2017考研数学备考必读:高等数学的重要知识点汇总

合集下载

考研数学必考的知识点总结

考研数学必考的知识点总结

考研数学必考的知识点总结一、高等数学在考研数学中,高等数学是必考的一个重点,主要包括以下几个部分:1.极限和连续极限和连续是高等数学中的基础知识,也是考研数学中的重点。

在考研数学中,常常涉及到函数的极限和连续性的问题,因此考生需要熟练掌握极限和连续的相关概念和定理,包括函数极限的定义、性质、计算技巧和判定方法,以及函数的连续性的概念、性质和相关定理。

2.导数和微分导数和微分是高等数学中的重要内容,也是考研数学中的必考知识点。

在考研数学中,常常涉及到函数的导数和微分的相关问题,因此考生需要掌握导数和微分的相关概念和定理,包括导数的概念、性质、计算方法和应用,以及微分的概念、性质和计算方法。

3.积分积分是高等数学中的重要内容,也是考研数学中的必考知识点。

在考研数学中,常常涉及到定积分和不定积分的相关问题,因此考生需要掌握积分的相关概念和定理,包括定积分和不定积分的定义、性质、计算方法和应用。

4.级数级数是高等数学中的重要内容,也是考研数学中的必考知识点。

在考研数学中,常常涉及到级数的收敛性和性质的相关问题,因此考生需要掌握级数的相关概念和定理,包括级数的收敛性判定方法、级数的性质和级数的运算法则。

5.常微分方程常微分方程是高等数学中的重要内容,也是考研数学中的必考知识点。

在考研数学中,常常涉及到常微分方程的解的存在唯一性和解的性质的相关问题,因此考生需要掌握常微分方程的相关概念和定理,包括常微分方程的基本概念、常微分方程的解的存在唯一性定理和解的性质定理。

总之,高等数学是考研数学中的重要内容,考生需要充分掌握高等数学的相关知识,扎实掌握高等数学的基本概念和定理,熟练掌握高等数学的计算方法和应用技巧,提高解题能力和应试能力。

二、线性代数在考研数学中,线性代数是必考的一个重点,主要包括以下几个部分:1.矩阵矩阵是线性代数中的重要内容,也是考研数学中的必考知识点。

在考研数学中,常常涉及到矩阵的相关问题,因此考生需要掌握矩阵的相关概念和定理,包括矩阵的基本概念、矩阵的运算法则、矩阵的秩和行列式的性质。

高等数学知识点考研总结

高等数学知识点考研总结

高等数学知识点考研总结一、高等数学的知识点1.极限与微积分极限是微积分的基础,通过研究极限,可以建立微积分理论体系。

极限的概念是数学分析的核心,包括函数的极限、无穷小量、洛必达法则等内容。

微积分则是极限理论的应用,包括导数、积分、微分方程等内容。

2.多元函数微分学在高等数学中,多元函数微分学是一个重要的知识点。

它包括偏导数、全微分、多元函数极值、拉格朗日乘数法等内容。

多元函数微分学是微积分理论在多元空间中的拓展,对于理解多元函数的性质和求解实际问题中的应用具有重要意义。

3.级数与收敛性级数是数学分析中的一个重要概念,包括数项级数、函数项级数、幂级数、傅里叶级数等内容。

收敛性是级数理论的核心问题,包括级数收敛的判别法、柯西收敛判别法、绝对收敛和条件收敛等内容。

4.常微分方程常微分方程是现代数学中一个重要的研究方向,包括一阶微分方程、高阶微分方程、线性微分方程、非线性微分方程等内容。

常微分方程的理论和方法在科学与工程领域有着广泛的应用,对于建模和求解实际问题具有重要意义。

以上是高等数学中的一些重要知识点,它们构成了数学分析的基本理论体系,对于理解数学的基本概念、方法和技巧具有重要的意义。

二、高等数学的考试重点在高等数学的考研过程中,以下是一些较为重要的考试重点知识点。

1. 极限和微分极限和微分是高等数学的基本理论,对于研究生入学考试而言,它们是比较重要的考试重点。

在考试中,可能涉及到函数的极限、无穷小量、导数、微分等内容,考生需要熟练掌握相应的定义、定理和求解方法。

2. 积分和微分方程积分和微分方程是微积分的重要应用,也是研究生入学考试的考试重点。

在考试中,可能涉及到不定积分、定积分、导数与积分的关系、常微分方程的基本理论和方法等内容,考生需要对这些知识点有所掌握。

3. 级数与收敛性级数与收敛性是数学分析中的一个重要概念,也是研究生入学考试的考试重点。

在考试中,可能涉及到数项级数、函数项级数、级数收敛的判别法等内容,考生需要对级数理论有所了解。

考研数学必备高等数学知识点总结

考研数学必备高等数学知识点总结

考研数学必备高等数学知识点总结高等数学作为考研数学科目的一部分,是考生们需要重点复习的内容之一。

在考研数学中,高等数学占据了相当大的比重,因此对高等数学知识点的掌握和理解是考生们成功的关键。

本文将对考研数学中必备的高等数学知识点进行总结,以帮助考生们更好地备考。

1. 极限与连续1.1 极限的定义及性质极限是高等数学中的核心概念之一,它描述了函数或者数列的趋近行为。

在考研数学中,需要掌握极限的定义以及一系列的性质,如极限的四则运算法则、夹逼准则等。

1.2 连续函数连续函数是高等数学中的重要概念,它描述了函数在某一点的连续性。

在考研数学中,需要理解连续函数的定义以及一些常见连续函数的性质,如初等函数的连续性、连续函数的运算法则等。

2. 导数与微分2.1 导数的定义及性质导数是描述函数在某一点的变化率,它是高等数学中的重要概念之一。

在考研数学中,需要掌握导数的定义以及一系列的性质,如导数的四则运算法则、链式法则等。

2.2 微分与微分近似微分是导数的几何意义,它描述了函数在某一点的切线斜率。

在考研数学中,需要理解微分的定义及其与导数的关系,同时还需要了解微分近似的方法,如线性近似、切线法等。

3. 不定积分与定积分3.1 不定积分的求法不定积分是函数的原函数,它描述了函数在一定区间上的变化情况。

在考研数学中,需要掌握常见函数的不定积分求法,如初等函数的不定积分、分部积分法、换元积分法等。

3.2 定积分的计算与应用定积分是函数在一定区间上的累积变化量,它描述了函数在该区间上的总体变化情况。

在考研数学中,需要理解定积分的定义以及一些计算方法,如定积分的基本性质、定积分的几何意义等。

同时还需要掌握定积分在几何、物理等方面的应用,如面积计算、质量、重心等的计算。

4. 二重积分与三重积分4.1 二重积分的计算与应用二重积分是函数在二维区域上的累积变化量,它描述了函数在该区域上的总体变化情况。

在考研数学中,需要掌握二重积分的计算方法,如二重积分的基本性质、二重积分的换序等。

2017考研数学:各科目考点详解

2017考研数学:各科目考点详解

中公教育东莞分校2017考研数学:各科目考点详解2017考研数学,首先我们就考研数学各科目考点分析,讲一讲2017的考生应该如何安排考研数学复习。

高数高数是考研数学的重中之重。

高数真题体现出以下规律:侧重对数学(一)、(二)、(三)独有知识的考查。

多元积分部分的曲线积分、曲面积分及几大公式(格林、高斯和斯托克斯)是数学(一)的独有内容,也是必考内容。

今年有一道考查三重积分计算的填空题和考查曲线积分的解答题;曲率、形心质心和其他物理应用是数学(二)常考内容,今年就考了一道关于温度变化的解答题;数三的特色是经济应用——建立收益、成本、销量、价格等经济变量的函数关系、边际收益和边际成本、弹性问题,今年考了经济应用的解答题。

考查考生运用数学知识分析问题、解决问题的能力。

上文提到的几何应用、物理应用和经济应用即为证明。

考点覆盖较全。

上表列出的数学(三)的高数考点即为例证。

提醒考生不要心存侥幸心理,要全面复习。

线代线代的规律若用两个关键字概括,为“综合”和“灵活”。

线代这门学科的知识结构是一个网状结构,知识点之间的联系非常多。

请思考一个问题:矩阵可逆有哪些等价条件?从行列式的角度,为矩阵的行列式不等于零;从向量组的角度,是矩阵的行向量组或列向量组线性无关;从线性方程组的角度,是以矩阵为系数矩阵的齐次线性方程组仅有零解或矩阵为系数矩阵的非齐次线性方程组有唯一解;从秩的角度,是矩阵满秩;从特征值的角度,是矩阵的特征值不含零;从二次型的角度,为矩阵的转置乘矩阵这个新矩阵正定。

不难看到,从一个核心概念“矩阵可逆”出发,可以把整个线性代数的五章全串起来。

既然知识点的联系如此之多,那么一道题联系多个考点或需考生从不同角度考虑就很自然了。

这提醒考生复习线代时,不仅要注重基本知识点的复习,也要重视知识点之间的联系。

概率我认为概率是三科中题型最固定的:哪考大题哪考小题非常清楚。

根据对历年真题的分析,不难发现,概率常考大题的点有:边缘分布和条件分布,随机变量函数的分布和参数估计。

考研 高等数学必看知识点

考研 高等数学必看知识点

考研高等数学必看知识点对于准备考研的同学来说,高等数学是一门至关重要的科目。

高等数学的知识点繁多且复杂,需要我们花费大量的时间和精力去理解和掌握。

在这篇文章中,我将为大家梳理一些考研高等数学中必看的知识点,希望能对大家的备考有所帮助。

一、函数、极限与连续函数是高等数学的基础,理解函数的概念、性质和分类是学好高等数学的第一步。

要掌握函数的定义域、值域、单调性、奇偶性、周期性等基本性质,以及常见的函数类型,如幂函数、指数函数、对数函数、三角函数等。

极限是高等数学中的核心概念之一,它贯穿了整个高等数学的学习。

要熟练掌握数列极限和函数极限的定义、性质和计算方法。

极限的计算方法包括四则运算、洛必达法则、等价无穷小替换、泰勒公式等。

连续是函数的一个重要性质,要理解函数在一点连续的定义,以及连续函数的性质,如最值定理、介值定理、零点定理等。

二、一元函数微分学导数是微分学的核心概念,要掌握导数的定义、几何意义和物理意义,以及基本初等函数的导数公式和导数的四则运算法则。

能够熟练运用导数求函数的单调性、极值、最值、凹凸性和拐点。

微分是导数的一种应用,要理解微分的定义和几何意义,掌握微分的基本公式和运算法则,能够用微分进行近似计算和误差分析。

中值定理是微分学中的重要定理,包括罗尔定理、拉格朗日中值定理和柯西中值定理。

要掌握这些定理的条件和结论,并能够运用它们解决相关的问题。

三、一元函数积分学不定积分是积分学的基础,要掌握不定积分的定义、性质和基本积分公式,能够熟练运用换元积分法和分部积分法求不定积分。

定积分是不定积分的应用,要理解定积分的定义、几何意义和物理意义,掌握定积分的基本性质和计算方法,能够用定积分求平面图形的面积、旋转体的体积、曲线的弧长等。

反常积分是定积分的拓展,要掌握反常积分的定义、收敛性的判断和计算方法。

四、多元函数微积分学多元函数的概念和性质是多元函数微积分学的基础,要理解多元函数的定义域、值域、偏导数、全微分等概念,掌握多元函数的连续性和可微性的判断方法。

2017考研数学一之高等数学复习重点

2017考研数学一之高等数学复习重点

2017考研数学一之高等数学复习重点来源:智阅网高等数学是考研数学一中,必考的内容。

所以,我们在复习的时候,一定要重视高等数学部分的复习。

下面,就让我们熟悉一下高等数学的复习重点有哪些。

高数第一章不定式的极限,考生要充分掌握求不定式极限的各种方法,比如利用极限的四则运算、两个重要极限、洛必达法则等等,还要总结求极限过程中常用到的转化、化简的方法。

对函数的连续性的探讨也是考试的重点,这要求考生要充分理解函数连续的定义和掌握判断连续性的方法。

对于导数和微分,其实重点不是给一个函数求导数,而是导数的定义,也就是抽象函数的可导性,理清连续、可导、可微之间的关系,分清一元与多元的异同。

对于积分部分,定积分、分段函数的积分、带绝对值的函数的积分等各种积分的求法都是重要的题型,在求积分的过程中,一定要注意积分的对称性,利用分段积分去掉绝对值把积分求出来。

中值定理一般每年都要考一个题的,多看看以往考试题型,研究一下考试规律。

对于微分部分,隐函数的求导,复合函数的偏导数等是考试的重点。

二重积分的计算,当然数学一里面还包括了三重积分,掌握积分区域具有可加性、二重积分对称性的应用、二重积分直角坐标和极坐标的变换、二重积分转换成累次积分计算这些知识点。

另外还有曲线和曲面积分,这是数一必考的重点内容。

一阶微分方程,掌握几个教材中的几种类型的求解就可以了。

还有无穷级数,要掌握判别敛散性、幂级数的展开和求和常用的方法和技巧。

于是,我们再做做汤家风老师的2017《考研数学绝对考场最后八套题》(数学一),巩固我们对于高等数学等内容的掌握。

想买这本书的同学,还可以去智阅网上看看,最近智阅网上,有很多购书优惠,买得越多,折扣越多。

2017考研数学必背高数定理必考点

2017考研数学:必背高数定理必考点考研数学的题型和分值近几年没有转变,因此,对于考生来讲,认真的研读考研数学真题对于把握做题思路及命题人的出题点是很有必要的,下面凯程考研小编就为大家整理了一些考研数学真题的解题技能,供大家参考,希望能够给大家带来启发,帮忙大家更好的备考考研数学!对于选择题来讲,只有一个正确选项,其余三个都是干扰项,做题的时候只需给出正确选项的字母即可,不用给出推导进程,选对得满分,选错或不选均得0分,不倒扣分。

在做选择题的时候大家仍是有很多方式可选的,常常利用的方式有:代入法、排除法、图示法、逆推法、反例法等。

若是考试的时候大家发觉哪一种方式都不奏效的话,大家还能够选择猜想法,至少有25%的正确性。

选择题属于客观题,答案是唯一的,而且考研数学考试中的多选题也是以单选的形式出现的,最终的答案只有一个,评分是不偏不倚的。

选择题的难度一般都是适中的,均为中等难度,没有特别难的,也没有一眼就可以看出选项的题目。

选择题主要考查的是考生对大体的数学概念、性质的理解,要求考生能进行简单的推理、判断、计算和比较即可。

所以选择题对于考生来讲,要么依托扎实的知识得分,要么靠自身的运气得分,这32分要想稳拿需要考生在温习的时候深切试探,不能主观臆想,要试探与动手相结合才行。

填空题的答案也是唯一的,做题的时候给出最后的结果就行,不需要推导进程,一样也是答对得满分,答错或不答得0分,不倒扣分。

这一部份的题目一般是需要必然技能的计算,但不会有太复杂的计算题。

题目的难度与选择题八两半斤,也是适中。

填空题总共有6个,一般高数4个,线代和概率各1个,主要考查的是考研数学中的三大体:大体概念、大体原理、大体方式和一些大体的性质。

做这24分的题目时需要认真审题,快速计算,而且需要有融会贯通的知识作为保障。

解答题的分值较多,占总分的60%多,类型也较复杂,有计算题、证明题、实际应用题等,而且一般情形下每道大题都会有多种解题方式或证明思路,有的乃至有初等解法,得分率不容易控制,所以考试在做解答题是尽可能用与《考试大纲》中规定的考试内容和考试目标相一致的解题方式和证明方式,每一步的表述要清楚,每题的分值与完成该题所花费的时刻和考核目标是有关系的。

数学考研常用知识点归纳

数学考研常用知识点归纳数学是考研中非常重要的科目之一,涵盖了高等数学、线性代数、概率论与数理统计等多个领域。

以下是一些数学考研中常用的知识点归纳:1. 高等数学:- 极限:数列极限、函数极限、无穷小量阶的比较。

- 导数与微分:基本导数公式、高阶导数、隐函数与参数方程的导数。

- 微分中值定理:罗尔定理、拉格朗日中值定理、柯西中值定理。

- 积分:不定积分、定积分、换元积分法、分部积分法、反常积分。

- 级数:正项级数的收敛性、幂级数、泰勒级数展开。

- 多元函数微分:偏导数、全微分、多元函数的极值问题。

- 重积分与曲线积分、曲面积分:二重积分、三重积分、第一类曲线积分、第二类曲线积分、第一类曲面积分、第二类曲面积分。

2. 线性代数:- 矩阵:矩阵的运算、矩阵的秩、矩阵的特征值与特征向量。

- 线性空间:向量空间的概念、基与维数、线性相关与线性无关。

- 线性变换:线性变换的定义、矩阵表示、核与像。

- 特征值问题:特征多项式、特征值与特征向量的求解。

- 正交性:正交矩阵、正交变换、正交投影。

- 二次型:二次型的矩阵表示、标准形、惯性指数。

3. 概率论与数理统计:- 随机事件与概率:事件的概率、条件概率、全概率公式、贝叶斯公式。

- 随机变量及其分布:离散型随机变量、连续型随机变量、分布函数、概率密度函数。

- 多维随机变量:联合分布、边缘分布、条件分布、独立性。

- 数理统计:样本与总体、样本均值、样本方差、大数定律、中心极限定理。

- 参数估计:点估计、区间估计、最小二乘估计。

- 假设检验:假设检验的基本原理、常见检验方法、p值。

4. 常考题型与解题技巧:- 选择题:注意选项之间的逻辑关系,利用排除法。

- 填空题:注意题目要求的格式,合理猜测可能的数值。

- 计算题:注意计算过程的准确性,避免粗心大意。

- 证明题:理解定理的证明过程,掌握证明题的常见思路。

结束语:数学考研的知识点繁多,但只要系统地复习,掌握基本概念、基本原理和基本方法,通过大量的练习来提高解题能力,就能够在考试中取得好成绩。

高等数学基本知识点(考研必备)

高等数学基本知识点一、函数与极限1、集合的概念⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。

记作N⑵、所有正整数组成的集合叫做正整数集。

记作N+或N+。

⑶、全体整数组成的集合叫做整数集。

记作Z。

⑷、全体有理数组成的集合叫做有理数集。

记作Q。

⑸、全体实数组成的集合叫做实数集。

记作R。

⑶、邻域:设α与δ是两个实数,且δ>0.满足不等式│x-α│<δ的实数x的全体称为点α的δ邻域,点α称为此邻域的中心,δ称为此邻域的半径。

2、函数⑴、函数的定义:如果当变量x在其变化范围内任意取定一个数值时,量y按照一定的法则f总有确定的数值与它对应,则称y是x的函数。

变量x的变化范围叫做这个函数的定义域。

通常x叫做自变量,y叫做函数值(或因变量),变量y的变化范围叫做这个函数的值域。

注:为了表明y是x的函数,我们用记号y=f(x)、y=F(x)等等来表示。

这里的字母"f"、"F"表示y与x之间的对应法则即函数关系,它们是可以任意采用不同的字母来表示的。

如果自变量在定义域内任取一个确定的值时,函数只有一个确定的值和它对应,这种函数叫做单值函数,否则叫做多值函数。

这里我们只讨论单值函数。

⑵、函数相等由函数的定义可知,一个函数的构成要素为:定义域、对应关系和值域。

由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,我们就称两个函数相等。

⑶、域函数的表示方法a):解析法:用数学式子表示自变量和因变量之间的对应关系的方法即是解析法。

例:直角坐标系中,半径为r、圆心在原点的圆的方程是:x2+y2=r2b):表格法:将一系列的自变量值与对应的函数值列成表来表示函数关系的方法即是表格法。

例:在实际应用中,我们经常会用到的平方表,三角函数表等都是用表格法表示的函数。

c):图示法:用坐标平面上曲线来表示函数的方法即是图示法。

一般用横坐标表示自变量,纵坐标表示因变量。

考研:从17考研数学看高等数学高频考点

2018考研:从17考研数学看高等数学高频考点2017考研初试已经结束了,各科的考试题目及考点都出现了,从今年的考研数学来看,其试卷结构、命题方式等依旧延续往年的出题风格,主要考查考生的对基础知识点的掌握及各种综合应用的能力。

这些信息是2018考研复习的方向,因此大家应该重视起来,今天小编就为大家揭秘17高等数学部分的高频考点,希望可以帮到大家!一、函数、极限、连续。

高频考点:直接计算各种极限;极限的局部逆问题,即给定极限值或函数的连续点反过来确定式子中的参数;无穷小量阶的比较和确定;讨论函数的连续性、判断间断点的类型;讨论函数的零点或方程根的个数。

考研课程请咨询这里》》》二、一元函数积分学。

高频考点:不定积分、定积分及广义积分的计算;变上限积分的求导、极限等;积分中值定理和积分性质的相关证明题;定积分的物理应用和几何应用,如计算旋转面侧面积、旋转体体积、变力做功等。

三、一元函数微分学。

高频考点:导数与微分的求解;隐函数求导;分段函数的可导性;方程的根;证明不等式;中值定理及其相关证明;函数极值;导数的物理和经济学应用;用导数研究函数性态和描绘函数图形,求曲线渐近线。

四、空间解析几何。

高频考点:求直线方程和平面方程;平面与直线间关系及夹角的判定;旋转曲面方程,柱面方程的求解。

五、多元函数微分学。

高频考点:偏导数存在、可微、连续的判断;多元函数的一阶、二阶偏导数;空间曲面的切平面和法线,空间曲线的切线和法平面;多元函数无条件极值和条件极值;二元连续函数在有界平面区域上的最大值和最小值。

更多的考研数学资料可查看这里》》》六、多元函数积分学。

二重积分是数二和数三考生重点把握的考点;数学一的内容,高频考点包括三重积分的计算;第一型曲线和曲面积分计算;第二型曲线积分计算、格林公式、积分与路径无关、斯托克斯公式;第二型曲面积分计算、高斯公式。

七、级数。

数一数三的考生需要把握的内容,高频考点:常数项级数的收敛、发散、绝对收敛和条件收敛的判断;幂级数的收敛半径和收敛域;幂级数的展开和求和。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017考研数学备考必读:高等数学的重
要知识点汇总
高等数学
一、函数、极限、连续
1.函数的有界性、单调性、周期性和奇偶性
2.复合函数、反函数、分段函数和隐函数
3.基本初等函数的性质及其图形
4.数列极限与函数极限的定义及其性质
5.函数的左极限和右极限
6.无穷小量和无穷大量的概念及其关系
7.无穷小量的性质及无穷小量的比较
8.极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则
9.两个重要极限:
10.函数连续的概念
11.函数间断点的类型
12.闭区间上连续函数的性质
二、一元函数微分学
1.导数和微分的概念
2.函数的可导性与连续性之间的关系
3.平面曲线的切线和法线方程
4.导数和微分的四则运算
5.基本初等函数的导数
6.复合函数、反函数、隐函数以及参数方程所确定的函数的微分法
7.高阶导数一阶微分形式的不变性
8.微分中值定理
9.洛必达(L’Hospital)法则
10.函数单调性、极值
11.函数图形的凹凸性、拐点及渐近线
12.函数的最大值与最小值
13.弧微分
14.曲率的概念、曲率圆与曲率半径
三、一元函数积分学
1.原函数和不定积分的概念,不定积分的基本性质
2.基本积分公式
3.定积分的概念和基本性质,定积分中值定理
4.积分上限的函数及其导数
5.牛顿-莱布尼茨(Newton-Leibniz)公式
6.不定积分和定积分的换元积分法与分部积分法
7.有理函数、三角函数的有理式和简单无理函数的积分
8.反常(广义)积分
9.定积分的几何应用(平面图形的面积、旋转体的体积、平面曲线的弧长)
四、向量代数和空间解析几何
1.向量的数量积和向量积、混合积
2.两向量的夹角,两向量垂直、平行的条件
3.向量的坐标表达式及其运算
4.单位向量,方向数与方向余弦
5.平面方程
6.直线方程
7.球面、柱面、旋转曲面
8.空间曲线在坐标面上的投影曲线方程
五、多元函数微分学
1.二元函数的极限与连续的概念
2.多元函数的偏导数和全微分,全微分存在的必要条件和充分条件
3.多元复合函数、隐函数的求导法
4.二阶偏导数
5.方向导数和梯度
6.空间曲线的切线和法平面。

相关文档
最新文档