本特征 碰撞力
§19-2 用于碰撞过程的基本定理
§19–3 质点对固定面的碰撞 恢复系数
§19–4 两物体的对心正碰撞 动能损失
§19–5 碰撞冲量对绕定轴转动刚体的作用
撞击中心
小结
2021
3
§19-1 碰撞现象及其基本特征 碰撞力
碰撞:运动着的物体在突然受到冲击(包括突然受到约 束或解除约束)时,其运动速度发生急剧的变化,这种现象 称为碰撞。

16-4 碰撞课件 (共15张PPT)

16-4 碰撞课件 (共15张PPT)

【例1 】质量相等的两只小球A、B,在光滑的水平面上沿
同一直线向同一方向运动,A球的初动量为7kg.m/s, B
球的初动量为5kg.m/s,当A球追上B球发生碰撞后, A、
B两球的动量可能为:( A A.PA=6 Kg.m/s B.PA=3 Kg.m/s C.PA=-2 Kg.m/s D.PA=-4 Kg.m/s

' 2 v 2 2
非弹性碰撞
碰撞
1 1 1 2 ' 2 m 1v 1 > m 1v 1 + m 2 2 2
' 2 v 2 2
正碰(对心碰撞) 碰撞的 维度
斜碰(非对心碰撞)
三、散射
1.概念:微观粒子的碰撞叫做散射。 微观粒子发生对心碰撞的概率很小,多数粒子碰撞后飞向四面八方。
' m 1v1 = m 1v ' + m v 2 1 2
弹性碰撞 有无 能量 损失
1 1 1 2 ' 2 m 1v 1 = m 1v 1 + m 2 2 2
' m 1v1 = m 1v ' + m v 2 1 2
V0=0
μ= 0
若两钢球碰撞后粘在一起运动,动量是否守恒?机械 能是否守恒?试计算说明。
v
V0=0
μ= 0
一、弹性碰撞与非弹性碰撞
1. 弹性碰撞:如果碰撞过程中机械能守恒,这样的 碰撞叫弹性碰撞。 动能 动能 弹性势能 例如:钢球、玻璃球的碰撞 2.非弹性碰撞:如果碰撞过程中机械能不守恒,这 样的碰撞叫非弹性碰撞。 动能
两物体的速度分别为:
m1 m2 v1 v1 m1 m2
'
2m1 v v1 m1 m2

6.3碰撞(1)8882346页PPT

6.3碰撞(1)8882346页PPT
碰撞力(瞬时力):在碰撞过程中出现的数值 很大的力称为碰撞力;由于其作用时间非常短促, 所以也称为瞬时力。
24.05.2020
14
设榔头重10N,以v1=6m/s的速度撞击铁块,碰撞时间
=1/1000s , 碰撞后榔头以v2=1.5m/s的速度回跳。求榔头打
击铁块时力的平均值。
锤的平均加速度:
a )v 2 ( v 1 ) 1 .5 6 7 5 0 0 m /s2 0 .0 0 1
0<e<1 部分弹性碰撞:变形不能完全恢复。
e=1 完全弹性碰撞:无能量损耗,变形可完全恢复;
e=0 完全塑性碰撞:能量完全损耗,变形完全不能恢复。
24.05.2020
23
二、用于碰撞过程的动力学定理 1. 用于碰撞过程的动量定理
p 2p 1IR e Iie m v C 2 m v C 1 IR e I ie
不利因素:机械、仪器及其它物品由于碰撞而 造成损坏等。 有利方面:利用碰撞进行工作,如锻打金属, 用锤打桩等。
24.05.2020
16
近4年全国道路交通事故基本情况
年份 道路交通 事故数(起)
06 51,572
死亡 人数 7,806
受伤 人数 50,697
直接经济损 失(亿)
3
07 327,209 81,649 380,442
12
08 265,204 73,484 304,919
10.1
09 238,351 67,759 275,125
9.1
24.05.2020
17
1912年4月10日,号称永不沉没的超级巨轮“泰坦尼克号”由 英国往纽约处女航,在大西洋洋面行驶时因与冰山发生碰撞 而沉没,造成船上2235人中的1522人丧身.

理论力学PPT课件第6章 6.3碰撞46页PPT

理论力学PPT课件第6章 6.3碰撞46页PPT
1987年12月20日,“多纳帕斯号”(设计载人:608人,经改装 后可载人:1518人,实际载人:3000人),在往马尼拉方向行驶 时因与油轮相撞而起火,造成船上3000人几乎丧身.
2019/10/8
19
2. 研究碰撞的基本假设:
(1) 在碰撞过程中,重力、弹性力等非碰撞力与碰撞力相比 小得多,其作用可以忽略不计。但必须注意,在碰撞前和 碰撞后,非碰撞力对物体运动状态的改变作用不可忽略。 (2) 由于碰撞时间极短,而速度又是有限量,所以物体在 碰撞过程的位移很小,可以忽略不计,即认为物体在碰撞 开始时和碰撞结束时的位置相同。
v1
v2
u1
u2
取整体,由冲量守恒,有 m 1 v 1 m 2 v 2 m 1 u 1 m 2 u 2 以及:e u2 u1 v1 v2
2019/10/8
31
u1v1(1e)m 1m 2m 2(v1v2)v1
u2v2(1e)m 1m 1m 2(v1v2)v2
2. 用于碰撞过程的冲量矩定理
L O 2 L O 1 M 0 e M 0 ( I i e )
2019/10/8
25
用于定轴转动刚体碰撞时的微分方程积分形式
J O z2 J O z1 M O e z =m O z ( I i e )
用于平面运动刚体碰撞时的微分方程积分形式
T= m1m2
2m1 m2
v12=1T1m1
m2
说明系统损失的动能与两物体的质量比有关。
2019/10/8
34
工程应用:
T=
T1
1 m1
m2
(1) 打桩时,希望桩获得尽可能多的动能,去克服土
壤给桩的阻力,这就要求损失的动能越少越好。这时

碰撞(公开课)ppt

碰撞(公开课)ppt
3. 完全非弹性碰撞:碰撞中能量损失最大 碰撞之后两物体结合到一起,以共同速度运动
即:动量守恒,动能不守恒
三、对心碰撞与非对心碰撞 1、对心碰撞——正碰:
碰前运动速度与两球心连线处于同一直线上
2、非对心碰撞——斜碰: 碰前运动速度与两球心连线不在同一直线上
【设问】斜碰过程满足动量守恒吗?为什么?如图, 能否大致画出碰后A球的速度方向?
② 若m1>m2 , 则v1’>0;且v2’一定大于0
若m1<m2 , 则v1’<0;且v2’一定大于0
③若 m2>>m1 , 则v1’= -v1 , v2’=0 .
④ 若 m1 >> m2 , 则v1’= v1,v2’=2v1 .
小结:质量相等,交换速度; 大碰小,一起跑;小碰大,要反弹
2. 非弹性碰撞:碰撞中有能量损失 即:动量守恒,动能不守恒
按能量损失的情况分
斜碰
弹 性 碰 撞 : 动量守恒,动能没有损失
非 弹 性 碰 撞 : 动量守恒,动能有损失 完全非弹性碰撞: m1v1+m2v2=(m1+m2)v
,动能损失最大
1、现有AB两滑块,质量分别为3m和m,以相同的 速率v在光滑水平面上相向运动,发生了碰撞, 已知碰撞后,A静止不动,则这次碰撞是()
• 以v2=0.8m/s 的初速度水平向右运动, (取g= 10m/s2)求:
• (1)物块和小车相对静止时,物块和小车的速度 大小和方向
• (2)为使物块不从小车上滑下,小车的长度L至
少多大?
v1
m
M v2
解:(1)木块先向左匀减速运动到0,再匀加 速运动到共同速度V
由动量守恒定律 V=0.4m/s

碰撞基本概述课件.pptx

碰撞基本概述课件.pptx

碰撞后的速度与第一个小球 的运动方向相同。
(2)碰撞前系统的动能为
1
1
1
2
1 = 1 1 + 2 22
2
2
1
1
2
= × 0.5 × 4 J + × 0.25 × (−3)2 J = 5.13J
2
2
碰撞后系统的动能为
2
1
= (1 + 2 ) ′2
2
2
1
= 0.5 + 0.25 × 1.67 2 J = 1.05J
2
2
2
2
例1.一个物体质量为 ,初速度为 ,在光滑的
水平面上与一个质量为 的静止的物体发生弹性
碰撞。求碰后两物体的速度。
解: 由动量守恒和机械能守恒得
1 1 = 1 1′ + 2 2′
1
1
1
2
′2
1 1 = 1 1 + 2 2′2
2
2
2
解得
1 − 2
=
1
1 + 2
以相同ห้องสมุดไป่ตู้速度
反弹回去
例2.在热核反应过程中,当铀
核裂变时会放出若干个
中子,中子的速度很高,降低中子的速度可以提高裂变概
率。因此,常常用慢化剂(重水、石墨等)来降低中子的
速度。假设中子的速率为 ∙ − ,与重水里的氘核发
生弹性碰撞,氘核开始处于静止状态,氘核的质量是中子
2
∆ = 2 − 1 = 4.08J
大部分能量在碰撞过程中转化为内能了。
• 非对心碰撞
= ′
= ′
Y

1
(a)碰撞前

《碰撞》-课件

《碰撞》-课件

4. 如图所示,abc 是光滑的轨道,其中 ab 是水平的,bc 为 与 ab 相切的位于竖直平面内的半圆,半径 R = 0.30 m。质 量 m = 0.20 kg 的小球 A 静止在轨道上,另一质量 M = 0.60 kg、速度 v0 = 5.5 m/s 的小球 B 与小球 A 正碰。已知相碰后 小球 A 经过半圆的最高点 c 落到轨道上距 b 点为 L 4 2R 处,重力加速度 g 取 10 m/s2,求碰撞结束时,小球 A 和 B 的速度的大小。
(1) 规律:动量守恒、机械能守恒 (2) 能量转化情况:系统动能没有损失
2. 完全非弹性碰撞:碰撞后两物体连在一起运动的现象。 (1) 规律:动量守恒,机械能减少 (2) 能量转化情况:系统动能损失最大
3. 对心碰撞和非对心碰撞
簧压缩至最短的整个过程中( B )
A. 动量守恒,机械能守恒 B. 动量不守恒,机械能不守恒 C. 动量守恒,机械能不守恒 D. 动量不守恒,机械能守恒
A
1. 动量守恒; 2. 动能不会增加; 3. 符合实际情况。如运动方向一致时,后边物体速度
一定小于前边物体速度等。
AC
A. 碰前 m2 静止,m1 向右运动 B. 碰后 m2 和 m1 都向右运动 C. m2 = 0.3 kg D. 碰撞过程中系统损失了 0.4 J 的机械能
(5) 若 m1 >> m2 , 则 v1ʹ = v1, v2ʹ = 2v1
5. 非弹性碰撞
v1
地面光滑
v2
m1v1 m2v2 m1v1 m2v2
1 2
m1v12
1 2
m2v22
1 2
m1v12
1 2
m2v2 2
Ek
3. 完全非弹性碰撞:碰撞后两物体连在一起运动的现 象。系统机械能损失最多。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一般0<k<1,各种材料的恢复系数,可查阅书中表。 k=1 理想情况——完全弹性碰撞。 k=0 极限情况——非弹性碰撞或塑性碰撞。
.
14
§19-4 两物体的对心正碰撞 动能损失
对心碰撞:碰撞时两物体质心的连线与接触点公法线重合。 对心正碰撞与对心斜碰撞:碰撞时两质心的速度也都沿两质 心连线方向,则称为对心正碰撞(正碰撞),否则称为对心 斜碰撞(斜碰撞)。
碰撞现象的基本特征:物体的运动速度或动量在极短的 时间内发生有限的改变。碰撞时间之短往往以千分之一秒甚 至万分之一秒来度量。因此加速度非常大,作用力的数值也 非常大。
碰撞力(瞬时力):在碰撞过程中出现的数值很大的力 称为碰撞力;由于其作用时间非常短促,所以也称为瞬时力。
.
4
以榔头打铁为例说明碰撞力的特征:
大。设碰撞冲量为 S 1 ,则
应用冲量定理在y 轴投影

0(m)vS1
第二阶段:由弹性变形开始恢复到脱离接触。该阶段中,
小球动能增大,变形(弹性)逐渐恢复。设碰撞冲量为 S 2 ,
则:
mu0S2
u S2 v S1
.
13
对于给定材料,|u|与|v|的比值是不变的,该比值称为恢复系数。
k
u v
——由实验测定
2、用于碰撞过程的动量矩定理——冲量矩定理
由假设(2)知,碰撞过程中,质点的矢径 r 保持不变,则
由(19-1)式,有:
r m u r m v r S
而 rm vlO 1,rm ulO 2 ;lO1和lO2 为碰撞始末时质点对
O点的动量矩。rSmO(S)是碰撞冲量 s 对O点的矩,所以:
lO2lO1mO(S)
.
7
两个基本定理:
在理论力学中,我们关心的主要是由于碰撞冲量的作用而 使物体运动速度发生的变化。因此,动量定理和动量矩定理就 成了研究碰撞问题的主要工具。
1、用于碰撞过程的动量定理——冲量定理。
设质点的质量为 m,碰撞开始时的速度 v ,结束瞬时的速
度 u ,碰撞冲量 S ,不计普通力的冲量,则质点动量定理
§19-2 用于碰撞过程的基本定理
§19–3 质点对固定面的碰撞 恢复系数
§19–4 两物体的对心正碰撞 动能损失
§19–5 碰撞冲量对绕定轴转动刚体的作用
撞击中心
小结
.
3
§19-1 碰撞现象及其基本特征 碰撞力
碰撞:运动着的物体在突然受到冲击(包括突然受到约 束或解除约束)时,其运动速度发生急剧的变化,这种现象 称为碰撞。
.
1
在前面讨论的问题中,物体在力的作用下,运动速度都 是连续地、逐渐地改变的。本章研究另一种力学现象——碰 撞,物体发生碰撞时,会在非常短促的时间内,运动速度突 然发生有限的改变。本章研究的主要内容有碰撞现象的特征, 用于碰撞过程的基本定理,碰撞过程中的动能损失,撞击中 心。
.
2
第十九章 碰撞 §19–1 碰撞现象及其基本特征 碰撞力
.
5
可见,即使是很小的物体,当运动速度很高时,瞬时力 可以达到惊人的程度。有关资料介绍,一只重17.8N的飞鸟 与飞机相撞,如果飞机速度是800km/h,(对现代飞机来说, 这只是中等速度),碰撞力可高达3.56105N,即为鸟重的2 万倍!这是航空上所谓“鸟祸”的原因之一。
害的一面: “鸟祸”、机械、仪器及其它物品由于碰撞损坏等。 利的一面:利用碰撞进行工作,如锻打金属,用锤打桩等。
式(19-4)、(19-5)也可写成投影形式,且式中均不计普通 力的冲量矩。
.
11
§19-3 质点对固定面的碰撞 恢复系数
设一小球(可视为质点)沿铅直方向落到水平的固定平面 上,如图所示。
请 看 动 画
.
12
碰撞过程分为两个阶段: 第一阶段:开始接触
至变形达到最大。该阶段
中,小球动能减小,变形增
n
n
miui mivi
Si(e)
冲量定理
i1
i1
(19-2)
设质点系总质量M,uC 和vC 分别为碰撞结束和碰撞开始
时质心的速度,则利用质心运动定理,上式可写成:
M uCM vC Si(e)
.
(19-3)
9
碰撞时质点系动量的改变等于作用在质点系上所有外碰 撞冲量的矢量和。
式(19-1)、(19-2)和(19-3)都写成投影形式,形式上与普通 的动量定理相同,所不同的是在这里都不计普通力的冲量。
研究碰撞现象,就是为了掌握其规律,以利用其有利的一 面,而本定理
两个基本假设:
(1)在碰撞过程中,重力、弹性力等普通力与碰撞力相比小 得多,其冲量可以忽略不计。但必须注意,在碰撞前和碰撞后, 普通力对物体运动状态的改变作用不可忽略。
(2)由于碰撞时间极短,而速度又是有限量,所以物体在碰 撞过程的位移很小,可以忽略不计,即认为物体在碰撞开始时 和碰撞结束时的位置相同。
.
15
请看动画
.
16
1、正碰撞结束时两质心的速度 例如:两物体碰撞
碰撞前:v1,v2(v1v2) 碰撞结束:u1 , u2(沿质心连线)
分析碰撞结束时两质心的速度。
.
17
分析: 研究对象:两物体组成的质点系。 由冲量定理,得:
(m 1 u 1 m 2 u 2 ) (m 1 v 1 m 2 v 2 ) 0 (1)
的积分形式为:
m um vS
(1-19)
.
8
对于有n个质点组成的质点系,将作用于第 i 个质点上的
碰撞冲量分为外碰撞冲量
S
( i
e
)
和内碰撞冲量
S
( i
i
)
,则有:
m iu i m iv i S i(e ) S i(i) ( i 1 ,2 , ,n )
将这n个方程相加, 且Si(i) 0(内碰撞冲量总是成对出现的),故
(19-4)
.
10
碰撞时,质点对任一固定点动量矩的改变,等于作用于 该质点的碰撞冲量对同一点之矩。
对于质点系,由于内碰撞冲量对任一点的矩之和等于零,于是有
LO2LO1 m O(S(e)) 冲量矩定理
(19-5)
在碰撞过程中,质点系对任一固定点的动量矩的改变,等 于作用于质点系的外碰撞冲量,对同一点之矩的矢量和。
设榔头重10N,以v1=6m/s的速度撞击铁块,碰撞时间
=1/1000s , 碰撞后榔头以v2=1.5m/s的速度回跳。求榔头打击铁块 的力的平均值。
以榔头为研究对象,根据动量定理
mv2mv1S 的投影形式得
1g(0 1.56)S; S7.65 Ns
碰撞力的变化大致情况如图所示。
平均打击力 F*S/76N 50,是榔头重的765倍。
相关文档
最新文档