概率论与随机过程习题答案

合集下载

(完整word版)随机过程试题及答案

(完整word版)随机过程试题及答案

1.设随机变量X 服从参数为λ的泊松分布,则X 的特征函数为 。

2.设随机过程X(t)=Acos( t+),-<t<ωΦ∞∞ 其中ω为正常数,A 和Φ是相互独立的随机变量,且A 和Φ服从在区间[]0,1上的均匀分布,则X(t)的数学期望为 。

3.强度为λ的泊松过程的点间间距是相互独立的随机变量,且服从均值为 的同一指数分布。

4.设{}n W ,n 1≥是与泊松过程{}X(t),t 0≥对应的一个等待时间序列,则n W 服从 分布。

5.袋中放有一个白球,两个红球,每隔单位时间从袋中任取一球,取后放回,对每一个确定的t 对应随机变量⎪⎩⎪⎨⎧=时取得白球如果时取得红球如果t t t e tt X ,,3)(,则 这个随机过程的状态空间 。

6.设马氏链的一步转移概率矩阵ij P=(p ),n 步转移矩阵(n)(n)ijP (p )=,二者之间的关系为 。

7.设{}n X ,n 0≥为马氏链,状态空间I ,初始概率i 0p P(X =i)=,绝对概率{}j n p (n)P X j ==,n 步转移概率(n)ij p ,三者之间的关系为 。

8.设}),({0≥t t X 是泊松过程,且对于任意012≥>t t 则{(5)6|(3)4}______P X X ===9.更新方程()()()()0tK t H t K t s dF s =+-⎰解的一般形式为 。

10.记()(),0n EX a t M M t μ=≥→∞-→对一切,当时,t +a 。

二、证明题(本大题共4道小题,每题8分,共32分)P(BC A)=P(B A)P(C AB)。

2.设{X (t ),t ≥0}是独立增量过程, 且X (0)=0, 证明{X (t ),t ≥0}是一个马尔科夫过程。

3.设{}n X ,n 0≥为马尔科夫链,状态空间为I ,则对任意整数n 0,1<n l ≥≤和i,j I ∈,n 步转移概率(n)()(n-)ij ik kjk Ip p p l l ∈=∑ ,称此式为切普曼—科尔莫哥洛夫方程,证明并说明其意义。

概率论与随机过程题集(第2章)

概率论与随机过程题集(第2章)

第二章 概率论与随机过程2-16 图P2-16中的电路输入为随机过程X(t),且E[X(t)]=0,xx φ(τ) =2σδ(τ),即X(t)为白噪过程。

(a )试求谱密度yy Φ(f )。

(b )试求yy φ(τ)和E[Y 2(t)]。

图P2-16解:(a )xx φ=2222)()(σττδσττφτπτπ==⎰⎰+∞∞--+∞∞--d e d e f j f j xx又系统函数)(f H =)()(f X f Y =fc j fcj R fc j πππ2112121+=+∴2222222241)2(11)()()(c f R fcR f H f f xx yy πσπσφφ+=+== (b) E [)(2t y ]=)0(yy φτπττπσπσφτφRcfj f j yy yy eRcdf ecf R df ef 122222222241)()(-∞+∞-∞+∞-=+==⎰⎰∴E [)(2t y ]=Rcyy 2)0(2σφ=2-20 一离散时间随机过程的自相关序列函数是kk )2/1()(=φ,试求其功率密度谱。

解:由功率密度谱的定义知 )(f Φ=∑+∞-∞=-k fkj e k πφ2)( =∑+∞-∞=-k fk j k e π2)21(=fk j k k e π21)21(----∞=∑+fk j k k e π20)21(-+∞=∑=k f j k e)21(21π∑+∞=+kf j k e )21(20π-+∞=∑ =f j fj e eππ2221121-+fj e π22111--∴ )(f Φ =f j fj e eππ2221121-+fj eπ22111-- 即为所求。

2-23 试证明函数)(t f k =)2(2)]2(2sin[Wkt W W k t W --ππ,k = 0,1±,2±,… 在区间[+∞∞-,]上为正交的,即所以,抽样定理的重建公式可以看作带限信号)(t s 的级数展开式,其中权值为)(t s 的样值,且{)(t f k }是级数展开式中的正交函数集。

随机过程试题及答案

随机过程试题及答案

随机过程试题及答案随机过程是概率论与数理统计的重要理论基础之一。

通过研究随机过程,可以揭示随机现象的规律性,并应用于实际问题的建模与分析。

以下是一些关于随机过程的试题及答案,帮助读者更好地理解与掌握这一概念。

1. 试题:设随机过程X(t)是一个马尔可夫过程,其状态空间为S={1,2,3},转移概率矩阵为:P =| 0.5 0.2 0.3 || 0.1 0.6 0.3 || 0.1 0.3 0.6 |(1) 计算X(t)在t=2时的转移概率矩阵。

(2) 求X(t)的平稳分布。

2. 答案:(1) 根据马尔可夫过程的性质,X(t)在t=2时的转移概率矩阵可以通过原始的转移概率矩阵P的2次幂来计算。

令Q = P^2,则X(t=2)的转移概率矩阵为:Q =| 0.37 0.26 0.37 || 0.22 0.42 0.36 || 0.19 0.36 0.45 |(2) 平稳分布是指随机过程的状态概率分布在长时间内保持不变的分布。

设平稳分布为π = (π1,π2, π3),满足πP = π(即π为右特征向量),且所有状态的概率之和为1。

根据πP = π,可以得到如下方程组:π1 = 0.5π1 + 0.1π2 + 0.1π3π2 = 0.2π1 + 0.6π2 + 0.3π3π3 = 0.3π1 + 0.3π2 + 0.6π3解以上方程组可得到平稳分布:π = (0.25, 0.3125, 0.4375)3. 试题:设随机过程X(t)是一个泊松过程,其到达率为λ=1,即单位时间内到达的事件平均次数为1。

(1) 请计算X(t)在t=2时的累计到达次数的概率P{N(2)≤3}。

(2) 计算X(t)的平均到达速率。

4. 答案:(1) 泊松过程具有独立增量和平稳增量的性质,且在单位时间内到达次数服从参数为λ的泊松分布。

所以,P{N(2)≤3} = P{N(2)=0} + P{N(2)=1} + P{N(2)=2} +P{N(2)=3},其中P{N(2)=k}表示在时间间隔[0,2]内到达的次数为k的概率。

概率论与随机过程习题答案

概率论与随机过程习题答案

概率论与随机过程习题答案标准化工作室编码[XX968T-XX89628-XJ668-XT689N]《概率论与随机过程》第一章习题答案1. 写出下列随机试验的样本空间。

(1) 记录一个小班一次数学考试的平均分数(设以百分制记分)。

解: ⎭⎬⎫⎩⎨⎧⨯=n n nn S 100,,1,0 ,其中n 为小班人数。

(2) 同时掷三颗骰子,记录三颗骰子点数之和。

解:{}18,,4,3 =S 。

(3) 10只产品中有3只是次品,每次从其中取一只(取出后不放回),直到将3只次品都取出,记录抽取的次数。

解: {}10,,4,3 =S 。

(4) 生产产品直到得到10件正品,记录生产产品的总件数。

解: {} ,11,10=S 。

(5) 一个小组有A ,B ,C ,D ,E5个人,要选正副小组长各一人(一个人不能兼二个职务),观察选举的结果。

解: {}ED EC EB EA DE DC DB DA CE CD CB CA BE BD BC BA AE AD AC AB S ,,,,,,,,,,,,,,,,,,,=其中,AB 表示A 为正组长,B 为副组长,余类推。

(6) 甲乙二人下棋一局,观察棋赛的结果。

解: {}210,,e e e S =其中,0e 为和棋,1e 为甲胜,2e 为乙胜。

(7) 一口袋中有许多红色、白色、蓝色乒乓球,在其中任意取4只,观察它们具有哪几种颜色。

解: {}rwb wb rb rw b w r S ,,,,,,=其中,,,,b w r 分别表示红色、白色、蓝色。

(8) 对某工厂出厂的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如连续查出二个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。

解: {}1111,1110,1101,0111,1011,1010,1100,0110,0101,0100,100,00=S 其中,0为次品,1为正品。

(9) 有A ,B ,C 三只盒子,a ,b ,c 三只球,将三只球装入三只盒子中,使每只盒子装一只球,观察装球的情况。

随机过程习题及部分解答【直接打印】

随机过程习题及部分解答【直接打印】

随机过程习题及部分解答习题一1. 若随机过程()(),X t X t At t =-∞<<+∞为,式中A 为(0,1)上均匀分布的随机变量,求X (t )的一维概率密度(;)X P x t 。

2. 设随机过程()cos(),X t A t t R ωθ=+∈,其中振幅A 及角频率ω均为常数,相位θ是在[,]ππ-上服从均匀分布的随机变量,求X (t )的一维分布。

习题二1. 若随机过程X (t )为X (t )=At t -∞<<+∞,式中A 为(0,1)上均匀分布的随机变量,求12[()],(,)X E X t R t t2. 给定一随机过程X (t )和常数a ,试以X (t )的相关函数表示随机过程()()()Y t X t a X t =+-的自相关函数。

3. 已知随机过程X (t )的均值M X (t )和协方差函数12(,),()X C i t t ϕ是普通函数,试求随机过程()()()Y t X t t ϕ=+是普通函数,试求随机过程()()()Y t X t t ϕ=+的均值和协方差函数。

4. 设()cos sin X t A at B at =+,其中A ,B 是相互独立且服从同一高斯(正态)分布2(0,)N σ的随机变量,a 为常数,试求X (t )的值与相关函数。

习题三1. 试证3.1节均方收敛的性质。

2. 证明:若(),;(),X t t T Y t t T ∈∈均方可微,a ,b 为任意常数,则()()aX t bY t +也是均方可微,且有[()()]()()aX t bY t aX t bY t '''+=+3. 证明:若(),X t t T ∈均方可微,()f t 是普通的可微函数,则()()f t X t 均方可微且[()()]()()()()f t X t f t X t f t X t '''=+4. 证明:设()[,]X t a b 在上均方可微,且()[,]X t a b '在上均方连续,则有()()()b aX t dt X b X a '=-⎰5. 证明,设(),[,];(),[,]X t t T a b Y t t T a b ∈=∈=为两个随机过程,且在T 上均方可积,αβ和为常数,则有[()()]()()b b baaaX t Y t dt X t dt Y t dt αβαβ+=+⎰⎰⎰()()(),b c baacaX t dt X t dt X t dt a c b =+⎰⎰⎰≤≤6. 求随机微分方程()()()[0,](0)0X t aX t Y t t X '+=∈+∞⎧⎨=⎩的()X t 数学期望[()]E X t 。

南京邮电大学概率论与随机过程答案

南京邮电大学概率论与随机过程答案

南京邮电大学概率论与随机过程答案1、已知2x=8,2y=4,则2x+y=()[单选题] *A 、32(正确答案)B 、33C、16D、42、4.已知第二象限的点P(-4,1),那么点P到x轴的距离为( ) [单选题] * A.1(正确答案)B.4C.-3D.33、若39?27?=321,则m的值是()[单选题] *A. 3B. 4(正确答案)C. 5D. 64、若(x+m)(x2-3x+n)展开式中不含x2和x项,则m,n的值分别为( ) [单选题] *A. m=3,n=1B. m=3,n=-9C. m=3,n=9(正确答案)D. m=-3,n=95、若a=-3 ?2,b=-3?2,c=(-)?2,d=(-)?,则( ) [单选题] *A. a<d<c<bB. b<a<d<cC. a<d<c<bD. a<b<d<c(正确答案)6、已知二次函数f(x)=2x2-x+2,那么f(1)的值为()。

[单选题] *12283(正确答案)7、?方程x2?+2X-3=0的根是(? ? ? ??)[单选题] *A、X1=-3, X2=1(正确答案)B、X1=3 ,X2=-1C、X1=3, X2=1D. X1=-3, X2=-18、13.在数轴上,下列四个数中离原点最近的数是()[单选题] *A.﹣4(正确答案)B.3C.﹣2D.69、29.已知2a=5,2b=10,2c=50,那么a、b、c之间满足的等量关系是()[单选题] * A.ab=cB.a+b=c(正确答案)C.a:b:c=1:2:10D.a2b2=c210、9.下列说法中正确的是()[单选题] *A.正分数和负分数统称为分数(正确答案)B.正整数、负整数统称为整数C.零既可以是正整数,也可以是负整数D.一个有理数不是正数就是负数11、手表倒拨1小时20分,分针旋转了多少度?[单选题] *-480°120°480°(正确答案)-120°12、6.若x是- 3的相反数,|y| = 5,则x + y的值为()[单选题] *A.2B.8C. - 8或2D.8或- 2(正确答案)13、2.(2020·新高考Ⅱ,1,5分)设集合A={2,3,5,7},B={1,2,3,5,8},则A∩B=( ) [单选题] * A.{1,8}B.{2,5}C.{2,3,5}(正确答案)D.{1,2,3,5,7,8}14、下列各式:①(x-2y)(2y+x);②(x-2y)(-x-2y);③(-x-2y)(x+2y);④(x-2y)(-x+2y).其中能用平方差公式计算的是()[单选题] *A. ①②(正确答案)B. ①③C. ②③D. ②④15、二次函数y=3x2-4x+5的常数项是()。

《概率论与随机过程》第3章习题答案

《概率论与随机过程》第三章习题答案3.2 随机过程()t X 为()()ΦωX +=t cos A t 0式中,A 具有瑞利分布,其概率密度为()02222>=-a eaa P a A ,σσ,()πΦ20,在上均匀分布,A Φ与是两个相互独立的随机变量,0ω为常数,试问X(t)是否为平稳过程。

解:由题意可得:()[]()()002121020022222002222=⇒+=*+=⎰⎰⎰⎰∞--∞φφωπσφπσφωX E πσσπd t cos da e a a dad eat cos a t a a ()()()[]()()()()()()[]()()()()()12021202120202120202221202022021012022022202010022222200201021212122112210212212121221212222222222222t t cos t t cos t t cos det t cos da e e a t t cos dea d t t cos t t cos a d ea d t cos t cos da eaadad e at cos a t cos a t t t t R a a a a a a a -=-⨯=-⨯-=-⨯⎪⎩⎪⎨⎧⎪⎭⎪⎬⎫-∞+-=-⨯-=⎩⎨⎧⎭⎬⎫+++---=++=++==-∞∞---∞∞-∞--∞⎰⎰⎰⎰⎰⎰⎰⎰⎰ωσωσωσωωφφωωπσφπφωφωσφσπφωφωX X E σσσσπσπσσπXX )(,可见()[]t X E 与t 无关,()21t t R ,XX 与t 无关,只与()12t t -有关。

∴()t X 是平稳过程另解:()[][]0022000000[cos()][cos()][];(,)cos()cos(())cos()cos(())t E A t E A E t E A R t t E A t t E A E t t E X ωΦωΦτωΦωτΦωΦωτΦ⎡⎤=+=+=⨯=⎣⎦⎡⎤⎡⎤+=+++=+++⎣⎦⎣⎦[][][])cos()cos())cos((τωτωτωω0200022222A E t E A E =+Φ++= ∴()t X 是平稳过程3.3 设S(t) 是一个周期为T 的函数,随机变量Φ在(0,T )上均匀分布,称X(t)=S (t+Φ),为随相周期过程,试讨论其平稳性及各态遍历性。

李晓峰应用随机过程课后习题_随机过程答案CH1

习 题一、习题编号本次作业:1,2, 7,9,12,17,18,19,23,25 二、习题解答1.1 设随机试验E 是将一枚硬币抛两次,观察H -正面,T -反面出现的情况,试分析它的概率空间(),,P Ω。

解1.1: 样本空间:Ω = {HH, HT, TH, TT}集类:F = { Ø, Ω, {HH}, {HT}, {TH}, {TT},{HH,HT}, {HH, TH}, {HH,TT}, {HT, TH}, {HT, TT}, {TH, TT}, {HH, HT, TH}, {HH, HT, TT}, {HT, TH, TT}, {TH, TT, HH}, }概率:P: P{HH} = P{HT} = P{TH} = P{TT} = 1/41.2 设,A B ∈Ω,集类{},A B =。

试求:()σ的所有元素。

解1.2:因为:{},A B =所以:(){},,,σ=∅Ω1.3 设四个黑球与两个白球随机地等分为A 与B 两组,记A 组中白球的数目为X ;然后随机交换A 与B 中一个球,再记交换后A 组中白球的数目为Y 。

试求:(1)X 的分布律;(2)Y|X 的分布律;(3)Y 的分布律。

解1.3:(1)总计有2个白球,因此,X 的取值为0,1,2。

等分共有36C 种分法,等分后,X 取值分别为0,1,2的概率为:3211244242333666012012131()()555XX C C C C C P X P X C C C ⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ (2)交换一个球后,1)如果X 中没有白球,则交换后Y 可能取值为0、1 2)如果X 中有一个白球,则交换后Y 可能取值为0、1、2 3)如果X 中有两个白球,则交换后Y 可能取值为1、2|0|01|00|11|12|11|22|21225221(|)3399933Y XP Y X ⎛⎫ ⎪ ⎪ ⎪⎝⎭(3)20()(|)()i P Y P Y X i P X i ====∑2(0)(0|)()1123359515i P Y P Y X i P X i =======⨯+⨯=∑2(1)(1|)()21532135953535i P Y P Y X i P X i =======⨯+⨯+⨯=∑2(2)(2|)()23110953515i P Y P Y X i P X i =======+⨯+⨯=∑故Y 的分布律为:012131()555YP Y ⎛⎫ ⎪ ⎪⎪⎝⎭1.4 设A 与B 是概率空间(),,P Ω上的事件,且()01P B <<,试证明:A 与B独立的充要条件为:()()|=|P A B P A B 。

随机过程试题及答案

随机过程试题及答案一、选择题1. 随机过程是研究什么的对象?A. 确定性系统B. 随机性系统C. 静态系统D. 动态系统答案:B2. 下列哪项不是随机过程的特点?A. 可预测性B. 随机性C. 连续性D. 状态的不确定性答案:A3. 随机过程的数学描述通常使用什么?A. 概率分布B. 微分方程C. 差分方程D. 以上都是答案:A4. 马尔可夫链是具有什么特性的随机过程?A. 独立性B. 无记忆性C. 均匀性D. 周期性答案:B5. 以下哪个是随机过程的数学工具?A. 傅里叶变换B. 拉普拉斯变换C. 特征函数D. 以上都是答案:D二、简答题1. 简述什么是随机过程的遍历性。

答:遍历性是随机过程的一种特性,指的是在足够长的时间内,随机过程的统计特性不随时间变化而变化,即时间平均与遍历平均相等。

2. 解释什么是泊松过程,并给出其主要特征。

答:泊松过程是一种计数过程,它描述了在固定时间或空间内随机发生的事件次数。

其主要特征包括:事件在时间或空间上独立发生,事件的发生具有均匀性,且在任意小的时间段内,事件发生的概率与该时间段的长度成正比。

三、计算题1. 假设有一个泊松过程,其平均事件发生率为λ。

计算在时间间隔[0, t]内恰好发生n次事件的概率。

答:在时间间隔[0, t]内恰好发生n次事件的概率由泊松分布给出,公式为:\[ P(N(t) = n) = \frac{e^{-\lambda t} (\lambda t)^n}{n!} \]2. 考虑一个具有两个状态的马尔可夫链,其状态转移概率矩阵为:\[ P = \begin{bmatrix}p_{11} & p_{12} \\p_{21} & p_{22}\end{bmatrix} \]如果初始时刻在状态1的概率为1,求在第k步时处于状态1的概率。

答:在第k步时处于状态1的概率可以通过马尔可夫链的状态转移矩阵的k次幂来计算,即:\[ P_{11}^{(k)} = p_{11}^k + p_{12} p_{21} (p_{11}^{k-1} + p_{12} p_{21}^{k-2} + \ldots) \]四、论述题1. 论述随机过程在信号处理中的应用及其重要性。

浙江大学《概率论、数理统计与随机过程》课后习题答案第一章

1解:该试验的结果有9个:(0,a ),(0,b ),(0,c ),(1,a ),(1,b ),(1,c ),(2,a ),(2,b ),(2,c )。

所以,(1)试验的样本空间共有9个样本点。

(2)事件A 包含3个结果:不吸烟的身体健康者,少量吸烟的身体健康者,吸烟较多的身体健康者。

即A 所包含的样本点为(0,a ),(1,a ),(2,a )。

(3)事件B 包含3个结果:不吸烟的身体健康者,不吸烟的身体一般者,不吸烟的身体有病者。

即B 所包含的样本点为(0,a ),(0,b ),(0,c )。

2、解 (4)(1)ABBC AC 或ABC ABC ABC ABC ; (5)(2)ABBC AC (6)(提示:题目等价于A ,B ,C 至少有2个发生,与(1)相似); (7)(3)ABC ABC ABC ;(8)(4)AB C 或ABC ;(9)(提示:A ,B ,C 至少有一个发生,或者A B C ,,不同时发生);3(1)错。

依题得,但,故A 、B 可能相容。

(2)错。

举反例 (3)错。

举反例 (4)对。

证明:由,知,即A 和B 交非空,故A 和B 一()()()()0=-+=B A p B p A p AB p 空集≠B A ()6.0=A p ()7.0=B p ()()()()()3.03.1>-=-+=B A p B A p B p A p AB p定相容。

4、解(1)因为A B ,不相容,所以A B ,至少有一发生的概率为:()()()=0.3+0.6=0.9P A B P A P B =+(2) A B , 都不发生的概率为:()1()10.90.1P A B P A B =-=-= ;(3)A 不发生同时B 发生可表示为:AB ,又因为A B ,不相容,于是()()0.6P A B P B == ;5解:由题知,. 因得,故A,B,C 都不发生的概率为.6、解 设A ={“两次均为红球”},B ={“恰有1个红球”},C ={“第二次是红球”} 若是放回抽样,每次抽到红球的概率是:810,抽不到红球的概率是:210,则 (1)88()0.641010P A =⨯=; ()3.0=BC AC AB p ()05.0=ABC P ()()()()()ABC p BC p AC p AB p BC AC AB p 2-++= ()()()()4.023.0=+=++ABC p BC p AC p AB p ()()C B A p C B A p -=1()()()()()()()()[]ABC p BC p AC p AB p C p B p A p +++-++-=1()05.04.02.11+--=15.0=(2)88()210.321010P B =⨯⨯-=(); (3)由于每次抽样的样本空间一样,所以:8()0.810P C == 若是不放回抽样,则(1)2821028()45C P A C ==;(2)118221016()45C C P B C ==; (3)111187282104()5A A A A P C A +==。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

概率论与随机过程习题答案标准化工作室编码[XX968T-XX89628-XJ668-XT689N]《概率论与随机过程》第一章习题答案1. 写出下列随机试验的样本空间。

(1) 记录一个小班一次数学考试的平均分数(设以百分制记分)。

解: ⎭⎬⎫⎩⎨⎧⨯=n n nn S 100,,1,0 ,其中n 为小班人数。

(2) 同时掷三颗骰子,记录三颗骰子点数之和。

解:{}18,,4,3 =S 。

(3) 10只产品中有3只是次品,每次从其中取一只(取出后不放回),直到将3只次品都取出,记录抽取的次数。

解: {}10,,4,3 =S 。

(4) 生产产品直到得到10件正品,记录生产产品的总件数。

解: {} ,11,10=S 。

(5) 一个小组有A ,B ,C ,D ,E5个人,要选正副小组长各一人(一个人不能兼二个职务),观察选举的结果。

解: {}ED EC EB EA DE DC DB DA CE CD CB CA BE BD BC BA AE AD AC AB S ,,,,,,,,,,,,,,,,,,,=其中,AB 表示A 为正组长,B 为副组长,余类推。

(6) 甲乙二人下棋一局,观察棋赛的结果。

解: {}210,,e e e S =其中,0e 为和棋,1e 为甲胜,2e 为乙胜。

(7) 一口袋中有许多红色、白色、蓝色乒乓球,在其中任意取4只,观察它们具有哪几种颜色。

解: {}rwb wb rb rw b w r S ,,,,,,=其中,,,,b w r 分别表示红色、白色、蓝色。

(8) 对某工厂出厂的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如连续查出二个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。

解: {}1111,1110,1101,0111,1011,1010,1100,0110,0101,0100,100,00=S 其中,0为次品,1为正品。

(9) 有A ,B ,C 三只盒子,a ,b ,c 三只球,将三只球装入三只盒子中,使每只盒子装一只球,观察装球的情况。

解: {}Ca Bb Ac Cc Ba Ab Cb Bc Aa Cb Ba Ac Ca Bc Ab Cc Bb Aa S ,,;,,;,,;,,;,,;,,=其中,Aa 表示球a 放在盒子A 中,余者类推。

(10)测量一汽车通过给定点的速度。

解:{}0>=v v S(11)将一尺之棰折成三段,观察各段的长度。

解: (){}1,0,0,0,,=++>>>=z y x z y x z y x S 其中,z y x ,,分别表示第一段,第二段,第三段的长度。

#2. 设A ,B ,C 为三事件,用A ,B ,C 的运算关系表示下列事件。

(1) A 发生,B 与C 不发生。

解:C B A (2) A 与B 都发生,而C 不发生。

解: C AB(3) A ,B ,C 都发生。

解: ABC(4) A ,B ,C 中至少有一个发生。

解: C B A ⋃⋃ (5) A ,B ,C 都不发生。

解: C B A(6) A ,B ,C 中至多于一个发生。

解: A C C B B A ⋃⋃ (7) A ,B ,C 中至多于二个发生。

解: C B A ⋃⋃(8) A ,B ,C 中至少有二个发生。

解: CA BC AB ⋃⋃. #3. 设{}10,2,1, =S ,{}4,3,2=A ,{}5,4,3=B ,{}7,6,5=C ,具体写出下列各等式 (1)B A 。

解: {}5=B A ;(2)B A ⋃。

解: {}10,9,8,7,6,5,4,3,1=⋃B A ; (3)B A 。

解:{}5,4,3,2=B A ; (4) BC A 。

解: {}10,9,8,7,6,5,1=BC A(5))(C B A ⋃。

解: {}10,9,8,7,6,5,2,1)(=⋃C B A . #4. 设{}20≤≤=x x S ,⎭⎬⎫⎩⎨⎧≤<=121x xA ,⎭⎬⎫⎩⎨⎧<≤=2341x x B ,具体写出下列各式。

(1)B A ⋃。

解: ⎭⎬⎫⎩⎨⎧≤≤⋃⎭⎬⎫⎩⎨⎧≤≤=⋃223410x x x x B A(2)B A ⋃。

解: ⎭⎬⎫⎩⎨⎧≤≤⋃⎭⎬⎫⎩⎨⎧≤≤⋃⎭⎬⎫⎩⎨⎧<≤=⋃223121410x x x x x x B A(3)B A 。

解: {}φ=B A (4)B A 。

解:⎭⎬⎫⎩⎨⎧≤<⋃⎭⎬⎫⎩⎨⎧≤≤=2312141x x x xB A . #5. 设A ,B ,C 是三事件,且41)()()(===C P B P A P ,0)()(==CB P AB P ,1)(=AC P ,求A ,B ,C 至少有一个发生的概率。

解:由题意可知:0)(=ABC P ,故()()()()85)()()()(=+---++=⋃⋃ABC P AC P BC P AB P C P B P A P C B A P 。

或 φ=⋃⋃B C A )( ,∴()()()()85)()()())((=+-+=+⋃=⋃⋃=⋃⋃B P AC P C P A P B P C A P B C A P C B A P 。

#6. 在1500个产品中有400个次品,1100个正品,任意取200个。

(1) 求恰有90个次品的概率。

(2) 至少有2个次品的概率。

解:(1)⎪⎪⎭⎫⎝⎛⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛2001500110110090400; (2) 设)(k P 表示有k 个次品的概率,故至少有2个次品的概率为: ⎪⎪⎭⎫⎝⎛⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛-=--=∑=200150019911001400200150020011001)1()0(1)(2002P P k P k . #7.(1)在房间里有500个人,问至少有一个人的生日是10月1日的概率是多少(设一年以365天计算)(2)在房间里有4个人,问至少有二个人的生日在同一个月的概率是多少解:(1) 属“分房问题”,即有n 个人,每个人都以N 1的概率被分在N 间房中的每一间中,某指定房间中至少有一人的概率。

设某指定房间中恰有k 个人的概率为)(k P ,则有()kn k nk n N N N k n N N k n k P --⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎪⎭⎫ ⎝⎛=111)(。

故,某指定房间中至少有一人的概率为:nn k N N P k P ⎪⎭⎫ ⎝⎛--=-=∑=11)0(1)(1。

所以,500个人中至少有一个人的生日是10月1日的概率为:74634.025366.013653641500=-=⎪⎭⎫⎝⎛-(2) 属“分房问题”,即有n 个人,每个人都以N 1的概率被分在N 间房中的每一间中,至少有二个人在同一间房中的概率。

设A 为“每一间房中至多有一个人” 基本事件个数:n N 。

“每一间房中至多有一个人”事件的个数为:!n)(N !N -。

所以,“至少有二个人在同一间房中的概率”等于“至少有二个人的生日在同一个月的概率”。

0.42710.57291124-(12!12114=-=-=--!)nN !n)(N !N 。

#8. 一盒子中有4只次品晶体管,6只正品晶体管,随机地抽取一只测试,直到4只次品管子都找到为止。

求第4只次品管子在下列情况发现的概率。

(1) 在第5次测试发现。

(2) 在第10次测试发现。

解:(1) 10526789101234634=⨯⨯⨯⨯⨯⨯⨯⨯⎪⎪⎭⎫ ⎝⎛;或1052!6!4!10!3!441034=⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛; (2) 529106634=⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛。

#9. 甲、乙位于二个城市,考察这二个城市六月份下雨的情况。

以A ,B 分别表示甲,乙二城市出现雨天这一事件。

根据以往的气象记录已知4.0)()(==B P A P ,28.0)(=AB P ,求)/(B A P ,)/(A B P 及)(B A P ⋃。

解: 7.04.028.0===P(B)P(AB)P(A/B);7040280...P(A)P(AB)P(B/A)== 5202804040....P(AB)P(B)P(A)B P(A =-+=-+=⋃。

#10.已知在10只晶体管中有2只次品,在其中取二次,每次随机地取一只,作不放回抽样,求下列事件的概率。

(1) 二只都是正品。

(2) 二只都是次品。

(3) 一只是正品,一只是次品。

(4) 第二次取出的是次品。

(2) 45110!2!821022=⨯=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛!; (3) 451610!2!8282101218=⨯⨯⨯=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛!;或45169810292108=⨯+⨯; (4)4599110292108=⨯+⨯。

#11.某人忘记了电话号码的最后一个数字,因而随意地拨号,求他拨号不超过三次而接通所需的电话的概率是多少如果已知最后一个数字是奇数,那么此概率是多少解:(1) 3.010!7!37!2!!931029=⨯⨯⨯=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛!; (2) 6.05!2!32!2!!43524=⨯⨯⨯=⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛!。

#12.某工厂中,机器321,,B B B 分别生产产品总数的25%,35%和40%。

它们生产的产品中分别有5%,4%,2%的次品,将这些产品混在一起,今随机地取一只产品,发现是次品。

问这一次品是机器321,,B B B 生产的概率分别是多少解:设A 为“次品”,已知:25.0)(1=B P ,35.0)(2=B P ,40.0)(3=B P ;05.0)/(1=B A P ,04.0)/(2=B A P ,02.0)/(3=B A P ,0345.040.002.035.004.025.005.0)()/()(31=⨯+⨯+⨯==∑=j jjB P B A P A P 。

故由,)()()/()/(A P B P B A P A B P i i i =可得:36232.069250345.025.005.0)()()/()/(111≈=⨯==A PB P B A P A B P ;40580.069280345.035.004.0)()()/()/(222≈=⨯==A P B P B A P A B P ;23188.069160345.040.002.0)()()/()/(333≈=⨯==A PB P B A P A B P 。

#13.将二信息分别编码为A 和B 传送出去,接收站接收时,A 被误收作B 的概率为,而B 被误收作A 的概率为。

相关文档
最新文档