北师大版九年级数学上册第三章《概率的进一步认识》用频率估计概率同步练习(含答案解析)
第3章 概率的进一步认识 北师大版数学九年级上册单元测试卷(含答案)

第三章 概率的进一步认识时间:90分钟 满分:100分一、选择题(共8小题,每小题3分,共24分.每小题有四个选项,其中只有一个选项符合题意)1.用频率估计概率,可以发现抛掷硬币“正面向上”的概率为0.5,那么掷一枚质地均匀的硬币10次,下列说法正确的是( )A.每两次必有1次正面向上B.可能有5次正面向上C.必有5次正面向上D.不可能有10次正面向上2.[教材变式P 61练习](2021·辽宁阜新中考)小颖有两顶帽子,分别为红色和黑色,有三条围巾,分别为红色、黑色和白色,她随机拿出一顶帽子和一条围巾戴上,恰好为红色帽子和红色围巾的概率是( )A.12 B.23 C.56 D.163.(2022·山东济南历城区期末)一个不透明的袋子里装有白棋子、黑棋子共20个,这些棋子除颜色外都相同.小明从中随机摸出一颗棋子,记下颜色后放回,通过多次重复试验发现,摸出白棋子的频率稳定在0.6,则袋子中白棋子的个数最有可能是( )A.5B.8C.12D.154.(2022·安徽宿州期中)2022年冬奥会吉祥物为“冰墩墩”,冬残奥会吉祥物为“雪容融”.现有三张正面印有吉祥物的不透明卡片,卡片除正面图案不同外,其余均相同,其中两张正面印有“冰墩墩”图案,一张正面印有“雪容融”图案,将三张卡片正面向下洗匀,从中随机一次性抽取两张卡片,则抽出的两张卡片正面都印有“冰墩墩”图案的概率是( )A.13 B.12 C.49 D.235.(2021·重庆期末)一个不透明的袋子中装有3个白球,2个黑球,它们除颜色外都相同.将球摇匀后,从中随机摸出一个球,记下颜色后不放回,再随机摸出一个球.两次摸到的球颜色相同的概率是( )A.23 B.25 C.1325 D.13206.(2022·河南许昌一中月考)某市教委部门高度重视自然灾害中的安全教育,要求各级各类学校从认识安全警示标志入手开展安全教育活动.某数学兴趣小组准备了4张印有安全警示标志的卡片,正面图案如图所示,它们除此之外完全相同,把这4张卡片背面朝上洗匀,从中随机抽取两张卡片,则这两张卡片上的正面图案中有一张是轴对称图形的概率是( )A.12B.13C.14D.167.(2021·辽宁铁岭期末)若从1,2,3,4这四个数字中任选一个记为a ,再从这四个数字中任选一个记为c ,则关于x 的一元二次方程ax 2+4x+c=0没有实数根的概率为( )A.14B.13C.12D.238.(2022·江苏南京鼓楼区期中)如图是用画树状图的方法画出的某个试验的所有可能发生的结果,则这个试验不可能是( )A.在一个不透明的袋中有3个除颜色外完全相同的小球,其中2个黑球,1个白球,从中随机取出2个球B.小明,小王两个人分别去买一个盲盒,在三款盲盒中买到同一款盲盒C.从某学习小组的两名男生和一名女生中随机选取两名学生进行竞答D.体育测试中,随机从足球、篮球、排球三个项目中选择两个项目二、填空题(共5小题,每小题4分,共20分)9.(2022·北京期末)经过某个十字路口的汽车,可能直行,也可能向左转或向右转.如果这三种可能性大小相同,那么甲汽车经过这个十字路口时,向右转的概率是 .10.为积极响应“无偿献血,传递温暖”的号召,某高校一寝室的4个同学参与到爱心献血的活动中,他们其中有2个A 型血,1个B 型血,还有1个O 型血,现从该寝室随机抽取2个同学参与第一批次献血,则2个同学都是A 型血的概率为 .11.(2021·广东汕头潮阳区模拟)在如图所示的电路图中,随机闭合开关S 1,S 2,S 3中的两个,能让灯泡L 1发光的概率是 .12.(2022·辽宁锦州期中)一张纸片上有一个不规则的图案,小雅想了解该图案的面积是多少,她采取了以下的试验办法:用一个长为5 cm,宽为3 cm的长方形,将不规则图案围起来如图(1)所示,然后在适当位置随机地向长方形区域扔小球,并记录小球落在不规则图案内的次数(球落在界线上或长方形区域外不计入试验结果),她将若干次有效试验的结果绘制成了图(2)所示的折线统计图,由此她估计此不规则图案的面积为 cm2.(结果保留整数)图(1)图(2)13.(2021·江苏镇江中考)一只不透明的袋子中装有1个黄球,现放若干个红球进去,它们与黄球除颜色外都相同,搅匀后从中任意摸出两个球,若使得P(摸出一红一黄)=P(摸出两红),则放入的红球个数为 .三、解答题(共6小题,共56分)14.(8分)近几年,各式各样的共享经济模式在各个领域迅速普及应用,如图是某同学收集的四个共享经济领域的图标,将收集到的图标制成编号为A,B,C,D的四张卡片(除编号和内容外,其余完全相同),背面朝上,洗匀放好.(1)从中随机抽取一张,抽到的卡片上的图标恰好是“共享知识”的概率为 ;(2)从中随机抽取一张卡片,放回后洗匀,再从中随机抽取一张卡片,请用列表或画树状图的方法求抽到的两张卡片上的图标恰好是“共享出行”和“共享知识”的概率.15.(8分)某商场在“五一”促销活动中规定,顾客每消费100元就能获得一次抽奖机会.为了活跃气氛,设计了两种抽奖方案.方案一:转动转盘A一次,指针指向红的部分可领取一份奖品.方案二:转动转盘B两次,两次指针都指向红的部分可领取一份奖品.(两个转盘都被平均分成3份,若指针指向分界线,则重转)(1)转动一次转盘A,获得奖品的概率是 ;(2)如果你获得一次抽奖机会,你会选择哪种方案?请用列表法或画树状图法说明理由.16.(9分)(2022·辽宁抚顺新抚区期末)一个黑箱子里装有红、白两种颜色的球共4只,它们除颜色外,其他都相同.小明将球搅匀后从箱子中随机摸出一个球,记下颜色,再把它放回,不断重复试验,根据多次试验结果画出如下的折线统计图.(1)当试验次数很大时,摸到白球的频率将会接近 (精确到0.01),从箱子中摸一次球,摸到红球的概率是 ;(2)从该箱子里随机摸出一个球,不放回,再摸出一个球.用画树状图法或列表法求摸到一个红球和一个白球的概率.17.(10分)甲、乙、丙、丁四名同学进行一次乒乓球单打比赛,要从中选两位同学打第一场比赛.(1)请用画树状图法或列表法求出恰好选中甲、乙两位同学的概率;(2)请利用若干个除颜色外其他都相同的球,设计一个摸球试验(至少摸两次),并根据该试验写出一个发生概率与(1)中所求概率相同的事件.18.(10分)(2021·黑龙江大庆期中)如图(1),一枚质地均匀的正四面体骰子,它有四个面,每个面上分别以1,2,3,4标号;如图(2),等边三角形ABC的三个顶点处各有一个圆圈.明明和亮亮想玩跳圈游戏,游戏的规则为:游戏者从圈A起跳,每投掷一次骰子,骰子着地的一面点数是几,就沿着三角形的边逆时针方向连续跳跃几个边长.如:若第一次掷得点数为2,就逆时针连续跳2个边长,落到圈C;若第二次掷得点数为4,就从圈C继续逆时针连续跳4个边长,落到圈A.(1)明明随机掷一次骰子,她跳跃后落到圈A的概率为 ;(2)明明和亮亮一起玩跳圈游戏:明明随机投掷一次骰子,亮亮随机投掷两次骰子,以最终落到圈A为胜者.这个游戏公平吗?请说明理由. 图(1) 图(2)19.(11分)(2021·辽宁本溪期末)为了解学生对食品安全知识的了解情况,学校随机抽取了部分学生进行问卷调查,将调查结果按照“A:非常了解,B:了解,C:了解较少,D:不了解”四类分别进行统计,并绘制了下列两幅统计图(不完整).请根据图中信息,解答下列问题:(1)此次共调查了 名学生;扇形统计图中D所在扇形的圆心角为 ;(2)将上面的条形统计图补充完整;(3)若该校共有800名学生,请你估计对食品安全知识“非常了解”的学生的人数;(4)现有“非常了解”的男生2名,女生2名,从这4名学生中随机抽取2名学生进行座谈,刚好抽到同性别学生的概率是多少?第三章 概率的进一步认识12345678BD C A B A C B9.1310.1611.1312.613.31.B 抛掷硬币“正面向上”的概率为0.5,那么掷一枚质地均匀的硬币10次,可能有5次正面向上.2.D 画树状图如图所示,可知共有6种等可能的结果,恰好拿到红色帽子和红色围巾的结果有1种,∴恰好拿到红色帽子和红色围巾的概率为16.3.C 设袋子中白棋子有x 个,根据题意,得x20=0.6,解得x=12,∴袋子中白棋子的个数最有可能是12.4.A 把两张正面印有“冰墩墩”图案的卡片分别记为A 1,A 2,正面印有“雪容融”图案的卡片记为B,根据题意画树状图如下:从树状图可知,共有6种等可能的结果,其中抽出的两张卡片正面都印有“冰墩墩”图案的结果有2种,故P (抽出的两张卡片正面都印有“冰墩墩”图案)=26=13.5.B 画树状图如图:由树状图可知,共有20种等可能的结果,两次摸到的球颜色相同的结果有8种,∴两次摸到的球颜色相同的概率为820=25.6.A 把4张卡片从左到右依次标记为A,B,C,D,画树状图如图所示:由树状图可知,共有12种等可能的结果,因为只有C 卡片上的正面图案是轴对称图形,所以这两张卡片上的正面图案中有一张是轴对称图形的结果有6种,故P (这两张卡片上的正面图案中有一张是轴对称图形)=612=12.7.C 画树状图如图:由树状图可知,共有16种等可能的结果,其中使Δ=42-4ac<0,即ac>4的结果有8种,∴关于x 的一元二次方程ax 2+4x+c=0没有实数根的概率为816=12.8.B 在一个不透明的袋中有3个除颜色外完全相同的小球,其中2个黑球,1个白球,从中随机取出2个球,设A ,B 表示黑球,C 表示白球,则可画出题中的树状图;从某学习小组的两名男生和一名女生中随机选取两名学生进行竞答,设A ,B 表示男生,C 表示女生,则可画出题中的树状图;体育测试中,随机从足球、篮球、排球三个项目中选择两个项目,设A 表示足球,B 表示篮球,C 表示排球,则可画出题中的树状图;而小明,小王两个人分别去买一个盲盒,在三款盲盒中买到同一款盲盒,设A ,B ,C 分别表示三款盲盒,树状图为:9.1310.16 列表如下:AA B O A(A,A)(A,B)(A,O)A(A,A)(A,B)(A,O)B(B,A)(B,A)(B,O)O (O,A)(O,A)(O,B)由表可知共有12种等可能的结果,其中2个同学都是A 型血的结果有2种,∴P (2个同学都是A 型血)=212=16.11.13 根据题意画出树状图如下.由树状图可知,共有6种等可能的情况,其中能让灯泡L 1发光的情况有2种,即S 1S 2,S 2S 1,所以能让灯泡L 1发光的概率为26=13.12.6 假设不规则图案的面积为x cm 2,由题意得长方形的面积为15 cm 2,当事件A 试验次数足够多,即样本足够大时,其频率可估计事件A 发生的概率,故由题中折线统计图可知,小球落在不规则图案内的概率大约为0.4,所以x 15=0.4,解得x=6,所以估计此不规则图案的面积为6 cm 2.13.3 假设袋中的红球个数为1,此时袋中有1个黄球、1个红球,搅匀后从中任意摸出两个球,P (摸出一红一黄)=1,P (摸出两红)=0,不符合题意;假设袋中的红球个数为2,画树状图如下:由树状图可知,共有6种等可能的结果,其中两次摸到红球的结果有2种,摸出一红一黄的结果有4种,∴P (摸出一红一黄)=46=23,P (摸出两红)=26=13,不符合题意;假设袋中的红球个数为3,画树状图如下:由树状图可知,共有12种等可能的结果,其中两次摸到红球的结果有6种,摸出一红一黄的结果有6种,∴P (摸出一红一黄)=P (摸出两红)=612=12,符合题意,∴放入的红球个数为3.14.【参考答案】(1)14(3分)(2)根据题意画出如图所示的树状图:由树状图可知,共有16种等可能的结果,其中抽到的两张卡片上的图标是“共享出行”和“共享知识”的结果有2种,所以抽到的两张卡片上的图标是“共享出行”和“共享知识”的概率是216=18.(8分)15.【参考答案】(1)13(3分)(2)选择方案二.(4分)理由:画树状图如下.由树状图可知,共有9种等可能的结果,其中两次指针都指向红的部分的结果有4种,所以P (转动转盘B 两次,领取一份奖品)=49.(6分)由(1)知转动转盘A 一次,领取一份奖品的概率是13,因为13<49,所以选择方案二.(8分)16.【解题思路】(1)当试验次数达到1 500次时,摸到白球的频率接近于0.75,由此可估计摸到红球的概率;(2)先根据(1)的结论求出白球的个数和红球的个数,再列表得出所有等可能的结果,从中找到符合条件的结果,进而可求得概率.【参考答案】(1)0.75 14(4分)解法提示:由折线统计图可知,当试验次数很大时,摸到白球的频率将会接近0.75,从箱子中摸一次球,摸到红球的概率为1-0.75=0.25=14.(2)由(1)知,箱中白球的个数为4×0.75=3,则红球的个数为4-3=1,列表如下:白白白红白(白,白)(白,白)(红,白)白(白,白)(白,白)(红,白)白(白,白)(白,白)(红,白)红(白,红)(白,红)(白,红)由表知,共有12种等可能的结果,其中摸到一个红球和一个白球的结果有6种,∴摸到一个红球和一个白球的概率为612=12.(9分)17.【参考答案】(1)根据题意,画树状图如下: (3分)由树状图,可知共有12种等可能的结果,其中恰好选中甲、乙两位同学的结果有2种,所以P (恰好选中甲、乙两位同学)=212=16.(5分)(2)答案不唯一.如:在一个不透明的袋子中,放入四个除颜色外其他都相同的球,它们的颜色分别为白、黄、粉、橙,从袋中随机摸出一个球记下颜色,不放回,再从袋中随机摸出一个球,记下颜色.事件:两次摸出的球一个是白球,一个是粉球.(10分)18.【参考答案】(1)14(3分)(2)这个游戏不公平.(4分)理由:画树状图如图,共有16种等可能的结果,其中亮亮随机投掷两次骰子,最终落到圈A 的结果数为5,即共跳3个边长或6个边长,所以P (亮亮随机投掷两次骰子,最终落回到圈A )=516.(8分)因为14<516,所以这个游戏不公平.(10分)19.【参考答案】(1)120 54°(2分)解法提示:(25+23)÷40%=120(名),360°×10+8120=54°.(2)D 所占的百分比为(10+8)÷120×100%=15%,A 中的人数为120×(1-40%-20%-15%)=30(名),其中男生有30-16=14(名),C 中的人数为120×20%=24(名),其中女生有24-12=12(名).补全条形统计图如图所示:(4分)(3)800×(1-40%-20%-15%)=200(名),答:估计对食品安全知识“非常了解”的学生的人数为200.(7分)(4)画树状图:由树状图可知,共有12种等可能的结果,抽到同性别学生的结果有4种,所以P (刚好抽到同性别学生)=412=13.(11分)。
第3章 概率的进一步认识 北师大版数学九年级上册同步作业单元测评(含答案)

第三章概率的进一步认识(90分钟100分)一、选择题(每小题3分,共30分)1.(2021·新疆和田模拟)下列说法正确的有 (D)A.在一次抛掷硬币的试验中,甲同学说:“我只做了10次试验就得到了正面朝上的概率为30%”B.某同学在抛掷两枚硬币的试验中做了400次,得到“一正一反”的频率为26.7%,如果再做400次,得到的频率仍然是26.7%C.在投掷一枚均匀的正方体骰子的试验中,李明得到“1点朝上”的概率为,那么他再做300次试验,一定有50次“1点朝上”D.在抛掷一枚硬币的试验中,王刚为了节约时间,同时抛掷5枚硬币,这样得到的结果不会受到影响2.(2021·内蒙古包头模拟)一个箱子中放有红、黄、黑三种只有颜色不同的小球,三个人先后去摸球,一人摸一次,一次摸出一个小球,摸出后放回,摸出黑色小球为赢,这个游戏是(A)A.公平的B.不公平的C.先摸者赢的可能性大D.后摸者赢的可能性大3.(2021·甘肃白银期中)从等腰三角形、平行四边形、菱形、角、线段中随机抽取两个,得到的都是中心对称图形的概率是 (C)A. B. C. D.4.(2019·天水中考)如图,正方形ABCD内的图形来自中国古代的太极图,现随机向正方形内掷一枚小针,则针尖落在黑色区域内的概率为(C)A. B. C. D.5.(2021·甘肃张掖期中)现有三张正面分别标有数字-1,2,3的不透明卡片,它们除数字外其余完全相同,将它们背面朝上洗均匀,随机抽取一张,记下数字后放回,背面朝上洗均匀,再随机抽取一张记下数字,前后两次抽取的数字分别记为m,n,则点P(m,n)在第二象限的概率为(D)A. B. C. D.6.(2021·宁夏吴忠质检)一个质地均匀的正四面体的四个面上依次标有数字-2,0,1,2,连续抛掷两次,朝下一面的数字分别是a,b,将其作为M 点的横、纵坐标,则点M(a,b)落在以A(-2,0),B(2,0),C(0,2)为顶点的三角形内(包含边界)的概率是(B)A. B. C. D.7.(2021·内蒙古兴安盟期中)某小组在“用频率估计概率”的试验中,统计了某种结果出现的频率,绘制了如图所示的折线图,那么符合这一结果的试验最有可能的是(B)A.在“石头、剪刀、布”的游戏中,高明辉随机出的是“剪刀”B.掷一个质地均匀的正六面体骰子,落地时面朝上的点数是6C.一次掷两枚质地均匀的硬币,出现两枚硬币都正面朝上D.用2,3,4三个数字随机排成一个三位数,排出的数是偶数8.假定鸟卵孵化后,雏鸟为雌与雄的概率相同.如果三枚卵全部成功孵化,则三只雏鸟中有两只雌鸟的概率是 (B)A. B. C. D.9.(2021·青海玉树模拟)将一枚六个面编号分别为1,2,3,4,5,6的质地均匀的正方体骰子先后投掷两次,记第一次掷出的点数为a,第二次掷出的点数为b,则使关于x,y的方程组只有正数解的概率为(D)A. B. C. D.10.(2021·新疆阿克苏期中)某超市举行购物“翻牌抽奖”活动,如图所示,四张牌分别对应价值5,10,15,20(单位:元)的四件奖品,如果随机翻两张牌,且第一次翻过的牌不再参加下次翻牌,则所获奖品总价值不低于30元的概率为(C)A. B. C. D.二、填空题(每小题4分,共24分)11.(2021·甘肃兰州模拟)一个不透明的布袋里装有2个白球,1个黑球,它们除颜色外其余都相同.从中任意摸出1个球,不放回.再摸出1个球,则两次摸到的球都是白球的概率是.12.(2021·甘肃白银期末)从1,2,-3三个数中,随机抽取两个数相乘,积是偶数的概率是.13.有4张看上去无差别的卡片,上面分别写着2,3,4,6,张红随机抽取1张后,放回并混在一起,再随机抽取1张,则张红第二次取出的数字能够整除第一次取出的数字的概率为.14.“服务他人,提升自我”,某学校积极开展家长志愿者服务活动,来自该校初三的5名家长(2男3女)成立了“交通秩序维护”小分队,若从该小分队中任选两名家长进行交通秩序维护,则恰好是一男一女的概率是.15.(2021·宁夏石嘴山模拟)某玩具店进了一批黑白塑料球,共5箱,每箱的规格、数量都相同,其中每箱中装有黑白两种颜色的塑料球共3 000个,为了估计每箱中两种颜色球的个数,随机抽查了一箱,将箱子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回箱子中,多次重复上述过程后,发现摸到黑球的频率在0.8附近波动,以此可以估计这批塑料球中黑球的总个数,将黑球总个数用科学记数法表示约为1.2×104个.16.一个口袋中装有10个红球和若干个黄球.在不允许将球倒出来数的前提下,为估计口袋中黄球的个数,李晓采用了如下的方法:每次先从口袋中摸出10个球,求出其中红球数与10的比值,再把球放回口袋中摇匀.不断重复上述过程20次,得到红球数与10的比值的平均数为0.4.根据上述数据,估计口袋中大约有15个黄球.三、解答题(共46分)17.(10分)(2021·青海西宁模拟)某公司对一批某品牌衬衣的质量抽检结果如表.抽查件50 100 200 300 400 500数次品件0 4 16 19 24 30数(1)从这批衬衣中任抽1件是次品的概率约为多少?(2)如果销售这批衬衣600件,那么至少要再准备多少件正品衬衣供买到次品的顾客调换?【解析】(1)抽查总件数m=50+100+200+300+400+500=1 550,次品件数n=0+4+16+19+24+30=93,P(抽到次品)==0.06.(2)根据(1)的结论:P(抽到次品)=0.06,则600×0.06=36(件).答:至少准备36件正品衬衣供顾客调换.18.(10分)(2020·兰州中考)某学校组织了以“纪念革命先烈,激发爱国热情”为主题的爱国主义教育研学活动,参加活动的学生可从学校提供的四个研学地点中任选一个,地点如下:A:陇南市宕昌县哈达铺红军长征纪念馆;B:陇南市两当兵变纪念馆;C:甘南州迭部县腊子口战役纪念馆;D:张掖市高台县中国工农红军西路军纪念馆.小宁和小丽决定通过抽签的方式确定本次研学活动目的地,请你用画树状图或列表的方法求出小宁和小丽抽到同一地点的概率.【解析】根据题意列表如下:小宁小丽A B C DA(A,A)(A,B)(A,C)(A,D)B(B,A)(B,B)(B,C)(B,D)C(C,A)(C,B)(C,C)(C,D)D(D,A)(D,B)(D,C)(D,D)根据表格可知,共有16种等可能的结果,其中小宁与小丽抽到同一地点的结果有4种,所以小宁与小丽抽到同一地点的概率为=.19.(12分)(2021·甘肃兰州模拟)为落实教育部2月12日印发《关于中小学延期开学期间“停课不停学”有关工作安排的通知》要求,某校创新作业形式,让同学们用自己喜欢的方式表达“我为武汉加油、我为祖国加油”,明明和亮亮计划从以下两类方式中任选一种完成作业:文本类:手抄报、书法作品(分别用A1,A2表示);视频类:快手视频、PPT(分别用B1,B2表示)(1)请用列表或画树状图的方法表示出明明和亮亮完成作业所选方式的所有可能结果.(2)求明明和亮亮选择同一类方式完成作业的概率.【解析】(1)明明和亮亮完成作业所选方式的所有可能结果如图所示:(2)由树状图知共有16种等可能的结果,其中明明和亮亮选择同一类方式完成作业的结果有8种,∴明明和亮亮选择同一类方式完成作业的概率为=.20.(14分)(2021·甘肃庆阳期末)某中学为了解九年级学生对新冠肺炎防控知识的掌握情况,从全校九年级学生中随机抽取部分学生进行调查.调查结果分为四类:A类:非常了解;B类:比较了解;C类:一般了解;D 类:不了解.现将调查结果绘制成如图不完整的统计图,请根据统计图中的信息解答下列问题:(1)本次共调查了名学生.(2)补全条形统计图.(3)D类所对应扇形的圆心角的大小为.(4)已知D类中有2名女生,现从D类中随机抽取2名同学,试求恰好抽到一男一女的概率.【解析】(1)本次共调查的学生数为:20÷40%=50(名).答案:50(2)C类学生人数为:50-15-20-5=10(名),补全条形统计图如图:(3)D类所对应扇形的圆心角为:360°×=36°.答案:36°(4)见全解全析关闭Word文档返回原板块。
用频率估计概率 同步练习 2022—2023学年北师大版数学九年级上册【有答案】

北师大版九上 3.2 用频率估计概率一、选择题(共9小题)1. 用频率估计概率,可以发现,抛掷硬币,“正面朝上”的概率为0.5,是指( )A. 连续掷2次,结果一定是“正面朝上”和“反面朝上”各1次B. 连续抛掷100次,结果一定是“正面朝上”和“反面朝上”各50次C. 抛掷2n次硬币,恰好有n次“正面朝上”D. 抛掷n次,当n越来越大时,正面朝上的频率会越来越趋近于0.52. 将A,B两位篮球运动员在一段时间内的投篮情况记录如下,下面有三个推断:①当投篮30次时,两位运动员都投中23次,所以他们投中的概率都是0.767;②随着投篮次数的增加,A运动员投中频率总在0.750附近摆动,显示出一定的稳定性,可以估计A运动员投中的概率是0.750;③当投篮达到200次时,B运动员投中次数一定为160次.其中合理的是( )A. ①B. ②C. ①③D. ②③3. 在大量重复试验中,关于随机事件发生的频率和概率,下列说法正确的是( )A. 频率就是概率B. 频率与试验次数无关C. 在相同的条件下进行试验,如果试验次数相同,则各实验小组所得频率的值也会相同D. 随着试验次数的增加,频率一般会逐步稳定在概率数值附近4. 如图显示了用计算机模拟随机抛掷一枚硬币的某次实验的结果.下面有三个推断:①当抛掷次数是100时,计算机记录“正面向上”的次数是47,所以“正面向上”的概率是0.47;②随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5;③若再次用计算机模拟此实验,则当抛掷次数为150时,“正面向上”的频率一定是0.45.其中合理的是( )A. ①B. ②C. ①②D. ①③5. 气象台预报“本市明天降水概率是80%”,对此消息,下面几种说法正确的是( )A. 本市明天将有80%的地区降水B. 明天降水的可能性比较大C. 本市明天降有80%的时间降水D. 明天肯定下雨6. 为了估计水塘中的鱼数,养鱼者首先从鱼塘中捕获30条鱼,在每条鱼身上做好记号后,把这些鱼放归鱼塘,再从鱼塘中打捞200条鱼,如果在这200条鱼中有5条鱼是有记号的,则鱼塘中鱼的可估计为( )A. 3000条B. 2200条C. 1200条D. 600条7. 在一个不透明的盒子中装有m个除颜色外完全相同的球,这m个球中只有3个红球,从,那么m的值是( )中随机摸出一个球,恰好是红球的概率为15A. 12B. 15C. 18D. 218. 一个密闭不透明的盒子里有若干个白球,在不允许将球倒出来的情况下,为估计白球的个数,小刚向其中放入8个黑球,摇匀后从中随机摸出一个球记下颜色,再把它放回盒中,不断重复,共摸球400次,其中88次摸到黑球,估计盒中大约有白球()A. 28个B. 30个C. 36个D. 42个9. 在一个不透明的布袋中装有红色、白色玻璃球共40个,除颜色外其他完全相同,小明通过多次摸球试验后发现,其中摸到白色球的频率稳定在85%左右,则口袋中红色球可能有( )A. 34个B. 30个C. 10个D. 6个二、填空题(共8小题)10. 在一个不透明的盒子中装有 n 个小球,它们只有颜色上的区别,其中有 2 个红球,每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复摸球实验后发现,摸到红球的频率稳定于 0.2,那么可以推算出 n 大约是 .11. 在一个不透明的盒子中装有 n 个球,它们除了颜色之外其他都没有区别,其中含有 3 个红球,每次摸球前,将盒中所有的球摇匀,然后随机摸出一个球,记下颜色后再放回盒中.通过大量重复试验,发现摸到红球的频率稳定在 0.03,那么可以推算出 n 的值大约是 .12. 在“抛掷正六面体”的试验中,正六面体的六个面分别标有数字“1”“2”“3”“4”“5”“6”,在试验次数很大时,数字“6”朝上的频率的变化趋势接近的值是 .13. 在“抛掷正六面体”的试验中,正六面体的六个面分别标有数字“1”“2”“3”“4”“5”“6”, 在试验次数很大时,数字“6”朝上的频率的变化趋势接近的值是 .14. 大数据分析技术为打赢疫情防控阻击战发挥了重要作用.如图是小明同学的苏康码(绿码)示意图,用黑白打印机打印于边长为 2 cm 的正方形区域内,为了估计图中黑色部分的总面积,在正方形区域内随机掷点,经过大量重复试验,发现点落入黑色部分的频率稳定在 0.6 左右,据此可以估计黑色部分的总面积约为 cm 2.15. 在一个不透明的袋中装有若干个红球,为了估计袋中红球的个数,小明在袋中放入 3 个黑球(每个球除颜色外其余都与红球相同),摇匀后每次随机从袋中摸出一个球,记下颜色后放回袋中,通过大量重复摸球试验后发现,摸到红球的频率稳定在 0.85 左右,则袋中红球约有 个.16. 一个不透明的袋子中装有若干个除颜色外都相同的小球,小明每次从袋子中随机摸出一个球,记录下颜色,然后放回,重复这样的试验 3000 次,记录结果如下:实验次数n 100200300500800100020003000摸到红球次数m 6512417830248162012401845摸到红球频率m n0.650.620.5930.6040.6010.6200.6200.615 估计从袋子中随机摸出一个球恰好是红球的概率约为 .(精确到 0.1)17. 小颖妈妈经营的玩具店某次进了一箱黑白两种颜色的塑料球3000个,为了估计两种颜色的球各有多少个,她将箱子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回箱子中,多次重复上述过程后,她发现摸到黑球的频率在0.7附近波动,据此可以估计黑球的个数约是 个.三、解答题(共5小题)18. 一只不透明的袋中装有一定数量的红球和黄球(它们除颜色外,其余完全相同),小明设计了一个摸球游戏,他摸了10次,每次摸出1个球,记录其颜色后把球放回袋中,再摸下一次,每次摸球前都把球搅匀.结果有7次摸到黄球,3次摸到红球,于是小明说:“袋中的红球一定比黄球少.”你认为他的结论合理吗?说明你的理由.19. 全班同学一起做摸球试验,不透明的布袋中共有除颜色外其余均相同的红球和黄球共5个,每次摸出一球,记下颜色后放回摇匀.一共摸了200次,其中123次是红球,77次是黄球,请你求出摸到红球的频率;布袋中有红球和黄球各多少个?20. 小红和小明在操场上做游戏,他们先在地上画了半径分别为2m和3m的同心圆,如图①,蒙上眼睛在一定距离外向圈内掷石子,若落在阴影内,则小红胜,若落在小圆内,则小明胜.(1)你认为这个游戏公平吗?为什么?(2)游戏结束,小明边走边想:“能否用频率估计概率的方法,来估算不规则图形的面积呢?”他发现地上有一个不规则的封闭图形ABC,如图②.为了知道它的面积,小明在封闭图形内画了一个半径为1m的圆,在不远处向圈内掷石子,且记录如下:掷石子次数50150300石子落在圆内的次数m114393石子落在阴影内的次数n1985186你能帮小明估计封闭图形的面积吗?试试看.21. 小明从一本书中随机抽取了6页,在累计1页至6页中的“的”字和“了”字出现的次数后,分别求出了它们出现的频率,并绘制了如下统计图(如图中页数3对应的频率是三页中累计的结果).(1)随着统计页数的增加,这两个字出现的频率是如何变化的?(2)你认为该书中的“的”和“了”两个字出现的频率哪个高?22. 某班“红领巾义卖”活动中设立了一个可以自由转动的转盘,如图.规定:顾客购物20元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品.下表是此次活动中的统计数据.转动转盘的次数n1002003004005001000落在"书画作品"区域的次数m60122180298a6040.60.610.6b0.590.604落在"书画作品"区域的频率mn(1)a=,b=;(2)估计当n很大时,落在“书画作品”区域的频率为,转动该转盘一次,获得“书画作品”的概率约是;(结果全部精确到0.1)(3)如果要使获得“手工作品”的可能性不小于获得“书画作品”的可能性,则表示“手工作品"区域的扇形的圆心角的度数至少还要增加多少度?。
3.2+用频率估计概率同步练习2024-2025学年北师大版数学九年级上册

3.2用频率估计概率一、选择题。
1. 一个口袋中有红球、白球共10个,这些球除颜色外都相同.将口袋中的球搅拌均匀,从中随机摸出一个球,记下颜色后再放回口袋中.不断重复这一过程,共摸了100次球,发现有69次摸到红球.请你估计这个口袋中红球的数量是()A.5 B.6 C.7 D.82. 在利用正六面体骰子进行频率估计概率的实验中,小闽同学统计了某一结果朝上的频率,绘出的统计图如图所示,则符合图中情况的可能是()A.朝上的点数是6的概率B.朝上的点数是偶数的概率C.朝上的点数是小于4的概率 D.朝上的点数是3的倍数的概率3. 某同学为了估算瓶子中有多少颗豆子,首先从瓶中取出60颗并做上记号,接着将所有做好记号的豆子放回瓶中充分摇匀.当再从瓶中取出100颗豆子时,发现其中有12颗豆子标有记号,根据实验估计该瓶装有豆子大约()A.800颗B.500颗C.300颗D.150颗4. 有一个只放满形状大小都一样的白色小球的不透明盒子,小刚想知道盒内有多少白球,于是小刚向这个盒中放了5个黑球(黑球的形状大小与白球一样),摇匀后从中随机摸出一个球记下颜色,再把它放回盒中,不断重复,共摸球400次,其中80次摸到黑球,则盒中白色小球的个数可能是()A.16个B.20个C.24个D.25个5.在一个不透明的布袋中,装有除颜色外其他完全相同的红色、黄色的玻璃球共40个,小李通过多次摸球试验后发现其中摸到红色的频率稳定在45%,则口袋中黄色球的个数很可能是()A.18B.20C.22D.246.某淘宝商家为“双11大促”提前进行了预热抽奖,通过后台的数据显示转盘指针落在“10元优惠券”区域的统计数据如下表.若随机转动转盘一次,得到“10元优惠券”的概率为(精确到0.01)()转动转盘的次数200600100016002000落在“10元优惠券”区域的次数64186300472602落在“10元优惠券”区域的频率0.3200.3100.3000.2950.301A.0.32B.0.31C.0.30D.0.297.一个不透明的口袋里装有除颜色外其余都相同的10个白球和若干个红球,在不允许将球倒出来数的前提下,小亮为了估计其中的红球个数,采用如下方法:先将口袋中的球摇匀,再从口袋里随机摸出一球,记下颜色,然后把它放回口袋中,不断重复上述过程,小亮共摸了1000次,其中有200次摸到白球,因此小亮估计口袋中的红球大约为( )A.60个B.50个C.40个D.30个8.做抛掷同一枚啤酒瓶盖的重复实验,经过统计得“凹面朝上”的频率为0.44,则可以估计抛掷这枚啤酒盖出现“凹面朝上”的概率为()A.22% B.44% C.50% D.56%9.在一个不透明的口袋中,放置3个黄球,1个红球和n个蓝球,这些小球除颜色外其余均相同,课外兴趣小组每次摸出一个球记录下颜色后再放回,并且统计了蓝球出现的频率(如图所示),则n的值最可能是()A.4 B.5 C.6 D.7 10. 在课外实践活动中,甲、乙、丙、丁四个小组用投掷一元硬币的方法估算正面朝上的概率,其实验次数分别为10次、50次、100次,200次,其中实验相对科学的是()A.甲组B.乙组C.丙组D.丁组11. 一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,朝上一面的数字是偶数的概率为()A. B. C. D.12. 甲、乙两名同学在一次用频率估计概率的试验中统计了某一结果出现的频率,绘出的统计图如图所示,则符合这一结果的试验可能是()A.掷一枚质地均匀的正方体骰子,出现点的概率B.从一个装有个白球和个红球(每个球除颜色外都相同)的袋子中任取一个球,取到红球的概率C.抛一枚质地均匀的硬币,出现正面的概率D.任意写一个正整数,它的绝对值大于的概率二、填空题。
北师大版九年级数学上册第三章概率的进一 步认识3.2用频率估计概率同步练习及答案

2 用频率估计概率知识点 1 频率与概率的关系1.关于频率与概率的关系,下列说法正确的是( )A.频率等于概率B.当试验次数很大时,频率稳定在概率附近C.当试验次数很大时,概率稳定在频率附近D.试验得到的频率与概率不可能相等2.在一个不透明的布袋中,红球、黑球、白球共有若干个,它们除颜色不同外,其余均相同,小新从布袋中随机摸出一球,记下颜色后放回,摇匀……如此大量摸球试验后,小新发现摸出红球的频率稳定于20%,摸出黑球的频率稳定于50%,对此试验,他总结出下列结论:①若进行大量摸球试验,摸出白球的频率稳定于30%;②若从布袋中任意摸出一个球,该球是黑球的概率最大;③若再摸球100次,必有20次摸出的是红球.其中说法正确的是( )A.①②③ B.①② C.①③ D.②③知识点 2 用频率估计概率3.2017·贵阳期末在一个不透明的口袋里,装有仅颜色不同的黑球、白球若干个,某小组做摸球试验:将球搅匀后从中随机摸出一个,记下颜色,再放回袋中,不断重复该试验,下表是试验中得到的一组数据,通过该组数据估计摸到白球的概率约是( )A.0.4 B.0.5 C.0.6 D.0.74.六一期间,小洁的妈妈经营的玩具店进了一纸箱除颜色不同外其余都相同的散装塑料球共1000个,小洁将纸箱里面的球搅匀后,从中随机摸出一个球记下颜色,把它放回纸箱中……多次重复上述过程后,发现摸到红球的频率逐渐稳定在0.2,由此可以估计纸箱内红球的个数是________.5.教材随堂练习第1题变式题调查你家附近的20个人,其中至少有两人生肖相同的概率为( )A.14B.12C.13D.1图3-2-16.2017·宿迁如图3-2-1,为测量平地上一块不规则区域(图中的阴影部分)的面积,画一个边长为2 m的正方形,使不规则区域落在正方形内,现向正方形内随机投掷小石子(假设小石子落在正方形内每一点都是等可能的),经过大量重复投掷试验,发现小石子落在不规则区域的频率稳定在常数0.25附近,由此可估计不规则区域的面积是________m2.7.2017·贵阳模拟一只不透明的袋子中装有4个质地、大小均相同的小球,这些小球的球面上分别标有3,4,5,x,甲、乙两人每次同时从袋中各随机摸出一个小球,并计算摸出的这两个小球上的数字之和,记录后都将小球放回袋中搅匀,进行重复试验,试验数据如下表:解答下列问题:(1)如果试验继续进行下去,根据上表数据,出现“和为8”的频率将稳定在它的概率附近,估计出现“和为8”的概率是__________(精确到0.01).(2)如果摸出的这两个小球上的数字之和为9的概率是13,那么x 的值可以取7吗?请用列表法或画树状图法说明理由;如果x 的值不可以取7,请写出一个符合要求的x 值.1.B [解析] 当试验次数很大时,频率稳定在概率附近.故选B.2.B [解析] ∵在一个不透明的布袋中,红球、黑球、白球共有若干个,其中摸出红球的频率稳定于20%,摸出黑球的频率稳定于50%,∴①若进行大量摸球试验,摸出白球的频率稳定于1-20%-50%=30%,故此项正确;∵摸出黑球的频率稳定于50%,大于摸出其他颜色球的频率,∴②从布袋中任意摸出一个球,该球是黑球的概率最大,故此项正确;③若再摸球100次,不一定有20次摸出的是红球,故此项错误.故正确的有①②.3.C [解析] 观察表格得:通过多次摸球试验后发现其中摸到白球的频率稳定在0.6左右,则P (摸到白球)≈0.6.故选C.4.2005.D [解析] 共有12个生肖,而有20个人,每人都有生肖,故一定有两个人的生肖是相同的,即至少有两人生肖相同的概率为1.6.1 [解析] ∵经过大量重复投掷试验,发现小石子落在不规则区域的频率稳定在常数0.25附近,∴小石子落在不规则区域的概率为0.25.∵正方形的边长为2 m , ∴面积为4 m 2.设不规则区域的面积为S , 则S4=0.25,解得S =1. 7.解:(1)0.33 (2)不可以取7.理由:当x =7时,列表如下:两个小球上的数字之和为9的概率是212=16≠13,故x 的值不可以取7.当x =5时,摸出的这两个小球上的数字之和为9的概率是13.(答案不唯一,x 的值也可以是4,6).。
北师大版九年级数学上册 第3章 3.2 《用频率估计概率》 同步测试(含答案)

北师版九年级数学上册第三章概率的进一步认识3.2用频率估计概率同步测试题号 一 二 三 总分 得分第Ⅰ卷(选择题)一、选择题(共10小题,3*10=30)1.在一个不透明的袋子里共有2个黄球和3个白球,每个球除颜色外都相同,小亮从袋子中任意摸出一个球,结果是白球,则下面关于小亮从袋中摸出白球的概率和频率的说法正确的是( ) A .小亮从袋中任意摸出一个球,摸出白球的概率是1 B .小亮从袋中任意摸出一个球,摸出白球的概率是0 C .在这次试验中,小亮摸出白球的频率是1D .由这次试验的频率去估计小亮从袋中任意摸出一个球,摸出白球的概率是12.在课外实践活动中,甲、乙、丙、丁四个小组用投掷一元硬币的方法估算正面朝上的概率,其试验次数分别为10次、50次、100次、200次,其中试验相对科学的是( ) A .甲组 B .乙组 C .丙组 D .丁组3.某人在做掷硬币试验时,投掷m 次,正面朝上有n 次(即正面朝上的频率是P =nm ),则下列说法中正确的是( ) A .P 一定等于12 B .P 一定不等于12 C .多投一次,P 更接近12D .投掷次数逐渐增加,P 稳定在12附近4.做抛掷同一枚啤酒瓶盖的重复试验,经过统计得“凸面朝上”的频率约为0.44,则可以估计抛掷这枚啤酒瓶盖出现“凸面朝上”的概率约为( )A.频率就是概率B.频率与试验次数无关C.概率是随机的,与频率无关D.随着试验次数的增加,频率一般会越来越接近概率6. 在一个不透明的布袋中,红球、黑球、白球共有若干个,除颜色外,形状、大小、质地等完全相同,小新从布袋中随机摸出一球,记下颜色后放回布袋中,摇匀后再随机摸出一球,记下颜色……如此大量摸球试验后,小新发现其中摸出红球的频率稳定于20%,摸出黑球的频率稳定于50%,对此试验,他总结出下列结论:①若进行大量摸球试验,摸出白球的频率稳定于30%;②若从布袋中任意摸出一个球,该球是黑球的概率最大;③若再摸球100次,必有20次摸出的是红球.其中说法正确的是( )A.①②③B.①②C.①③D.②③7. 一个不透明的盒子里有9个黄球和若干个红球,红球和黄球除颜色外其他完全相同,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球试验后发现,摸到黄球的频率稳定在30%,那么估计盒子中红球的个数为( )A.25 B.21 C.19 D.118.如图显示了用计算机模拟随机投掷一枚图钉的某次试验的结果.下面有三个推断:①当投掷次数是500时,计算机记录“钉尖向上”的次数是308,所以“钉尖向上”的概率是0.616;②随着试验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618;③若再次用计算机模拟此实验,则当投掷次数为1 000时,“钉尖向上”的频率一定是0.620.其中合理的是( )A.①B.②C.①②D.①③9. 某小组做“用频率估计概率”的试验时,绘出的某一结果出现的频率折线图,则符合这一结果的A.抛一枚硬币,出现正面朝上B.掷一个正六面体的骰子,出现3点朝上C.一副去掉大小王的扑克牌洗匀后,从中任抽一张牌的花色是红桃D.从一个装有2个红球1个黑球的袋子中任取一球,取到的是黑球10.下列说法中正确的个数是( )①不可能事件发生的概率为0;②一个对象在试验中出现的次数越多,频率就越大;③在相同条件下,只要试验的次数足够多,频率就可以作为概率的估计值;④收集数据过程中的“记录结果”这一步,就是记录每个对象出现的频率.A.1个B.2个C.3个D.4个第Ⅰ卷(非选择题)二.填空题(共8小题,3*8=24)11. 某瓷砖厂在相同条件下抽取部分瓷砖做耐磨试验,结果如下表所示:则这个厂生产的瓷砖是合格品的概率估计值是_______.(精确到0.01)12.在一个不透明的盒子中装有n个球,它们除了颜色之外其它都没有区别,其中含有3个红球,每次摸球前,将盒中所有的球摇匀,然后随机摸出一个球,记下颜色后再放回盒中,通过大量重复试验,发现摸到红球的频率稳定在0.03,那么可以推算出n的值大约是_______.13. 如图,这是一幅长为3 m,宽为2 m的长方形世界杯宣传画,为测量宣传画上世界杯图案的面积,现将宣传画平铺在地上,向长方形宣传画内随机投掷骰子(假设骰子落在长方形内的每一点都是等可能的),经过大量重复投掷试验,发现骰子落在世界杯图案中的频率稳定在常数0.4附近,由此可估计宣传画上世界杯图案的面积约为_______m2.14. 由于各人的习惯不同,双手交叉时左手大拇指在上或右手大拇指在上是一个随机事件(分别记为A,B),曾老师对他任教的学生做了一个调查,统计结果如下表所示:若曾老师所在学校有2000名学生,根据表格中的数据,在这个随机事件中,右手大拇指在上的学生人数可以估计为_________名.15. 为估计某水库鲢鱼的数量,养鱼户李老板先捞上150条鲢鱼并在鲢鱼身上做红色的记号,然后立即将这150条鲢鱼放回水库中,一周后,李老板又捞取200条鲢鱼,发现带红色记号的鱼有三条,据此可估计出该水库中鲢鱼约有__________条.16.“蓝莓谷”以盛产“优质蓝莓”而吸引来自四面八方的游客,某果农今年的蓝莓得到了丰收,为了了解自家蓝莓的质量,随机从种植园中抽取适量蓝莓进行检测,发现在多次重复的抽取检测中“优质蓝莓”出现的频率逐渐稳定在0.7,该果农今年的蓝莓总产量约为800 kg,由此估计该果农今年的“优质蓝莓”产量约是________kg.17.一个密闭不透明的盒子里有若干个白球,在不允许将球倒出来的情况下,为估计白球的个数,小刚向其中放入8个黑球,摇匀后从中随机摸出一个球记下颜色,再把它放回盒里,不断重复,共摸球400次,其中88次摸到黑球,估计盒中大约有白球的个数是________.18. 如图,为测量平地上一块不规则区域(图中的阴影部分)的面积,画一个边长为2 m的正方形,使不规则区域落在正方形内,现向正方形内随机投掷小石子(假设小石子落在正方形内每一点都是等可能的),经过大量重复投掷试验,发现小石子落在不规则区域的频率稳定在常数0.25附近,由此可估计不规则区域的面积是_______m2.三.解答题(共7小题,46分)19.(6分)小颖和小红两位同学在学习“概率”时,做投掷骰子(质地均匀的正方体)试验,他们共做了60次试验,试验的结果如下:(1)分别计算“3点朝上”的频率和“5点朝上”的频率;(2)小颖说:“根据试验,一次试验中出现5点朝上的概率最大”;小红说:“如果投掷600次,那么出现6点朝上的次数正好是100次.”小颖和小红的说法正确吗?为什么?20. (6分) 在一个不透明的盒子里装着除颜色外完全相同的黑、白两种小球共40个,小明做摸球试验,他将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是试验中的一组统计数据:(1)请估计:当n很大时,摸到白球的概率约为_____;(精确到0.1)(2)估算盒子里有白球_____个;(3)若向盒子里再放入x个除颜色以外其他完全相同的球,这x个球中白球只有1个,每次将球搅拌均匀后,任意摸出一个球记下颜色再放回,通过大量重复摸球试验后发现,摸到白球的频率稳定在50%,请推测x的值最有可能是多少.21. (6分)儿童节期间,某公园游戏场举行一场活动.有一种游戏的规则是:在一个装有8个红球和若干白球(每个球除颜色外,其他都相同)的袋中,随机摸一个球,摸到一个红球就得到一个玩具,已知参加这种游戏的儿童有40 000人次.公园游戏场发放玩具8 000个.(1)求参加此次活动得到玩具的频率?(2)请你估计袋中白球的数量接近多少个?22.(6分) 王强与李刚两位同学在学习概率时,做抛骰子(均匀正方体形状)试验,他们共抛了54次,出现向上点数的次数如下表:(1)请计算出现向上点数为3的频率及出现向上点数为5的频率;(2)王强说:“根据试验,一次试验中出现向上点数为5的概率最大.”李刚说:“如果抛540次,那么出现向上点数为6的次数正好是100次.”请判断王强和李刚说法的对错;(3)如果继续进行试验,当次数很大时,你能估计出现向上点数为1的概率是多少吗?23.(6分)研究问题:一个不透明的盒中装有若干个只有颜色不一样的红球与黄球,怎样估算不同颜色的球的数量?操作方法:先从盒中摸出8个球,画上记号放回盒中,再进行摸球试验,摸球试验的要求:先搅拌均匀,每次摸出一个球,放回盒中,再继续.活动结果:摸球试验活动一共做了50次,统计结果如下表:推测计算:由上述的摸球试验可推算:(1)盒中红球、黄球各占总球数的百分比分别是多少?(2)盒中有红球多少个?24.(8分) 如图,在地上画出一个正方形,再用粉笔把它分割成9个大小一样的小正方形,并分别写上1~9这九个数.现往正方形内任意掷一块石子,石子刚好落在质数处的机会是多少?(1)先做出自己的估计;(2)再设计一个模拟试验,写出试验方案.25.(8分)研究问题:一个不透明的盒中装有若干个只有颜色不一样的红球与黄球,怎样估算不同颜色球的数量?操作方法:先从盒中摸出8个球,画上记号放回盒中,再进行摸球试验,摸球试验的要求:先搅拌均匀,每次摸出一个球,放回盒中,再继续.活动结果:摸球试验活动一共做了50次,统计结果如下表:摸到的次数,18,28,2,2推测计算:由上述的摸球试验可推算:(1)盒中红球、黄球各占总球数的百分比分别是多少?(2)盒中有红球多少个?参考答案 1-5 DDDBD 6-10BBBDC 11. 0.95 12. 100 13. 2.4 14. 1000 15. 10000 16. 560 17. 28 18. 119. 解:(1)“3点朝上”出现的频率是660=110,“5点朝上”出现的频率是2060=13(2)小颖的说法是错误的.这是因为“5点朝上”的频率最大并不能说明“5点朝上”这一事件发生的概率最大.只有当试验的次数足够多时,该事件发生的频率才会稳定在事件发生的概率附近.小红的判断是错误的,因为事件发生具有随机性,故“6点朝上”的次数不一定是100次 20. 解:(1)0.6(2)根据(1),得40×0.6=24(个). 故答案为24(3)根据(2),得24+140+x =50%,解得x =10,∴可以推测出x 的值最有可能是1021. 解:(1)参加此项游戏得到玩具的频率m n =8 00040 000=15(2)设袋中共有m 个球,则摸到红球的概率P(红球)= 8m ,∴8m ≈15. 解得m ≈40,所以白球接近40-8=32(个) 22. 解:(1)554,827(2)王强的说法错误,因为频率最大并不能说明概率最大,只有试验的次数很大时,该事件发生的频率稳定在相应的概率附近;李刚的说法错误,因为事件发生具有随机性,次数不一定是100次 (3)1623. 解:(1)由题意可知,50次摸球试验活动中,出现红球20次,黄球30次,(2)由题意可知,50次摸球试验活动中,出现有记号的球4次, ∴总球数为504×8=100,∴红球数为100×40%=40(个)24. 解:(1)我的估计是石子刚好落在质数处的机会是49.理由如下:∵根据质数的概念可知:2,3,5,7是质数, 又∵共有9个数,且落在每个数上的机会相同, ∴石子刚好落在质数处的机会是49(2)利用花色一样的扑克牌代替1,2,3,4,5,6,7,8,9这九个数进行模拟试验,方案为:把扑克牌放在一个不透明的盒子中,从中任意抽取一张,是质数则记录下来,这样反复抽取100次,计算其中出现质数的概率即可25. 解:(1)由题意可知,50次摸球试验活动中,出现红球20次,黄球30次, ∴红球所占百分比为20÷50=40%, 黄球所占百分比为30÷50=60%, 答:红球占40%,黄球占60% (2)由题意可知,50次摸球试验活动中,出现有记号的球4次, ∴总球数为8÷450=100,∴红球数为100×40%=40. 答:盒中有红球40个。
(常考题)北师大版初中数学九年级数学上册第三单元《概率的进一步认识》测试(包含答案解析)(1)
一、选择题1.某学习小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如表的表格,则符合这一结果的实验最有可能的是()A.抛一枚硬币,出现正面B.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃C.抛一个质地均匀的正六面体骰子(六个面上分别标1,2,3,4,5,6),向上的面点数是5D.从一个装有2个白球和1个红球的袋子中任取一球,取到红球2.有一首《对子歌》中唱到:天对地,雨对风,大陆对长空.现将“天,雨,大,空”四个字书写在材质、大小完全相同的卡片上,在暗箱搅匀后,随机抽取两张,恰为“天”、“空”二字的概率为()A.13B.14C.15D.163.在一个不透明的布袋中装有若干个只有颜色不同的小球,如果袋中有红球5个,黄球4个,其余为白球,从袋子中随机摸出一个球,“摸出黄球”的概率为13,则袋中白球的个数为()A.2 B.3 C.4 D.124.张老师对本班40名学生的血型作了统计,列出如下的统计表,则本班AB型血的人数是()A.16人B.14人C.6人D.4人5.某鱼塘里养了1600条鲤鱼,若干条草鱼和800条罗非鱼,该鱼塘主通过多次捕捞试验后发现,捕捞到草鱼的频率稳定在0.5左右,则该鱼塘捞到鲤鱼的概率约为().A.23B.12C.13D.166.一个不透明的袋子中装有白球4个,黑球若干个,这些球除颜色外其余完全一样.如果随机从袋中摸出一个球是白球的概率为13,那么袋中有多少个黑球()A.4个B.12个C.8个D.不确定7.将一个小球在如图所示的地砖上自由滚动,最终停在黑色方砖上的概率为( )A.59B.49C.12D.138.我们要遵守交通规则,文明出行,做到“红灯停,绿灯行”,小刚每天从家到学校需经过三个路口,且每个路口都安装了红绿灯,每个路口红灯和绿灯亮的时间相同,那么小刚从家出发去学校,他遇到两次红灯的概率是()A.18B.38C.58D.129.小冬和小松正在玩“掷骰子,走方格”的游戏.游戏规则如下:(1)掷一枚质地均匀的正方体骰子(骰子六个面的数字分别是1至6),落地后骰子向上一面的数字是几,就先向前走几格,然后暂停.(2)再看暂停的格子上相应的文字要求,按要求去做后,若还有新的文字要求,则继续按新要求去做,直至无新要求为止,此次走方格结束.下图是该游戏的部分方格:大本营1对自己说“加油!”2后退一格3前进三格4原地不动5对你的小伙伴说“你好!”6背一首古诗例如:小冬现在的位置在大本营,掷骰子,骰子向上一面的数字是2,则小冬先向前走两格到达方格2,然后执行方格2的文字要求“后退一格”,则退回到方格1,再执行方格1的文字要求:对自己说“加油!”.小冬此次“掷骰子,走方格”结束,最终停在了方格1.如果小松现在的位置也在大本营,那么他掷一次骰子最终停在方格6的概率是()A.16B.13C.12D.2310.老师组织学生做分组摸球实验.给每组准备了完全相同的实验材料,一个不透明的袋子,袋子中装有除颜色外都相同的3个黄球和若干个白球.先把袋子中的球搅匀后,从中随意摸出一个球,记下球的颜色再放回,即为一次摸球.统计各组实验的结果如下:一组二组三组四组五组六组七组八组九组十组摸球的次数100100100100100100100100100100摸到白球的次41394043383946414238数请你估计袋子中白球的个数是( ) A .1个B .2个C .3个D .4个11.从一副扑克中抽出三张牌,分别为梅花1,2,3,背面朝上搅匀后先抽取一张点数记为a ,放回搅匀再抽取一张点数记为b ,则点(),a b 在直线1y x =-上的概率是( ) A .13B .16C .29D .5912.在一个口袋中有4个完全相同的小球,它们的标号分别为1,2,3,4,从中随机摸出两个小球,则摸出的两个小球标号之和大于4的概率是( ) A .38B .12C .58D .23二、填空题13.四张背面相同的卡片,分别为12,1,2,3,洗匀后背面朝上,先从中抽取一张,把抽到的点数记为a ,再在剩余的卡片中抽取一张点数记为b ,则点(a ,b )恰好落在一次函数y=-2x+4与坐标轴所围成的三角形区域内(含边界)的概率为______________; 14.如图,点D 在△ABC 的BC 边上,且CD =2BD ,点E 是AC 边的中点,连接AD ,DE ,假设可以随意在图中取点,那么这个点取在阴影部分的概率是_____.15.一个袋子中6个红球,若干白球,它们除颜色外完全相同,现在经过大量重复的摸球试验发现,摸出一个球是白球的频率稳定在0.4附近,则袋子中白球有_____个. 16.在一个不透明的袋子中有四个完全相同的小球,分别标号为1,2,3,4.随机摸取一个小球不放回,再随机摸取一个小球,两次摸出的小球的标号的和等于4的概率是____________.17.李老师想从小明、小红、小丽和小亮四个人中用抽签的方式抽取两个人做流动值周生,则小红和小丽同时被抽中的概率是______.18.一个质地均匀的小正方体,六个面分别标有数字1,1,2,4,5,5,随机掷一次小正方体,朝上一面的数字是奇数的概率是__________.19.技术变革带来产品质量的提升.某企业技术变革后,抽检某一产品2020件,欣喜发现产品合格的频率已达到0.9911,依此我们可以估计该产品合格的概率为_______.(结果要求保留两位小数)20.为迎接文明城市的验收工作,某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是______.三、解答题21.九年级某班要召开一次“走近抗疫英雄,讲好中国故事”主题班会活动,李老师制作了编号为A、B、C、D的4张卡片(如图,除编号和内容外,其余完全相同),并将它们背面朝上洗匀后放在桌面上.(1)小明随机抽取1张卡片,抽到卡片编号为B的概率为;(2)小明从4张卡片中随机抽取1张(不放回),小丽再从余下的3张卡片中随机抽取1张,然后根据抽取的卡片讲述相关英雄的故事,求小明、小丽两人中恰好有一人讲述钟南山抗疫故事的概率(请用“画树状图”或“列表”等方法写出分析过程).22.为了增强学生体质,开展体育娱乐教学,某校举行了“趣味运动会”,运动会的比赛项目有:“两人三足”、“春种秋收”、“有轨电车”、“摸石过河”(分别用字母A,B,C,D 依次表示这四个运动项目),将A,B,C,D这四个字母分别写在4张完全相同的不透明卡片的正面上,把这4张卡片背面朝上洗匀后放在桌面上.小明和小亮参加趣味比赛,比赛时小明先从中随机抽取一张卡片,记录下卡片上的内容,放回后洗匀,再由小亮从中随机抽取一张卡片,选手按各自抽取的卡片上内容进行趣味运动比赛.(1)小明参加“有轨电车”的概率是;(2)请用列表法或画树状图法,求出小明和小亮参加同一项目的概率.23.今年2-4月某市出现了200名新冠肺炎患者,市委根据党中央的决定,对患者进行了免费治疗.图1是该市轻症、重症、危重症三类患者的人数扇形统计图(不完整),图2是这三类患者的人均治疗费用统计图,请回答下列问题:(1)轻症患者的人数是多少?(2)所有患者的平均治疗费用是多少万元?(3)由于部分轻症患者康复出院,为减少病房拥挤,拟对某病房中的A、B、C、D、E五位患者任选两位转入另一病房,请用树状图法或列表法求出恰好选中B、D两位患者的概率.24.某中学开设的体育选修课有篮球、足球、排球、羽毛球、乒乓球,学生可以根据自己的爱好选修其中一门.某班班主任对全班同学的选修情况进行了调查统计,制成了两幅不完整的统计图(图①和图②):(1)请你求出该班的总人数,并补全条形图;(2)在该班团支部4人中,有1人选修排球,2人选修羽毛球,1人选修乒乓球.如果该班班主任要从他们4人中任选2人作为学生会候选人,那么选出的两人中恰好有1人选修排球、1人选修羽毛球的概率是多少?25.从2名男生和2名女生中随机抽取上海迪斯尼乐园志愿者.(1)抽取1名,恰好是男生的概率是;(2)抽取2名,用列表法或画树状图法求恰好是1名男生和1名女生的概率.26.某校七年级积极实施拓展性课程,计划开设“羽毛球”、“电影鉴赏”、“篮球”和“美食文化”等多个拓展性课程供学生选择,要求每位学生都自主选择其中一门拓展性课程,为此,随机调查了本校部分学生选择拓展性课程的意向,并将调查结果绘制成如下统计图表(不完整):选择意向羽毛球电影鉴赏篮球美食文化其他所占百分比a35%b20%5%根据统计图表的信息,解答下列问题:(1)求本次抽样调查的学生总人数及a,b的值;(2)将条形统计图补充完整;(3)若该校七年级共有480名学生,请估算全校选择“篮球”拓展性课程的学生人数是多少?(4)现有甲、乙两位同学选拓展性课程,他们各自从羽毛球,电影鉴赏,篮球和美食文化四个拓展性课程中任意选择一门,请画出树状图或表格,并求出他们其中一位选择了电影鉴赏,另一位选择了美食文化的概率是多少?【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据利用频率估计概率得到实验的概率在0.33左右,再分别计算出四个选项中的概率,再进行判断.【详解】A、抛一枚硬币,出现正面的概率是12,不符合题意;B、一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃的概率是14,不符合题意;C、抛一个质地均匀的正六面体骰子(六个面上分别标1,2,3,4,5,6),向上的面点数是5的概率是16,不符合题意;D、从一个装有2个白球和1个红球的袋子中任取一球,取到红球的概率是13,符合题意,故选:D.【点睛】此题考查频率估计概率,计算简单事件的概率,正确理解题意计算出各事件的概率是解题的关键.2.D解析:D【分析】首先画树状图得出所有等可能结果,然后从中找到符合条件的结果数,再根据概率公式求解可得.【详解】解:画树状图如下:由树状图知,共有12种等可能结果,其中恰为“天”、“空”的有2种结果,∴恰为“天”、“空”的概率为21 126=,故选:D.【点睛】本题考查了用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.3.B解析:B【解析】试题分析:首先设袋中白球的个数为x个,然后根据概率公式,可得15344x++=,解得:x=3.经检验:x=3是原分式方程的解.∴袋中白球的个数为3个.故选B.考点:概率公式.4.D解析:D【分析】根据题意计算求解即可.【详解】由题意知:共40名学生,由表知:P(AB型)=0.10.10.1 0.40.350.10.151.∴本班AB型血的人数=40×0.1=4名.故选D.【点睛】本题主要考查了概率的知识,正确掌握概率的知识是解题的关键.5.C解析:C【分析】根据捕捞到草鱼的频率可以估计出放入鱼塘中鱼的总数量,从而可以得到捞到鲤鱼的概率. 【详解】∵捕捞到草鱼的频率稳定在0.5左右 设草鱼的条数为x ,可得:0.51600800xx=++∴x =2400∴捞到鲤鱼的概率为:16001160080024003=++故选:C . 【点睛】本题考察了概率、一元一次方程的知识;求解的关键是熟练掌握概率的定义,通过求解方程,从而得到答案.6.C解析:C 【分析】首先设黑球的个数为x 个,根据题意得:4143=x +,解此分式方程即可求得答案. 【详解】设黑球的个数为x 个, 根据题意得:4143=x +, 解得:x=8,经检验:x=8是原分式方程的解; ∴黑球的个数为8. 故选:C. 【点睛】此题考查概率公式的应用.解题关键在于掌握概率=所求情况数与总情况数之比.7.A解析:A 【分析】根据题意,用黑色方砖的面积除以正方形地砖的面积即可. 【详解】停在黑色方砖上的概率为:59, 故选:A. 【点睛】本题主要考查了简单概率的求取,熟练掌握相关方法是解题关键.8.B解析:B【分析】画树状图得出所有情况数和遇到两次红灯的情况数,根据概率公式即可得答案.【详解】根据题意画树状图如下:共有8种等情况数,其中遇到两次红灯的有3种,则遇到两次红灯的概率是38,故选:B.【点睛】本题考查利用列表法或树状图法求概率,用到的知识点为:概率=所求情况数与总情况数之比;根据树状图得到遇两次红灯的情况数是解题关键.9.B解析:B【分析】根据掷一次骰子最终停在方格6的出现的情况利用概率公式解答即可.【详解】掷一次骰子最终停在方格6的情况有①直接掷6;②掷3后前进三格到6;所以掷一次骰子最终停在方格6的概率是21 63 ,故选B.【点睛】此题考查几何概率,关键是根据掷一次骰子最终停在方格6的出现的情况利用概率公式解答.10.B解析:B【分析】由表格可知共摸球1000次,其中摸到白球的频率稳定在0.4,由此知袋子中摸出一个球,是白球的概率为0.4,据此根据概率公式可得答案.【详解】解:由表格可知共摸球1000次,其中摸到白球的频率稳定在0.4,∴在袋子中摸出一个球,是白球的概率为0.4,设白球有x个,则3xx+=0.4, 解得:x=2, 故选:B . 【点睛】本题主要考查利用频率估计概率及概率公式,熟练掌握频率估计概率的前提是在大量重复实验的前提下是解题的关键.11.C解析:C 【分析】首先列出表格即可求得所有等可能的结果与点(a ,b)在直线1y x =- 上的情况,然后利用概率公式求解即可; 【详解】 列表格为:其中点(a ,b)在直线 上的情况有:由列表可知,一共有9种等可能的结果,其中点(a ,b)在直线 上的情况有2种,所以点(a ,b)在直线1y x =- 上的概率为29; 故选:C . 【点睛】本题考查了用列表法或树状图法求概率,用到的知识点为:概率=所求情况数与总情况数之比.12.D解析:D 【分析】首先根据题意列出表格,然后由表格中求得所有等可能的结果与两次摸出的小球的标号之和大于4的情况,再利用概率公式即可求得答案; 【详解】两次摸出小球标号的组合如下:共12组次第一次12233444第二次43424123∴其概率为:=123,故选:D.【点睛】本题考查了用列表法或树状图法求概率,注意列表法或树状图法要不重复不遗漏的列出所有等可能的情况,所用到的知识点为:概率 =所求情况数与总情况数之比.二、填空题13.【分析】首先画树状图列出所有可能的点(ab)并求得在y=-2x+4与坐标轴所围成的三角形区域内(含边界)上的点最后利用概率公式即可求得【详解】解:画树状图如下:总共有12种等可能结果其中点(ab)恰解析:5 12【分析】首先画树状图列出所有可能的点(a,b),并求得在y=-2x+4与坐标轴所围成的三角形区域内(含边界)上的点,最后利用概率公式即可求得.【详解】解:画树状图如下:总共有12种等可能结果,其中点(a,b)恰好落在一次函数y=-2x+4与坐标轴所围成的三角形区域内(含边界)的可能性有1,12⎛⎫⎪⎝⎭,1,22⎛⎫⎪⎝⎭,1,32⎛⎫⎪⎝⎭,11,2⎛⎫⎪⎝⎭,()1,2,共5种,其概率为5 12,故答案为:5 12.【点睛】本题考查的是用列表法或树状图法求概率,一次函数上点的坐标特征.注意本题为不放回实验.14.【分析】先设阴影部分的面积是x得出整个图形的面积是3x再根据几何概率的求法即可得出答案【详解】解:设阴影部分的面积是x∵点E是AC边的中点∴S△ACD=2x∵CD=2BD∴S△ACB=3x则这个点取解析:1 3【分析】先设阴影部分的面积是x,得出整个图形的面积是3x,再根据几何概率的求法即可得出答案.【详解】解:设阴影部分的面积是x,∵点E是AC边的中点,∴S△ACD=2x,∵CD=2BD,∴S△ACB=3x,则这个点取在阴影部分的概率是1 33xx=.故答案为:13.【点睛】本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.15.4【分析】根据概率的求法找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率【详解】设袋子中白球有x个由题意得=04解得:x=4经检验x=4是原方程的解故袋子中白球有4个故答解析:4【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【详解】设袋子中白球有x个,由题意得,6xx+=0.4,解得:x=4,经检验x=4是原方程的解故袋子中白球有4个,故答案为:4.【点睛】此题考查了利用概率的求法估计总体个数,利用如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn是解题关键.16.【分析】先画树状图展示所有12种等可能的结果数其中两次摸出的小球标号的和等于4的占3种然后根据概率的概念计算即可【详解】画树状图得:由树状图可知:所有可能情况有12种其中两次摸出的小球标号的和等于4解析:1 6【分析】先画树状图展示所有12种等可能的结果数,其中两次摸出的小球标号的和等于4的占3种,然后根据概率的概念计算即可.【详解】画树状图得:由树状图可知:所有可能情况有12种,其中两次摸出的小球标号的和等于4的占2种,所以其概率=21 126=,故答案为:16.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.17.【分析】首先根据题意画出树状图然后由树状图求得所有等可能的结果与小红和小丽同时被抽中的情况再利用概率公式即可求得答案【详解】画树状图得:∵共有12种等可能的结果小红和小丽同时被抽中的有2种情况∴小红解析:1 6【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与小红和小丽同时被抽中的情况,再利用概率公式即可求得答案.【详解】画树状图得:∵共有12种等可能的结果,小红和小丽同时被抽中的有2种情况,∴小红和小丽同时被抽中的概率是:P =16.故答案为1 6【点睛】此题考查了树状图法与列表法求概率.用到的知识点为:概率=所求情况数与总情况数之比.18.【分析】直接利用概率求法进而得出答案【详解】∵一个质地均匀的小正方体六个面分别标有数字112455∴随机掷一次小正方体朝上一面的数字是奇数的概率是:故答案为:【点睛】此题主要考查了概率公式正确掌握概解析:2 3【分析】直接利用概率求法进而得出答案.【详解】∵一个质地均匀的小正方体,六个面分别标有数字1,1,2,4,5,5,∴随机掷一次小正方体,朝上一面的数字是奇数的概率是:42=63.故答案为:23.【点睛】此题主要考查了概率公式,正确掌握概率公式是解题关键.19.99【分析】根据产品合格的频率已达到09911保留两位小数所以估计合格件数的概率为099【详解】解:合格频率为:09911保留两位小数为099则根据产品合频率估计该产品合格的概率为099故答案为09解析:99【分析】根据产品合格的频率已达到0.9911,保留两位小数,所以估计合格件数的概率为0.99.【详解】解:合格频率为:0.9911,保留两位小数为0.99,则根据产品合频率,估计该产品合格的概率为0.99.故答案为0.99.【点睛】本题考查了利用频率估计概率.用到的知识点为:概率=所求情况数与总情况数之比及运用样本数据去估计总体数据的基本解题思想.20.【分析】将三个小区分别记为列举出所有情况后看所求的情况占总情况的多少即可求得答案【详解】解:将三个小区分别记为列表如下:A B C A B C ∵由表可知共有种等可能结果解析:1 3【分析】将三个小区分别记为A、B、C,列举出所有情况后,看所求的情况占总情况的多少即可求得答案.【详解】解:将三个小区分别记为A、B、C,列表如下:3种∴两个组恰好抽到同一个小区的概率为31 93 =故答案是:1 3【点睛】本题考查了概率公式的应用以及列表法或树状图法,要熟练掌握.解答此题的关键是要明确:随机事件A的概率()P A=事件A可能出现的结果数÷所有可能出现的结果数.三、解答题21.(1)14;(2)图见解析,12.【分析】(1)直接利用概率公式求解即可;(2)根据题意先画树状图列出所有等可能结果数的,根据概率公式求解可得.【详解】解:(1)∵共有4张卡片,∴小明随机抽取1张卡片,抽到卡片编号为B的概率为14,故答案为:14;(2)画树状图如下:共有12种等可能的结果数,其中小明、小丽两人中恰好有一人讲述钟南山抗疫故事的有6种结果,所以小明、小丽两人中恰好有一人讲述钟南山抗疫故事的概率为:61 122.【点睛】本题考查了概率的应用,掌握运用列表法或画树状图法列出所有可能的结果及概率的计算方法是解题的关键.22.(1)14;(2)14【分析】(1)直接根据概率公式求解;(2)利用列表法展示所有16种等可能性结果,再找出小明和小亮加同一项目的结果数,然后根据概率公式求解.【详解】(1)小明参加“有轨电车”的概率是:14.故答案为:1 4(2)列表如下:种:(,)A A ,(,)B B ,(,)C C ,(,)D D , 所以小明和小亮参加同一项目的概率为41164=. 【点睛】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n ,再从中选出符合事件A 或B 的结果数目m ,然后根据概率公式求出事件A 或B 的概率. 23.(1)160人;(2)人均治疗费用2.15万元;(3)110. 【分析】(1)由总人数乘以轻症患者所占的百分比即可;(2)利用扇形统计图的百分比与条形统计图的信息,列出求平均数的算式,即可求出各种患者的平均费用;(3)根据题意列出表格,由表格求得所有等可能的结果与恰好选中B 、D 患者概率的情况,再利用概率公式即可求得答案. 【详解】解:(1)20080%160⨯=(人);(2)20080% 1.520015%32005%102.15200⨯⨯+⨯⨯+⨯⨯=(万元),即人均治疗费用2.15万元; (3)根据题意,列表如下:D(),A D (),B D (),C D(),E DE(),A E(),B E(),C E(),D E∴P (恰好选中B 、D )211010==. 【点睛】此题考查了用列表法或树状图法求概率以及条形统计图、扇形统计图的应用,掌握列表法或树状图求概率及条形统计图与扇形统计图的综合应用是解题的关键. 24.(1)50人,图见详解;(2)13. 【分析】(1)由篮球人数及其所占百分比可得总人数,再进一步求出足球和羽毛球人数即可补全图形;(2)先画树状图展示所有12种等可能的结果数,找出选出的2人恰好有1人选修排球、1人选修羽毛球所占结果数,然后根据概率公式求解. 【详解】(1)该班的总人数为:1734%50÷=(人), 足球科目人数为:5014%7⨯=(人)羽毛球科目人数为:501771259----=(人), 补全统计图如图所示:(2)设选修排球的记为A ,选修羽毛球记为1B 和2B ,选修乒乓球记为C .画树状图为:共有12种等可能的结果,其中恰好有1人选修排球、1人选修羽毛球的占4种,所以()1141 123P==恰好有人选修排球、人选修羽毛球.【点睛】本题考查了统计与概率,解题的关键是利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.25.(1)12;(2)图表见解析,P=23【分析】(1)根据题意,抽取1名志愿者总共有4种可能,男生有2人,利用概率公式即可求解抽取1名恰好是男生的概率;(2)根据题意列表,可分别得到总共有多少种等可能的结果与符合条件的结果,根据概率公式即可求解.【详解】(1)抽取1名,恰好是男生的概率为:2142P==,(2)列表得:由表格可知:总共有12种等可能的结果,其中恰好是1名男生和1名女生的结果有8种结果,所以抽取2名,恰好是1名男生和1名女生的概率为:82123P==.【点睛】本题考查了概率的求解,解题关键是准确列出表格,得到所有的等可能结果,再从中选取符合条件的结果,然后利用概率公式计算.26.(1)300人,a=15%,b=25%;(2)见解析;(3)120人;(4)1 8。
北师大版九年级数学上册第三章概率的进一步认识第2节用频率估计概率课后练习
第三章概率的进一步认识第2节用频率估计概率课后练习学校:___________姓名:___________班级:___________考生__________评卷人得分一、单选题1.从一定高度抛一个瓶盖100次,落地后盖面朝下的有55次,则下列说法中错误的是A.盖面朝下的频数是55B.盖面朝下的频率是0.55C.盖面朝下的概率不一定是0.55D.同样的试验做200次,落地后盖面朝下的有110次2.一个口袋中有红球、白球共10个,这些球除颜色外都相同,将口袋中的球搅拌均匀,从中随机模出一个球,记下它的颜色后再放回口袋中,不断重复这一过程,共摸了100次球,发现有80次摸到红球,则口袋中红球的个数大约有()A.8个B.7个C.3个D.2个3.一个口袋中有红球、白球共10个,这些球除颜色外都相同,将口袋中的球搅拌均匀,从中随机摸出一个球,记下它的颜色后再放回口袋中,不断重复这一过程,共摸了100次球,发现有71次摸到红球.请你估计这个口袋中白球的数量为()个.A.29B.30C.3D.74.某服装厂对一批服装进行质量抽检结果如下:抽取的服装数量501002005001000优等品数量4689182450900优等品的频率0.920.890.910.900.90则这批服装中,随机抽取一件是优等品的概率约为()A.0.92B.0.89C.0.91D.0.905.一个不透明的袋子中装有除颜色外其余均相同的4个白球,n个黑球,随机地从袋子中摸出一个球,记录下颜色后,放回袋子中并摇匀,记为一次试验. 大量重复试验后,发现摸出白球的频率稳定于0.4,则n的值为()A.4B.6C.8D.106.小明和同学做“抛掷质地均匀的硬币试验”,获得的数据如下表:抛掷次数100500 1 000 1 500 2 000正面朝上的频数45253512756 1 020若抛掷硬币的次数为3 000,则“正面朝上”的频数最接近()A.1 000B.1 500C.2 000D.2 5007.在一个不透明的盒子中,装有绿色、黑色、白色的小球共有60个,除颜色外其他完全相同,一同学通过多次摸球试验后发现其中摸到绿色球、黑色球的频率稳定在25%和45%,盒子中白色球的个数可能是()A.24个B.18个C.16个D.6个8.在一个暗箱里放有a个除颜色外其它完全相同的球,这a个球中红球只有3个.每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱.通过大量重复摸球实验后发现,摸到红球的频率稳定在25%,那么可以推算出a大约是()A.12B.9C.4D.39.一个不透明的盒子里有n个除颜色外其它完全相同的小球,其中有6个黄球.每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后在放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么可以推算出n大约是()A.6B.10C.18D.2010.下表显示的是某种大豆在相同条件下的发芽试验结果:每批粒数n100300400600100020003000发芽的粒数m9628238257094819042850发芽的频率mn0.9600.9400.9550.9500.9480.9520.950下面有三个推断:①当n为400时,发芽的大豆粒数为382,发芽的频率为0.955,所以大豆发芽的概率是0.955;①随着试验时大豆的粒数的增加,大豆发芽的频率总在0.95附近摆动,显示出一定的稳定性,可以估计大豆发芽的概率是0.95;①若大豆粒数n为4000,估计大豆发芽的粒数大约为3800粒.其中推断合理的是()A.①①①B.①①C.①①D.①①评卷人得分二、填空题11.把一袋黑豆中放入红豆100粒,搅匀后取出100粒豆子,其中红豆5粒,则该袋中约有黑豆_______粒.12.在一个不透明的布袋中装有红色、白色玻璃球共60除颜色外其他完全相同.小明通过多次摸球试验后发现,其中摸到白色球的频率稳定在30%左右,则口袋中白色球可能有______个.13.某中学为了解初三学生的视力情况,对全体初三学生的视力进行了检测,将所得数据整理后画出频率分布直方图(如图),已知图中从左到右第一、二、三、五小组的频率分别为0.05,0.1,0.25,0.1,如果第四小组的频数是180人,那么该校初三共有_____位学生.14.一个不透明的口袋里装有若干除颜色外其他完全相同的小球,其中有6个黄球,将口袋中的球摇匀,从中任意摸出一个球记下颜色后再放回,通过大量重复上述试验后发现,摸到黄球的频率稳定在30%,由此估计口袋中共有小球____________个.15.色盲是伴X染色体隐性先天遗传病,患者中男性远多于女性,从男性体检信息库中随机抽取体检表,统计结果如表:抽取的体检表数n501002004005008001000120015002000色盲患者的频数m37132937556985105138色盲患者的频0.0600.0700.0650.0730.0740.0690.0690.0710.0700.069率m/n根据表中数据,估计在男性中,男性患色盲的概率为______(结果精确到0.01).16.为了估计一个鱼池中鱼的条数,采用了如下方法:先从鱼池的不同地方捞出40 条鱼,给这些鱼做上记号后放回鱼池,过一段时间后,在同样的地方捞出200 条鱼,其中有记号的鱼有4条.请你估计鱼池中鱼的条数约为_________条.17.在一个暗箱里放有a个除颜色外完全相同的球,这a个球中红球只有3个.每次将球搅拌均匀后,任意摸出一个球,记下颜色后,再放回暗箱,通过大量的重复试验后发现,摸到红球的频率稳定在25%.那么估计a大约有_______个.18.大成蔬菜公司以2.1元/千克的成本价购进10000kg番茄,公司想知道番茄的损坏率,从所有随机抽取若干进行统计,部分结果如表:番茄总质量()m kg1002003004005001000损坏番茄质量()m kg10.6019.4230.6339.2449.54101.10番茄损坏的频率0.1060.0970.1020.0980.0990.101估计这批番茄损坏的概率为______(精确到0.1),据此,若公司希望这批番茄能获得利润15000元,则销售时(去掉损坏的番茄)售价应至少定为______元/千克.19.在一个不透明的盒子里装有红、黑两种颜色的球共60只,这些球除颜色外其余完全相同.为了估计红球和黑球的个数,七(2)班的数学学习小组做了摸球实验.他们将球搅匀后,从盒子里随机摸出一个球记下颜色,再把球放回盒子中,多次重复上述过程,得到表中的一组统计数据:摸球的次数n501003005008001000摸到红球的次数m143395155241298摸到红球的频率mn0.280.330.3170.310.3010.298请估计:当次数n足够大时,摸到红球的频率将会接近_____.(精确到0.1)评卷人得分三、解答题20.某工厂对一批灯泡的质量进行随机抽查,见下表:抽取灯泡数a4010015050010001500优等品数b36921454749501427优等品频率b a(1)计算表中的优等品的频率(精确到0.001)(2)根据抽查的灯泡优等品的频率,估计这批灯泡优等品的概率(精确到0.01)21.在一个不透明的盒子里,装有4个黑球和若干个白球,它们除颜色外其它都相同,摇匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复这一过程,共摸球400次,其中100次摸到黑球,则估计盒子中大约有白球多少个?(简要说明理由)22.在一个不透明的口袋里装有若干个质地相同的红球,为了估计袋中红球的数量,某学习小组做了摸球实验,他们将30个与红球大小形状完全相同的白球装入袋中,搅匀后从中随机摸出一个球并记下颜色,再把它放回袋中,多次重复摸球.下表是多次活动汇总后统计的数据:摸球的次数S15020050090010001200摸到白球的频数n5164156275303361摸到白球的频率0.340.320.3120.30603030.301(1)请估计:当次数S很大时,摸到白球的频率将会接近;假如你去摸一次,你摸到红球的概率是(精确到0.1).(2)试估算口袋中红球有多少只.23.对某批乒乓球质量进行随机调查,结果如下表;随机抽取的乒乓球数n1020501002005001000优等品数m7164381164410820优等频率mn0.70.80.860.810.820.82(1)填表格中的空为_______.(2)根据上表估计,在这批乒乓球中任取一个球,它为优等品的概率大约是________.(保留两位小数点)(3)学校需要500个乒乓球的优等品,那么可以推测出最有可能进这批货的乒乓球个数是多少合适?(结果保留整数)24.在一个不透明的盒子里装有红、黑两种颜色的球共60只,这些球除颜色外其余完全相同.为了估计红球和黑球的个数,七(4)班的数学学习小组做了摸球实验.他们]将球搅匀后,从盒子里随机摸出一个球记下颜色,再把球放回盒子中,多次重复上述过程,得到下表中的一组统计数据:摸球的次数n5010030050080010002000摸到红球的次数m143395155241298602摸到红球的频率mn0.280.330.3170.310.3010.2980.301(1)请估计:当次数n足够大时,摸到红球的频率将会接近;(精确到0.1)(2)假如你去摸一次,则摸到红球的概率的估计值为;(3)试估算盒子里红球的数量为个,黑球的数量为个25.从一定高度落下的图钉,落地后可能图钉针尖着地.也可能图钉针尖不着地,雨薇同学在相同条件下做了这个实验.并将数据记录如下:实验次数n2004006008001000…针尖着地频数m84176280362451…针尖着地频率mn0.4200.4400.4670.4530.451…(1)观察针尖着地的频率是否稳定,若稳定,请写针尖着地频率的常数______(精确到0.01);若不稳定,请说明理由.(2)假如小明同学在相同条件下做了此实验10000次,估计图钉针尖着地的次数大约是多少.参考答案:1.D【解析】【分析】根据频数,频率及用频率估计概率即可得到答案.【详解】A、盖面朝下的频数是55,此项正确;B、盖面朝下的频率是55100=0.55,此项正确;C、盖面朝下的概率接近于0.55,但不一定是0.55,此项正确;D、同样的试验做200次,落地后盖面朝下的在110次附近,不一定必须有110次,此项错误;故选:D.【点睛】本题考查了频数,频率及用频率估计概率,掌握知识点是解题关键.2.A【解析】【分析】根据利用频率估计概率可估计摸到红球的概率,即可求出红球的个数.【详解】解:∵共摸了100次球,发现有80次摸到红球,∵摸到红球的概率估计为0.80,∵口袋中红球的个数大约10×0.80=8(个),故选:A.【点睛】本题考查了利用频率估计概率的知识,属于常考题型,掌握计算的方法是关键.3.C【解析】【分析】根据“摸了100次球,发现有71次摸到红球”,可估计,这10个球中,红球约占总数的71100,进而可求解.【详解】解:∵不断重复这一过程,共摸了100次球,发现有71次摸到红球,∵这10个球中,红球约占总数的71100,即红球约有10×71100≈7个∵估计这个口袋中白球的数量为10-7=3个故选C.【点睛】本题主要考查用频率估计概率,理解“重复实验次数越多,则频率越接近概率”是解题的关键.4.D【解析】【分析】用优等品数除以抽取的服装数得到优等品的频率,即可估计随机抽取一件是优等品的概率.【详解】解:∵46+89+182+450+900=1667,50+100+200+500+1000=1850,1667÷1850≈0.90,∵从这批服装中随机抽取一件是优等品的概率约为0.90,故选:D.【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.5.B【解析】【分析】根据概率的求法,找准两点:∵全部情况的总数;∵符合条件的情况数目;二者的比值就是其发生的概率.【详解】解:依题意有:44n=0.4,解得:n=6.故选:B.【点睛】本题考查了利用概率的求法估计总体个数,利用如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn是解题的关键.6.B【解析】【分析】根据表格估计出频率,再乘以3000即可得出答案.【详解】观察表格发现:随着实验次数的增加,正面朝上的频率逐渐稳定到0.5附近,∵抛掷硬币的次数为3000,则“正面朝上”的频数最接近3000×0.5=1500(次),故选:B.【点睛】本题考查了利用频率估计概率,掌握知识点是解题关键.7.B【解析】【分析】先由频率之和为1计算出白球的频率,再由数据总数×频率=频数,计算白球的个数.【详解】解:∵摸到绿色球、黑色球的频率稳定在25%和45%,∵摸到白球的频率为1-25%-45%=30%,故口袋中白色球的个数可能是60×30%=18个.故选:B.【点睛】本题考查了利用频率估计概率的知识,具体数目应等于总数乘部分所占总体的比值.8.A 【解析】【分析】摸到红球的频率稳定在25%,即3a=25%,即可即解得a的值.【详解】解:∵摸到红球的频率稳定在25%,∵3a=25%,解得:a=12.经检验,a=12符合题意,故选A【点睛】本题考查用频率估计概率,熟记公式正确计算是本题的解题关键.9.D【解析】【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.【详解】解:由题意可得,630%20n=÷=,故估计n大约有20个.故选D.【点睛】此题主要考查了利用频率估计概率,本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据黄球的频率得到相应的等量关系.10.D【解析】【分析】利用频率估计概率,大量反复试验下频率稳定值即为概率可解题.【详解】解:∵当n为400时,发芽的大豆粒数为382,发芽的频率为0.955,所以大豆发芽的概率是0.955,此推断错误,∵随着试验时大豆的粒数的增加,大豆发芽的频率总在0.95附近摆动,显示出一定的稳定性,可以估计大豆发芽的概率是0.95,此结论正确,∵若大豆粒数n为4000,估计大豆发芽的粒数大约为3800粒,此结论正确,故选D.【点睛】本题考查了利用频率估计概率, 大量反复试验下频率稳定值即为概率,属于简单题,熟悉概念是解题关键.11.1900【解析】【分析】先根据取出100粒豆子,其中有红豆5粒,确定取出红豆的概率为5%,然后用100÷5%求出豆子总数,最后再减去红豆子数即可.【详解】解:由题意得:取出100粒豆子,红豆的概率为5%,则豆子总数为100÷5%=2000粒,所以该袋中黑豆约有2000-100=1900粒.故答案为1900.【点睛】本题考查了用频率估计概率,弄清题意、学会用样本估计总体的方法是解答本题的关键.12.18【解析】【分析】由频数=数据总数×频率计算即可.【详解】∵摸到白色球的频率稳定在30%左右,∵口袋中白色球的频率为30%,故白色球的个数为60×30%=18个.故答案为:18.【点睛】本题考查了利用频率估计概率,难度适中.大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.13.360【解析】先根据频率之和为1求出第四组的频率,再结合第四组的频数,利用总数=频数÷频率求解可得.【详解】解:∵图中从左到右第一、二、三、五小组的频率分别为0.05,0.1,0.25,0.1,∵第四小组的频率为1﹣(0.05+0.1+0.25+0.1)=0.5,又∵第四小组的频数是180人,∵该校初三学生人数为180÷0.5=360(位),故答案为:360.【分析】此题考查根据频数,频率求总量,代入公式即可.14.20【解析】【详解】∵摸到黄球的频率稳定在30%,∵在大量重复上述实验下,可估计摸到黄球的概率为30%=0.3,而袋中黄球只有6个,∵推算出袋中小球大约有6÷0.3=20(个),故答案为20.15.0.07【解析】【分析】随着实验次数的增多,频率逐渐稳定到的常数即可表示男性患色盲的概率.【详解】解:观察表格发现,随着实验人数的增多,男性患色盲的频率逐渐稳定在常数0.07左右,故男性中,男性患色盲的概率为0.07故答案为:0.07.本题考查利用频率估计概率.16.2000【解析】【分析】先计算出有记号鱼的频率,再用频率估计概率,利用概率计算鱼的总数.【详解】解:设鱼的总数为x条,捞出有记号的鱼的频率近似等于4:200=40:x解得x=2000.故答案为:2000.【点睛】本题主要考查了频率=所求情况数与总情况数之比,关键是根据有记号的鱼的频率得到相应的等量关系,难度适中.17.12【解析】【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.【详解】解:由题意可得,3a×100%=25%,解得,a=12个.经检验a=12是原方程的解.估计a大约有12个.故答案为:12.【点睛】本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据红球的频率得到相应的等量关系.18.0.1113 30【解析】利用频率估计概率可求出这批番茄损坏的概率;根据概率计算出完好番茄的重量,设每千克番茄的销售价为x 元,根据“总利润=每千克利润×完好番茄的重量”列方程解答.【详解】解:根据表中番茄损坏的频率估计这批番茄损坏的概率为0.1,所以估计在购进的10000kg 番茄中,完好番茄的重量为:()1000010.19000kg ⨯-=, 设每千克番茄的销售价为x 元,由题意得:()15000 2.19000x =-⨯,解得:11330x =, 即销售时(去掉损坏的番茄)售价应至少定为11330元/千克, 故答案为:0.1,11330. 【点睛】 本题考查了利用频率估计概率,一元一次方程的应用,大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率.19.0.3【解析】【分析】由表中摸球次数逐渐增大后,摸到红球的频率逐渐靠近于0.3可得,【详解】解:当次数n 足够大时,摸到红球的频率将会接近0.3,故答案为0.3.【点睛】考查利用频率估计概率.大量反复试验下频率稳定值即概率.用到的知识点为:部分的具体数目=总体数目×相应频率.20.(1)0.900,0.920,0.967,0.948,0.950,0.951;(2)0.95【解析】【分析】(1)根据优等品的频数除以数据的总个数即可求得优等品的频率;(2)根据表格中的数据可以得到优等品的概率;【详解】(1)表中优等品的频率从左到右依次是:0.900,0.920,0.967,0.948,0.950,0.951(2)根据求出的优等品的频率,可以知道,随着抽取的灯泡数的增多,优等品的频率逐渐稳定在0.95左右,由此可以估计这批灯泡优等品的概率是0.95【点睛】本题考查利用频率估计概率,解答本题的关键是明确概率的定义,利用概率的知识解答.21.12个,见解析【解析】【分析】设盒子中大约有白球x个,根据“黑球数量÷黑白球总数=黑球所占比例”来列等量关系式,其中“黑白球总数=黑球个数+白球个数”,“黑球所占比例=随机摸到的黑球次数÷总共摸球的次数”,即可求解.【详解】解:设盒子中大约有白球x个,根据题意得:41004+400x解得:x=12,经检验,x=12是所列方程的解,且符合题意,∵估计盒子中大约有白球12个.故答案为:12【点睛】本题主要考查了用频率估计概率的知识,解题的关键是找出“黑球数量÷黑白球总数=黑球所占比例”来列等量关系.22.(1)0.3,0.7;(2)估计口袋中红球有70只.【解析】【分析】(1)从表中的统计数据可知,摸到白球的频率稳定在0.3左右,而摸到红球的概率为1-0.3=0.7;(2)根据红球的概率公式得到相应方程求解即可.【详解】解:(1)当次数S很大时,摸到白球的频率将会接近0.3;假如你去摸一次,你摸到红球的概率是1-0.3=0.7;故答案为:0.3,0.7;(2)30÷0. 3-30=70,答:口袋中红球大约有70只.【点睛】考查利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:概率=所求情况数与总情况数之比.组成整体的几部分的概率之和为1.23.(1)0.82;(2)0.82;(3)610【解析】【分析】(1)用优等品的个数除以随机抽取的乒乓球个数即可得出答案;(2)根据表格中的数据可以得到优等品的概率;(3)用学校需要乒乓球优等品的个数除以优等品的概率即可得出答案.【详解】(1)由题意可得,410÷500=0.82,故答案为:0.82;(2)根据表格中的数据,可知从这批乒乓球中任取一个球,它为优等品的概率大约是0.82,故答案为:0.82;(3)根据题意得:500÷0.82≈610(个),答:可以推测出最有可能进这批货的乒乓球是610个合适.【点睛】此题考查频率估计概率,解题的关键是明确概率的定义,利用概率的知识解答.24.(1)0.3;(2)0.3;(3)18,42【解析】【分析】(1)由表中摸球次数逐渐增大后,摸到红球的频率逐渐靠近于0.3可得;(2)概率接近于(1)得到的频率;(3)红球个数=球的总数×得到的红球的概率,让球的总数减去红球的个数即为黑球的个数,问题得解.【详解】(1)当次数n足够大时,摸到红球的频率将会接近0.3,故答案为:0.3;(2)摸到红球的概率的估计值为0.3,故答案为:0.3;(3)估算盒子里红球的数量为60×0.3=18个,黑球的个数为60-18=42个,故答案为:18、42.【点睛】考查利用频率估计概率.大量反复试验下频率稳定值即概率.用到的知识点为:部分的具体数目=总体数目×相应频率.25.(1)0.45;(2)4500次.【解析】【分析】(1)根据在相同条件下大量反复实验时,随机事件发生的频率逐渐稳定在概率附近,即可得出答案;(2)在相同条件下用实验次数乘以频率即得结果.【详解】解:(1)由表格中的数据可知:针尖着地的频率是稳定的,针尖着地的频率是常数0.45.故答案为:0.45;(2)假如小明同学在相同条件下做了此实验10000次,估计图钉针尖着地的次数大约是⨯=次.100000.454500【点睛】本题考查了用频率估计概率的知识,属于基础题型,熟知大量反复实验下频率的稳定值可估计为事件的概率是解题关键.。
北师大版九年级数学上册用频率估计概率同步练习(有答案)
北师大版九年级数学上册用频率估计概率同步练习(有答案)1.做绿豆在相反条件下的发芽实验,结果如下表所示:那么绿豆发芽的概率估量值是()A.0.96 B.0.95 C.0.94 D.0.902.①在课外实际活动中,甲、乙、丙、丁四个小组用投掷一元硬币的方法来预算其正面朝上的概率,其实验次数区分为10次,50次,100次,200次,其中实验相对迷信的是()A.甲组B.乙组C.丙组D.丁组3.②为调查6团体中2团体生肖相反的概率,停止有放回地摸球实验,那么()A.用12个球每摸6次为一次实验,看能否有2次相反B.用12个球每摸12次为一次实验,看能否有2次相反C.用6个球每摸12次为一次实验,看能否有2次相反D.用6个球每摸6次为一次实验,看能否有2次相反4.③2021·北京如图3-2-1显示了用计算机模拟随机投掷一枚图钉的某次实验的结果.图3-2-1下面有三个推断:①当投掷次数是500时,计算机记载〝钉尖向上〞的次数是308,所以〝钉尖向上〞的概率是0.616;②随着实验次数的添加,〝钉尖向上〞的频率总在0.618左近摆动,显示出一定的动摇性,可以估量〝钉尖向上〞的概率是0.618;③假定再次用计算机模拟此实验,那么当投掷次数为1000时,〝钉尖向上〞的频率一定是0.620.其中合理的是()A.①B.②C.①②D.①③易错警示③实验失掉的频率与事情发作的概率是两个不同的概念,频率是某次实验失掉的详细数据,概率是实际上的能够性.5.在一所4000人的学校随机调查了100人,其中有76人上学之前吃过早饭,在这所学校里随意问一团体,上学之前吃过早饭的概率约是________.6.④小颖和小红两名同窗在学习〝概率〞时,做掷骰子(质地平均的正方体)的实验.(1)她们在一次实验中共掷骰子60次,实验的结果如下表:①填空:此次实验中〝5点朝上〞的频率为________;②小红说:〝依据实验,出现5点的概率最大.〞她的说法正确吗?为什么?(2)小颖和小红在实验中假设各掷一枚骰子,那么两枚骰子朝上的点数之和为多少的概率最大?试用列表法或画树状图法加以说明,并求出这个最大约率.易错警示④用频率估量概率是针对少量实验而言的,假定实验次数太少,那么数据缺乏代表性.7.2021·兰州一个不透明的盒子里有n个除颜色外其他完全相反的小球,其中有9个黄球.每次摸球前先将盒子里的球摇匀,恣意摸出一个球记下颜色后再放回盒子,经过少量重复摸球实验后发现,摸到黄球的频率动摇在30%,那么估量盒子中小球的个数n为()A.20 B.24 C.28 D.308.⑤2021·宿迁如图3-2-2,为测量平地上一块不规那么区域(图中的阴影局部)的面积,画一个边长为2 m的正方形,使不规那么区域落在正方形内,现向正方形内随机投掷小石子(假定小石子落在正方形内每一点都是等能够的),经过少量重复投掷实验,发现小石子落在不规那么区域的频率动摇在常数0.25左近,由此可估量不规那么区域的面积是________m2.图3-2-2方法点拨⑤事情在实验中发作的频率动摇于概率,可用少量重复实验失掉的频率估量概率,从而停止相关的计算.9.⑥在一个不透明的布袋中,红球、黑球、白球共有假定干个,它们除颜色不同外,外形、大小、质地等完全相反,小新从布袋中随机摸出一球,记下颜色后放回布袋中,摇匀后再随机摸出一球,记下颜色……如此少量摸球实验后,小新发现其中摸出红球的频率动摇于20%,摸出黑球的频率动摇于50%,对此实验,他总结出以下结论:①假定停止少量摸球实验,摸出白球的频率动摇于30%; ②假定从布袋中恣意摸出一个球,该球是黑球的概率最大; ③假定再摸球100次,必有20次摸出的是红球. 其中说法正确的选项是________.(填序号) 易错警示⑥事情在实验中发作的频率动摇于数值a ,不是说每次实验时该事情发作的频率都是a . 10.⑦2021·泰兴模拟在一个不透明袋子中有1个红球和3个白球,这些球除颜色外其他都相反.(1)从袋中恣意摸出2个球,用画树状图或列表的方法求摸出的2个球颜色不同的概率; (2)在袋子中再放入x 个白球后,停止如下实验:从袋中随机摸出1个球,记载下颜色后放回袋子中并搅匀.经少量实验,发现摸到白球的频率动摇在0.95左右,求x 的值.方法点拨⑦在少量重复实验中,事情发作的频率动摇于一个固定的值,这个固定的值是事情发作的实际概率.11.⑧在一个不透明的盒子里装有颜色不同的黑、白两种球共40个,小颖做摸球实验,她将盒子外面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不时重复上述进程,图3-2-3是〝摸到白球〞的频率折线统计图.(1)请估量:当n 很大时,摸到白球的概率将会接近________(准确到0.1),假设你摸一次,摸到白球的概率为________;(2)试预算盒子里黑、白两种颜色的球各有多少个;(3)在(2)的条件下假设要使摸到白球的概率为35,需求往盒子里再放入多少个白球?图3-2-3方法点拨⑧处置用频率估量概率的效果时,普通设未知数x,用含x的代数式表示事情发作的实际概率,再依据实际概率近似等于实验频率结构方程求解.12.⑨王教员将1个黑球和假定干个白球放入一个不透明的口袋并搅匀,让假定干名先生停止摸球实验,每次摸出一个球(有放回),下表是活动停止中的一组统计数据.(1)补全上表中的有关数据,依据上表数据估量从袋中摸出一个球是黑球的概率是________;(2)预算袋中白球的个数;(3)在(2)的条件下,假定小强同窗有放回地延续两次摸球,用画树状图或列表的方法计算他两次都摸出白球的概率.方法点拨⑨〝摸球放回〞效果,即第一次次摸出的球,以后每次还可以摸到,列表时,对角线所在的表格不是空白,应写出相应的实验结果.详解详析【关键问答】①不正确.屡次重复实验失掉的实验频率动摇在实际概率左近,但失掉的频率不是概率.②模拟实验时应留意:(1)模拟实验的多样性,即同一实验可以有多种多样的替代物;(2)模拟实验必需在相反的条件下停止.1.B 2.D 3.A4.B[解析] 当投掷次数是500时,计算机记载〝钉尖向上〞的次数是308,所以此时〝钉尖向上〞的频率是308÷500=0.616,但〝钉尖向上〞的概率不一定是0.616,故①错误;随着实验次数的添加,〝钉尖向上〞的频率总在0.618左近摆动,显示出一定的动摇性,可以估量〝钉尖向上〞的概率是0.618,故②正确;假定再次用计算机模拟实验,那么当投掷次数为1000时,〝钉尖向上〞的频率能够是0.620,但不一定是0.620,故③错误.应选B.5.0.76(或1925) [解析] ∵随机调查了100人,其中有76人上学之前吃过早饭,∴上学之前吃过早饭的频率是0.76.∵经过少量的实验,∴随意问一团体,上学之前吃过早饭的概率约是0.76.6.解:(1)①∵实验中〝5点朝上〞的次数有20次,总次数为60次, ∴此次实验中〝5点朝上〞的频率为2060=13.②小红的说法不正确.理由:∵应用频率估量概率,实验次数必需足够多,停止屡次重复实验,频率才会渐渐接近概率,而她们的实验次数太少,没有代表性,∴小红的说法不正确. (2)列表如下:由表格可以看出,共有36个等能够的结果,其中点数之和为7的结果数最多,有6个,∴两枚骰子朝上的点数之和为7的概率最大,最大约率为636=16.7.D [解析] 依据题意,得9n ×100%=30%,解得n =30,所以这个不透明的盒子里大约有30个除颜色外其他完全相反的小球.应选D.8.1 [解析] ∵经过少量重复投掷实验,发现小石子落在不规那么区域的频率动摇在常数0.25左近,∴小石子落在不规那么区域的概率为0.25.∵正方形的边长为2 m ,∴面积为4 m 2,设不规那么区域的面积为S m 2,那么S4=0.25,解得S =1.9.①② [解析] ①假定停止少量摸球实验,摸出白球的频率动摇于1-20%-50%=30%,故此说法正确;②∵摸出黑球的频率动摇于50%,大于摸出其他颜色球的频率,∴从布袋中恣意摸出一个球,该球是黑球的概率最大,故此说法正确;③假定再摸球100次,不一定有20次摸出的是红球,故此说法错误.∴正确的选项是说法①②.10.解:(1)画树状图如下图:由图可知共有12种等能够的结果,其中2个球颜色不同的状况有6种, 所以摸出的2个球颜色不同的概率为612=12.(2)由题意可得3+x4+x =0.95,解得x =16,经检验,x =16是原分式方程的解且契合题意, 所以x 的值为16. 11.解:(1)0.5 0.5(2)40×0.5=20,40-20=20.答:盒子里黑、白两种颜色的球区分有20个、20个. (3)设需求往盒子里再放入x 个白球. 依据题意,得20+x 40+x =35,解得x =10.经检验,x =10是原分式方程的解,且契合题意. 答:需求往盒子里再放入10个白球.12.[解析] (1)用少量重复实验中事情发作的频率动摇到某个常数来表示该事情发作的概率即可;(2)用概率公式列出方程求解即可;(3)列表将一切等能够的结果罗列出来,然后应用概率公式求解即可. 解:(1)251÷1000=0.251≈0.25.∵少量重复实验中,事情发作的频率逐渐动摇到0.25左近,∴估量从袋中摸出一个球是黑球的概率是0.25.(2)设袋中白球有x个,依据题意,得11+x=0.25,解得x=3.经检验,x=3是原分式方程的解且契合题意.答:估量袋中有3个白球.(3)用B代表1个黑球,W1,W2,W3代表3个白球,将摸球状况列表如下:总共有16种等能够的结果,其中两个球都是白球的结果有9种,∴他两次都摸出白球的概率为916.。
北师大版数学九年级上3第三单元《概率的进一步认识》全章同步练习附单元测试卷(含答案)
北师大版数学九年级上3第三单元《概率的进一步认识》全章同步练习附单元测试卷(含答案)3.1 用树状图或表格求概率第1课时 用树状图或表格求概率【基础练习】 一、选择题:同时掷两颗均匀的骰子,下列说法中正确的是( ).(1)“两颗的点数都是3”的概率比“两颗的点数都是6”的概率大; (2)“两颗的点数相同”的概率是16 ;(3)“两颗的点数都是1”的概率最大;(4)“两颗的点数之和为奇数”与“两颗的点数之和为偶数”的概率相同. A. (1)、(2) B. (3)、(4) C. (1)、(3) D. (2)、(4)二、填空题:用列表的方法求下列各事件发生的概率,并用所得的结果填空.1.从1、2、3、4、5这五个数字中,先随意抽取一个,然后从剩下的四个数中再抽取一个,则两次抽到的数字之和为偶数的概率是 ;2.有五条线段,其长度分别为1、3、5、7、9,从中任取三条,以这三条线段为边能够成一个三角形的概率是 ;3.现有10个型号相同的杯子,其中一等品7个,二等品2个,三等品1个,从中任取两个杯子都是一等品的概率是.用画树状图的方法求下列各事件发生的概率,并用所得的结果填空.4.在两个布袋中分别装有三个小球,这三个小球的颜色分别为红色、白色、绿色,其他没有区别.把两袋小球都搅匀后,再分别从两袋中各取出一个小球,求取出两个相同颜色....小球的概率是_______.5.妞妞和她的爸爸玩“锤子、剪刀、布”游戏.每次用一只手可以出锤子、剪刀、布三种手势之一,规则是锤子赢剪刀、剪刀赢布、布赢锤子,若两人出相同手势,则算打平.妞妞和爸爸出相同手势的概率是___________.6.三个袋中各装有2个球,其中第一个袋和第二个袋中各有一个红球和一个黄球,第三个袋中有一个黄球和一个黑球,现从三个袋中各摸出一个球,则摸出的三个球中有2个黄球和一个红球的概率为_________.三、解答题:有两组卡片,第一组卡片共3张,分别写着2、2、3;第二组卡片共5张,分别写着1、2、2、3、3. 试用列表的方法求从每组中各抽取一张卡片,两张都是2的概率.【综合练习】有两个质量均匀、大小相同的正四面体,其中一个的四个面上分别写着数字1、2、3、4,另一个的四个面上分别写着数字5、6、7、8. 将这两个正四面体同时投掷到桌面上,并以它们底面上的数字之和来计分,问:(1)共能组成多少种不同的计分?(2)底面上的数字之和为素数的概率是多少?(3)底面上的数字之和为偶数的概率是多少?【探究练习】中国队和韩国队等9支球队参加奥运会足球预选赛亚洲区决赛,把9支球队任意地分成3组,试求中、韩两队恰好分在同一组的概率.答案:【基础练习】一、D.二、1. 25 ; 2. 310 ; 3. 715 ; 4.13 ;5.13; 6.14.三、415.【综合练习】(1)7;(2)14 ;(3)12.【探究练习】14.第2课时 概率与游戏的综合应用1.小明、小芳做一个“配色”的游戏.右图是两个可以自由转动的转盘,每个转盘被分成面积相等的几个扇形,并涂上图中所示的颜色.同时转动两个转盘,如果转盘A 转出了红色,转盘B 转出了蓝色,或者转盘A 转出了蓝色,转盘B 转出了红色,则红色和蓝色在一起配成紫色,这种情况下小芳获胜;同样,蓝色和黄色在一起配成绿色,这种情况下小明获胜;在其它情况下,则小明、小芳不分胜负. (1)利用列表或树状图的方法表示此游戏所有可能出现的结果; (2)此游戏的规则,对小明、小芳公平吗?试说明理由.2.有2个信封,每个信封内各装有四张卡片,其中一个信封内的四张卡片上分别写有1、2、3、4四个数,另一个信封内的四张卡片分别写有5、6、7、8四个数,甲、乙两人商定了一个游戏,规则是:从这两个信封中各随机抽取一张卡片,然后把卡片上的两个数相乘,如果得到的积大于20,则甲获胜,否则乙获胜. (1)请你通过列表(或画树状图)计算甲获胜的概率. (2)你认为这个游戏公平吗?为什么?红 蓝 红 黄 转盘A 红蓝 黄 转盘B答案:1.解:用列表法将所有可能出现的结果表示如下:转盘B转盘A红蓝黄红(红,红)(红,蓝)(红,黄)蓝(蓝,红)(蓝,蓝)(蓝,黄)红(红,红)(红,蓝)(红,黄)黄(黄,红)(黄,蓝)(黄,黄)所以,所有可能出现的结果共有12种.(2)上面等可能出现的12种结果中,有3种情况可能得到紫色,故配成紫色的概率是31124=,即小芳获胜的概率是14;但只有2种情况才可能得到绿色,配成绿色的概率是21126=,即小明获胜的概率是16.而1146>,故小芳获胜的可能性大,这个“配色”游戏对小明、小芳双方是不公平的.2.解:(1)利用列表法得出所有可能的结果,如下表:1 2 3 45 5 10 15 206 6 12 18 247 7 14 21 288 8 16 24 32由上表可知,该游戏所有可能的结果共16种,其中两卡片上的数字之积大于20的有5种,所以甲获胜的概率为516P=甲.(2)这个游戏对双方不公平,因为甲获胜的概率516P=甲,乙获胜的概率1116P=乙,1116165≠,所以,游戏对双方是不公平的.3.为了决定谁将获得仅有的一张科普报告入场劵,甲和乙设计了如下的摸球游戏:在不透明口袋中放入编号分别为1、2、3的三个红球及编号为4的一个白球,四个小球除了颜色和编号不同外,其它没有任何区别,摸球之前将袋内的小球搅匀,甲先摸两次,每次摸出一个球(第一次摸后不放回)把甲摸出的两个球放回口袋后,乙再摸,乙只摸一次且摸出一个球,如果甲摸出的两个球都是红色,甲得1分,否则,甲得0分,如果乙摸出的球是白色,乙得1分,否则乙得0分,得分高的获得入场卷,如果得分相同,游戏重来.(1)运用列表或画树状图求甲得1分的概率; (2)请你用所学的知识说明这个游戏是否公平?4. 甲、乙两人在玩转盘游戏时,把两个可以自由转动的转盘A 、B 分成4等份、3等份的扇形区域,并在每一小区域内标上数字(如图所示),指针的位置固定.游戏规则:同时转动两个转盘,当转盘停止后,若指针所指两个区域的数字之和为3的倍数,甲胜;若指针所指两个区域的数字之和为4的倍数时,乙胜.如果指针落在分割线上,则需要重新转动转盘. (1)试用列表或画树形图的方法,求甲获胜的概率; (2)请问这个游戏规则对甲、乙双方公平吗?试说明理由.5. 甲、乙玩转盘游戏时,把质地相同的两个转盘A 、B 平均分成2份和3份,并在每一份内标有数字如图.游戏规则:甲、乙两人分别同时转动两个转盘各一次,当转盘停止后,指针所在区域的数字之和为偶数时甲获胜;数字之和为奇数时乙获胜。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用频率估计概率同步测试〔典型题汇总〕90次,那么黄色乒乓球的个数估计为1.盒子中有白色乒乓球 8个和黄色乒乓球假设干个, 为求得盒中黄色乒乓球的个数,某同学 进行了如下实验:每次摸出一个乒乓球记下它的颜色, 如此重复360次,摸出白色乒乓球A. 90 个B. 24 个C. 70 个D. 32 个2.从生产的一批螺钉中抽取 1000个进行质量检查,结果发现有5个是次品,那么从中任取1个是次品概率约为〔〕. 1A. ----------10001B.——2003.以下说法正确的选项是〔 〕.A .抛一枚硬币正面朝上的时机与抛一枚图钉钉尖着地的时机一样大;B.为了解汉口火车站某一天中通过的列车车辆数,可采用全面调查的方式进行;C.彩票中奖的时机是 1%,买100张一定会中奖;D.中学生小亮,对他所在的那栋住宅楼的家庭进行调查,发现拥有空调的家庭占 100%,于是他得出全市拥有空调家庭的百分比为100 %的结论.4.小亮把全班 50名同学的期中数学测试成绩, 绘成如下图的条形图,其中从左起第一、二、 三、四个小长方形高的比是 1 : 3 : 5 : 1.从中同时抽一份最低分数段和一份最高分数段的成绩的 A.C. 11 一、一10 1011 —、一 210一1 1 B.一、一10 2 1 1 D .一、一225 .某人把50粒黄豆染色后与一袋黄豆充分混匀,接着抓出 100黄豆,数出其中有10粒黄豆被染色,那么这袋黄豆原来有〔〕 A. 10 粒 B. 160 粒C. 450 粒D. 500 粒6 .某校男生中,假设随机抽取假设干名同学做 是否喜欢足球〞的问卷调查,抽到喜欢足球的同3 3学的概率是3,这个3的含义是〔〕. 55A.只发出5份调查卷,其中三份是喜欢足球的答卷;B.在答卷中,喜欢足球的答卷与总问卷的比为3 : 8;C.在答卷中,喜欢足球的答卷占总答卷的-;5D.在答卷中,每抽出100份问卷,恰有60份答卷是不喜欢足球.7.要在一只口袋中装入假设干个形状与大小都完全相同的球,使得从袋中摸到红球的概率为-,四位同学分别采用了以下装法,你认为他们中装错的是〔〕. 5A. 口袋中装入10个小球,其中只有两个红球;B.装入1个红球,1个白毛1个黄球,1个蓝球,1个黑球;C.装入红球5个,白球13个,黑球2个;D.装入红球7个,白球13个,黑球2个,黄球13个.8.某学生调查了同班同学身上的零用钱数,将每位同学的零用钱数记录了下来〔单位:元〕:2, 5, 0, 5, 2, 5, 6, 5, 0, 5, 5, 5, 2, 5, 8, 0, 5, 5, 2, 5, 5, 8, 6, 5, 2, 5, 5, 2, 5, 6, 5, 5, 0, 6, 5, 6, 5, 2, 5, 0.假设老师随机问一个同学的零用钱,老师最有可能得到的答复是〔〕.A. 2元B. 5元C. 6元D. 0元9 .同时抛掷两枚硬币,根据正面出现的次数,可以分为“2个正面〞、“1个正面〞和没有正面〞这3种可能的结果,小红与小明两人共做了6组实验,每组实验都为同时抛掷两枚硬币10次,下表为实验记录的统计表:结果A组第二组第三组第四组第五组第六组两个止面335142一个止面655557没有止面120411由上表结果,计算得出现“2个正面〞、“1个正面〞和没有正面〞这3种结果的频率分别是.当试验组数增加到很大时,请你对这三种结果的可能性的大小作出预测:.10 .红星养猪场400头猪的质量〔质量均为整数千克〕频率分布如下,其中数据不在分点上组别频数频率46 ~ 504051 ~ 558056 ~ 6016061 ~ 658066 ~ 703071~ 7510从中任选一头猪,质量在65kg以上的概率是 .11 .为配和新课程的实施,某市举行了应用与创新〞知识竞赛,共有1万名学生参加了这次竞赛(总分值100分,得分全为整数).为了解本次竞赛成绩情况,从中随机抽取了局部学生的竞赛成绩,进行统计,整理见下表:组别分组频数频率149.5 〜59.5600.12259.5 〜69.51200.24369.5 〜79.51800.36479.5 〜89.5130c589.5 〜99.5b0.02合计a 1.00表中a=,b=, c=;假设成绩在90分以上(含90分)的学生获一等奖,估计全市获一等奖的人数为 .12 .小颖有20张大小相同的卡片,上面写有1~20这20个数字,她把卡片放在一个盒子中搅匀,每次从盒中抽出一张卡片,记录结果如下:实验次数20406080100120140160180200 3的倍数的频数51317263236394955613的倍数的频率(1)完成上表;(2)频率随着实验次数的增加,稳定于什么值左右?(3)从试验数据看,从盒中摸出一张卡片是3的倍数的概率估计是多少?(4)根据推理计算可知,从盒中摸出一张卡片是3的倍数的概率应该是多少?13 .甲、乙两同学开展投球进筐〞比赛,双方约定:①比赛分6局进行,每局在指定区域内将球投向筐中,只要投进一次后该局便结束;②假设一次未进可再投第二次, 以此类推,但每局最多只能投8次,假设8次投球都未进,该局也结束;③计分规那么如下:a.得分为正数或0; b.假设8次都未投进,该局得分为 0; c.投球次数越多,得分越低;d.6局比赛的总得分高者获月4 .〔1〕设某局比赛第n 〔n=1,2,3,4,5,6,7,8〕次将球投进,请你按上述约定, 用公式、表格或语言叙 述等方式,为甲、乙两位同学制定一个把n 换算为得分M 的计分方案;〔2〕假设两人6局比赛的投球情况如下〔其中的数字表示该局比赛进球时的投球次数, "X 表示该局比赛8次投球都未进〕:A 局第二局 第三局 第四局 第五局 第六局 甲 5 X 4 8 1 3 乙82426X根据上述计分规那么和你制定的计分方案,确定两人谁在这次比赛中获胜 10. 0.1,0.2,0.4,0.2,0.075,0.025 ; 0.1 11. 50,10,0.26; 20012. ( 1) 0.25,0.33,0.28,0.33,0.32,0.30,0.33,0.31,0.31,0.31 ;(2) 0.31; ( 3) 0.31 ; (4) 0.3 13.解:(1)计分方案如下表:n 〔次〕 1 2 3 4 5 6 7 8 M 〔分〕87654321〔用公式或语言表述正确,同样给分 .〕〔2〕根据以上方案计算得 6局比赛,甲共得24分,乙共得分23分,所以甲在这次比赛中获 胜.用频率估计概率同步测试〔典型题汇总〕一、选择题1.在一个不透明的袋子里装有3个黑球和假设干白球, 它们除颜色外都相同. 在不允许将球倒出来数的前提下,小明为估计其中白球数,采用如下方法:随机从中摸出一球,记下颜色后 放回袋中,充分摇匀后,再随机摸出一球,记下颜色,…不断重复上述过程.小明共摸1001. D2. B3. B4. A5. C6. C7. C8. B9.3 113 10 20 20次,其中20次摸到黑球.根据上述数据,小明估计口袋中白球大约有〔〕A.10 个B.12 个C.15 个D.18 个答案:B解析:解答:二.小明共摸了100次,其中20次摸到黑球,・••有80次摸到白球,,摸到黑球与摸到白球的次数之比为1: 4,,口袋中黑球和白球个数之比为1: 4, 3+1=12 〔个〕.4应选B.分析:在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出算式解答.2.在一个不透明的纸箱中放入m个除颜色外其他都完全相同的球,这些球中有4个红球, 每次将球摇匀后,任意摸出一个球记下颜色再放回纸箱中, 通过大量的重复摸球实验后发现,〕摸到红球的频率稳定在« ,因此可以推算出m的值大约是〔〕A.8B.12C.16D.20答案:C1 1解析:解答::摸到红球的频率稳定在一,,摸到红球的概率为:,而m个小球中红球只4 4有4个,,推算出m的值大约是4+ —=16.4应选C分析:在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出等式解答.3.某口袋里现有8个红球和假设干个绿球〔两种球除颜色外,其余完全相同〕,某同学随机的从该口袋里摸出一球,记下颜色后放回,共试验50次,其中有20个红球,估计绿球个数为〔〕A.6B.12C.13D.25答案:B解析:解答:在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,设未知数列出方程求解.8 _ 20 解:设袋中有绿球x个,由题意得:解得x=i2.* + & 50 …应选:B.分析:在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,设未知数列出方程求解.4 .在一个不透明的布袋中装有50个黄、白两种颜色的球,除颜色外其他都相同,小红通过屡次摸球试验后发现,摸到黄球的频率稳定在0.3左右,那么布袋中白球可能有〔〕A.15 个B.20 个C.30 个D.35 个答案:D解析:解答:设袋中有黄球x个,由题意得一=Q3, 50解得x=15,那么白球可能有50-15=35个.应选D.分析:在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近即此时频率=概率,可以从比例关系入手,设未知数列出方程求解.5 .在一个不透明的口袋中放着红色、黑色、黄色的橡皮球共有30个,它们除颜色外其它全相同.小刚通过屡次摸球试验后发现从中摸到红色球、黄色球的频率稳定在0.15和0.45之间,那么口袋中黑色球的个数可能是〔〕A.14B.20C.9D.6答案:B解析:解答:二.摸到红色球、黄色球的频率稳定在15%和45%,「•摸到黑球的频率在0.85到0.55之间,故口袋中黑色球的个数可能是30X 0.55=16.5至IJ 30X 0.85=25.5 ,满足题意的只有B选项.应选B.分析:在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近即此时频率=概率,可以从比例关系入手求解.6 .在一个不透明的纸箱中放入m个除颜色外其他都完全相同的球,这些球中有4个红球, 每次将球摇匀后,任意摸出一个球记下颜色再放回纸箱中, 通过大量的重复摸球实验后发现,工摸到红球的频率稳定在 4 ,因此可以推算出m的值大约是〔〕A.8B.12C.16D.20答案:C解析:解答:二.摸到红球的频率稳定在-,4,摸到红球的概率为—,而m个小球中红球只有4个,4,推算出m的值大约是4+1=16.应选C.4分析:在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近即此时频率=概率,所以可以从比例关系入手求解.7 . 一个盒子里装有假设干个红球和白球,每个球除颜色以外都相同. 5位同学进行摸球游戏,每位同学摸10次〔摸出1球后放回,摇匀后再继续摸〕,其中摸到红球数依次为8, 5, 9, 7, 6,那么估计盒中红球和白球的个数是〔〕A.红球比白球多B.白球比红球多C.红球,白球一样多D.无法估计答案:A解析:解答:.「5位同学摸到红球的频率的平均数为---------- ------ =7 ,・•・红球比白球多.应选A.分析:计算出摸出红球的平均数后分析,假设得到到的平均数大于5,那么说明红球比白球多,反之那么不是.8 .在做“抛掷两枚硬币实验〞时,有局部同学没有硬币, 因而需要用别的实物来替代进行实验,在以下所选的替代物中,你认为较适宜的是〔〕A.两张扑克牌,一张是红桃,另一张是黑桃B.两个乒乓球,一个是黄色,另一个是白色C.两个相同的矿泉水瓶盖D.四张扑克牌,两张是红桃,另两张是黑桃答案:D解析:解答:•.•硬币有正反两面,应该选两种既能区分其两面又能反映是两枚的实物代替较适宜. 选四张扑克牌,两张是红桃,另两张是黑桃,分别表示出两枚硬币及正反两面较适宜.应选D分析:应该选两种既能区分其两面又能反映是两枚的实物代替较适宜.9 .在一个不透明白^盒子里有n个除颜色外其它均相同的小球, 其中有8个黄球,采用有放回的方式摸球,结果发现摸到黄球的频率稳定在40%,那么可以推算出n大约是〔〕A.8B.20C.32D.40答案:B解析:解答:二.摸到黄球的频率稳定在40%,,估计摸到黄球的概率为0.4,••・2 = 0.4,:. n=20.应选B .分析:在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近即此时频率=概率,可以从比例关系入手,设未知数列出方程求解.10 .做重复实验:抛掷同一枚啤酒瓶盖1000次.经过统计得“凸面向上〞的频率约为0.44,那么可以由此估计抛掷这枚啤酒瓶盖出现“凹面向上〞的概率约为〔〕A.0.22B.0.44C.0.50D.0.56答案:D解析:解答:瓶盖只有两面,“凸面向上〞的频率约为0.44,那么可以由此估计抛掷这枚啤酒瓶盖出现“凹面向上〞的概率约为1-0.44=0.56.应选D.分析:在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近即此时频率=概率,可以从比例关系入手求解.11 .在大量重复试验中,关于随机事件发生的频率与概率,以下说法正确的选项是〔〕A.频率就是概率B.频率与试验次数无关C.概率是随机的,与频率无关D.随着试验次数的增加,频率一般会越来越接近概率答案:D解析:解答:二.大量重复试验事件发生的频率逐渐稳定到某个常数附近, 可以用这个常数估计这个事件发生的概率,••.D选项说法正确.应选:D.分析:在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近即此时频率=概率.12 .一个口袋中有8个黑球和假设干个白球, 从口袋中随机摸出一球, 记下颜色,再放回口袋,不断重复上述过程,共做了200次,其中有50次摸到黑球,因此估计袋中白球有〔〕A.23 个B.24 个C.25 个 D.26 个答案:B工50解析:解答:设白球有x个,那么------- = ------ ,解之得x=24工 + 8 200应选B.分析:在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近即此时频度率=概率,可以从比例关系入手,设未知数列出方程求解.分析:在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近即此时频率=概率,可以从比例关系入手,设未知数列出方程求解.13 .在一次质检抽测中,随机抽取某摊位20袋食盐,测得各袋的质量分别为〔单位:G〕: 492, 496, 494, 495, 498, 497, 501, 502, 504, 496497, 503, 506, 508, 507, 492, 496, 500, 501, 499根据以上抽测结果,任买一袋该摊位的食盐,质量在497.5 g〜501.5 g之间的概率为〔〕113 7 A: B C - D. -1-'答案:B解析:解答:位于497.5〜501.5g之间的数据有:498, 501, 500, 501 , 499,共5个,5 1位于497.5〜501.5g之间的数据的概率为——=一.应选B.20 4分析:在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近即此时频率=概率.14 .在一个不透明的布袋中装有红色、白色玻璃球共60个,除颜色外其他完全相同.小明通过屡次摸球试验后发现,其中摸到红色球的频率稳定在25%左右,那么口袋中红色球可能有〔〕A.5 个 B.10 个 C.15 个D.45 个答案:C解析:解答:二.摸到红色球的频率稳定在25%左右,,口袋中红色球的频率为25%,故红球的个数为60X 25%=15 〔个〕.应选:C.分析:在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近即此时频率=概率.15 .小鸡孵化场孵化出1000只小鸡,在60只上做记号,再放入鸡群中让其充分跑散,再任意抓出50只,其中做有记号的大约是〔〕A.40 只B.25 只C.15 只D.3 只答案:D解析:解答:小鸡孵化场孵化出1000只小鸡,在60只上做记号,那么做记号的小鸡概率为不立二,再任意抓出50只,其中做有记号的大约是上父50 = 3只.1000 50 50应选D.分析:在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近即此时频率=概率,这样先求出概率,再乘以50即可得到答案..填空题16 .某玩具店进了一排黑白塑料球,共5箱,每箱的规格、数量都相同,其中每箱中装有黑白两种颜色的塑料球共3000个,为了估计每箱中两种颜色球的个数,随机抽查了一箱,将箱子里面的球搅匀后从中随机摸出一个球记下颜色, 再把它放回箱子中, 屡次重复上述过程后,发现摸到黑球的概率在0.8附近波动,那么此可以估计这批塑料球中黑球的总个数,请将黑球总个数用科学记数法表示约为________ 个.答案:1.2 X104解析解答:设黑球的个数为x,•••黑球的频率在0.8附近波动,••・摸出黑球的概率为0.8,即------ =0.8,3000解得x=2400.所以可以估计黑球的个数为2400 X 5=12000=1.2 X 104个,故答案为:1.2 X 104.分析:由于摸到黑球的频率在 0.8附近波动,所以摸出黑球的概率为 0.8,再设出黑球的个数,根据概率公式列方程解答即可.17 .在一次摸球实验中,一个袋子中有黑色和红色和白色三种颜色除外,其他都相同.假设从 中任意摸出一球,记下颜色后再放回去,再摸,假设重复这样的实验 球,那么我们可以估计从口袋中随机摸出一球它为黄球的概率是 〔〕.……,,…………………98 49 解析:解答:从口袋中随机摸出一球它为黄球的概率是 ——=——400Z00分析:在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近即此时频 率=概率即可求得答案.18 .在一块试验田抽取1000个麦穗考察它的长度〔单位:cm 〕对数据适当分组后看到落在 19 75〜6.05之间的频率为0.36,于是可以估计出这块田里长度为5.75〜6.05cm 之间的麦穗约占%. 答案:36解析:解答:•.・抽取 1000个麦穗考查它白^长度落在 5.75〜6.05之间的频率为0.36, ,这块田里长度为 5.75〜6.05cm 之间的麦约占36%. 故此题答案为:36%分析:在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近即此时频 率=概率,概率在同一个问题当中是不变的.19.一水塘里有鲤鱼、鲫鱼、鲤鱼共 10 000尾,一渔民通过屡次捕捞实验后发现,鲤鱼、鲫 鱼出现的频率分别是 31%和42%,那么这个水塘里大约有鲤鱼 尾. .答案:2700解析:解答:根据题意可得这个水塘里有鲤鱼 10000X 31%=3100尾,鲫鱼 10000 X42%=4200 尾,鲤鱼 10000-3100-4200=2700 尾.分析:首先明确在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近 即此时频率=概率,这样先求出概率,再乘以总尾数即可得到答案 .. 20.在一个不透明的布袋中装有除颜色外其余都相同的红、黄、蓝球共200个,墨墨通过多400次,98次摸出了黄答案:492CC次摸球试验后发现,其中摸到红色球和蓝色球的频率稳定在25%和55%,那么口袋中可能有黄球_____ 个.答案:40解析:解答:根据频率估计概率得到摸到红色球和蓝色球的概率分别为25麻口55%,那么摸到黄色球的概率=1-25%-55%=20% ,所以口袋中黄球的个数=200X20%=40 .答:口袋中可能有黄球40个.故答案为40.分析:首先明确在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近即此时频率=概率,这样先求出概率,再乘200即可得到答案..解做题21.袋中有红球、黄球、蓝球、白球假设干个,小刚又放入5个黑球后,小颖通过屡次摸球试验后,发现摸到红球、黄球、蓝球、白球及黑球的频率依次为25%, 30%, 30%, 10%, 5%,试估计袋中红球、黄球、蓝球及白球各有多少个?答案:解:小刚放入5个黑球后,发现摸到黑球的频率为5%,— = 100那么可以由此估计袋中共有球5% 〔个〕,说明此时袋中可能有100个球〔包括5个黑球〕,那么有红球100X 25%=25 〔个〕,黄球100X30%=30 〔个〕,篮球100X 30%=30 〔个〕,白球100X 10%=10 〔个〕.解析:分析:先根据频率公式利用黑球的个数求出小球的总个数,再根据各个的频率,分别求出每个小球的个数,问题即可得到解决.22.对某电视机厂生产的电视机进行抽样检测的数据如下,请你通过计算填出相应合格品的概率:“取台数501002003005001000合格品数〔台〕4092192285478954“率答案:解:由表可得:%-相应合格品的概率分别为: 50192——=0.96 200954——=0.954 100解析:分析:.首先明确在同样条件下, 大量反复试验时,随机事件发生的频率逐渐稳定在概率附近 即此时频率=概率,这样先求出正品的概率 ,再求次品的概率即可得到答案将袋中的球摇均匀.每次从口袋中取出一只球记录颜色后放回再摇均匀,经过大量的实验,...... ........... (1)得到取出红球的频率是-,求:4〔1〕取出白球的概率是多少?答案:.〔2〕如果袋中的白球有18只,那么袋中的红球有多少只? 答案:6.解析:解答:〔1〕取出白球与取出红球为对立事件,概率之和为 故P 〔取出白球〕 =1-P〔取出红球〕(2)设袋中的红球有 x 只,那么有,X _ 1Z + 1S~ 4 解得x=6. 所以袋中的红球有 6只.由数据可以估出该厂生产的电视机次品的概率为:1-0.95=0.05 .23.一直不透明的口袋中放有假设干只红球和白球, 这两种球除了颜色以外没有任何其他区别,分拣:(1)根据概率之和为1,求出白球的概率;(2)明确在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近即此时频率=概率,根据概率公式设未知数列方程即可得到答案..24.在一个不透明的盒子里装有只有颜色不同的黑、白两种球共40个,小颖做摸球实验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色, 再把它放回盒子中,不断重复上述过程,下表是实验中的一组统计数据:摸球的次数n10020030050080010003000651241783024815991803摸到白球的次数mm—0.650.620.5930.6040.6010.5990.601摸到白球的频率=■■(1)请估计:当n很大时,摸到白球的频率将会接近 ;(精确到0.1)答案:0.6;(2)假设你摸一次,你摸到白球的概率P(白球尸;答案:0.6;(3)试估算盒子里黑、白两种颜色的球各有多少只?答案:24.解析:解答:(1)二•摸到白球的频率为( 0.65+0.62+0.593+0.604+0.601+0.599+0.601 ) +7 = 0.6,・•・当n很大时,摸到白球的频率将会接近0.6 .(2)二,摸到白球的频率为0.6,,假设你摸一次,你摸到白球的概率P (白球)=0.6.(3)盒子里黑、白两种颜色的球各有40-24=16, 40X0.6=24.分析:(1)计算出其平均值即可;(2)概率接近于(1)得到的频率;(3)白球个数=球的总数x得到的白球的概率,让球的总数减去白球的个数即为黑球的个25. 一个口袋中放有20个球,其中红球6个,白球和黑球各假设干个,每个球除了颜色以外没有任何区别.(1)小王通过大量反复的实验(每次取一个球,放回搅匀后再取第二个)发现,取出黑球的频率稳定在1左右,请你估计袋中黑球的个数;4答案:5个;(2)假设小王取出的第一个球是白色,将它放在桌上,闭上眼睛从袋中余下的球中再任意取出一个球,取出红球的概率是多少?“9答案:解析:解答:解:(1)取出黑球的频率稳定在工左右,即可估计取出黑球的概率稳定为4袋中黑球的个数为-X 20=5个;4(2)由于白球的数目减少了1个,故总数减小为19,所以取出红球的概率增加了, 变为2 2分析:(1)取出黑球的频率稳定在a左右,即可估计取出黑球的概率稳定为4,乘以球的总数即为所求的球的数目;(2)让红球的个数除以剩余球的总数,即为所求的概率.。