北京市西城区2020-2021学年高二上学期期末考试数学试题(含答案)
西城区2023-2024学年第二学期期末高二数学试题及答案

北京市西城区2023—2024学年度第二学期期末试卷高二数学第1页(共5页)北京市西城区2023—2024学年度第二学期期末试卷高二数学2024.7本试卷共5页,共150分。
考试时长120分钟。
考生务必将答案写在答题卡上,在试卷上作答无效。
第一部分(选择题共40分)一、选择题共10小题,每小题4分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)在等差数列{}n a 中,13a =,35a =,则10a =(A )8(B )10(C )12(D )14(2)设函数()sin f x x =的导函数为()g x ,则()g x 为(A )奇函数(B )偶函数(C )既是奇函数又是偶函数(D )非奇非偶函数(3)袋中有5个形状相同的乒乓球,其中3个黄色2个白色,现从袋中随机取出3个球,则恰好有2个黄色乒乓球的概率是(A )110(B )310(C )15(D )35(4)在等比数列{}n a 中,若11a =,44a =,则23a a =(A )4(B )6(C )2(D )6±(5)投掷2枚均匀的骰子,记其中所得点数为1的骰子的个数为X ,则方差()D X =(A )518(B )13(C )53(D )536北京市西城区2023—2024学年度第二学期期末试卷高二数学第2页(共5页)(6)设等比数列{}n a 的前n 项和为n S ,若11a =-,1053231S S =,则6a =(A )132-(B )164-(C )132(D )164(7)设函数()ln f x x =的导函数为()f x ',则(A )(3)(2)(3)(2)f f f f ''<<-(B )(3)(3)(2)(2)f f f f ''<-<(C )(2)(3)(3)(2)f f f f ''<<-(D )(2)(3)(2)(3)f f f f ''<-<(8)设等比数列{}n a 的前n 项和为n S ,则“{}n a 是递增数列”是“{}n S 是递增数列”的(A )充分而不必要条件(B )必要而不充分条件(C )充分必要条件(D )既不充分也不必要条件(9)如果()e x f x ax =-在区间(1,0)-上是单调函数,那么实数a 的取值范围为(A )1(,][1,)e -∞+∞ (B )1[,1]e(C )1(,]e-∞(D )[1,)+∞(10)在数列{}n a 中,12a =,若存在常数(0)c c ≠,使得对于任意的正整数,m n 等式m n m n a a ca +=+成立,则(A )符合条件的数列{}n a 有无数个(B )存在符合条件的递减数列{}n a (C )存在符合条件的等比数列{}n a (D )存在正整数N ,当n N >时,2024n a >北京市西城区2023—2024学年度第二学期期末试卷高二数学第3页(共5页)第二部分(非选择题共110分)二、填空题共5小题,每小题5分,共25分。
高中数学选择性必修二 北京市朝阳区高二上学期期末考试数学试题(含答案)

故答案为:①③④
16.把正奇数列按如下规律分组:(1),(3,5,7),(9,11,13,15,17),(19,21,23,25,27,29,31),…,则在第n(n∈N*)组里有________个数;第9组中的所有数之和为________.
【答案】①. ②.2465
【解析】
②函数 在 和 分别单调递减,故②错误;
③因为 ,则当 时, ,故 时的瞬时速度是10 m/s,故③正确;
④ , ,由 解得 ,由 解得 ,
所以当 时, 的图象更“陡峭”,当 时, 的图象更“陡峭”,故④错误.
故选:A.
8.如图,将边长为4的正方形折成一个正四棱柱的侧面,则异面直线AK和LM所成角的大小为()
点 在抛物线上,
所以 ,
则 ,又 ,
所以直线 方程为 ,
联立抛物线方程 得到 ,
解得 或 ,
因为点 在 轴下方,所以 ,
由焦半径公式得: ,
故选:D.
7.下列有四个说法:
①若直线与抛物线相切,则直线与抛物线有且只有一个公共点:
②函数 在定义域上单调递减;
③某质点沿直线运动,位移 (单位:m)与时间t(单位:s)满足关系式 则 时的瞬时速度是10 m/s;
(II)选①:当直线 斜率不存在时, 的方程为 ,恰好与圆相切,满足题意;
当直线 斜率存在时,设 的方程为 ,即 ,
则圆心到直线 的距离为 ,解得 ,
此时直线 的方程为 ,即 ,
综上,直线 的方程为 或 ;
选②,可得 在圆上,即 为切点,
则切点与圆心连线斜率为 ,则切线斜率为 ,
所以直线 的方程为 ,即 .
故选:B.
10.如图,在三棱锥O-ABC中,三条侧棱OA,OB,OC两两垂直,且OA,OB,OC的长分别为a,b,c.M为△ABC内部及其边界上的任意一点,点M到平面OBC,平面OAC,平面OAB的距离分别为a0,b0,c0,则 ()
2024-2025学年北京市西城区北京师范大学附属实验中学高二上学期12月月考数学试题(含答案)

2024-2025学年北京市西城区北京师范大学附属实验中学高二上学期12月月考数学试题一、单选题:本题共10小题,每小题5分,共50分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.直线x + 3y +1=0的倾斜角是( )A. 30∘B. 60∘C. 120∘D. 150∘2.已知x 2+y 2+ax +a =0表示圆,则实数a 的取值范围为( ).A. (0,4)B. (−∞,0)C. (4,+∞)D. (−∞,0)∪(4,+∞)3.从5本不同的书中选出3本分配给3位同学,每人一本,则分配方案总数为( )A. 10B. 60C. 125D. 2434.平的内动点P (x,y )满足方程 (x +1)2+y 2+ (x−1)2+y 2=2 3,则动点P 的轨迹方程为( )A. x 23+y 22=1B. x 22+y 23=1C. x 23−y 22=1D. y 23−x 22=15.已知抛物线C:y 2=8x 的焦点为F ,点M 在C 上.若M 到直线x =−3的距离为5,则|MF|=( )A. 7B. 6C. 5D. 46.刍甍(cℎúméng)是中国古代算数中的一种几何体,它是底面为矩形的屋脊状的楔体.现有一个刍甍(如图),底面BCDE 为矩形,且BC =3,BD = 13,AF//平面BCDE,▵ABE 和▵CDF 为全等的正三角形,AF =1,则平面ABE 和底面BCDE 的夹角的余弦值为( )A. 13 B. 33 C. 22 D. 637.如图,某同学用两根木条钉成十字架,并交于点O ,制成一个椭圆仪.木条中间分别挖一道槽,在另一活动木条PAB 的P 处钻一个小孔,可以容纳笔尖,A 、B 各在一条槽内移动,可以光滑移动以保证PA 与PB 的长度不变,当A 、B 各在一条槽内移动时,P 处笔尖就画出一个椭圆.已知|PA |=3|AB |,且P 在椭圆的右顶点时,B 恰好在O 点,则该椭圆的离心率为( )A. 32B. 34C. 74 D. 558.已知双曲线C的中心在原点,以坐标轴为对称轴.则“C的离心率为2”是“C的一条渐近线为y=3x”的( )A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件9.若椭圆x2m +y2=1(m>1)与双曲线x2n−y2=1(n>0)有相同的焦点F1,F2,P是两曲线的一个交点,则▵F1PF2的面积是( )A. 12B. 1C. 2D. 410.已知M={(x,y)∣y=x+t(x2−x),1≤x≤2,0≤t≤1}是平自直角坐标系中的点集.设d是M中两点间距离的最大值,S是M表示的图形的面积,则( )A. d=3,S<1B. d=3,S>1C. d=10,S<1D. d=10,S>1二、填空题:本题共5小题,每小题5分,共25分。
北京市西城区2020—2021学年度第一学期期末试卷+答案+听力材料

北京市西城区2020—2021学年度第一学期期末试卷+答案+听力材料北京市西城区2020—2021学年度第一学期期末试卷高一英语2021.1本试卷共13页,共140分。
考试时长120分钟。
考生务必将答案写在答题卡上,在试卷上作答无效。
第Ⅰ卷(共75分)I. 听力理解(共三节,22.5分)第一节: (共4小题; 每小题1.5分,共6分)听下面四段对话,每段对话后有一道小题,从每题所给的A、B、C三个选项中选出最佳选项。
每段对话你将听一遍。
1. What does the man think the weather will be like in the afternoon?A. Cloudy.B. Rainy.C. Sunny.2. Where does the conversation probably take place?A. In a restaurant.B. In a cinema.C. In a supermarket.3. Why did the man leave his previous job?A. To study further.B. To get experience.C. To find a new job.4. Why does the woman make the phone call?A. To book a service.B. To ask about a delivery.C. To arrange a meeting.第二节:(共6小题;每小题1.5分,共9分)听下面三段对话,每段对话后有两道小题,从每题所给的A、B、C三个选项中选出最佳选项。
每段对话你将听两遍。
听第5段材料,回答第5至第6小题。
5. What is the woman?A. A bus driver.B. A college student.C. A shop assistant.6. How much will the woman save with a discount?A. 50 dollars.B. 30 dollars.C. 20 dollars.听第6段材料,回答第7至第8小题。
2023-2024学年北京市西城区高二(上)期末数学试卷【答案版】

2023-2024学年北京市西城区高二(上)期末数学试卷一、选择题共10小题,每小题4分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
1.直线3x﹣4y+1=0不经过()A.第一象限B.第二象限C.第三象限D.第四象限2.抛物线x2=6y的焦点到准线的距离为()A.12B.1C.2D.33.在空间直角坐标系O﹣xyz中,点A(4,﹣2,8)到平面xOz的距离与其到平面yOz的距离的比值等于()A.14B.12C.2D.44.在(2x+1x)3的展开式中,x的系数为()A.3B.6C.9D.12 5.正四面体ABCD中,AB与平面BCD所成角的正弦值为()A.√63B.√36C.√24D.√336.已知直线a,b和平面α,其中a⊄α,b⊂α,则“a∥b”是“a∥α”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件7.设A,B为双曲线E:x 2a2−y2b2=1(a>0,b>0)的左、右顶点,M为双曲线E上一点,且△AMB为等腰三角形,顶角为120°,则双曲线E的一条渐近线方程是()A.y=x B.y=2x C.y=√2x D.y=√3x8.在正方体的8个顶点中任选3个,则这3个顶点恰好不在同一个表面正方形中的选法有()A.12种B.24种C.32种D.36种9.如图,在长方体ABCD﹣A1B1C1D1中,AB=3,BC=CC1=4,E为棱B1C1的中点,P为四边形BCC1B1内(含边界)的一个动点.且DP⊥BE,则动点P的轨迹长度为()A.5B.2√5C.4√2D.√1310.在直角坐标系xOy 内,圆C :(x ﹣2)2+(y ﹣2)2=1,若直线l :x +y +m =0绕原点O 顺时针旋转90°后与圆C 存在公共点,则实数m 的取值范围是( ) A .[−√2,√2]B .[−4−√2,−4+√2]C .[−2−√2,−2+√2]D .[−2+√2,2+√2]二、填空题共5小题,每小题5分,共25分.11.过点A (2,﹣3)且与直线x +y +3=0平行的直线方程为 . 12.在(2x +1)4的展开式中,所有项的系数和等于 .(用数字作答)13.两个顶点朝下竖直放置的圆锥形容器盛有体积相同的同种液体(示意图如图所示),液体表面圆的半径分别为3,6,则窄口容器与宽口容器的液体高度的比值等于 .14.若方程x 2m+2+y 24−m =1表示的曲线为双曲线,则实数m 的取值范围是 ;若此方程表示的曲线为椭圆,则实数m 的取值范围是 .15.如图,在正方体ABCD ﹣A 1B 1C 1D 1中,AB =2,E 为棱BB 1的中点,F 为棱CC 1(含端点)上的一个动点.给出下列四个结论:①存在符合条件的点F ,使得B 1F ∥平面A 1ED ; ②不存在符合条件的点F ,使得BF ⊥DE ; ③异面直线A 1D 与EC 1所成角的余弦值为√55; ④三棱锥F ﹣A 1DE 的体积的取值范围是[23,2].其中所有正确结论的序号是 .三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程. 16.(10分)从6男4女共10名志愿者中,选出3人参加社会实践活动.(1)共有多少种不同的选择方法?(2)若要求选出的3名志愿者中有2男1女,且他们分别从事经济、文化和民生方面的问卷调查工作,求共有多少种不同的选派方法?17.(15分)如图,在直三棱柱ABC﹣A1B1C1中,BA⊥BC,BC=3,AB=AA1=4.(1)证明:直线AB1⊥平面A1BC;(2)求二面角B﹣CA1﹣A的余弦值.18.(15分)已知⊙C经过点A(1,3)和B(5,1),且圆心C在直线x﹣y+1=0上.(1)求⊙C的方程;(2)设动直线l与⊙C相切于点M,点N(8,0).若点P在直线l上,且|PM|=|PN|,求动点P的轨迹方程.19.(15分)已知椭圆C:x 2a2+y2b2=1(a>b>0)的一个焦点为(√5,0),四个顶点构成的四边形面积等于12.设圆(x﹣1)2+y2=25的圆心为M,P为此圆上一点.(1)求椭圆C的离心率;(2)记线段MP与椭圆C的交点为Q,求|PQ|的取值范围.20.(15分)如图,在四棱锥P﹣ABCD中,AD⊥平面P AB,AB∥DC,E为棱PB的中点,平面DCE与棱P A相交于点F,且P A=AB=AD=2CD=2,再从下列两个条件中选择一个作为已知.条件①:PB=BD;条件②:P A⊥BC.(1)求证:AB∥EF;(2)求点P到平面DCEF的距离;(3)已知点M在棱PC上,直线BM与平面DCEF所成角的正弦值为23,求PMPC的值.21.(15分)设椭圆C:x 2a2+y2b2=1(a>b>0)左、右焦点分别为F1,F2,过F1的直线与椭圆C相交于A,B两点.已知椭圆C的离心率为12,△ABF2的周长为8.(1)求椭圆C的方程;(2)判断x轴上是否存在一点M,对于任一条与两坐标轴都不垂直的弦AB,使得MF1为△AMB的一条内角平分线?若存在,求点M的坐标;若不存在,说明理由.2023-2024学年北京市西城区高二(上)期末数学试卷参考答案与试题解析一、选择题共10小题,每小题4分,共40分。
2022-2023学年北京市西城区高二(下)期末数学试卷【答案版】

2022-2023学年北京市西城区高二(下)期末数学试卷一、选择题共10小题,每小题4分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
1.等差数列﹣2,1,4,…的第10项为( ) A .22B .23C .24D .252.设函数f (x )=sin x ,则f '(π)=( ) A .1B .﹣1C .0D .π3.某一批种子的发芽率为23.从中随机选择3颗种子进行播种,那么恰有2颗种子发芽的概率为( ) A .29B .827C .49D .234.记函数f(x)=1x 的导函数为g (x ),则g (x )( ) A .是奇函数B .是偶函数C .既是奇函数又是偶函数D .既不是奇函数又不是偶函数5.在等差数列{a n }中,若a 1=9,a 8=﹣5,则当{a n }的前n 项和最大时,n 的值为( ) A .5B .6C .7D .86.某钢厂的年产量由2010年的40万吨增加到2020年的60万吨,假设该钢厂的年产量从2010年起年平均增长率相同,那么该钢厂2030年的年产量将达( ) A .80万吨B .90万吨C .100万吨D .120万吨7.如果函数f (x )=xlnx ﹣ax 在区间(1,e )上单调递增,那么实数a 的取值范围为( ) A .[1,2]B .(﹣∞,2]C .[1,+∞)D .(﹣∞,1]8.在等比数列{a n }中,a 1=2,公比q =23,记其前n 项的和为S n ,则对于n ∈N *,使得S n <m 都成立的最小整数m 等于( ) A .6B .3C .4D .29.设随机变量ξ的分布列如下:则下列说法中不正确的是( ) A .P (ξ≤2)=1﹣P (ξ≥3)B .当a n =12n (n =1,2,3,4)时,a 5=124 C .若{a n }为等差数列,则a 3=15D .{a n }的通项公式可能为a n =1n(n+1)10.若函数f(x)={xe x +a ,x <1,a −x ,x ≥1有且仅有两个零点,则实数a 的取值范围为( )A .(0,e )B .(﹣∞,e )C .(0,1e )D .(−∞,1e )二、填空题共5小题,每小题5分,共25分。
高中数学选择性必修二 北京市昌平区新学道临川学校高二上学期期末考试数学(理)试题(含答案)
高二数学理科试卷
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.在等差数列 中,若 , ,则 =()
A. B. C. D.
【答案】C
【解析】
【分析】由等差数列通项公式可求得 ,由 可求得结果.
【详解】设等差数列 的公差为 ,则 , .
【详解】抛物线 ( )的准线为: ,
因为准线经过点 ,可得 ,即 ,
所以抛物线为 ,焦点坐标为 ,
故选:B.
11.椭圆 内有一点 过点 的弦恰好以 为中点,那么这弦所在直线的方程为()
A. B.
C. D.
【答案】B
【解析】
【分析】利用点差法得到直线斜率和中点之间的关系,即可得解.
【详解】设弦的两个端点为 ,
即曲线C右侧部分的点到原点的距离都不超过 ,
再根据对称性可知,曲线C上的所有点到原点的距离都不超过 ,②正确;
对于③,因为在x轴上方,图形面积大于四点(﹣1,0),
(1,0),(1,1),(﹣1,1)围成的矩形面积1×2=2,
在x轴下方,图形面积大于三点(﹣1,0),(1,0),(0,﹣1)围成的等腰直角三角形的面积 ×2×1=1,
故选:C.
2.在等比数列 中, , ,则 与 的等比中项是()
A. B. C. D.
【答案】A
【解析】
【分析】计算出 的值,利用等比中项的定义可求得结果.
【详解】由已知可得 ,由等比中项的性质可得 ,
因此, 与 的等比中项是 .
故选:A.
3.若△ABC中,a=4,A=45°,B=60°,则边b的值为( )
2022-2023学年北京市西城区高二上学期期末考试数学试题(解析版)
2022-2023学年北京市西城区高二上学期期末考试数学试题一、单选题1.直线的倾斜角等于( ) 0x y +=A . B . C . D .45 90 120 135 【答案】D【分析】由得.0x y +==-+y x【详解】由得,则倾斜角为. 0x y +==-+y x 1-135 故选:D2.抛物线的准线方程为( ) 24x y =A . B . C . D .1x ==1x -1y =1y =-【答案】D【分析】根据抛物线方程求出,进而可得焦点坐标以及准线方程. 2p =【详解】由可得,所以焦点坐标为,准线方程为:, 24x y =2p =()0,11y =-故选:D.3.在空间直角坐标系中,点,则( ) O xyz -()()1,3,0,0,3,1A B -A .直线坐标平面 B .直线坐标平面 AB xOy AB ⊥xOy C .直线坐标平面 D .直线坐标平面AB xOz AB ⊥xOz 【答案】C【分析】求出及三个坐标平面的法向量,根据与法向量的关系判断.ABAB【详解】,坐标平面的一个法向量是,坐标平面的一个法向量是(1,0,1)AB =--xOy (0,0,1)xOz ,坐标平面的一个法向量是,这三个法向量与都不平行,(0,1,0)yOz (1,0,0)AB但,点均不在坐标平面上,因此与坐标平面平行,(0,1,0)0AB ⋅=,A B xOz AB xOz 故选:C .4.在的展开式中,的系数为( ) 4(21)x +2x A .6 B .12C .24D .36【答案】C【分析】先求二项式展开式的通项公式,然后根据通项公式计算求解即可.【详解】展开式的通项公式, 4(21)x +444144C (2)12C k kk k k kk T x x---+=⋅=令,得,42k -=2k =所以在的展开式中,的系数为,4(21)x +2x 42242C 4624-=⨯=故选:C5.在长方体中,,则二面角的余弦值为( ) 1111ABCD A B C D -13,2,1AB BC AA ===1D BC D --ABCD【答案】D【分析】画出长方体,为二面角所成的平面角,求出1111ABCD A B C D -1D CD ∠1D BC D --的值即可得出答案.1cosD CD ∠【详解】长方体中,,,1111ABCD A B C D -13,2,1AB BC AA ===1CD ∴=,平面,平面,,BC CD ∴⊥BC ⊥ 11DCC D 1CD ⊂11DCC D 1BC CD ∴⊥又平面平面,1D BCBCD BC =为二面角所成的平面角,∴1D CD ∠1D BC D --11cos CD D CD CD ∠===所以二面角1D BC D --故选:D.6.若直线与圆相离,则实数的取值范围是( ) 340x y m ++=22(1)1x y ++=m A . B . ()(),82,∞∞--⋃+()(),28,∞∞--⋃+C . D .()(),22,∞∞--⋃+()(),88,∞∞--⋃+【答案】B【分析】根据直线与圆相离则圆心到直线的距离大于圆的半径即可求解.【详解】因为直线与圆相离,所以圆心到直线的距离,(1,0)-340x y m ++=1d r =解得或, 2m <-8m >故选:B.7.2名辅导教师与3名获奖学生站成一排照相,要求2名教师分别站在两侧,则不同的站法共有( ) A .种 B .种C .种D .种33A 332A 5353A A -35A 【答案】B【分析】先排好教师再排学生即可.【详解】2名教师排在两边有种排法,3名学生排在中间有 种排法,22A 2=33A 所以共有 种排法; 332A 故选:B.8.设,则“”是“直线与直线平行”的( ) a R ∈1a =1:20l ax y +=()2140+++=:l x a y A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】A【解析】计算直线平行等价于或,根据范围大小关系得到答案.1a =2a =-【详解】直线与直线平行,则,或, 1:20l ax y +=()2140+++=:l x a y ()12a a +=1a =2a =-验证均不重合,满足.故“”是“直线与直线平行”的充分不必要条件. 1a =1:20l ax y +=()2140+++=:l x a y 故选:A.【点睛】本题考查了充分不必要条件,意在考查学生的计算能力和推断能力.9.如图是一个椭圆形拱桥,当水面在处时,在如图所示的截面里,桥洞与其倒影恰好构成一个椭l 圆.此时拱顶离水面,水面宽,那么当水位上升时,水面宽度为( )2m 6m 1mA .BC .D 【答案】A【分析】根据题意可得桥洞与其倒影恰好构成的椭圆方程为:,求直线被椭圆所截22194x y +=1y =得的弦长,代入椭圆方程即可求解.【详解】以图中水面所在的直线为轴,水面的垂直平分线所在直线为轴,建立平面直角坐标x y 系,根据已知条件可知:桥洞与其倒影恰好构成的椭圆方程为:,22194x y +=当水位上升时,水面的宽度也即当时,直线被椭圆所截的弦长. 1m 1y =1y =把代入椭圆方程可得: 1y =x =所以当水位上升时,水面的宽度为, 1m 故选:.A 10.设点,,直线,于点,则的最大值为( ) ()1,0A ()2,3N -:210l x ay a ++-=AM l ⊥M MNA B .6C .4D .1【答案】B【分析】依题意可得直线的方程,再联立直线的方程,消后可得到的轨迹方程为AM l a M ,则所求的最大值为圆心到点的距离加上半径,由此即可求解.()()22111x y -++=MN ()2,3N -【详解】依题意可得直线的方程为,AM ()1y a x =-联立,消整理得,()2101x ay a y a x ++-=⎧⎨=-⎩a ()()22111x y -++=所以点的轨迹是以为圆心,1为半径的圆, M ()1,1-故的最大值为,MN 16=故选:B .二、填空题11.设,则过线段的中点,且与垂直的直线方程为__________. ()()3,2,1,4A B --AB AB 【答案】2310x y --=【分析】求出线段的中点坐标和斜率,利用点斜式写出直线方程.AB【详解】因为,所以线段的中点,且.()()3,2,1,4A B --AB ()1,1C --()423132AB k --==---所以与垂直的直线的斜率为, AB 112332ABk k =-=-=-所以过线段的中点,与垂直的直线方程为,即. AB AB ()2113y x +=+2310x y --=故答案为:2310x y --=12.在的展开式中,常数项为_____.61x x ⎛⎫+ ⎪⎝⎭【答案】20【分析】根据展开式的通项公式求解即可.【详解】在的展开式的通项公式为,61x x ⎛⎫+ ⎪⎝⎭6621661kk k k k k T C x C x x --+⎛⎫== ⎪⎝⎭所以令,解得,620k -=3k =所以常数项为3620C =故答案为:.2013.设为抛物线的焦点,点在抛物线上,点,且,则F 2:4C y x =A C ()3,0B AF BF =AB =__________.【答案】【分析】由题意可设,且满足,因为,由两点间的距离公式代入可求(),A x y 24y x ==2AF BF =出,即可求出.()1,2A ±AB 【详解】由题意可得,,,设, ()1,0F 2BF =(),A x y 且满足,此时, 24y x =0x >则,2AF ===解得:,此时,所以, 1x =2y =±()1,2A ±故AB ==故答案为:14.记双曲线的离心率为e ,写出满足条件“直线与C 无公共点”的e 2222:1(0,0)x y C a b a b -=>>2y x =的一个值______________.【答案】2(满足1e <≤【分析】根据题干信息,只需双曲线渐近线中即可求得满足要求的e 值. by x a =±02b a<≤【详解】解:,所以C 的渐近线方程为,2222:1(0,0)x y C a b a b -=>>b y x a=±结合渐近线的特点,只需,即,02b a <≤224b a ≤可满足条件“直线与C 无公共点”2y x =所以===c e a又因为,所以, 1e >1e <≤故答案为:2(满足 1e <≤15.如图,在正方体中,为棱的中点,是正方形内部(含1111ABCD A B C D -2,AB E =1DD F 11CDD C 边界)的一个动点,且平面.给出下列四个结论:1//B F 1A BE①动点的轨迹是一段圆弧;F ②存在符合条件的点,使得; F 11B F A B ⊥③三棱锥的体积的最大值为;11B D EF -23④设直线与平面所成角为,则的取值范围是. 1B F 11CDD C θtan θ2,⎡⎣其中所有正确结论的序号是__________. 【答案】②③④【分析】对于①,利用线线平行可证得平面平面,进而知动点的轨迹; 1//A BE 1MNB F 对于②,利用垂直的性质的可判断; 对于③,利用三棱锥的体积公式可求得;对于④,利用线面角的定义结合三角形可求解;【详解】对于①,分别取和的中点,连接,,,1CC 11D C ,N M MN 1MB 1NB 由正方体性质知,,平面,平面,所以1//MN A B 11//NB EA 1,MN NB ⊂/1A BE 11,A B EA ⊂1A BE 平面,又平面,,所以平面平面,1,//MN NB 1A BE 1,MN NB ⊂1MNB 1MN NB N = 1//A BE 1MNB 当在上运动时,有平面,故动点的轨迹是线段,故①错误; F MN 1//B F 1A BE F MN 对于②,当为线段中点时,,, F MN 11MB NB = 1B F MN ∴⊥又,,故②正确;1//MN A B 11B F A B ∴⊥对于③,三棱锥的体积,11B D EF -11111233D EF D EF V S B C S =⋅=又所以三棱锥的体积的最大值为,故③正确;1max 12112D EF S =⨯⨯=23对于④,连接,则与平面所成角,则, 11,B F C F 1B F 11CDD C 11FC Bθ=∠12tan C Fθ=,所以的取值范围是,故④正确; 11C F≤tan θ2,⎡⎣故正确结论的序号是①③④, 故答案为:②③④三、解答题16.从4男3女共7名志愿者中,选出3人参加社区义务劳动. (1)共有多少种不同的选择方法?(2)若要求选中的3人性别不能都相同,求共有多少种不同的选择方法? 【答案】(1)35 (2)30【分析】(1)7名志愿者中选出3人共有种;37C(2)选中的3人性别不能都相同,即为1男2女或2男1女,即.12214343C C C C +【详解】(1)7名志愿者中选出3人共有种; 37765C 353´´==!(2)选中的3人性别不能都相同,即为1男2女或2男1女,则有12214343C C C C 436330+=´+´=种.17.如图,在四棱锥中,平面,底面为正方形,为线段的中P ABCD -PA ⊥ABCD ABCD E AB 点,.2PA AB ==(1)求证:;BC PE ⊥(2)求平面与平面夹角的余弦值. PAB PBD 【答案】(1)证明见解析【分析】(1)根据线面垂直的性质定理可得,再根据底面是正方形可证明线面垂直,即可PA BC ⊥得;(2)建立空间直角坐标系,利用空间向量求得平面与平面的法向量,即可BC PE ⊥PAB PBD 求得二面角的余弦值【详解】(1)由平面,根据线面垂直的性质定理可知, PA ⊥ABCD PA BC ⊥又因为底面为正方形,所以,ABCD AB BC ⊥又因为,且PA,BA 含于平面PAB,所以平面;PA BA A = BC ⊥PAB 为线段的中点,平面, E AB PE ⊂PAB 所以,BC PE ⊥(2)根据题意可知,以A 点为坐标原点,分别以AB 、AD 、AP 所在直线为轴、轴、轴建立x y z 空间直角坐标系,如下图所示:则;(0,0,0),(2,0,0),(0,2,0),(0,0,2)A B D P 则,(2,0,2),(0,2,2)PB PD =-=-设平面的一个法向量为,PBD (,,)n x y z =得,令可得,,即;·220·220n PB x z n PD y z ⎧=-=⎪⎨=-=⎪⎩ 1z =1,1x y ==(1,1,1)n = 易知,是平面的一个法向量, (0,2,0)AD =PAB 设平面与平面的夹角为,PAB PBD θ则cos cos ,n AD n AD n AD θ==== 所以,平面与平面PAB PBD 18.在平面直角坐标系中,,曲线是由满足直线与的斜率之积等于定值()()1,0,1,0A B -C PA PB 的点组成的集合.()λλ∈R P (1)若曲线是一个圆(或圆的一部分),求的值;C λ(2)若曲线是一个双曲线(或双曲线的一部分),且该双曲线的离心率,求的取值范围. C e ≥λ【答案】(1)1-(2) [)1+∞,【分析】(1)由题意知,的斜率存在,设代入斜率公式,再由斜率之积为定值,化,PA PB (),P x y 简满足圆的条件即可求得的值.λ(2)由题意知,的斜率存在,设代入斜率公式,再由斜率之积为定值,化简满足双,PA PB (),Px y 曲线的条件及离心率的取值范围.e ≥λ【详解】(1)设且,,由题意知,的斜率存在, (),P x y 1x ≠±()()1,0,1,0A B -,PA PB 则即, ()0011PA PBy y k k x x λ--⋅=⋅=---()()211y x x λ=-+可化为,()()2211y x x x λλλ=+-=-()1x ≠±因为曲线是一个圆(或圆的一部分),所以,C ()()2211y x x x λλλ=+-=-可化为,220x y λλ-++=所以解得.140λλ-=⎧⎨->⎩1λ=-(2)设且,,由题意知,的斜率存在, (),P x y 1x ≠±()()1,0,1,0A B -,PA PB 则即, ()0011PA PBy y k k x x λ--⋅=⋅=---()()211y x x λ=-+可化为,()()2211y x x x λλλ=+-=-()1x ≠±因为曲线是一个双曲线(或双曲线的一部分),所以,C ()()2211y x x x λλλ=+-=-可化为,()210yx λλ-=≠所以, 222221,,1a b c a b λλ===+=+因为 ce a=≥所以,22211c e a λ+==≥1λ≥所以的取值范围为. λ[)1+∞,19.已知椭圆的一个焦点为,其长轴长是短轴长的2倍.2222:1(0)x y C a b a b +=>>)F(1)求椭圆的方程;C (2)记斜率为1且过点的直线为,判断椭圆上是否存在关于直线对称的两点?若存在,F l C l ,A B 求直线的方程;若不存在,说明理由.AB 【答案】(1)2214x y +=(2)不存在【分析】(1)由及,根据,解得,写出方程.c 2a b =222a b c =+,a b(2)先假设存在,设出直线的方程,与椭圆方程联立,求得中点坐标,代入,求得,验证AB l m ,得结论不存在关于直线对称的两点.Δ0<l 【详解】(1)2222244()c a b a b a c ==∴==-24,2,1a a b ∴===椭圆的方程 C 2214x y +=(2)假设存在关于对称的两点l ,A B的方程为:l y x = AB y x m =-+直线与椭圆的方程联立得 AB C 2214y x m x y =-+⎧⎪⎨+=⎪⎩2258440x mx m -+-=设1122(,),(,)A x y B x y 则, 12121282,()255m m x x y y x x m +=+=-++=的中点代入AB 4(,55mm y x =解得 m =此时,216800m ∆=-+<所以椭圆上不存在关于直线对称的两点.C l ,A B 20.如图,在四棱柱中,平面,1111ABCD A B C D -1AA ⊥1,,ABCD AB CD AD CD ==∥为线段的中点,再从下列两个条件中选择一个作为已知.12,AA AB E ==1AA 条件①:;条件②:AD BE ⊥BC =(1)求直线与所成角的余弦值;CE 11B D (2)求点到平面的距离;1C BCE (3)已知点在线段上,直线与平面的长. M 1CC EM 11BCCB CM 【答案】(3)的长为或. CM 1232【分析】选①或②,都能得到,,后如图以为原点建立空间直角坐标系.则可利用向量DA AB ⊥A 方法求线线角,点面距离,面面角解决问题.【详解】(1)若选择①,因平面ABCD ,平面ABCD ,则,1AA ⊥DA ⊂1DA AA ⊥又,平面,平面,,则AD BE ⊥1AA ⊂11ABB A EB ⊂11ABB A 1∩AA EB E =DA ⊥平面,又平面,则;11ABB A AB ⊂11ABB A DA AB ⊥若选择②,做,交AB 于F ,又,则四边形DCFA 是平行四边形,则CF AD ∥AB CD ,又,则.1CD CF AD AF ====2AB =1FB =则在中,,得,又,则.CFB 222CF FB BC +=CF AB ⊥CF AD ∥AD AB ⊥故,则如图建立以A 为原点的空间直角坐标系.11,,DA AA DA AB AA AB ⊥⊥⊥则,()()()()11110001102022,,,,,,,,,,,C E D B 得,则直线与所成角的余弦值为: ()()11111120,,,,,CE B D =--=-CE 11B D(2)因,()()()()1020110001112,,,,,,,,,,,B C E C 则. ()()()1110111002,,,,,,,,CB CE CC =-=--=设平面的法向量为,则, BCE ()111,,x n y z = 111110000x y z n CE x y n CB ⎧--+=⋅=⎧⎪⇒⎨⎨-+=⋅=⎩⎪⎩ 取,则求点到平面的距离()1,1,2n = 1C BCE d (3)因点在线段上,则设,其中. M 1CC ()11,,M t []0,2t ∈又,则.又, ()0,0,1E ()111,,EM t =-()()11,1,00,0,2CB CC =-= ,设平面法向量为,则, 11BCC B ()222,,m x y z = 222100200x y m CB z m CC ⎧-+=⎧⋅=⎪⇒⎨⎨=⋅=⎪⎩⎩取,则直线与平面所成角的正弦值为: ()1,1,0m =u r EM 11BCC B或.12EM mtEM m⋅==⇒=⋅32t=得线段的长为或.CM123221.已知椭圆的焦点在轴上,且离心率为.22:116x yCt t+=+-x12(1)求实数的值;t(2)若过点可作两条互相垂直的直线,且均与椭圆相切.证明:动点组成的集合(),P m n12,l l12,l l C P是一个圆.【答案】(1)3t=(2)见解析【分析】(1)根据椭圆的离心率即可求解,(2)联立直线与椭圆的方程,根据相切得判别式为0,进而代入切线中的,化简k k,km n b¢=-+=即可求解.【详解】(1)椭圆的焦点在轴上,且离心率为,所以,解22:116x yCt t+=+-x12()216114t tet+--==+得,3t=(2)当时,椭圆方程为,3t=22143x y+=设与椭圆相切,且斜率存在的直线方程为,y k x b'=+所以,()222223484120143y k x bk x k bx bx y''=+⎧⎪⇒+++-=⎨+=⎪⎩'由于相切,所以,化简得—①,()()()222=84344120k b k b¢¢D-+->22430k b¢-+=设过点且斜率为的直线方程为,即,(),P m n0k'≠()y k x m n¢=-+y kx km n=-+所以将代入①得,k k,km n b¢=-+=()22430k km n--++=化简得—②,22224230k n kmn k m -+-+=将代入②得,化简得—③, 1k -22221114230n mn m k k k æöç÷-+--+=ç÷èø22224230n k kmn m k ---+=由②③相加得, ()()()2222227117k k m n m n +=++Þ+=当其中一条切线无斜率时,此时,也满足,12,l l (2P ,±227m n +=综上可知:动点组成的集合是一个圆,且圆的方程为(),P m n 227m n +=【点睛】根据直线与曲线相切,转化成判别式为0,进而得到等量关系式,可将关系式进行适当的变形,根据弦长公式,或者利用向量共线等方式,化简运算即可求解.。
北京市西城区2020-2021学年高二第一学期期末考试语文试题及答案
北京市西城区2020—2021学年度第一学期期末试卷高二语文2021.1本试卷共10页,共150分。
考试时长150分钟。
考生务必将答案写在答题纸上,在试卷上作答无效。
第Ⅰ卷一、根据要求整合相关知识,完成1~6题。
(每题3分,共18分)1.下列各组词语中,字形全都正确的一项是(3分)A.桀骜胡诌妄图永葆青春B.纠葛斜睨布署陨身不恤C.妥协船舷防碍度过难关D.理睬脚指缴费隐约其词2.下列句中加点词语的运用,不正确...的一项是(3分)A.有的放矢....的批评和自我批评是我们党保持肌体健康,不断增强战斗力的锐利武器。
B.名为“海贝斯”的强大台风正在靠近,当地民众人心惟危....,纷纷采购食品作为储备。
C.当今世界,一些国家之间战火不绝,人类能否化干戈为玉帛......,最终达到和谐共生呢?D.九层之台....,起于累土....。
要把十九大描绘的蓝图变为现实,必须从最基础的工作做起。
3.下面一段话的空缺部分中,各句间的顺序排列正确的一项是(3分)有的同志担心,坚持实践是检验真理的唯一标准,会削弱理论的意义。
这一点,对于澄清被“四人帮”搞得非常混乱的理论问题,具有特别重要的意义。
①相反,只有坚持实践是检验真理的唯一标准②才能够使伪科学、伪理论现出原形③凡是科学的理论,都不会害怕实践的检验④这种担心是多余的⑤从而捍卫真正的科学理论A.①②③⑤④B.③①②⑤④C.④①②⑤③D.④③①②⑤4.下列有关文学常识的表述,不正确...的一项是(3分)A.孔子是儒家学派的创始人,庄子是道家学派的思想家。
他们的作品《论语》和《庄子》均为语录体散文。
B.《复活》是俄国著名作家列夫·托尔斯泰的代表作之一。
小说以“复活”为题,探讨了人在精神上的复活。
C.《记念刘和珍君》和《为了忘却的记念》均为鲁迅先生的纪念性文章,它们都表现出对所忆之人的深挚感情。
D.孙犁的一些作品充满诗情画意,如《荷花淀》;赵树理的一些作品则具有浓郁的乡土气息,如《小二黑结婚》。
北京市西城区2020—2021学年度第一学期期末试卷(含答案)
北京市西城区2020—2021学年度第一学期期末试卷高三语文2021.1本试卷共10页,共150分。
考试时长150分钟。
考生务必将答案写在答题卡上,在试卷上作答无效。
一、本大题共5小题,共18分。
阅读下面的材料,完成1-5题。
材料一建国七十年来,我国粮食产量稳步提升,其中科技的贡献有目共睹。
科技选种育种对粮食增产作用巨大。
比如作物全息定域选种,是在作物具有强遗传势的部位选种的方法。
实验证明,玉米的强遗传势区在果穗中下部,选用这一部位的籽粒做种,比用顶部的籽粒做种增产35.4%;高粱果穗上部的籽粒充实饱满,生活力强,在结实丰产方面有较强的遗传性,选用上部籽粒做种比用中部籽粒做种增产6.4%~10.8%。
任何作物随着本身遗传性状的改良,生产性能会不断提高。
我国水稻种植从20世纪50年代中后期开始,由高秆品种改为新培育出的矮秆品种,该品种耐肥抗倒,单位面积产量比高秆品种增加30%以上。
1986年袁隆平提出杂交水稻的育种战略,历经九年艰苦攻关,中国独创的两系法杂交水稻取得成功,又使单产比常规品种增产15%~20%。
专家预测目前正在培育的超高产品种,将比现有品种在单产上提高近一倍。
科学技术可以改善耕地条件,进而扩大某些粮食作物种植区域,还可以提高粮食生产过程中有限资源的利用率。
例如在实施塑料薄膜覆盖后,土壤一般可增温2~5℃,覆盖期内地表积温增加200~300℃,从而使作物适宜耕作区的纬度向北推移2~4°,海拔提高1000~2000m。
由于该技术可应用的作物范围广,一般增产幅度可达30%~50%。
同时,地膜覆盖能使耕层土壤含水量提高2.77%~4.55%,每亩土壤蒸发量减少100~150m3。
单位农产品的平均耗水量减少一半,就相当于灌溉面积扩大了一倍。
农机装备技术的进步也至关重要。
21世纪以来我国农机装备技术发展极为快速。
机械设备如深松机、无人驾驶联合耕播作业机等逐渐被推广使用的同时,很多新技术也在其中得到应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北京市西城区2020—2021学年度第一学期期末试卷高二数学2021.1 本试卷共5页,共150分。
考试时长120分钟。
考生务必将答案写在答题卡上,在试卷上作答无效。
第一部分(选择题共50分)一、选择题共10小题,每小题5分,共50分。
在每小题列岀的四个选项中,选出符合题目要求的一项。
(1)在复平而内,复数z对应的点的坐标是(21),则复数Z二(A) 2-i (B) l-2i (C) 2 + i (D) l + 2i(2)在(a + b)/l的展开式中,只有第4项的二项式系数最大,则,匸(A) 4 (B) 5 (C) 6 (D) 7⑶椭圆汩詁的焦点坐标为(A) (5,0), (-5,0) (B) (3,0), (-3,0)(C) (0,5), (0,-5) (D) (0,3), (0,-3)(4)已知直线A :or-y-l =0 ,厶:ox+(a + 2)y + l = 0・若厶丄厶,则实数a =(A) -1 或 1 (B) 0或1(C) 一1 或2 (D) 一3或2(5)已知平而&丄平而0, = 下列结论中正确的是(A)若直线加丄平面a,则milp(B)若平而了丄平而a,贝0////?(C)若直线加丄直线则加丄0 (D)若平而卩丄直线则了丄0(6)将4张座位编号分别为1,2,3,4的电影票全部分给3人,每人至少1张•如果分给同一人的2张电影票具有连续的编号,那么不同的分法种数是(A) 24 (B) 18(C) 12 (D) 6(7)已知双曲线C:4- —= 1的两个焦点是,点P在双曲线C上.若C的离心率/ 16为】,且IP斥1=10,贝'JIPFJ=3 ■(A)4或 16 (B) 7或 13(C) 7或 16 (D) 4或 13(8)在正三棱锥P-ABC中,AB = 3. /<4 = 2,则直线Q4与平Wi ABC所成角的大小为(A) 30°(B) 45°(C) 60°(D) 75°(9)已知圆Q的方程为(x-«)2+(y-b)2=4,圆Q的方程为X+(y_b + i)2=i,其中a.beR,那么这两个圆的位垃关系不可能为(A)外离(B)外切(C)内含(D)内切2(10)点M在直线/:x = 2上,若椭圆C:x2 + —= 1上存在两点使得是等4腰三角形,则称椭圆C•具有性质P.下列结论中正确的是(A)对于直线/上的所有点,椭圆C都不具有性质P(B)直线/上仅有有限个点,使椭圆C具有性质P(C)直线/上有无穷多个点(但不是所有的点),使椭圆C具有性质P(D)对于直线/上的所有点,椭圆C都具有性质P第二部分(非选择题共100分)二、填空题共6小题,每小题4分,共24分。
(11)已知复数z = i-(l + i),贝ijlzl=—.2(12)若双曲线C:F—L = l(〃>0)的焦距为2$贝忆=—:C的渐近线方程为—・lr(13 )设(X — 2)4 = a4x4 + a3x3 + a2x2 + a x x + a{y > 贝U a x + a2+ “3 +=・(14)在空间直角坐标系中,已知点A(L0,0).B(020),C(0,0,2).D(0.0,l),则直线Q与BC所成角的大小是(15)已知抛物线/ =4A-的焦点为F,准线为/,点P在抛物线上,PQ丄/于点0.若△PQF是锐角三角形,则点P的横坐标的取值范帀是—・(16)如图,正方体ABCD-A.B^D,的棱长为1, 分别为BgD、的中点,P是底三、解答题共6小题,共76分。
解答应写岀文字说明,演算步骤或证明过程。
而上一点.若AP〃平而BEF,(17)(本小题10分)生物兴趣小组有12名学生,其中正、副组长各1名,组员10名•现从该小组选派3名同学参加生物学科知识竞赛.< I)如果正、副组长2人中有且只有1人入选,共有多少种不同的选派方法?<n)如果正、副组长2人中至少有1人入选,且组员甲没有入选,共有多少种不同的选派方法?(18)(本小题12分)已知圆C过原点O和点A(l,3),圆心在直线y = l±.< I)求圆C的方程:(II)直线/经过点O,且/被圆C截得的弦长为2,求直线/的方程.(19 )(本小题13分)如图,在正三棱柱ABC —几色G中,AB = AA{, DEF分别是的中点.(I)求证:CF//平而ADE;(II)求证:丄平jffiADE.(20)(本小题13分)如图,设点A"在x 轴上,且关于原点O 对称•点P 满足tanZP^B = 2janZPBA = l, 且的而积为20. (I ) 求点P 的坐标;(II ) 以43为焦点,且过点P 的椭圆记为C.设M (i 0,y 0)是C 上一点,且-1<A O <3,求儿的取值范围.yk(21)(本小题14分)如图,在四棱锥P- ABCD 中,PQ 丄平而E 为AD 的中点,底而ABCQ 是 边长为2的正方形,且二而角P — BE -C 的余弦值为近.(22)(本小题14分)2 2已知椭圆 C :2 + ・ = l (d>〃〉0)的一个焦点为 F (-1.0), A (-“0), 4S0),且cr b-\A 2F\=3.(I )求椭圆c 的方程;(II )过点F 的直线交椭圆C 于点M 记△4MN 和△4M/V 的面积分别为&和S?. 当S 厂S 严甞~时,求直线MN 的方程.(II )求点C 到平而的距离.北京市西城区202—2021学年度第一学期期末试卷(15) (l,+oo) 注:(12)、(16)题每空2分。
三、解答题(共6小题,共76分)(17)(共 10 分) 解:(I )正、副组长2人中有且只有1人入选,选派方法数为C ;Cfo=9O.(II )正.副组长2人都入选,且组员甲没有入选,选派方法数为C ;C ;=9・ 正、副组长2人中有且只有1人入选,且组员甲没有入选,选派方法数为所以正、副组长2人中至少有1人入选,且组员甲没有入选,选派方法数为 9 + 72 = 81.一、选择题 (共10小题,每小题5分,共50分)(1 ) A (2) C (3) B (4) C (5) (6) B(7) A(8) A(9) C(10) 二' 填空题 (共6小题,每小题4分,共24分)(11) >/2 (12) 2y = ±2x(13) -15 (14) 60°D D高二数学参考答案2021.1(16) 10分(18)(共 12 分)解:(I)设圆C的圆心坐标为(仏1)・……1分依题意,有 3+卩=血一1)2+22, ......3分解得d = 2. ……4分从而圆C的半径为r =舶+ F = x/5 , ……5分所以圆C的方程为(x- 2尸+ (y _ 1尸=5 . ……6分(II)依题意,圆C的圆心到直线/的距离为2. ……7分显然直线兀=0符合题意. ……8分当直线/的斜率存在时,设英方程为y = kx9即kx-y = O・……9分所以12—11 血+13解得心一二・43所以直线/的方程为y =--x.4 订0分11分12分综上,直线/的方程为x = 0或3x + 4y =0.(19)(共 13 分)解:(I )设AE(]BF = O,连接OD.因为ABC-A.B,G为正三棱柱,且=所以侧而AAB3为正方形. ……1分因为E,F分别是BB^AA,的中点,所以O是BF的中点. ……2分又因为D是BC的中点,所以OD//CF .……4分因为ODu平而ADE,CFcz平而ADE,所以CF〃平而ADE.(II)因为△ABC为正三角形,所以AQ丄BC.又CC|丄平而ABC ,所以AD丄Cq.所以A£>丄平而£BCC| .所以BC;丄AD .连接BQ.因为侧而B/CG为正方形,所以BC]丄B,C.所以BC;丄£>£.所以SC】丄平面ADE. (20 )(共 13 分) •8分7分10分11分12分13分解:(I )设 A(—c,0),3(c,0)・所以^r=20,解得c = 5. ……5分所以点P的坐标为(-3,4). ……6分(II)由(I )得A(—5,0),3(5,0)・所tllPAl=7(-3 + 5)2+42 =2>/5 , IPBl=7(-3-5)2+42 =4^5 . ……8 分2 2 设以人B为焦点且过点P的椭圆方程为C: = +刍=1.“ \r贝 iJfl = l(IPAl + lPBl) = 3>/5 ,又 X =A2-C2=20,……10 分22 2所以椭圆c的方程为器+务=1. ……11分所以余+弟儿即£=20(1 一善).因为-1<A0<3,所以0W尤<9.所以16<y:W20. ……12分所以v0的取值范围是[-2X/5,^)U(4,275J. ……13分(21)(共 14 分)解:(I )依题意,DA.DCQP 两两互相垂直,如图建立空间直角坐标系D-xyz ・设 PD = h(h>0)・ 由题意得E(LO.O), B(Z2.0), P(O.OM)・ 所以PE-(1,0,-/?), EB = (1,2,0).2f 则〉'o=T ,5冷又因为PD 丄平而ABCD,所以平而ABCD 的一个法向量为加=(0.0.1)・5 = 0.即 it EB = 0, xo - %力=0’ xo + 2y()= 0. 依题意’有唤5=緒2卫一 6 '解得h = 2、所以PD = 2.10分 (II)由(I )得,平而P £B 的法向量为w = (2-lJ).11分又 C(020), 所以BC = (-2,0,0)・12分所以点C 到平面哪的距离为罄件芈14分设平面PEB 的法向量为n =(勺,儿,心),1分解得a = 2.……2分 北京市西城区2020-2021学年度第一学期期末试卷 商二数学 第11页(共11页)所以 gFI=a+c = 3. 所以lr = n 2-c 2= 3 .... 3 分、 •>所以椭圆C 的方程为二+匚=1・……4分4 3 (II)当直线MN 的斜率不存在时,其方程为无=-1・此时M(-导N(-1,-彳)‘或M(-1厂尹(-1肩)・ 3 9所以5=?,即S 2-S 1=3,不合题意.当直线MN 的斜率存在时,设其方程为y = k(x+\)伙工0). 由得(3 + 4,庆+弘3 + 4“一12 = 0. [3x 2+4y 2=12•rt . - 、- .z • nj.l8Zc"4«~—12攻:M(X]」),N(X2」2),则坷+七=_3 + 4川,A -X 2 = 3 + 4A : 因为S^ll^FIdy.l + lyJ), S^ll^FKIyJ + ly,!),2 2所以 S?-5, =ix2x(| x l + l 儿 |)=| yi -y 2\ =I^(A --A -,)I=lkl J(X]— 4兀内_12lkl J/ + 1 =3 +4k 2•令岑黑王L 罟,解得^±i.所以直线MN 的方程为—y + l = 0,或x + y + l = O.……5分... 6分……8分... 10分……12分……13分... 14分。