2011年高考理科数学(全国卷)(含答案)
2011年湖北高考数学理科试卷(带详解)

2011年普通高等学校招生全国统一考试(湖北卷)数 学(理工农医类)一、选择题:本大题共l0小题.每小题5分,共50分在每小题给出的四个选项中,只 有一项是满足题目要求的.1.i 为虚数单位,则20111i 1i +⎛⎫= ⎪-⎝⎭( )A.i -B.1-C.iD.1 【测量目标】复数代数形式的四则运算.【考查方式】给出复数的代数式,根据四则运算化简求解. 【难易程度】容易 【参考答案】A【试题解析】因为()221i 1i i 1i 1i ++==--,所以201120114502331i i i i i 1i ⨯++⎛⎫====- ⎪-⎝⎭,故选A.2.已知{}1,log 2>==x x y y U ,⎭⎬⎫⎩⎨⎧>==2,1x x y y P ,则U P =ð ( )A. ⎪⎭⎫⎢⎣⎡+∞,21B.⎪⎭⎫⎝⎛21,0 C.()+∞,0 D. ()⎪⎭⎫⎢⎣⎡+∞∞-,210,【测量目标】集合的基本运算.【考查方式】给出全集和一个子集,根据反函数和对数函数性质化简,再利用集合的基本运算求解. 【难易程度】容易 【参考答案】A【试题解析】由已知()+∞=,0U ,⎪⎭⎫ ⎝⎛=21,0P ,所以1,2U P ⎡⎫=+∞⎪⎢⎣⎭ð,故选A.3.已知函数()x x x f cos sin 3-=,x ∈R ,若()1f x …,则x 的取值范围为 ( ) A.ππππ,3x k x k k ⎧⎫++∈⎨⎬⎩⎭Z 剟B.π2π2ππ,3x k x k k ⎧⎫++∈⎨⎬⎩⎭Z 剟C.π5πππ,66x k x k k ⎧⎫++∈⎨⎬⎩⎭Z 剟 D.π5π2π2π,66x k x k k ⎧⎫++∈⎨⎬⎩⎭Z 剟 【测量目标】两角和与差的正弦,三角函数的定义域和周期性.【考查方式】给出三角函数的解析式,利用两角和与差的正弦化简,再根据三角函数的值域求解定义域.【难易程度】中等 【参考答案】Bcos 1x x -…得π1sin 62x ⎛⎫- ⎪⎝⎭…,(步骤1) 则ππ5π2π2π666k x k +-+剟,解得π2π2ππ3k x k ++剟,k ∈Z ,所以选B.(步骤2)4.将两个顶点在抛物线()022>=p px y 上,另一个顶点是此抛物线焦点的正三角形的个数记为n ,则 ( )A. 0=nB. 1=nC. 2=nD. 3n … 【测量目标】直线与抛物线的位置关系,抛物线的简单几何性质. 【考查方式】给出含未知系数的抛物线函数,根据抛物线的对称性,得到过焦点的两条直线的斜率,从而判断求解. 【难易程度】容易 【参考答案】C【试题解析】根据抛物线的对称性,正三角形的两个 顶点一定关于x 轴对称,且过焦点的两条直线 倾斜角分别为30和150,(步骤1)这时过焦点的直线与抛物线最多只有两个交点,如图所以正三角形 的个数记为n ,2=n ,所以选C.(步骤2)第4题图5.已知随机变量ξ服从正态分布()2,2σN ,且()8.04=<ξP ,则()=<<20ξP ( )A. 6.0B. 4.0C. 3.0D. 2.0 【测量目标】随机变量的正态分布,离散型随机变量的概率.【考查方式】给出限制条件下的随机变量的概率,根据正态分布对称性计算其他限制条件下随机变量的概率.【难易程度】容易 【参考答案】C【试题解析】如图,正态分布的密度函数示意图所示,函数关于 直线2=x 对称,所以()5.02=<ξP ,(步骤1)并且()()4220<<=<<ξξP P 则()()()2420<-<=<<ξξξP P P3.05.08.0=-=所以选C.(步骤2)第5题图6.已知定义在R 上的奇函数()x f 和偶函数()x g 满足()()2+-=+-x x a a x g x f()1,0≠>a a 且,若()a g =2,则()=2f ( ) A. 2 B.415 C. 417 D. 2a 【测量目标】函数奇偶性的综合应用.【考查方式】给出两个函数间的关系式和一个函数值,求在相同自变量下另一函数值. 【难易程度】中等 【参考答案】B【试题解析】由条件()()22222+-=+-a a g f ,()()22222+-=-+--a a g f ,即 ()()22222+-=+--a a g f ,由此解得()22=g ,()222--=a a f ,(步骤1) 所以2=a ,()41522222=-=-f ,所以选B.(步骤2) 7.如图,用21A A K 、、三类不同的元件连接成一个系统,K 正常工作且21A A 、至少有一个正常工作时,系统正常工作.已知21A A K 、、正常工作的概率依次为9.0、8.0、8.0,则系统正常工作的概率为 ( )第7题图A. 960.0B. 864.0C. 720.0D. 576.0 【测量目标】对立事件的概率,乘法原理.【考查方式】分别给出3个事件的概率,利用对立事件的概率公式得到两个事件概率,再根据乘法原理得出结果. 【难易程度】容易 【参考答案】B【试题解析】21A A 、至少有一个正常工作的概率为()()211A P A P - ()()110.810.810.040.96=--⨯-=-=,(步骤1)系统正常工作概率为()()()()864.096.09.0121=⨯=-A P A P K P ,所以选B.(步骤2)8.已知向量a ()3,z x +=,b ()z y -=,2,且a ⊥b .若y x ,满足不等式1x y +…,则z 的取值范围为 ( ) A. []2,2- B. []3,2- C. []2,3- D. []3,3-【测量目标】平面向量的数量积运算,向量的坐标运算,二元线性规划求目标函数的最值,判断不等式组表示的平面区域.【考查方式】给出两个相互垂直的向量坐标和不等式方程,画出可行域,再利用向量的数量积运算得出目标函数,根据图象求解. 【难易程度】中等 【参考答案】D【试题解析】因为a ⊥b ,()()032=-++z y z x , 则y x z 32+=,y x ,满足不等式1x y +…,(步骤1) 则点()y x ,的可行域如图所示,当y x z 32+=经过点()1,0A 时,y x z 32+=取得最大值3. 当y x z 32+=经过点()1,0-C 时,y x z 32+=取得最小值-3. 所以选D .(步骤2)第8题图9.若实数b a ,满足0,0a b厖,且0=ab ,则称a 与b 互补,记()b a b a b a --+=22,ϕ,那么()0,=b a ϕ是a 与b 互补 ( )A . 必要而不充分条件B. 充分而不必要条件C. 充要条件D. 既不充分也不必要的条件 【测量目标】充分、必要条件,合情推理.【考查方式】给出关于实数的新定义,根据合情推理求解. 【难易程度】容易 【参考答案】C【试题解析】若实数b a ,满足0,0a b厖,且0=ab ,则a 与b 至少有一个为0,不妨设0=b ,则()0,2=-=-=a a a ab a ϕ;(步骤1) 反之,若()0,22=--+=b a b a b a ϕ0a b =+…两边平方得ab b a b a 22222++=+0=⇔ab ,则a 与b 互补,故选C.(步骤2)10.放射性元素由于不断有原子放射出微粒子而变成其他元素,其含量不断减少,这种现象成为衰变,假设在放射性同位素铯137的衰变过程中,其含量M (单位:太贝克)与时间t (单位:年)满足函数关系:()3002t M t M -=,其中0M 为0=t 时铯137的含量,已知30=t 时,铯137的含量的变化率...是2ln 10-(太贝克/年),则()=60M ( ) A. 5太贝克 B. 2ln 75太贝克 C. 2ln 150太贝克 D. 150太贝克 【测量目标】导数的运算,导数在实际问题中的应用,导数的几何意义.【考查方式】给出含未知系数的函数,利用导数的运算求出含未知系数导函数,再利用导数的几何意义得到导函数,再计算求解. 【难易程度】容易 【参考答案】D【试题解析】因为()3001ln 2230tM t M -'=-⨯,则()30300130ln 2210ln 230M M -'=-⨯=-,解得6000=M ,所以()302600tt M -⨯=,那么()150416002600603060=⨯=⨯=-M (太贝克),所以选D.二、填空题:本大题共5小题,每小题5分,共25分.请将答案填在答题卡对应题号的位置上,一题两空的题,其答案按先后次序填写.答错位置,书写不清,模棱两可均不得分.11.在1831⎪⎪⎭⎫ ⎝⎛-x x 展开式中含15x 的项的系数为 .(结果用数值表示)【测量目标】二项式定理.【考查方式】给出二项式,根据二项式展开式的通项公式求解特定项的系数. 【难易程度】容易 【参考答案】17【试题解析】二项式展开式的通项公式为18118C r r r r T x -+⎛= ⎝1182181C 3rr r r x--⎛⎫=- ⎪⎝⎭,令2152118=⇒=--r r r ,含15x 的项的系数为22181C 173⎛⎫-= ⎪⎝⎭,故填17. 12.在30瓶饮料中,有3瓶已过了保质期.从这30瓶饮料中任取2瓶,则至少取到1瓶已过了保质期饮料的概率为 .(结果用最简分数表示) 【测量目标】对立事件的概率,随机事件与概率.【考查方式】给出问题情境,求出所求事件的对立事件的概率,根据对立事件的概率公式,得到所求事件的概率. 【难易程度】容易 【参考答案】14528 【试题解析】从这30瓶饮料中任取2瓶,设至少取到1瓶已过了保质期饮料为事件A ,从这30瓶饮料中任取2瓶,没有取到1瓶已过了保质期饮料为事件B ,则A 与B 是对立事件,因为()227230C 2713C 1529P B ⨯==⨯,(步骤1) 所以()()145282915132711=⨯⨯-=-=B P A P ,所以填14528.(步骤2)13.《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则第5节的容积为 升. 【测量目标】等差数列的通项公式.【考查方式】给出实际问题,转化为数列求项的问题,从而联立方程求解,并根据通项公式得出结果.【难易程度】容易 【参考答案】6667 【试题解析】:设该数列{}n a 的首项为1a ,公差为d ,依题意⎩⎨⎧=++=+++439874321a a a a a a a ,即⎩⎨⎧=+=+421336411d a d a ,解得⎪⎪⎩⎪⎪⎨⎧==+6673471d d a ,(步骤1) 则d d a d a a 374115-+=+=6667662134=-=,所以应该填6667.(步骤2) 14.如图,直角坐标系xOy 所在的平面为α,直角坐标系x Oy ''(其中y '轴与y 轴重合)所在的平面为β,45xOx '∠=.(Ⅰ)已知平面β内有一点()P ',则点P '在平面α内的射影P 的坐标为 ; (Ⅱ)已知平面β内的曲线C '的方程是(22220x y ''+-=,则曲线C '在平面α内的射影C 的方程是 .第14题图1【测量目标】曲线与方程,二面角.【考查方式】(1)给出一点的坐标和二面角,根据二面角的定义求解射影点的坐标;(2)给出曲线在一个平面内的方程,根据射影定理求解曲线在另一个平面内的方程. 【难易程度】中等【参考答案】()2,2,()1122=+-y x【试题解析】(Ⅰ)设点P '在平面α内的射影P 的坐标为()y x ,,则点P 的纵坐标和()P '纵坐标相同,所以2=y ,(步骤1) 过点P '作P H Oy '⊥,垂足为H , 连结PH ,则45P HP '∠=,P 的横坐标cos 45x PH P H '== cos 4522x '=== , 所以点P '在平面α内的射影P 的坐标为()2,2;(步骤2)(Ⅱ)由(Ⅰ)得cos 452x x x ''==⨯,y y '=,所以x y y⎧'=⎪⎨'=⎪⎩代入曲线C '的方程 (22220x y ''+-=,得()⇒=-+-0222222y x ()1122=+-y x ,所以射影C 的方程填()1122=+-y x .(步骤3)第14图215.给n 个则上而下相连的正方形着黑色或白色.当4n …时,在所有不同的着色方案中,黑色正方形互不相邻....的着色方案如下图所示:第15题图由此推断,当6=n 时,黑色正方形互不相邻....着色方案共有 种,至少有两个黑色正方形相邻..着色方案共有 种.(结果用数值表示) 【测量目标】合情推理.【考查方式】给出前四项的图象,根据合情推理归纳出后面项的性质求解. 【难易程度】中等 【参考答案】43,21【试题解析】设n 个正方形时黑色正方形互不相邻....的着色方案数为n a ,由图可知, 21=a ,32=a ,213325a a a +=+==, 324538a a a +=+==,由此推断5345813a a a =+=+=,21138546=+=+=a a a ,故黑色正方形互不相邻....着色方案共有21种;(步骤1)由于给6个正方形着黑色或白色,每一个小正方形有2种方法,所以一共有6422222226==⨯⨯⨯⨯⨯种方法,由于黑色正方形互不相邻....着色方案共有21种,所以至少有两个黑色正方形相邻..着色方案共有432164=-种着色方案,故分别填43,21.(步骤2) 三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 16.(本小题满分10分) 设ABC △的内角C B A 、、所对的边分别为c b a 、、.已知1=a ,2=b ,41cos =C . (Ⅰ)求ABC △的周长; (Ⅱ)求()C A -cos 的值.【测量目标】正弦、余弦定理,同角三角函数的基本关系,两角差的余弦.【考查方式】给出三角形的两边长,和第三边所对角的余弦值.(1)根据余弦定理求出第三边长,从而求出三角形的周长;(2)利用同角的三角函数的基本公式求出两个角的正、余弦值,利用两角差的余弦求解.【难易程度】中等【试题解析】(Ⅰ)∵441441cos 2222=⨯-+=-+=C ab b a c ∴2=c∴ABC △的周长为5221=++=++c b a .(步骤1)(Ⅱ)∵41cos =C ,∴415411cos 1sin 22=⎪⎭⎫ ⎝⎛-=-=C C ,∴8152415sin sin ===cC a A .(步骤2) ∵c a <,∴C A <,故A 为锐角,∴878151sin 1cos 22=⎪⎪⎭⎫ ⎝⎛-=-=A A ,(步骤3) ∴()C A -cos C A C A sin sin cos cos +=16114158154187=⨯+⨯=. (步骤4) 17.(本小题满分12分)提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度v (单位:千米/小时)是车流密度x (单位:辆/千米)的函数.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时.研究表明:当20200x 剟时,车流速度v 是车流密度x 的一次函数. (Ⅰ)当0200x剟时,求函数()x v 的表达式;(Ⅱ)当车流密度x 为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)()()f x x v x = 可以达到最大,并求出最大值.(精确到1辆/小时) 【测量目标】求函数的解析式,分段函数,均值不等式求最值,函数的单调性,利用函数单调性求最值.【考查方式】给出实际问题,(1)利用待定系数法求出函数的解析式;(2)运用均值不等式和函数的单调性求出分段函数不同段的最值. 【难易程度】较难【试题解析】(Ⅰ)由题意:当020x <…时,()60=x v ;当20200x剟时,设()b ax x v +=,显然()b ax x v +=在[]200,20是减函数,由已知得⎩⎨⎧=+=+60200200b a b a ,解得⎪⎪⎩⎪⎪⎨⎧=-=320031b a故函数()x v 的表达式为()x v =()60,020,1200,20200.3x x x <⎧⎪⎨-⎪⎩…剟(步骤1)(Ⅱ)依题意并由(Ⅰ)可得()=x f ()60,020,1200,20200.3x x x x x <⎧⎪⎨-⎪⎩…剟当020x <…时,()x f 为增函数,故当20=x 时,其最大值为12002060=⨯;当20200x剟时,()()()220011100002003323x x f x x x +-⎡⎤=-=⎢⎥⎣⎦…,(步骤2) 当且仅当x x -=200,即100=x 时,等号成立.所以,当100=x 时,()x f 在区间[]200,20上取得最大值310000. 综上,当100=x 时,()x f 在区间[]200,0上取得最大值100003≈3333,(步骤3)即当车流密度为100辆/千米时,车流量可以达到最大,最大值约为3333辆/小时. 18.(本小题满分12分)如图,已知正三棱柱111C B A ABC -的各棱长都是4,E 是BC 的中点,动点F 在侧棱1CC 上,且不与点C 重合.(Ⅰ)当1=CF 时,求证C A EF 1⊥;(Ⅱ)设二面角E AF C --的大小为θ,求θtan 的最小值.第18题图1【测量目标】异面直线垂直的判定,二面角,线面垂直的判定,空间直角坐标系,空间向量的数量积运算,空间向量的夹角问题. 【考查方式】(法一)(Ⅰ)通过面面垂直到线面垂直,在利用射影定理和三垂线定理求证异面直线的垂直;(Ⅱ)找出二面角的平面角,通过解三角形求解二面角.(法二)建立空间直角坐标系,(Ⅰ)利用空间向量的数量积运算求证;(1)先找出两个平面的两个法向量,再利用法向量的数量积运算求出二面角的大小. 【难易程度】较难 【试题解析】.解法1:过E 作EN AC ⊥于N ,连结EF . (Ⅰ)如图,连结NF 、1AC ,由直棱柱的性质知,底面ABC ⊥侧面1AC , 又底面ABC 侧面1AC AC =,且EN ABC ⊂底面, 所以1,EN AC NF ⊥面侧为EF 在侧面1AC 内的射影.(步骤1)在Rt CNE △中,cos60=1CN CE = . 则由114CF CN CC CA ==,得1NF AC ∥,又11,AC AC ⊥故1NF AC ⊥. 由三垂线定理知1.EF AC ⊥(步骤2)(Ⅱ)如图,连结,AF 过N 作NM AF ⊥于M ,连结ME .由(Ⅰ)知EN ⊥侧面1AC ,根据三垂线定理得EM AF ⊥, 所以EMN C AF E ∠--是二面角的平面角,即,EMN θ∠=(步骤3)设,FAC α∠=则045α<….在Rt CNE △中,sin60NE EC = 在Rt AMN △中,sin =3sin MN AN αα= ,故tan =.3sin NE MN θα=又045α< …,0sin 2α∴<…故当sin 2α=即当45α= 时,tan θ达到最小值,tan θ==此时F 与1C 重合.(步骤4) 解法2:(Ⅰ)建立如图所示的空间直角坐标系,则由已知可得1(0,0,0),(0,4,0),(0,0,4),(0,4,1),A B C A E F于是1(0,4,4),(,1).CA EF =-=则1(0,4,4)(,1)0440,CA EF =-=-+=故1EF AC ⊥.(步骤5) (Ⅱ)设,(04),CF λλ=<…平面AEF 的一个法向量为(,,),x y z m =则由(Ⅰ)得(0,4,).F λ(0,4,),AE AF λ== 于是由,AE AF ⊥⊥m m 可得00AE AF ⎧=⎪⎨=⎪⎩m m即3040y y z λ+=+=⎪⎩,取,,4).λ=-m 又由直三棱柱的性质可取侧面1AC 的一个法向量为(1,0,0)=n ,(步骤6)于是由θ为锐角可得cos θθ===m nm n所以tan θ=由1104,tan 4λθλ<=得,即剠?. 故当4,λ=即点F 与点1C 重合时,tan θ(步骤7)第18题图2 第18题图3 第19题图419.(本小题满分13分)已知数列{}n a 的前n 项和为n S ,且满足:1(0)a a a =≠,n n rS a =+1(n *∈N ,,1)r r ∈≠-R . (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)若存在k *∈N ,使得1+k S ,k S ,2+k S 成等差数列,试判断:对于任意的m ∈N *,且2m …,1+m a ,m a ,2+m a 是否成等差数列,并证明你的结论.【测量目标】根据数列的前n 项和写数列的通项公式,等差数列的性质.【考查方式】给出首项、数列前n 和与通项公式的关系式,(1)由此得到数列的递推公式,再分类讨论求出函数的通项公式;(2)利用等差数列的性质求证.【难易程度】较难【试题解析】(Ⅰ)由已知1n n a rS +=,可得21,n n a rS ++=两式相减可得2111(),n n n n n a a r S S ra ++++-=-=即21(1),n n a r a ++=+又21a ra ra ==,所以当0r =时,数列{}n a 为:,0,0a …,,…;当0,1r r ≠≠-时,由已知0,a ≠所以0(),n a n *≠∈N于是由21(1),n n a r a ++=+可得211()n n a r n a *++=+∈N 23,,,n a a a ∴…,…成等比数列,22(1).n n n a r r a -∴=+,…综上,数列{}n a 的通项公式为2,1,(1),2n n a n a r r a n -=⎧=⎨+⎩…(步骤1) (Ⅱ)对于任意的,m *∈N 且122,,,m m m m a a a ++…成等差数列,证明如下:当0r =时,由(Ⅰ)知,,10,2,n a n a n =⎧=⎨⎩… ∴对于任意的,m *∈N 且122,,,m m m m a a a ++…成等差数列;(步骤2) 当0,1r r ≠≠-时,21211,,k k k k k k k S S a a S S a +++++=++=+若存在,k *∈N 使得12,,k k k S S S ++成等差数列,则122,k k k S S S +++=12222k k k k S a a S ++∴++=,即212.k k a a ++=-(步骤3)由(Ⅰ)知,23,,,n a a a …,…的公比12,r +=-于是对于任意的,m *∈N 且12,2,m m m a a +=-…从而24,m m a a +=122,m m m a a a ++∴+=即12,,m m m a a a ++成等差数列.综上,对于任意的,m *∈N 且2,m …12,,m m m a a a ++成等差数列.(步骤4)20. (本小题满分14分)平面内与两定点1(,0),A a -,2(,0)(0)A a a >连续的斜率之积等于非零常数m 的点的轨迹,加上1A 、2A 两点所成的曲线C 可以是圆、椭圆成双曲线.(Ⅰ)求曲线C 的方程,并讨论C 的形状与m 值的关系;(Ⅱ)当1m =-时,对应的曲线为1C ;对给定的(1,0)(0,)m ∈-+∞ ,对应的曲线为2C ,设1F 、2F 是2C 的两个焦点.试问:在1C 上,是否存在点N ,使得12F NF △的面积2S m a =.若存在,求12tan F NF 的值;若不存在,请说明理由.【测量目标】圆锥曲线中的探索性问题,直线的斜率,曲线与方程,空间向量的数量积运算.【考查方式】(Ⅰ)给出两点的坐标,两直线斜率公式得出曲线的方程,再根据m 的取值范围分类讨论C 的形状;(Ⅱ)给定m 的值求出1C 曲线方程和2C 的交点坐标,联立1C 和三角形面积方程,从而再利用空间向量的数量积运算求解.【难易程度】较难【试题解析】(Ⅰ)设动点为M ,其坐标为(,),x y当x a ≠±时,由条件可得12222,MA MA y y y k k m x a x a x a===-+-即222(),mx y ma x a -=≠± 又1(,0)A a -、2(,0)A a 的坐标满足222mx y ma -=,故依题意,曲线C 的方程为222.mx y ma -=(步骤1)当1m <-时,曲线C 的方程为22221,x y a ma+=-C 是焦点在y 轴上的椭圆; 当1m =-时,曲线C 的方程为222,x y a +=C 是圆心在原点的圆;当10m -<<时,曲线C 的方程为22221,x y a ma+=-C 是焦点在x 轴上的椭圆; 当0m >时,曲线C 的方程为22221,x y a ma -=C 是焦点在x 轴上的双曲线.(步骤2) (Ⅱ)由(Ⅰ)知,当1m =-时,1C 的方程为222;x y a +=当(1,0)(0,)m ∈-+∞ 时,2C的两个焦点分别为12((F F -对于给定的(1,0)(0,),m ∈-+∞ 1C 上存在点000(,)(0)N x y y ≠使得2S m a =的充要条件是22200020,0,12.2x y a y m a ⎧+=≠⎪⎨=⎪⎩ ①②由①得00,y a <…由②得0y =当0,a <0,m <或0m <…时, 存在点N ,使2;S m a =,a >即1m -<<或m >时 不存在满足条件的点N .(步骤3)当110,22m ⎡⎫⎛∈⎪ ⎢⎪ ⎣⎭⎝⎦ 时,由100(,),NF x y =-- 200(,),NF x y =-可得22221200(1)NF NF x m a y ma =-++=-令112212,,,NF r NF r F NF θ==∠=则由21212cos ,NF NF rr ma θ==- 可得212,cos ma r r θ=- 从而22121sin 1sin tan ,22cos 2ma S r r ma θθθθ==-=-于是由2S m a =, 可得221tan ,2ma m a θ-=即2tan m mθ=-.(步骤4) 综上可得:当m ⎫∈⎪⎪⎣⎭时,在1C 上,存在点N ,使得2S m a =,且12tan 2;F NF =当m ⎛∈ ⎝⎦时,在1C 上,存在点N ,使得2,S m a =且12tan 2;F NF =-当11(1,()22m ∈-+∞ 时,在1C 上,不存在满足条件的点N .(步骤5) 21.(本小题满分14分)(Ⅰ)已知函数()ln 1f x x x =-+,(0,)x ∈+∞,求函数()f x 的最大值;(Ⅱ)设11,(1,2,,)a b k n =…均为正数,证明:(1)若112212+n n n a b a b a b b b b +++++………,则12121n b b b n a a a ……;(2)若121n b b b ++=…+,则1222212121++n b b b n n b b b b b b n +……剟.【测量目标】利用导数求函数的最值,不等式恒成立问题.【考查方式】(Ⅰ)给出函数,利用导数的运算求出导函数,再利用导函数的单调性得到最值点求解最值;(Ⅱ)利用不等式的基本性质求证.【难易程度】较难【试题解析】(Ⅰ)()f x 的定义域为(0,).+∞令1()10,f x x'=-=解得 1.x = 当01x <<时,()0,f x '>()f x 在(0,1)内是增函数;当1x >时,()0,()f x f x '<在(1,)+∞内是减函数;故函数()f x 在1x =处取得最大值(1)0.f =(步骤1)(Ⅱ)(1)由(Ⅰ)知(0,)x ∈+∞时,有()(1)0,f x f =…即ln 1.x x -…0,k k a b > 从而有ln 1,k k a a -…得ln (1,2,).k k k k k b a a b b k n -=…,…求和得111ln .k n n n b kk k k k k k a a b b ===-∑∑∑…(步骤2) 111,ln 0,k n n n b k k k kk k k a b b a ===∴∑∑∑ 剟即1212ln()0,k b b b k a a a ……12121n b b b n a a a ∴…….(步骤3)(2)①先证12121.n b b b n b b b n…… 令1(1,2,),k k a k n nb ==…,则11111,n n n k k k k k k a b b n ======∑∑∑于是 由(1)得1212111nb b b n nb nb nb ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭……1,即1212+121,n n b b b b b b n n n b b b ++=……… 12121.n b b b n b b b n ∴……(步骤4)②再证122221112+.n b b b n n b b b b b b ++………记21.nk k S b ==∑令21111(1,2,,),1,n n n k k k k k k k k k b a k n a b b b S S ========∑∑∑… 于是由(1)的12121,n bb b n b b b S S S ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭…… 即121212+222121212,.n n nb b b b bb b b b n n n b b b S S b b b b b b ++=∴++…………+剟 综上①②,(2)得证.(步骤5)。
2011年高考新课标全国卷理科数学试题(附答案)

2011年普通高等学校招生全国统一考试(新课标全国卷)理科数学第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)复数212ii +=- (A )35i - (B )35i (C )i - (D )i (2)下列函数中,既是偶函数又在(0,)+∞单调递增的函数是(A )3y x = (B )||1y x =+ (C )21y x =-+ (D )||2x y -= (3)执行右面的程序框图,如果输入的N 是6,那么输出的p 是(A )120 (B ) 720 (C ) 1440 (D ) 5040 (4)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为 (A )13 (B ) 12 (C )23 (D )34(5)已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线2y x =上,则cos 2θ= (A ) 45-(B )35- (C ) 35 (D )45(6)在一个几何体的三视图中,正视图与俯视图如右图所示,则相应的侧视图可以为俯视图正视图DCB A(7)已知直线l 过双曲线C 的一个焦点,且与C 的对称轴垂直,l 与C 交于A ,B 两点,||AB 为C 的实轴长的2倍,C 的离心率为(A (B (C ) 2 (D ) 3(8)51()(2)ax x x x+-的展开式中各项系数的和为2,则该展开式中常数项为(A )—40 (B )—20 (C )20 (D )40(9)曲线y =,直线2y x =-及y 轴所围成的图形的面积为(A )103 (B )4 (C ) 163(D ) 6 (10)已知a ,b 均为单位向量,其夹角为θ,有下列四个命题1:||1p +>a b ⇔2[0,)3πθ∈ 2:p ||+a b 1>⇔θ∈2(,]3ππ 3:||1p ->a b ⇔θ∈[0,)3π 4:||1p ->a b ⇔θ∈(,]3ππ其中真命题是(A ) 14,p p (B ) 13,p p (C ) 23,p p (D ) 24,p p (11)设函数()sin()cos()f x x x ωϕωϕ=+++(0,||)2πωϕ><的最小正周期为π,且()()f x f x -=则 (A )()y f x =在(0,)2π单调递减 (B )()y f x =在3(,)44ππ单调递减 (C )()y f x =在(0,)2π单调递增 (D )()y f x =在3(,)44ππ单调递增 (12)函数11y x=-的图象与函数2sin (24)y x x π=-剟的图象所有交点的橫坐标之和等于(A )2 (B )4 (C )6 (D )8第Ⅱ卷本卷包括必考题和选考题两部分.第13题-第21题为必考题,每个试题考生都必须做答.第22题-第24题为选考题,考生根据要求做答. 二、填空题:本大题共4小题,每小题5分.(13)若变量x ,y 满足约束条件32969x y x y ≤+≤⎧⎨≤-≤⎩,则2z x y =+的最小值是_________.(14)在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点12,F F 在x 轴上,离心率为.过点1F 的直线l 交C 于A ,B 两点,且2ABF ∆的周长为16,那么C 的方程为_________.(15)已知矩形ABCD 的顶点都在半径为4的球O 的球面上,且AB =6,BC =锥O ABCD -的体积为_____________.(16)ABC ∆中,60,B AC =︒=,则AB +2BC 的最大值为_________. 三、解答题:解答应写文字说明,证明过程或演算步骤. (17)(本小题满分12分)已知等比数列{}n a 的各项均为正数,且212326231,9a a a a a +==. (I )求数列{}n a 的通项公式.(II )设31323log log log n n b a a a =+++ ,求数列1{}nb 的前n 项和.(18)(本小题满分12分)如图,四棱锥P ABCD -中,底面ABCD 为平行四边形,60DAB ∠=︒,2AB AD =,PD ⊥底面ABCD(I )证明:PA BD ⊥;(II )若PD AD =,求二面角A PB C --的余弦值.(19)(本小题满分12分)某种产品的质量以其质量指标值衡量,质量指标越大表明质量越好,且质量指标值大于或等于102的产品为优质品.现用两种新配方(分别称为A 配方和B 配方)做试验,各生产了100件这种产品,并测量了每产品的质量指标值,得到时下面试验结果:A 配方的频数分布表B 配方的频数分布表(II )已知用B 配方生产的一种产品利润y (单位:元)与其质量指标值t 的关系式为2,942,941024,102t y t t -<⎧⎪=≤<⎨⎪≥⎩从用B 配方生产的产品中任取一件,其利润记为X (单位:元).求X 的分布列及数学期望.(以试验结果中质量指标值落入各组的频率作为一件产品的质量指标值落入相应组的概率).(20)(本小题满分12分)在平面直角坐标系xOy 中, 已知点(0,1)A -,B 点在直线3y =-上,M 点满足//MB OA ,MA AB MB BA =,M 点的轨迹为曲线C .(I )求C 的方程;(II )P 为C 上动点,l 为C 在点P 处的切线,求O 点到l 距离的最小值.(21)(本小题满分12分)已知函数ln ()1a x bf x x x=++,曲线()y f x =在点(1,(1))f 处的切线方程为 230x y +-=.(I )求,a b 的值;(II )如果当0x >,且1x ≠时,ln ()1x kf x x x>+-,求k 的取值范围.请考生在第(22)、(23)、(24)三题中任选一题做答,如果多做,则按所做的第一题记分.做答时用2B 铅笔在答题卡上把所选题目对应题号下方的方框涂黑. (22)(本小题满分10分)选修4-1:几何证明选讲如图,D ,E 分别为ABC ∆的边AB ,AC 上的点,且不与ABC ∆的顶点重合.已知AE 的长为m ,AC 的长为n ,AD ,AB 的长是关于x 的方程2140x x mn -+=的两个根.(I )证明:,,,C B D E 四点共圆;(II )若90A ∠=︒,且4,6,m n ==求,,,C B D E 所在圆的半径.(23)(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线1C 的参数方程为2cos (22sin x y ααα=⎧⎨=+⎩为参数),M 为1C 上的动点,P 点满足2OP OM =,点P 的轨迹为曲线2C .(I )求2C 的方程;(II )在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线3πθ=与1C 的异于极点的交点为A ,与2C 的异于极点的交点为B ,求||AB .(24)(本小题满分10分)选修4-5:不等式选讲设函数()||3f x x a x =-+,其中0a >.(I )当1a =时,求不等式()32f x x ≥+的解集. (II )若不等式()0f x ≤的解集为{x|1}x ≤-,求a 的值.2011年普通高等学校招生全国统一考试(新课标全国卷)理科数学答案(1)C 【解析】212i i+-=(2)(12),5i i i ++=共轭复数为C . (2)B 【解析】3y x =为奇函数,21y x =-+在(0,)+∞上为减函数,||2x y -=在(0,)+∞上为减函数,故选B .(3)B 【解析】框图表示1n n a n a -=⋅,且11a =所求6a =720,选B .(4)A 【解析】每个同学参加的情形都有3种,故两个同学参加一组的情形有9种,而参加同一组的情形只有3种,所求的概率为P =3193=,选A . (5)B 【解析】由题知tan 2θ=,222222cos sin 1tan 3cos2cos sin 1tan 5θθθθθθθ--===-++,选B .(6)D 【解析】条件对应的几何体是由底面棱长为r 的正四棱锥沿底面对角线截出的部分与底面为半径为r 的圆锥沿对称轴截出的部分构成的。
2011年北京市高考理科数学试题及标准答案

2011年普通高等学校招生全国统一考试数 学(理)(北京卷)本试卷共5页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)已知集合2{|1}P x x =≤,{}M a =.若PM P =,则a 的取值范围是(A)(,1]-∞-(B)[1,)+∞(C )[1,1]-(D)(,1][1,)-∞-+∞ (2)复数212i i-=+ (A )i (B)i - (C)4355i -- (D)4355i -+ (3)在极坐标系中,圆2sin ρθ=-的圆心的极坐标是(A )(1,)2π (B )(1,)2π- (C )(1,0) (D)(1,)π(4)执行如图所示的程序框图,输出的s 值为(A)3-(B)12- (C)13(D)2(5)如图,,,AD AE BC 分别与圆O 切于点,,D E F ,延长AF 与圆O 交于另一点G 。
给出下列三个结论:① AD AE AB BC CA +=++;② AF AG AD AE ⋅=⋅;③ AFB ADG ∆∆其中,正确结论的序号是(A)① ② (B )② ③(C )① ③ (D )① ② ③(6)根据统计,一名工人组装第x 件某产品所用的时间(单位:分钟)为()x A f x x A <=≥(,A c 为常数)。
已知工人组装第4件产品用时30分钟,组装第A 件产品用时15分钟, 那么c 和A 的值分别是(A )75,25 (B )75,16 (C )60,25 (D)60,16 (7)某四面体的三视图如图所示,该四面体四个面的面积中 最大的是(A ) 8(B)(C) 10(D)(8)设(0,0)A ,(4,0)B ,(4,4)C t +,(,4)D t (t R ∈),记()N t 为平行四边形内部(不含边界)的整点的个数,其中整点是指横、纵坐标都是整数的点,则函数()N t 的 值域为(A ){9,10,11} (B){9,10,12} (C){9,11,12} (D ){10,11,12}A G俯视图。
2011山东高考数学及答案(完整高清版)

2011年普通高等学校招生全国统一考试(山东卷)理科数学本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页,满分150分。
考试用时120分钟。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1、答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、准考证号、县区和科类填写在答题卡和试卷规定的位置上。
2、第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上。
3、第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
4、填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤。
参考公式:柱体的体积公式:V Sh=,其中S是柱体的底面积,h是柱体的高。
圆柱的侧面积公式:S cl=,其中c是圆柱的地面周长,l是圆柱的母线长。
球的体积公式:343V R π=,其中R 是球的半径。
球的表面积公式:,其中R 是球的半径。
用最小二乘法求线性回归方程系数公式:=1221ˆˆ,.ni ii n ii X Y nx yay bx Xnx ==-=--∑∑ 如果事件A 、B 互斥,那么()()+()P A B P A P B +=; 如果事件A 、B 独立,那么()()()P AB P A P B =。
第Ⅰ卷(共60分)一、选择题:本大题共12小题。
每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1、设集合{}{}2|60,|13,M x xx N x x =+-<=≤≤则MN =(A)[1,2)(B) [1,2] (C) (2,3] (D) [2,3]2、复数2()2iz i i-=+为虚数单位在复平面内对应的点所在象限为 (A) 第一象限 (B) 第二象限 (C) 第三象限 (D) 第四象限3、若点a (,9)在函数3xy =的图象上,则tan 6a π的值为(A) 0(B)(C) 1(D) 4、不等式5310x x -++≥的解集是(A) []5,7- (B) []4,6- (C) (][),57,-∞-+∞ (D) (][),46,-∞-+∞ 5、对于函数(),y f x x R =∈,“()y f x =的图象关于y 轴对称”是“()y f x =是奇函数”的(A) 充分而不必要条件 (B) 必要而不充分条件 (C) 充要条件 (D) 既不充分也不必要条件6、若函数()sin (0)f x x ωω=>在区间0,3π⎡⎤⎢⎥⎣⎦上单调递增,在区间,32ππ⎡⎤⎢⎥⎣⎦上单调递减,则ω=(A) 3 (B) 2 (C) 32(D) 237、某产品的广告费用x 与销售额y 的统计数据如下表:根据上表可得回归方程y bx a =+中的b 为9.4,据此模型预报广告费用为6万元时销售额为(A) 63.6万元(B) 65.5万元 (C) 67.7万元 (D) 72.0万元8、已知双曲线22221(0,0)x y a b a b-=>>的两条渐近线均和圆C :22650x y x +--=相切,且双曲线的右焦点为圆C 的圆心,则该双曲线的方程为 (A)22154x y -= (B)22145x y -= (C)22136x y -= (D)22163x y -= 9、函数2sin 2xy x =-的图象大致是(A) (B)(C) (D)10、已知()f x 是R 上最小正周期为2的周期函数,且当02x ≤<时,3()f x xx =-,则函数()y f x = 的图象在区间[的交点的个数为(A) 6 (B) 7 (C) 8 (D) 911 ①存在三棱柱,其正(主)视图、俯视图如右图; ②存在四棱柱,其正(主)视图、俯视图如右图; ③存在圆柱,其正(主)视图、俯视图如右图。
2011年安徽高考理科数学试题及答案

2011年普通高等学校招生全国统一考试(安徽卷)数学(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至第2页,第Ⅱ卷第3页至第4页。
全卷满分150分,考试时间120分钟。
考生注意事项:1. 答题前,务必在试题卷、答题卡规定填写自己的姓名、座位号,并认真核对答题卡上所粘贴的条形码中姓名、座位号与本人姓名、座位号是否一致。
务必在答题卡背面规定的地方填写姓名和座位号后两位。
2. 答第Ⅰ卷时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
3. 答第Ⅱ卷时,必须使用0.5毫米的黑色墨水签字笔在答题卡上....书写,要求字体工整、笔迹清晰。
作图题可先用铅笔在答题卡...规定的位置绘出,确认后再用0.5毫米的黑色墨水签字笔描清楚。
必须在题号所指示的答题区域作答,超出书写的答案无效.........,在试题卷....、草稿纸...上答题无效.....。
4. 考试结束后,务必将试题卷和答题卡一并上交。
参考公式:如果事件A 与B 互斥, 椎体体积13V Sh =,其中S 为椎体的底面积, 那么()()()P A B P A P B +=+ h 为椎体的高. 如果事件A 与B 相互独立,那么()()()P AB P A P B =第Ⅰ卷(选择题 共50分)一.选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1) 设i 是虚数单位,复数12aii+-为纯虚数,则实数a 为 (A ) 2 (B ) -2 (C ) -12 (D ) 12(2) 双曲线2228x y -=的实轴长是(A )2 (B) (3)设()f x 是定义在R 上的奇函数,当0x ≤时,2()2f x x x =-, (1)f =(A )-3 (B) -1 (C)1 (D)3(4)设变量x ,y 满足||||1x y +≤,则2x y +的最大值和最小值分别为 (A)1,-1 (B)2,-2 (C)1,-2 (D)2,-1 (5) 在极坐标系中,点 (2,)3π到圆2cos ρθ= 的圆心的距离为(A )((6)一个空间几何体得三视图如图所示,则该几何体的表面积为(A ) 48 (B)32+48+(7)命题“所有能被2整除的数都是偶数”的否定..是 (A )所有不能被2整除的数都是偶数 (B )所有能被2整除的数都不是偶数 (C )存在一个不能被2整除的数都是偶数 (D )存在一个不能被2整除的数都不是偶数(8)设集合{1,2,3,4,5,6},{4,5,6,7}A B ==,则满足S A ⊆且S B ≠∅的集合S 为(A )57 (B )56 (C )49 (D )8(9)已知函数()sin(2)f x x ϕ=+,其中ϕ为实数,若()()6f x f π≤对x R ∈恒成立,且()()2f f ππ>,则()f x 的单调递增区间是(A ), ()36k k k z ππππ⎧⎫-+∈⎨⎬⎩⎭ (B ), ()2k k k z πππ⎧⎫+∈⎨⎬⎩⎭ (C )2, ()63k k k z ππππ⎧⎫++∈⎨⎬⎩⎭ (D ), ()2k k k z πππ⎧⎫-∈⎨⎬⎩⎭(10)函数()(1)m n f x nx x =- 在区间上的图像如图所示,则m,n 的值可能是(A )m=1, n=1 (B )m=1, n=2 (C )m=2, n=1 (D )m=3, n=1第II 卷(非选择题 共100分)考生注意事项:请用0.5毫米黑色墨水签字笔在答题卡上作答,在试题卷上答题无效..................二.填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡的相应位置. (11)如图所示,程序框图(算法流程图)的输出结果是 .(12)设2122101221(1)x a a x a x a x -=++++,则1011a a +=_________ .(13)已知向量a ,b 满足(2)()6+-=-a b a b ,1|a |=,2|b |=,则a 与b 的夹角为________.(14)已知ABC ∆ 的一个内角为120o,并且三边长构成公差为4的等差数列,则ABC ∆的面积为_______________(15)在平面直角坐标系中,如果x 与y 都是整数,就称点(,)x y 为整点,下列命题中正确的是_____________(写出所有正确命题的编号). ①存在这样的直线,既不与坐标轴平行又不经过任何整点 ②如果k 与b 都是无理数,则直线y kx b =+不经过任何整点 ③直线l 经过无穷多个整点,当且仅当l 经过两个不同的整点④直线y kx b =+经过无穷多个整点的充分必要条件是:k 与b 都是有理数 ⑤存在恰经过一个整点的直线三.解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤.解答写在答题卡的制定区域内. (16)(本小题满分12分)设2()1xe f x ax=+,其中a 为正实数 (Ⅰ)当43a =a 43=时,求()f x 的极值点; (Ⅱ)若()f x 为R 上的单调函数,求a 的取值范围。
2011年高考理科数学试题及答案-全国卷1

2011年高考理科数学试题及答案-全国卷12011年普通高等学校招生全国统一考试(全国卷1)理科数学第I卷一、选择题:本大题共12小题,每小题5分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1) 复数 $2+i$ 的共轭复数是()A) $-i$ (B) $i$ (C) $-1+2i$ (D) $1-2i$2) 下列函数中,既是偶函数又是单调递增的函数是()A) $y=x^3$ (B) $y=x+1$ (C) $y=-x^2+1$ (D) $y=2|x|$3) 执行右面的程序框图,如果输入的 $N$ 是 $6$,那么输出的 $p$ 是()A) $120$ (B) $720$ (C) $1440$ (D) $5040$4) 有 $3$ 个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为()A) $\frac{1}{2}$ (B) $\frac{1}{3}$ (C) $\frac{1}{4}$ (D) $\frac{2}{3}$5) 已知角 $\theta$ 的顶点与原点重合,始边与 $x$ 轴的正半轴重合,终边在直线 $y=2x$ 上,则 $\cos2\theta$ =()A) $-\frac{3}{4}$ (B) $-\frac{1}{4}$ (C) $\frac{3}{4}$ (D) $\frac{1}{4}$6) 在一个几何体的三视图中,正视图和俯视图如右图所示,则相应的侧视图可以为()此处应该有图片,但无法显示]7) 设直线 $L$ 过双曲线 $C$ 的一个焦点,且与 $C$ 的一条对称轴垂直,$L$ 与 $C$ 交于 $A,B$ 两点,$AB$ 为 $C$ 的实轴长的 $2$ 倍,则 $C$ 的离心率为()A) $2$ (B) $3$ (C) $4$ (D) $6$8) 已知 $\frac{x+2}{x-2}$ 的展开式中各项系数的和为 $2$,则该展开式中常数项为()A) $-40$ (B) $-20$ (C) $20$ (D) $40$9) 由曲线 $y=x$,直线 $y=x-2$ 及 $y$ 轴所围成的图形的面积为()A) $\frac{10}{16}$ (B) $4$ (C) $\frac{3}{16}$ (D)$\frac{3}{32}$10) 已知 $a$ 与 $b$ 均为单位向量,其夹角为 $\theta$,有下列四个命题text{P}_1$:$a+b>1$ $\Leftrightarrow$ $\theta\in\left(0,\frac{2\pi}{3}\right)$text{P}_2$:$a+b>1$ $\Leftrightarrow$ $\theta\in\left(\frac{\pi}{3},\pi\right)$text{P}_3$: $a-b>1$ $\Leftrightarrow$ $\theta\in\left(0,\frac{\pi}{3}\right)\cup\le ft(\frac{2\pi}{3},\pi\right)$text{P}_4$: $a-b>1$ $\Leftrightarrow$ $\theta\in\left(\frac{\pi}{3},\frac{2\pi}{3} \right)$其中的真命题是()A) $\text{P}_1,\text{P}_4$ (B) $\text{P}_1,\text{P}_3$ (C) $\text{P}_2,\text{P}_3$ (D) $\text{P}_2,\text{P}_4$11) 设函数 $f(x)=\sin(\omega x+\theta)+\cos(\omegax+\theta)$($\omega>0,\theta<\frac{\pi}{2}$)的最小正周期为$\pi$,且 $f(-x)=f(x)$,则()A) $f(x)$ 在 $\left(0,\frac{\pi}{2}\right)$ 单调递减 (B)$f(x)$ 在$\left(0,\frac{\pi}{4}\right)\cup\left(\frac{3\pi}{4},\pi\right)$ 单调递减C) $f(x)$ 在 $\left(\frac{\pi}{4},\frac{3\pi}{4}\right)$ 单调递减 (D) $f(x)$ 在$\left(0,\frac{\pi}{4}\right)\cup\left(\frac{\pi}{2},\frac{3\pi}{4}\ri ght)$ 单调递减P(X=-2)=0.04.P(X=2)=0.54.P(X=4)=0.42,因此X的分布列为:2: 0.042: 0.544: 0.42根据配方A,生产的产品中有22/100的次品率,根据配方B,生产的产品中有8/1000的次品率。
2011年全国高考2卷理科数学试题及答案
2011年全国高考2卷理科数学试题及答案2011年普通高等学校招生全国统一考试(全国卷II)数学本试卷共4页,共三大题21小题,总分150分,考试时间120分钟。
考生答题前需在试题卷和答题卡上填写姓名和准考证号,并将准考证号条形码粘贴在答题卡上的指定位置。
选择题需用2B铅笔将答案标号涂黑,如需更改,需用橡皮擦干净后重新涂写。
填空题和解答题需使用0.5毫米黑色墨水签字笔在答题卡上的对应区域内回答,试题卷上的回答无效。
考试结束时,请一并上交试题卷和答题卡。
一、选择题本大题共12小题,每小题5分,共60分。
在每小题的四个选项中,只有一项是符合题目要求的。
1.已知复数z=1+i,z为其共轭复数,则zz-z-1=A)-2i(B)-i(C)i(D)2i2.函数y=2x(x≥0)的反函数为A)y=(x∈R)B)y=(x≥0)C)y=4x2(x∈R)D)y=4x2(x≥0)3.以下四个条件中,使a>b成立的充分必要条件是A)a>b+1B)a>b-1C)a>bD)以上条件都是4.设Sn为等差数列{an}的前n项和,若a1=1,公差d=2,且Sk+2-Sk=24,则k=A)8(B)7(C)6(D)55.已知函数f(x)=cosωx(ω>0),将y=f(x)的图像向右平移2π/3个单位长度后,所得的图像与原图像重合,则ω的最小值等于A)1/3B)3C)6D)96.已知直二面角α-ℓ-β,点A∈α,AC⊥ℓ,C为垂足,B∈β,BD⊥ℓ,D为垂足,且AB=2,AC=BD=1,则D到平面ABC的距离等于A)2√3/3B)√2C)1D)2√3/37.某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友,每位朋友1本,则不同的赠送方法共有A)4种B)10种C)18种D)20种8.曲线y=e2x+1在点(0,2)处的切线与直线y=-x和y=x围成的三角形的面积为A)1/12B)1/2C)1/3D)1/329.设f(x)是周期为2的奇函数,当-1≤x≤1时,f(x)=2x(1-x),则f(-5/4)=A)-11/16B)-1/4C)1/4D)11/16210.已知抛物线C:y=4x的焦点为F,直线y=2x-4与C交于A、B两点,则cos∠AFB=(A)解析:首先,求出抛物线C的准线方程为y=-4x,焦点为F(0,1)。
2011年辽宁高考数学理科试卷(带详解)
2011年普通高等学校招生全国统一考试(辽宁卷)数 学(理科)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.a 为正实数,i 为虚数单位,i2ia +=,则=a ( )A.2D.1【测量目标】复数代数形式的四则运算.【考查方式】给出复数的除法形式,求解等式得出未知数. 【难易程度】容易 【参考答案】B【试题解析】∵i i1i,1i 2i ia a a a ++=-∴=-==,23a a ∴=⇒=.故选B2.已知M ,N 为集合I 的非空真子集,且M ,N 不相等,若IN M =∅,则=N M( )A.MB.NC.ID.∅【测量目标】集合的基本运算(交集,并集,补集).【考查方式】给出集合并集的结果求交集的结果. 【难易程度】容易 【参考答案】A 【试题解析】INM =∅即是N 是M 的真子集,M N M ∴=.3.已知F 是抛物线2y x =的焦点,A ,B 是该抛物线上的两点,=3AF BF +,则线段AB 的中点到y 轴的距离为 ( )A.34B.1C.54D.74【测量目标】抛物线的简单几何性质.【考查方式】给出抛物线上两点与焦点线段之和,利用准线求线段中点到y 轴的距离. 【难易程度】容易 【参考答案】C【试题解析】∵F 是抛物线2y x =的焦点F (1,04)准线方程14x =-(步骤1) 设A 11(,)x y ,B 22(,)x y ∴|AF |+|BF |=121144x x +++=3 解得1252x x +=(步骤2) ∴线段AB 的中点横坐标为54∴线段AB 的中点到y 轴的距离为54.(步骤3)4.△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,a sin A sin B +b cos 2A =a 2,则=ab( )A .B .CD【测量目标】正弦定理,余弦定理.【考查方式】给出三角形角与边满足的关系式,求两边的比值. 【难易程度】容易 【参考答案】D【试题解析】∵2sin sin cos a A B b A +∴由正弦定理可知22sin sin sin cos A B B A +A (步骤1)∴22sin sin cos sin BA AB +=()A∴sin sin B bA a==(步骤2) 5.从1,2,3,4,5中任取2各不同的数,事件A =“取到的2个数之和为偶数”,事件B =“取到的2个数均为偶数”,则P (B ︱A )=( )A.18B.14C.25D.12【测量目标】随机事件与概率.【考查方式】给出两事件,通过求出两事件概率去求(|)P B A .【难易程度】容易 【参考答案】B【试题解析】事件A =“取到的2个数之和为偶数”所包含的基本事件有:(1,3)、(1,5)、(3,5)、(2,4),∴()P A =25.(步骤1) 事件B =“取到的2个数均为偶数”所包含的基本事件有(2,4),∴()P AB =110(步骤2) ∴(|)P B A =()1()4P AB P A =.(步骤3) 6.执行右面的程序框图,如果输入的n 是4,则输出的p 是( )A.8B.5C.3D.2第6题图【测量目标】循环结构的程序框图.【考查方式】给出流程图,将数值带入算法求解.【难易程度】中等【参考答案】C【试题解析】k=1,满足条件k<4,则执行循环体,p=0+1=1,s=1,t=1(步骤1)k=2,满足条件k<4,则执行循环体,p=1+1=2,s=1,t=2(步骤2)k=3,满足条件k<4,则执行循环体,p=1+2=3,s=2,t=3(步骤3)k=4,不满足条件k<4,则退出执行循环体,此时p=3.(步骤4)7.设sin π1 += 43θ(),则sin2θ=( )A.79- B.19- C.19D.79【测量目标】三角函数的诱导公式.【考查方式】给出三角函数的等式,求解sin2θ的值. 【难易程度】容易【参考答案】A【试题解析】由sin(π4θ+)=sinπ4cosθ+cosπ4sinθ=22(sinθ+cosθ)=13,(步骤1)两边平方得:1+2sinθcosθ=29,即2sinθcosθ=79-,则sin2θ=2sinθcosθ=79-.故选A. (步骤2)8.如图,四棱锥S—ABCD的底面为正方形,SD⊥底面ABCD,则下列结论中不正确...的是( )A.AC ⊥SBB.AB 平面SCDC.SA 与平面SBD 所成的角等于SC 与平面SBD 所成的角D.AB 与SC 所成的角等于DC 与SA 所成的角第8题图【测量目标】两条直线的位置关系,线面角,线面平行的判定. 【考查方式】给出四棱锥图示,验证选项结论. 【难易程度】中等 【参考答案】D【试题解析】∵SD ⊥底面ABCD ,底面ABCD 为正方形,∴连接BD ,AC ,则BD ⊥AC ,根据三垂线定理,可得AC ⊥SB ,故A 正确;(步骤1) ∵AB CD ,AB ⊄平面SCD ,CD ⊂平面SCD , ∴AB平面SCD ,故B 正确;(步骤2)∵SD ⊥底面ABCD ,ASO ∠是SA 与平面SBD 所成角,CSO ∠是SC 与平面SBD 所成的角, 而△SAO ≌△CSO ,∴∠ASO =∠CSO ,即SA 与平面SBD 所成的角等于SC 与平面SBD 所成的角,故C 正确;(步骤3) ∵ABCD ,∴AB 与SC 所成的角是∠SCD ,DC 与SA 所成的角是∠SAB ,而这两个角显然不相等,故D 不正确;(步骤4)9.设函数122,1()1log ,1x x f x x x -⎧=⎨->⎩,则满足()2f x 的x 的取值范围是( )A.1[-,2]B.[0,2]C.[1,+∞]D.[0,+∞]【测量目标】指数函数与对数函数化简.【考查方式】给出分段函数模型,求满足不等式未知数的取值范围. 【难易程度】中等 【参考答案】D 【试题解析】当1x时,122x-的可变形为11,0x x -,01x ∴.(步骤1)当x >1时,21log 2x-的可变形为12x, ∴x >1,故x 的取值范围[0,+∞).(步骤2)10.若a ,b ,c 均为单位向量,且0=a b ,()()0--a c b c ,则||+-a b c 的最大值为 ( )A.12-B.1C.2D.2【测量目标】向量的基本运算.【考查方式】给出向量满足的关系式,求某向量关系的最大值. 【难易程度】中等 【参考答案】B【试题解析】∵2()()0()0--⇒-++a c b c a b c a b c又∵,,a b c 为单位向量,且a b =0,∴()1+c a b ,(步骤1) 而222222()+-=+++-+a b c a b c a b c a b =32()321-+-=c a b .∴+-a b c 的最大值为1.(步骤2)11.函数)(x f 的定义域为R ,2)1(=-f ,对任意x ∈R ,2)(>'x f ,则42)(+>x x f 的解集为( ) A.(1-,1) B .(1-,+∞) C .(∞-,1-)D .(∞-,+∞)【测量目标】利用导数求函数的单调区间.【考查方式】给出函数满足的等式,求不等式解集. 【难易程度】较难 【参考答案】B【试题解析】设()()(24),(1)(1)(24)0F x f x x F f =-+-=---+=则 又对任意,()2,()()20x f x F x f x '''∈>∴=->R ,即()F x 在R 上单调递增, 则()0F x >的解集为(-1,+∞),即()24f x x >+的解集为(-1,+∞).故选B12.已知球的直径SC =4,A ,B 是该球球面上的两点,AB =3, 30=∠=∠BSC ASC ,则棱锥S —ABC的体积为 ( )A .33B .32C .3D .1【测量目标】圆的性质的应用,棱锥的体积.【考查方式】给出球直径,及内接三棱锥的部分棱长与角度,求三棱锥的体积. 【难易程度】较难 【参考答案】C【试题解析】设球心为点O ,作AB 中点D ,连接SD ,CD ,因为线段SC 是球的直径, 所以它也是大圆的直径,则易得:∠SAC =∠SBC =90,所以在Rt △SAC 中,SC =4,∠ASC =30, 得:AC =2,SA =1)又在Rt △SBC 中,SC =4,∠BSC =30 ,得:BC =2,SB 则SA =SB ,AC =BC (步骤2)因为点D是AB的中点所以在等腰三角形ASB中,SD⊥AB且SD2==,在等腰三角形CAB中,CD⊥AB且CD2==3)又SD交CD于点D ,所以AB⊥平面SCD ,即棱锥S-ABC的体积:V=13SCDAB S△.(步骤4)因为SD=2,CD=2,SC=4,由余弦定理得:cos∠SDC=2221()2SD CD SCSD CD+-=4513(16)44+-=则sin∠SDC=5)由三角形面积公式得△SCD的面积S=12SD CD sin∠SDC=3(步骤6)所以棱锥S-ABC的体积:V=13AB S△SCD=133=(步骤7)第Ⅱ卷本卷包括必考题和选考题两部分.第13题-第21题为必考题,每个试题考生都必须做答.第22题-第24题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分.13.已知点(2,3)在双曲线C:22221(0,0)x ya ba b-=>>上,C的焦距为4,则它的离心率为.【测量目标】双曲线简单几何性质.【考查方式】定点在双曲线上,给出焦距,求双曲线离心率. 【难易程度】容易【参考答案】2【试题解析】∵22221x ya b-=,C的焦距为4,∴F1(-2,0),F2(2,0),∵点(2,3)在双曲线C上,∴2a32=,∴a=1,∴e=ca=2.14.调查了某地若干户家庭的年收入x(单位:万元)和年饮食支出y(单位:万元),调查显示年收入x 与年饮食支出y 具有线性相关关系,并由调查数据得到y 对x 的回归直线方程:321.0254.0ˆ+=x y.由回归直线方程可知,家庭年收入每增加1万元,年饮食支出平均增加____________万元. 【测量目标】线性回归方程.【考查方式】给出线性回归方程式,x 的增加一定值求y 增加的值. 【难易程度】容易 【参考答案】0.254【试题解析】∵对x 的回归直线方程.∴1ˆy=0.254(x +1)+0.321, ∴12ˆˆyy -=0.254(x +1)+0.321-0.254x -0.321=0.254. 15.一个正三棱柱的侧棱长和底面边长相等,体积为32,它的三视图中的俯视图如右图所示,左视图是一个矩形,则这个矩形的面积是 .第15题图【测量目标】由三视图求几何体的表面积.【考查方式】给出三棱锥的体积,及俯视图,求三棱锥左视图的面积. 【难易程度】容易 【参考答案】23【试题解析】设正三棱柱的侧棱长为a ,由题意可知3323a =,所以a =2,底面三角形的高为3,所以左视图矩形的面积为2×3=23. 16.已知函数)(x f =A tan (ωx +ϕ)(π0,||2ωϕ><),y =)(x f 的部分图象如下图,则π()24f = .第16题图【测量目标】()tan()f x A x ωϕ=+的图象与性质.【考查方式】结合正切函数图象,在给定范围内求出周期,进而得出解析式和函数值. 【难易程度】中等【试题解析】由题意可知A =1,T =π2,所以ω=2,函数的解析式为:()tan(2)f x x ϕ=+ 因为函数过(0,1),所以,1=tan ϕ,所以ϕ=π4,所以π()tan(2)4f x x =+则f π()24=tan (ππ124+)三、解答题:解答应写文字说明,证明过程或演算步骤.17.(本小题满分12分)已知等差数列{a n }满足a 2=0,a 6+a 8=-10 (I )求数列{a n }的通项公式;(II )求数列⎭⎬⎫⎩⎨⎧-12n n a 的前n 项和. 【测量目标】等差数列的通项,数列的通项公式{}n a 与前n 项和n S 的关系. 【考查方式】已知递推关系求通项,再结合给出的关系式,求数列的前n 项和. 【难易程度】容易【试题解析】(I )设等差数列{}n a 的公差为d ,由已知条件可得110,21210,a d a d +=⎧⎨+=-⎩解得11,1.a d =⎧⎨=-⎩故数列{}n a 的通项公式为2.n a n =-(步骤1)(II )设数列1{}2n n a -的前n 项和为n S ,即211,22nn n a a S a -=+++故11S =(步骤2) 12.2242n nn S a a a =+++所以,当1n >时, 1211111222211121()2422121(1)22n n n n n n nn n n nS a a a a aS a n n-------=+++--=-+++--=---=.2nn(步骤3) 所以1.2n n nS -=综上,数列11{}.22n n n n a n n S --=的前项和(步骤4) 18.(本小题满分12分)如图,四边形ABCD 为正方形,PD ⊥平面ABCD ,PD QA ,QA =AB =12PD . (I )证明:平面PQC ⊥平面DCQ ;(II )求二面角Q —BP —C 的余弦值.第18题图【测量目标】面面平行的判定,二面角.【考查方式】给出空间线线、线面的关系,利用空间直角坐标系求解. 【难易程度】中等【试题解析】如图,以D 为坐标原点,线段DA 的长为单位长,射线DA 为x 轴的正半轴建立空间直角坐标系D —xyz .第18题(I )图(I )依题意有Q (1,1,0),C (0,0,1),P (0,2,0).则(1,1,0),(0,0,1),(1,1,0).DQ DC PQ ===- 所以0,0.PQ DQ PQ DC ==(步骤1)即PQ ⊥DQ ,PQ ⊥DC .故PQ ⊥平面DCQ . (步骤2)又PQ ⊂平面PQC ,所以平面PQC ⊥平面DCQ . (步骤3) (II )依题意有B (1,0,1),(1,0,0),(1,2,1).CB BP ==--设(,,)x y z =n 是平面PBC 的法向量,则0,0,20.0,CB x x y z BP ⎧==⎧⎪⎨⎨-+-==⎩⎪⎩即n n因此可取(0,1,2).=--n (步骤4)设m 是平面PBQ 的法向量,则0,0.BP PQ ⎧=⎪⎨=⎪⎩m m可取(1,1,1).cos ,5=<>=-所以m m n 故二面角Q —BP —C的余弦值为5-(步骤5) 19.(本小题满分12分)某农场计划种植某种新作物,为此对这种作物的两个品种(分别称为品种家和品种乙)进行田间试验.选取两大块地,每大块地分成n 小块地,在总共2n 小块地中,随机选n 小块地种植品种甲,另外n 小块地种植品种乙. (I )假设n =4,在第一大块地中,种植品种甲的小块地的数目记为X ,求X 的分布列和数学期望; (II )试验时每大块地分成8小块,即n =8,试验结束后得到品种甲和品种乙在个小块地上的每2分别求品种甲和品种乙的每公顷产量的样本平均数和样本方差;根据试验结果,你认为应该种植哪一品种?附:样本数据n x x x ,,,21⋅⋅⋅的的样本方差])()()[(1222212x x x x x x ns n -+⋅⋅⋅+-+-=,其中x 为样本平均数.【测量目标】用样本数字特征估计总体数字特征.【考查方式】给出种植方式求分布列与数学期望,再根据样本方差与样本平均数判断应选品种. 【难易程度】中等 【试题解析】(I )X 可能的取值为0,1,2,3,4,且481344482244483144484811(0),C 70C C 8(1),C 35C C 18(2),C 35C C 8(3),C 3511(4).C 70P X P X P X P X P X=============== (步骤1)X 的数学期望为181881()01234 2.7035353570E X =⨯+⨯+⨯+⨯+⨯= (步骤2) (II )品种甲的每公顷产量的样本平均数和样本方差分别为:2222222221(403397390404388400412406)400,81(3(3)(10)4(12)0126)57.25.8x S =+++++++==+-+-++-+++=甲甲(步骤3)品种乙的每公顷产量的样本平均数和样本方差分别为:2222222221(419403412418408423400413)412,81(7(9)06(4)11(12)1)56.8x S =+++++++==+-+++-++-+=乙乙(步骤4) 由以上结果可以看出,品种乙的样本平均数大于品种甲的样本平均数,且两品种的样本方差差异不大,故应该选择种植品种乙.20.(本小题满分12分)如图,已知椭圆C 1的中心在原点O ,长轴左、右端点M ,N 在x 轴上,椭圆C 2的短轴为MN ,且C 1,C 2的离心率都为e ,直线l ⊥MN ,l 与C 1交于两点,与C 2交于两点,这四点按纵坐标从大到小依次为A ,B ,C ,D .(I )设12e =,求BC 与AD 的比值; (II )当e 变化时,是否存在直线l ,使得BOAN ,并说明理由.第20题图【测量目标】椭圆的简单几何性质,直线与椭圆的位置关系.【考查方式】给出离心率求线段比值,判断在离心率变化时,是否存在直线使已知两直线平行.【难易程度】较难【试题解析】(I )因为C 1,C 2的离心率相同,故依题意可设22222122242:1,:1,(0)x y b y x C C a b a b a a+=+=>>(步骤1) 设直线:(||)l x t t a =<,分别与1C ,2C 的方程联立,求得2222((a b A t a t B t a t b a-- (步骤2)当1,,,22A B e b a y y ==时分别用表示,A B 的纵坐标,可知 222||3||:||.2||4B A y b BC AD y a === (步骤3) (II )t =0时的l 不符合题意.0t ≠时,BO //AN 当且仅当BO 的斜率BO k 与AN 的斜率AN k 相等,即,a b t t a=- 解得222221.ab e t a a b e-=-=--(步骤4)因为221||,01,11, 1.2e t a e e e -<<<-<<<<又所以解得(步骤5) 所以当202e <时,不存在直线l ,使得BO AN ;当12e <<时,存在直线l 使得BO AN . (步骤6) 21.(本小题满分12分)已知函数x a ax x x f )2(ln )(2-+-=.(I )讨论)(x f 的单调性;(II )设0>a ,证明:当a x 10<<时,)1()1(x af x a f ->+; (III )若函数)(x f y =的图象与x 轴交于A ,B 两点,线段AB 中点的横坐标为x 0,证明:f '(x 0)<0.【测量目标】利用导数判断函数的单调性,利用导数解决不等式问题.【考查方式】给出含参的函数式,利用导数判断函数的单调性,通过限定参数范围,证明不等式.【难易程度】较难【试题解析】(I )()f x 的定义域为(0,),+∞ 1(21)(1)()2(2).x ax f x ax a x x +-'=-+-=- (i )若0,a 则()0,f x '>所以()f x 在(0,)+∞单调增加.(ii )若0,a >则由()0f x '=得1,x a= 且当1(0,)x a ∈时,()0,f x '>当1x a>时,()0.f x '<(步骤1)所以1()(0,)f xa在单调增加,在1(,)a+∞单调减少. (步骤2)(II)设函数11()()(),g x f x f xa a=+--则3222()ln(1)ln(1)2,2()2.111g x ax ax axa a a xg x aax ax a x=+---'=+-=+--(步骤3)当10xa<<时,()0,g x'>而(0)0,()0g g x=∴>.故当10xa<<时,11()().f x f xa a+>-(步骤4)(III)由(I)可得,当0a时,函数()y f x=的图象与x轴至多有一个交点,故0a>,从而()f x的最大值为11(),()0.f fa a>且(步骤5)不妨设1212(,0),(,0),0,A xB x x x<<则1210.x xa<<<由(II)得1112211()()()()0.f x f x f x f xa a a-=+->==又()f x在1(,)a+∞单调递减,从而212,x xa>-于是121.2x xxa+=>(步骤6)由(I)知,()0.f x'<(步骤7)请考生在第22、23、24三题中任选一题做答,如果多做,则按所做的第一题计分.做答是用2B铅笔在答题卡上把所选题目对应题号下方的方框涂黑.22.(本小题满分10分)选修4-1:几何证明选讲如图,A,B,C,D四点在同一圆上,AD的延长线与BC的延长线交于E点,且EC=ED.(I)证明:CD//AB;(II)延长CD到F,延长DC到G,使得EF=EG,证明:A,B,G,F四点共圆.第22题图【测量目标】直线与圆的位置关系.【考查方式】根据圆的性质和直线的位置关系证明出线段的平行,结合圆和三角形中的角度关系证明圆上各点对应关系.【难易程度】容易【试题解析】(I )因为EC =ED ,所以∠EDC =∠ECD . (步骤1)因为,,,A B C D 四点在同一圆上,所以∠EDC =∠EBA . 故∠ECD =∠EBA ,所以CD //AB . (步骤2)(II )由(I )知,AE =BE ,因为EF =EG ,故∠EFD =∠EGC从而∠FED =∠GEC . (步骤3) 连结AF ,BG ,则△EF A ≌△EGB ,故∠F AE =∠GBE ,(步骤4)又CD AB ,∠EDC =∠ECD ,所以∠F AB =∠GBA . (步骤5)所以∠AFG +∠GBA =180.故,,,A B G F 四点共圆.(步骤6)23.(本小题满分10分)选修4-4:坐标系统与参数方程在平面直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧==ϕϕsin cos y x (ϕ为参数),曲线C 2的参数方程为⎩⎨⎧==ϕϕsin cos b y a x (0>>b a ,ϕ为参数),在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线l :θ=α与C 1,C 2各有一个交点.当α=0时,这两个交点间的距离为2,当α=π2时,这两个交点重合.(I )分别说明C 1,C 2是什么曲线,并求出a 与b 的值;(II )设当α=π4时,l 与C 1,C 2的交点分别为A 1,B 1,当α=π4-时,l 与C 1,C 2的交点为A 2,B 2,求四边形A 1A 2B 2B 1的面积.【测量目标】极坐标与参数方程.【考查方式】根据圆和椭圆的位置关系求出参数方程中各参数.【难易程度】中等【试题解析】(I )1C 是圆,2C 是椭圆.当0α=时,射线l 与12,C C 交点的直角坐标分别为(1,0),(a ,0),因为这两点间的距离为2,所以a =3.当π2α=时,射线l 与12,C C 交点的直角坐标分别为(0,1),(0,b ),因为这两点重合,所以b =1. (步骤1)(II )12,C C 的普通方程分别为22221 1.9x x y y +=+=和(步骤2)当π4α=时,射线l 与1C 交点1A 的横坐标为x =,与2C 交点1B 的横坐标为10x '= 当π4α=-时,射线l 与12,C C 的两个交点22,A B 分别与11,A B 关于x 轴对称,因此, 四边形1221A A B B 为梯形. (步骤3)故四边形1221A A B B 的面积为(22)()2.25x x x x ''+-=(步骤4) 24.(本小题满分10分)选修4-5:不等式选讲已知函数)(x f =|x -2||-x -5|.(I )证明:3-)(x f 3;(II )求不等式)(x f x 28-x +15的解集.【测量目标】不等式的证明,分段函数.【考查方式】对绝对值函数的分段讨论,进而得出不等式的解集.【难易程度】中等【试题解析】(I )3,2,()|2||5|27,25,3, 5.x f x x x x x x -⎧⎪=---=-<<⎨⎪⎩(步骤1)当25,327 3.x x <<-<-<时所以3() 3.f x - (步骤2)(II )由(I )可知,当22,()815x f x x x -+时的解集为空集;当225,()815{|535}x f x x x x x <<-+-<时的解集为; 当25,()815{|56}x f x x x x x -+时的解集为.(步骤3)综上,不等式2()815{|536}.f x x x x x -+-的解集为 (步骤4)。
2011年安徽高考数学理科试卷(带详解)
2011年普通高等学校招生全国统一考试(安徽卷)数学(理科)第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设i 是虚数单位,复数a 1+2-ii为纯虚数,则实数a 为 ( )A.2B.-2C.1-2D.12【测量目标】复数的基本概念及代数形式的四则运算.【考查方式】给出一个含未知数的复数,令其为纯虚数,运用公式求解. 【难易程度】容易 【参考答案】A 【试题解析】 法一:()()()()()a a a a 1+2+1+2-+2+1==2-2-2+5i i i ii i i 为纯虚数,所以,a a 2-=0=2; 法二:设a b 1+=2-ii i得a b b 1+=+2i i ,所以,b a =1=2; 法三:()a a -1+=2-2-i i i i i为纯虚数,所以a =2; 2.双曲线x y 222-=8的实轴长是( )A.2B.C. 4 【测量目标】双曲线的标准方程.【考查方式】给出一个双曲线方程,求出实轴长. 【难易程度】容易 【参考答案】C【试题解析】双曲线方程可变为x y 22-=148,所以,a a 2=4=2,实轴长a 2=4. 3.设()f x 是定义在R 上的奇函数,当x 0…时,()f x x x 2=2-,则()f 1=( )A.-3B.-1C.1D.3 【测量目标】函数的奇偶性的综合运用.【考查方式】给出在某一区间上一个函数方程,已知函数是奇函数,求解函数值. 【难易程度】容易 【参考答案】A【试题解析】法一:()f x 是定义在R 上的奇函数,且x 0…时, ()f x x x 2=2-()()()()2112113f f ∴=--=--+-=-,故选A.法二:设0x >,则0x -<,()f x 是定义在R 上的奇函数,且x 0…时,()f x x x 2=2-,()()()2222f x x x x x ∴-=---=+,(步骤1)又()()f x f x -=-,()22f x x x ∴=--,()212113f ∴=-⨯-=-,故选A. (步骤2) 4.设变量,x y 满足1,x y +…则2x y +的最大值和最小值分别为( )A.1,-1 B.2,-2 C.1,-2 D.2,-1 【测量目标】二元线性规划求目标函数的最值.【考查方式】给出一个二元不等式,求目标函数的最值. 【难易程度】中等 【参考答案】B【试题解析】 法一:特值验证:当0,1x y ==时,22x y +=,故排除A ,C ;当0,1x y ==-时,22x y +=-,故排除D ,答案为B.法二:画出不等式1,x y +…表示的平面区域,平移目标函数线,易知当直线2x y u +=经过点B ,D 时分别对应u 的最大值和最小值,所以max min 2,2u u ==-.第4题图法三:已知条件是含绝对值的不等式,所以目标函数的最大值和最小值一定互为相反数,易知0,1x y ==时,22x y +=,故选B法四:绝对值不等式表示的区域是以(0,1),(1,0),(0,1),(1,0)--为顶点的正方形,线性规划一定在顶点处取得最优解,带入目标函数计算可得最大值、最小值分别为2,2-. 5.在极坐标系中,点(,)π23到圆2cos ρθ=的圆心的距离为( )A.2 【测量目标】极坐标与参数方程及点到圆心的距离.【考查方式】给出一个点坐标和参数方程,求出点到圆心之间的距离. 【难易程度】容易 【参考答案】D【试题解析】 极坐标(,)π23化为直角坐标:cos cos sin sin x y ρθρθπ⎧==2=1⎪⎪3⎨π⎪==2=⎪3⎩,即圆2cos ρθ=的方程为222x y x +=即22(1)0x y -+=,圆心到点(1故选D. 6.一个空间几何体的三视图如图所示,则该几何体的表面积( )第6题图A.48B.32+C.48+D.80 【测量目标】由三视图求几何体的表面积.【考查方式】给出三视图及其各边边长,求出其表面积. 【难易程度】中等 【参考答案】C【试题解析】几何体是以侧视图等腰梯形为底面的直四棱柱,所以该几何体的表面积为12(24)44421642S =⨯⨯+⨯+⨯+⨯+⨯487=+故选C. 7命题“所有能被2整除的数都是偶数”的否定..是 ( )A.所有不能被2整除的数都是偶数B.所有能被2整除的数都不是偶数C.存在一个不能被2整除的数都是偶数D.存在一个能被2整除的数不是偶数 【测量目标】含有一个量词的命题的否定.【考查方式】给出含有一个量词的命题,求出其特称命题. 【难易程度】容易 【参考答案】D【试题解析】全称命题的否定是特称命题,“所有”对于“存在一个”,同时否定结论,答案为D. 8.设集合{}1,2,3,4,5,6,A ={}4,5,6,7,8,B =则满足S A ⊆且S B ≠∅ 的集合S 的个数为( ) A.57 B.56 C.49 D.8 【测量目标】集合间的关系及基本运算.【考查方式】给出两个集合与他们之间的集合关系,求出其中一个集合的个数. 【难易程度】容易 【参考答案】B【试题解析】 法一:集合A 的子集有6264=个,满足S B =∅ 的子集就是集合{1,2,3}的所有子集,一共有328=个,所以集合S 的个数为632264856-=-=.法二:集合S 是集合A 的子集且至少含有集合{4,5,6}的一个元素,所以将S 看作集合{4,5,6}的非空子集与集合{1,2,3}的子集的并集,因此一共有33(21)256-⨯=个.9.已知函数()sin(2)f x x ϕ=+,其中ϕ为实数,若π()()6f x f …对x ∈R 恒成立,且π()(π)2f f >,则()f x 的单调递增区间是( )A.ππ[π,π]()36k k k -+∈Z B.π[π,π]()2k k k +∈Z C.π2π[π,π]()63k k k ++∈Z D.π[π,π]()2k k k -∈Z 【测量目标】三角函数的单调性、最值.【考查方式】给出一个三角函数及其最值,求出其单调递增区间. 【难易程度】较难 【参考答案】C【试题解析】对x ∈R 时,π()()6f x f …恒成立,所以ππ()sin()163f ϕ=+=±, 可得π5π2π2π66k k ϕϕ=+=-或,(步骤1) 因为π()sin(π)sin (π)sin(2π)sin 2f f ϕϕϕϕ=+=->=+=,故sin 0ϕ<, 所以5π2π6k ϕ=-,所以5π()sin 26f x x ⎛⎫=- ⎪⎝⎭,(步骤2) 函数单调递增区间为π5ππ2π22π262k x k -+-+剟, 所以π2π[π,π]()63x k k k ∈++∈Z ,答案为C. (步骤3) 10.函数()(1)mnf x ax x =-在区间[0,1]上的图象如图所示,则,m n 的值可能是 ( ) A.1,1m n == B.1,2m n == C.2,1m n == D.3,1m n ==第10题图【测量目标】函数图象的应用.【考查方式】给出一个含未知量的复合函数在某一区间的图象,求出未知量. 【难易程度】较难【参考答案】B【试题解析】由图得,原函数的极大值点小于0.5, 当1,1m n ==时,()21(1)(),24a f x ax x a x =-=--+在12x =处有最值,所以A 不可能;(步骤1) 当1,2m n ==时,232()(1)(2),f x ax x a x x x =-=-+()(31)(1)f x a x x '∴=--, 令()100,,3f x x x '=⇒==即函数在13x =处有最值所以B 可能;(步骤2) 当2,1m n ==时,223()(1)(),f x ax x a x x =-=-有2()(32)(23),f x a x x ax x '=-+=- 令()200,,3f x x x '=⇒==即函数在23x =处有最值,所以C 不可能;(步骤3) 当3,1m n ==时,343()(1)()f x ax x a x x =-=-+,有2()(43)f x ax x '=-+, 令()300,,4f x x x '=⇒==即函数在34x =处有最值,所以D 不可能. (步骤4) 第II 卷(非选择题 共100分)二、填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡的相应位置. 11.如图所示,程序框图(算法流程图)的输出结果是 .第11题图【测量目标】循环结构的程序框图.【考查方式】给出程序框图,阅读并运行程序,得出结果. 【难易程度】中等 【参考答案】15【试题解析】 第1次进入循环体有:00T =+, 第2次有:01T =+,第3次有:012T =++,……第n 次有:012(1)T n =++++- ,(步骤1) 令(1)1052n n T -=>,解得15n >(负值舍去),(步骤2) 故16,n =此时输出15k =.(步骤3) 12.设()x a a x a x a x 2122101221-1=+++L ,则a a 1011+= .【测量目标】二项式定理.【考查方式】给出一个二项式,通过公式展开二项式,求出其中两项系数的和. 【难易程度】容易 【参考答案】0【试题解析】,a a 1011分别是含x 10和x 11项的系数,所以C ,a 111021=-C a 101121=,所以a a 1011+=C C 10112121-=0.13.已知向量,a b 满足()()+2-=-6g a b a b ,且1=a ,2=b ,则a 与b 的夹角为 . 【测量目标】平面向量的夹角问题.【考查方式】给出两个向量之间的关系等式及各自的模长,求出它们之间的夹角. 【难易程度】中等 【参考答案】π3【试题解析】设a 与b 的夹角为θ,依题意有:22(2)()272cos 6θ+-=+-=-+=- a b a b a a b b ,(步骤1) 所以1cos =2θ,(步骤2)因为0πθ剟,故π=3θ.(步骤3) 14.已知ABC △的一个内角为120,并且三边长构成公差为4的等差数列,则ABC △的面积为 .【测量目标】余弦定理及三角形面积.【考查方式】给出一个三角形的内角度数及三边关系,求出三角形的面积. 【难易程度】中等【参考答案】【试题解析】不妨设角120,A c b =<,则4,4a b c b =+=-,于是222(4)(4)1cos1202(4)2b b b b b +--+==--,解得=10b ,所以1=sin1202S bc = .15.在平面直角坐标系中,如果x 与y 都是整数,就称点(,)x y 为整点,下列命题中正确的是 .(写出所有正确命题的编号).①存在这样的直线,既不与坐标轴平行又不经过任何整点②如果k 与b 都是无理数,则直线y kx b =+不经过任何整点 ③直线l 经过无穷多个整点,当且仅当l 经过两个不同的整点④直线y kx b =+经过无穷多个整点的充分必要条件是:k 与b 都是有理数 ⑤存在恰经过一个整点的直线【测量目标】新定义,直线的性质,命题的判定.【考查方式】给出一个新定义,根据新定义判断给出五个命题的正确性. 【难易程度】较难 【参考答案】①③⑤【试题解析】①正确,如直线12y =+,不经过任何整点(10,2x y ==;0x ≠,y 是无理数)(步骤1)②错误,直线y =k 与b 都是无理数,但直线经过整点(1,0);(步骤2) ③正确,当直线经过两个整点时,它经过无数多个整点;(步骤3) ④错误,当10,2k b ==时,直线12y =不通过任何整点;(步骤4)⑤正确,比如直线y =只经过一个整点(0,0).(步骤5)三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.解答写在答题卡的指定区域内.16.(本小题满分12分)设2e ()1xf x ax =+,其中a 为正实数.(Ⅰ)当34=a 时,求)(x f 的极值点; (Ⅱ)若)(x f 为R 上的单调函数,求a 的取值范围【测量目标】导数的运算,利用导数求函数的极值,利用函数的单调性求参数范围. 【考查方式】给出一个含参数函数,(Ⅰ)给出参数的值求极值点,(Ⅱ)给出其单调性,求参数的取值范围.【难易程度】中等【试题解析】对)(x f 求导得22212()e (1)xax axf x ax +-'=+①(步骤1)(Ⅰ)当34=a 时,若0)(='x f ,则03842=+-x x ,解得21,2321==x x (步骤2) 结合①,可知所以,21=x 是极小值点,22=x 是极大值点. (步骤3) (Ⅱ)若)(x f 为R 上的单调函数,则)(x f '在R 上不变号,结合①与条件0a >,知2210ax ax -+…(步骤4)在R 上恒成立,因此2444(1)0a a a a ∆=-=-…,由此并结合0a >,知01a <….(步骤5) 17.(本小题满分12分)如图,ABEDFC 为多面体,平面ABED 与平面ACFD 垂直,点O 在线段AD 上,1,2OA OD ==,,,,OAB OAC ODE ODF △△△△都是正三角形.(Ⅰ)证明直线BC EF ; (Ⅱ)求棱锥F OBED -的体积.第17题图【测量目标】线线平行的判定,棱锥的体积,空间向量及其运算.【考查方式】给出一个多面体,其中两个面互相垂直,有4个正三角形,证明两条直线平行和求解棱锥的体积.【难易程度】较难 【试题解析】(Ⅰ)(综合法)证明:设G 是线段DA 与线段EB 延长线的交点,由于OAB △与ODE△都是正三角形,所以1,2OB DE=2OG OD =,(步骤1) 同理,设G '是线段DA 与线段FC 延长线的交点,有2OG OD '==,又由于G 和G '都在线段DA 的延长线上,所以G 与G '重合. (步骤2)在GED △和GFD △中,由12OB DE 和12OC DF , 12OC DF =,12OB DE =可知,B C 分别是GE 和GF 的中点,所以BC 是GEF △的中位线,故BC EF .(步骤3)(向量法)过点F 作FQ AD ⊥,交AD 于点Q ,连QE ,由平面ABED ⊥平面ADFC ,知FQ ⊥平面ABED ,以Q 为坐标原点,QE 为x 轴正向,QD 为y 轴正向,QF 为z 轴正向,建立如图所示空间直角坐标系.由条件知E ),F (,B (3,022-),C (30,,22-). (步骤1) 则有)23,0,23(-=,)3,0,3(-=EF .(步骤2) 所以2=,即得BC EF .(步骤3)第17题(Ⅰ)图(Ⅱ)由1,2,60OB OE EOB ==∠= ,知EOB S =(步骤4)而ODE △是边长为2的正三角形,故OED S =所以OBED EOB ODE S S S =+=233.(步骤5) 过点F 作FQ AD ⊥,交AD 于点Q ,由平面ABED ⊥平面ACFD 知,FQ 就是四棱锥F OBED -的高,且FQ =,所以13.32F OBED OBED V FQ S -== (步骤6) 18.(本小题满分13分)在数1和100之间插入n 个实数,使得这2n +个数构成递增的等比数列,将这2n +个数的乘积记作n T ,再令n n T a lg =,1n …. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设1tan tan n n n b a a += ,求数列{}n b 的前n 项和n S .【测量目标】对数和指数的运算,两角差的正切公式,等比和等差数列及其前n 项和. 【考查方式】考查灵活运用基本知识解决问题的能力,创新思维能力和运算求解能力. 【难易程度】较难【试题解析】(Ⅰ)设221,,,+n t t t 构成等比数列,其中100,121==+n t t ,则1212n n n T t t t t ++=①(步骤1)2121n n n T t t t t +⋅+= ②(步骤2)①×②并利用231210,(12)i n i n t t t t in +-+==+ 剟,得)2(2210+=n n T ,lg 2, 1.n n a T n n ∴==+…(步骤3) (Ⅱ)由题意和(Ⅰ)中计算结果,知tan(2)tan(3),1n b n n n =++ …(步骤4) 另一方面,利用tan(1)tan tan1tan((1))1tan(1)tan k kk k k k+-=+-=-+得tan(1)tan tan(1)tan 1tan1k kk k +-+=- (步骤5)所以22133tan(1)tan tan(3)tan 3tan(1)tan (1)tan1tan1nn n n i i i i k k n S b k k n ++===+-+-==+=-=-∑∑∑ (步骤6)19.(本小题满分12分) (Ⅰ)设1,1,x y厖证明111x y xy xy x y++++…; (Ⅱ)设1,a bc <剟证明log log log log log log a b c b c a b c a a b c ++++….【测量目标】基本不等式证明不等式.【考查方式】考查对数函数的性质和对数换底公式, 不等式的性质等基本知识,考查代数式的恒等变形和推理论证能力. 【难易程度】中等【试题解析】证明:(Ⅰ)由于1,1,x y 厖所以111x y xy xy x y++++…(步骤1) 2()1()xy x y y x xy ⇔++++…(步骤2)将上式中的右式减左式,得22(())(()1)(()1)(()())y x xy xy x y xy xy x y x y ++-++=--+-+(1)(1)()(1)(1)(1)(1)(1)(1)xy xy x y xy xy xy x y xy x y =+--+-=---+=--- 既然1,1,x y 厖所以(1)(1)(1)0xy x y ---…,从而所要证明的不等式成立. (步骤3)(Ⅱ)设y c x b b a ==log ,log ,由对数的换底公式得xy c yb x a xy a ac b c ====log ,1log ,1log ,1log (步骤4) 于是,所要证明的不等式即为111x y xy xy x y++++…(步骤5) 其中log 1,log 1a b x b y c==厖,故由(Ⅰ)立知所要证明的不等式成立. (步骤6)20.(本小题满分13分)工作人员需进入核电站完成某项具有高辐射危险的任务,每次只派一个人进去,且每个人只派一次,工作时间不超过10分钟.如果前一个人10分钟内不能完成任务则撤出,再派下一个人,现在一共只有甲、乙、丙三个人可派,他们各自能完成任务的概率分别为123,,P P P ,假设123,,P P P 互不相等,且假定各人能否完成任务的事件相互独立.(Ⅰ)如果按甲最先、乙次之、丙最后的顺序派人,求任务能被完成的概率.若改变三个人被派出的先后顺序,任务能被完成的概率是否发生变化?(Ⅱ)若按某指定顺序派人,这三个人各自能完成任务的概率依次为321,,q q q ,其中321,,q q q 是123,,P P P 的一个排列,求所需派出人员数目X 的分布列和均值(数学期望)EX ;(Ⅲ)假定1231P P P >>>,试分析以怎样的先后顺序派出人员,可使所需派出的人员数目的均值(数学期望)达到最小.【测量目标】随机事件与概率,离散型随机变量的期望.【考查方式】考查相互独立事件的概率计算,考查离散型随机变量及其分布列、均值等基本知识,考查在复杂情境下处理问题的能力以及抽象概括能力、合情推理与演绎推理,分类讨论思想,应用意识与创新意识.【难易程度】较难【试题解析】(Ⅰ)无论以怎样的顺序派出人员,任务不能被完成的概率都是123(1)(1)(1)P P P ---,(步骤1)所以任务能被完成的概率与三个人被派出的先后顺序无关,并等于1231231213231231(1)(1)(1)P P P P P P PP PP P P PP P ----=++---+(步骤2)(Ⅱ)当依次派出的三个人各自完成任务的概率分别为321,,q q q 时,随机变量X 的分布列为所需派出的人员数目的均值(数学期望)EX 是EX =1q +21)1(q q -+)1)(1(21q q --=212123q q q q +--(步骤3)(Ⅲ)(方法一)由(Ⅱ)的结论知,当甲最先、乙次之、丙最后的顺序派人时,EX =212123q q q q +--根据常理,优先派出完成任务概率大的人,可减少所需派出的人员数目的均值.下面证明:对于123,,P P P 的任意排列321,,q q q ,都有121212123232q q q q P P PP --+--+…(*)(步骤4)事实上, 12121212(32)(32)q q q q P P PP ∆=--+---+(步骤5)112212122()()P q P q PP q q =-+--+1122112122211122112122()()()()(2)()(1)()(1)[()()]0P q P q P q P q P q P P q q P q q P P q q =-+-----=--+---+-+……即(*)成立. (步骤6)(方法二)(ⅰ)可将(Ⅱ)中所求的EX 改写为12121)(3q q q q q -++-,若交换前两人的派出顺序,则变为22121)(3q q q q q -++-.由此可见,当12q q >时,交换前两人的派出顺序可减少均值. (步骤4)(ⅱ)也可将(Ⅱ)中所求的EX 改写为211)1(23q q q ---,若交换后两人的派出顺序,则变为111)1(23q q q ---.由此可见,若保持第一个派出的人选不变,当12q q <时,交换后两人的派出顺序也可减少均值. (步骤5)综合(ⅰ)(ⅱ)可知,当123(,,)P P P =),,(321q q q 时,EX 达到最小.即完成任务概率大的人优先派出,可减少所需派出人员数目的均值,这一结论是合乎常理的. (步骤6)21.(本小题满分13分)设0>λ,点A 的坐标为(1,1),点B 在抛物线2x y =上运动,点Q 满足λ=,经过点Q 与x 轴垂直的直线交抛物线于点M ,点P 满足λ=,求点P 的轨迹方程.第21题图【测量目标】直线与抛物线的位置关系,圆锥曲线中的轨迹问题.【考查方式】考查直线和抛物线的方程,平面向量的概念,性质与运算,动点的轨迹方程等基本知识,考查灵活运用知识探究问题和解决问题的能力.【难易程度】较难【试题解析】由λ=知,,Q M P 三点在同一条垂直于x 轴的直线上,故可设(),,P x y ()0,,Q x y (步骤1)()2,,M x x 则)(202x y y x -=-λ,即y x y λλ-+=20)1( ①(步骤2)再设),(11y x B ,由QA BQ λ=,即)1,1(),(0101y x y y x x --=--λ,解得110(1),(1)x x y y λλλλ=+-⎧⎨=+-⎩ ②(步骤3)将①式代入②式,消去0y ,得1221(1),(1)(1)x x y x y λλλλλλ=+-⎧⎨=+-+-⎩ ③(步骤4) 又点B 在抛物线2x y =上,所以211x y =,再将③式代入211x y =,得,))1(()1()1(222λλλλλλ-+=-+-+x y x (步骤5) 整理得0)1()1()1(2=+-+-+λλλλλλy x 因0>λ,两边同除以)1(λλ+,得 012=--y x故所求点P 的轨迹方程为12-=x y .(步骤6)。
2011年高考数学(理科)试卷(及答案)_全国卷
2011年高考全国卷 数学(理工)本试卷共4页,三大题21小题。
满分150分,考试时间120分钟。
★祝考试顺利★注意事项:1. 答题前,考生务必将自己的姓名、准考证号填在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上指定位置。
2. 选择题每小题选出答案后,用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,答在试题卷上无效。
3. 填空题和解答题用0.5毫米黑色墨水签字笔答在答题卡上每题对应的答题区域内,答在试题卷上无效。
4. 考试结束,请将本试题卷和答题卡一并上交。
一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是满足题目要求的。
1.复数1z i =+,z 为z 的共轭复数,则1zz z --= (A) -2i (B) -i (C) i (D) 2i2. 函数()20y x x =≥的反函数为(A)()24x y x R =∈ (B) ()204x y x =≥(C)()24y xx R =∈ (D) ()240y x x =≥3.下面四个条件中,使a b >成立的充分而不必要的条件是 (A) 1a b >+ (B) 1a b >- (C)22a b > (D) 33a b >4.设n S 为等差数列{}n a 的前n 项和,若11a =,公差22,24k k d S S +=-=,则k= (A) 8 (B) 7 (C) 6 (D) 55.设函数()()cos 0f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于 (A)13(B) 3 (C) 6 (D) 9 6.已知直二面角l αβ--,点,,A AC l C α∈⊥为垂足,,,B BD l D β∈⊥为垂足,若2,1AB AC BD ===,则D 到平面ABC 的距离等于(A)22 (B) 33 (C) 63(D) 1 7.某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4为朋友,每位朋友1本,则不同的赠送方法共有(A) 4种 (B) 10种 (C) 18种 (D) 20种8.曲线21x y e =+在点()0,2处的切线与直线0y =和y x =围成的三角形的面积为 (A)13 (B) 12 (C) 23(D) 1 9.设()f x 是周期为2的奇函数,当01x ≤≤时,()()21f x x x =-,则52f ⎛⎫-= ⎪⎝⎭(A) 12-(B) 14- (C) 14 (D) 1210.已知抛物线C :24y x =的焦点为F ,直线24y x =-与C 交于A 、B 两点,则cos AFB ∠= (A)45 (B) 35 (C) 35- (D) 45- 11.已知平面α截一球面得圆M ,过圆心M 且与α成60二面角的平面β截该球面得圆N ,若该球面的半径为4.圆M 的面积为4π,则圆N 的面积为(A) 7π (B) 9π (C) 11π (D) 13π12. 设向量,,a b c 满足11,,,602a b a b a c b c ===---=,则c 的最大值等于(A) 2 (B)3 (C) 2 (D) 1二、填空题:本大题共4小题,每小题5分,共20分.请将答案填在答题卡对应题号的位置上,一题两空的题,其答案按先后次序填写. 13. ()201x-的二项展开式中,x 的系数与9x 的系数之差为 .14. 已知,2παπ⎛⎫∈⎪⎝⎭,5sin 5α=,则tan 2α= . 15. 已知12F F 、分别为双曲线22:1927x y C -=的左、右焦点,点A C ∈,点M 的坐标为()2,0,AM 为12F AF ∠的角平分线,则 2AF = .16. 已知点E 、F 分别在正方体1111ABCD A B C D - 的棱11BB CC 、上,且12B E EB =,12CF FC =,则面AEF 与面ABC 所成的二面角的正切值等于 .三、解答题:本大题共6小题,共70分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2011年普通高等学校招生全国统一考试理科数学(必修+选修II)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页。
第Ⅱ卷3至4页。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。
请认真核准条形码上的准考证号、姓名和科目。
2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动, 用橡皮擦干净后,再选涂其他答案标号,在试题卷....上作答无效。
...... 3.第Ⅰ卷共l2小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
一、选择题 (1)复数1z i =+,z 为z 的共轭复数,则1zz z --= (A )2i - (B )i - (C )i (D )2i(2)函数2(0)y x x =≥的反函数为(A )2()4x y x R =∈ (B )2(0)4x y x =≥(C )24y x =()x R ∈ (D )24(0)y x x =≥(3)下面四个条件中,使a b >成立的充分而不必要的条件是 (A )1a b +> (B )1a b -> (C )22a b > (D )33a b >(4)设n S 为等差数列{}n a 的前n 项和,若11a =,公差2d =,224k k S S +-=,则k = (A )8 (B )7 (C )6 (D )5(5)设函数()cos (0)f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于(A )13 (B )3 (C )6 (D )9(6)已知直二面角α –ι- β,点A ∈α,AC ⊥ι,C 为垂足,B ∈β,BD ⊥ι,D 为垂足.若AB=2,AC=BD=1,则D 到平面ABC 的距离等于 (A)23 (B)33 (C)63(D) 1(7)某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友每位朋友1本,则不同的赠送方法共有(A)4种 (B)10种 (C)18种 (D)20种(8)曲线y=2xe-+1在点(0,2)处的切线与直线y=0和y=x围成的三角形的面积为(A)13(B)12(C)23(D)1(9)设()f x是周期为2的奇函数,当0≤x≤1时,()f x=2(1)x x-,则5 ()2f-=(A) -12(B)14- (C)14(D)12(10)已知抛物线C:24y x=的焦点为F,直线24y x=-与C交于A,B两点.则cos AFB∠=(A)45(B)35(C)35- (D)45-(11)已知平面α截一球面得圆M,过圆心M且与α成060二面角的平面β截该球面得圆N.若该球面的半径为4,圆M的面积为4π,则圆N的面积为(A)7π (B)9π (C)11π (D)13π(12)设向量a,b,c满足a=b =1,a b =12-,,a cb c--=060,则c的最大值等于(A)2 (B)3 (c)2 (D)1第Ⅱ卷注意事项:1、答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码。
请认真核准条形码卜的准考证号、姓名和科目。
2、第Ⅱ卷共2页,请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,在试题卷上作答无效。
3、第Ⅱ卷共l0小题,共90分。
二、填空题:本大题共4小题,每小题5分,共20分把答案填在题中横线上 (注意:在试卷上作答无效........)(13)(1-x)20的二项展开式中,x的系数与x9的系数之差为:(14)已知a ∈(2π,π),sin α=55,则tan2α=(15)已知F 1、F 2分别为双曲线C : 29x - 227y =1的左、右焦点,点A ∈C ,点M 的坐标为(2,0),AM 为∠F 1AF 2∠的平分线.则|AF 2| = .(16)己知点E 、F 分别在正方体ABCD -A 1B 1C 1D 1的棱BB 1 、CC 1上,且B 1E =2EB, CF=2FC 1,则面AEF 与面ABC 所成的二面角的正切值等于 .三.解答题:本大题共6小题,共70分解答应写出文字说明,证明过程或演算步骤(17)(本小题满分l0分)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c.己知A —C =90°,a+c=2b ,求C.(18)(本小题满分12分)根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3,设各车主购买保险相互独立(I)求该地1位车主至少购买甲、乙两种保险中的l 种的概率;(Ⅱ)X 表示该地的l00位车主中,甲、乙两种保险都不购买的车主数。
求X 的期望。
(19)如图,四棱锥S ABCD -中,19291()10p e AB CD ,BC CD ⊥,侧面SAB 为等边三角形,2,1AB BC CD SD ====. (Ⅰ)证明:SD SAB ⊥;(Ⅱ)求AB 与平面SBC 所成角的大小.(20)设数列{}n a 满足10a =且1111.11n na a +-=--(Ⅰ)求{}n a 的通项公式; (Ⅱ)设11n n a b n+-=,记1nn k k S b ==∑,证明:1n S <。
(21)已知O为坐标原点,F为椭圆22:12yC x+=在y轴正半轴上的焦点,过F且斜率为-2的直线l与C交与A、B两点,点P满足0.OA OB OP++=(Ⅰ)证明:点P在C上;(Ⅱ)设点P关于点O的对称点为Q,证明:A、P、B、Q四点在同一圆上. (22)(本小题满分12分)(Ⅰ)设函数2()ln(1)2xf x xx=+-+,证明:当0x>时,()0f x>;(Ⅱ)从编号1到100的100张卡片中每次随即抽取一张,然后放回,用这种方式连续抽取20次,设抽得的20个号码互不相同的概率为p.证明:p<(910)19<21e.2011年普通高等学校招生全国统一考试理科数学(必修+选修II)答案(1)【思路点拨】先求出的共轭复数,然后利用复数的运算法则计算即可。
【精讲精析】选B.(2)【思路点拨】先反解用y表示x,注意要求出y取值范围,它是反函数的定义域。
【精讲精析】选B.在函数中,且反解x得,所以的反函数为.(3)【思路点拨】本题要把充要条件的概念搞清,注意寻找的是通过选项能推出a>b,而由a>b推不出选项的选项.【精讲精析】选A.即寻找命题P使P推不出P,逐项验证可选A。
(4)【思路点拨】思路一:直接利用前n项和公式建立关于k的方程即可。
思路二:利用直接利用通项公式即可求解,运算稍简。
【精讲精析】选D.(5)【思路点拨】此题理解好三角函数周期的概念至关重要,将的图像向右平移个单位长度后,所得的图像与原图像重合,说明是此函数周期的整数倍。
【精讲精析】选C. 由题,解得,令,即得.(6)【思路点拨】本题关键是找出或做出点D到平面ABC的距离DE,根据面面垂直的性质不难证明平面,进而平面ABC,所以过D作于E,则DE就是要求的距离。
【精讲精析】选C.如图,作于E,由为直二面角,得平面,进而,又,于是平面ABC,故DE为D到平面ABC的距离。
在中,利用等面积法得.(7)【思路点拨】本题要注意画册相同,集邮册相同,这是重复元素,不能简单按照排列知识来铸。
所以要分类进行求解。
【精讲精析】选B.分两类:取出的1本画册,3本集邮册,此时赠送方法有种;取出的2本画册,2本集邮册,此时赠送方法有种。
总的赠送方法有10种。
(8)【思路点拨】利用导数求出点(0,2)切线方程然后分别求出与直线y=0与y=x的交点问题即可解决。
【精讲精析】选A.切线方程是:,在直角坐标系中作出示意图,即得。
(9)【思路点拨】解本题的关键是把通过周期性和奇偶性把自变量转化到区间[0,1]上进行求值。
【精讲精析】选A.先利用周期性,再利用奇偶性得: .(10)【思路点拨】方程联立求出A、B两点后转化为解三角形问题。
【精讲精析】选D.联立,消y得,解得.不妨设A在x轴上方,于是A,B的坐标分别为(4,4),(1,-2),可求,利用余弦定理.(11)【思路点拨】做出如图所示的图示,问题即可解决。
【精讲精析】选B.作示意图如,由圆M的面积为4,易得,中,。
故.(12)【思路点拨】本题按照题目要求构造出如右图所示的几何图形,然后分析观察不难得到当线段AC为直径时,最大.【精讲精析】选A.如图,构造,所以A、B、C、D四点共圆,分析可知当线段AC为直径时,最大,最大值为2.(13)【思路点拨】解本题一个掌握展开式的通项公式,另一个要注意.【精讲精析】0. 由得的系数为, x9的系数为,而.(14)【思路点拨】本题涉及到同角三角函数关系式,先由正弦值求出余弦值一定要注意角的范围,再求出正切值,最后利用正切函数的倍角公式即可求解。
【精讲精析】.由a∈(,),sinα=得,.(15)【思路点拨】本题用内角平分线定理及双曲线的定义即可求解。
【精讲精析】6.由角平分线定理得:,故.(16)【思路点拨】本题应先找出两平面的交线,进而找出或做出二面角的平面角是解决此问题的关键,延长EF必与BC相交,交点为P,则AP为面AEF与面ABC的交线.【精讲精析】.延长EF交BC的延长线于P,则AP为面AEF与面ABC的交线,因为,所以为面AEF与面ABC所成的二面角的平面角。
(17)【思路点拨】解决本题的突破口是利用正弦定理把边的关系转化为角的正弦的关系,然后再结合A—C=90°,得到.即可求解。
【精讲精析】选D.由,得A为钝角且,利用正弦定理,可变形为,即有,又A、B、C是的内角,故或(舍去)所以。
所以.(18)【思路点拨】解本题应首先主出该车主购买乙种保险的概率为p,利用乙种保险但不购买甲种保险的概率为0.3,即可求出p=0.6.然后(ii)利用相互独立事件的概率计算公式和期望公式计算即可.【精讲精析】设该车主购买乙种保险的概率为p,由题意知:,解得。
(I)设所求概率为P1,则.故该地1位车主至少购买甲、乙两种保险中的1种的概率为0.8。
(II)对每位车主甲、乙两种保险都不购买的概率为。
所以X的期望是20人。
(19)【思路点拨】本题第(I)问可以直接证明,也可建系证明。
(II)建立空间直角坐标系,利用空间向量的坐标运算计算把求角的问题转化为数值计算问题,思路清晰思维量小。
【精讲精析】计算SD=1,,于是,利用勾股定理,可知,同理,可证又,因此,.(II)过D做,如图建立空间直角坐标系D-xyz,A(2,-1,0),B(2,1,0),C(0,1,0),可计算平面SBC的一个法向量是.所以AB与平面SBC所成角为.(20)【思路点拨】解本题突破口关键是由式子得到是等差数列,进而可求出数列的通项公式.(II)问求出的通项公式注意观察到能采用裂项相消的方式求和。