统计学计量的统计描述方法

合集下载

医学统计学计量资料的统计描述

医学统计学计量资料的统计描述
位置的水平,多个百分位数结合使用,可以用来 描述资料的离散趋势和确定医学参考值范围。
正确应用集中趋势指标
• 算数均数:适用于单峰对称分布资料; • 几何均数:适用于变量值呈等比级数关系和呈对
数正态分布的资料; • 中位数和百分位数:适用于任何分布的资料,但
在样本含量较少时不稳定,越靠两端越不稳定; • 中位数在抗极端值的影响方面,比均数具有较好
• 计算公式: Q= QU - QL = P75 - P 25 • 意义: Q值越大,说明变异程度越大。
• 特点:包括了居于中间位置50%的变量值,该指
标比全距稍稳定,但仍未考虑每个观察值。
某传染性疾病的潜伏期(天)
平均偏差(mean difference)
• 定义:各观察值偏离平均数的绝对平均差距 • 计算公式:
差、标准差。
极差(range)
• 表示法:R • 定义:一组资料中最大值与最小值之差。
• 计算公式: R = max-min
• 意义:反映个体变异范围的大小。R越大,变异度(离
散程度)越大, R甲=188-142=46、R乙=166-158=8
• 优点:计算简便,概念清晰,如说明传染病、食物中毒 的最长、最短潜伏期等
125.5296
若应用算术均数为:
问题:
• 为什么表达该资料的平均水平宜用几何均 数?
• 几何均数适用条件是什么? • 何种情况不宜计算几何均数? • 利用频数表计算几何均数时应注意什么?
几何均数的应用
• 几何均数适用于变量值呈等比级数关系和呈对数 正态分布的资料;有些呈轻度偏态分布的资料经 过对数变换后呈对称分布的资料。
• 算术均数 • 几何平均数 • 中位数 • 众数
算术均数(mean)

统计学知识点(完整)

统计学知识点(完整)

基本统计方法第一章概论1•总体(Population ):根据研究目的确定的同质对象的全体(集合) ;样本(Sample ):从总体中随机抽取的部分具有代表性的研究对象。

2.参数(Parameter ):反映总体特征的统计指标,如总体均数、标准差等,用希腊字母表示,是固定的常数;统计量(Statistic ):反映样本特征的统计指标,如样本均数、标准差等,采用拉丁字字母表示,是在参数附近波动的随机变量。

3.统计资料分类:定量(计量)资料、定性(计数)资料、等级资料。

第二章计量资料统计描述1.集中趋势:均数(算术、几何)、中位数、众数2.离散趋势:极差、四分位间距( QR=P75-P25)、标准差(或方差)、变异系数(CV)3.正态分布特征:①X轴上方关于X= 对称的钟形曲线;②X= 时,f(X)取得最大值;③ 有两个参数,位置参数和形态参数;④曲线下面积为1,区间土的面积为68.27% ,区间±1.96 的面积为95.00%,区间±2.58 的面积为99.00%。

4.医学参考值范围的制定方法:正态近似法:X U /2 S ;百分位数法:P2.5-P 97.5。

第三章总体均数估计和假设检验1.抽样误差(Sampling Error ):由个体变异产生、随机抽样造成的样本统计量与总体参数的差异。

抽样误差不可避免,产生的根本原因是生物个体的变异性。

2.均数的标准误(Standard error of Mean, SEM):样本均数的标准差,计算公式:八n。

反映样本均数间的离散程度,说明抽样误差的大小。

3.降低抽样误差的途径有:①通过增加样本含量n;②通过设计减少S。

4.t分布特征:①单峰分布,以0为中心,左右对称;②形态取决于自由度,越小,t值越分散,t分布的峰部越矮而尾部翘得越高;③当逼近a ,S X逼近X, t分布逼近u分布,故标准正态分布是t分布的特例。

5.置信区间(Con fide nee In terval , CI ):按预先给定的概率(1-)确定的包含总体参数的一个范围,计算公式:X t /2, S X或X U /2, S X。

计量资料的统计学方法

计量资料的统计学方法

计量资料的统计学方法
首先,计量资料的统计学方法包括描述统计和推断统计。

描述
统计用于总结和展示数据的特征,包括均值、中位数、标准差、频
数分布等。

这些统计量可以帮助我们了解数据的集中趋势、离散程
度和分布形态。

推断统计则用于从样本数据中推断总体的特征,包
括参数估计和假设检验。

参数估计可以帮助我们对总体参数(如均值、比例)进行估计,而假设检验则可以帮助我们对总体参数的假
设进行检验。

其次,计量资料的统计学方法还包括回归分析和方差分析。


归分析用于研究自变量和因变量之间的关系,可以帮助我们预测因
变量的取值。

常见的回归分析包括简单线性回归和多元线性回归。

方差分析则用于比较多个总体均值是否相等,可以帮助我们判断不
同组别之间的差异是否显著。

此外,计量资料的统计学方法还包括相关分析和时间序列分析。

相关分析用于研究两个变量之间的相关关系,可以帮助我们了解它
们之间的相关性强弱和方向。

时间序列分析则用于研究时间序列数
据的特征和规律,包括趋势、季节性和周期性等,可以帮助我们进
行未来的预测和规划。

综上所述,计量资料的统计学方法涵盖了描述统计、推断统计、回归分析、方差分析、相关分析和时间序列分析等多个方面,可以
帮助我们全面深入地理解和解释数据的特征和规律。

在实际应用中,研究者可以根据具体问题的特点和要求选择合适的统计方法进行分
析和解释。

《医学统计学》统计描述 (1)

《医学统计学》统计描述  (1)

2500 2500 2500 420
500 500 500
甲 乙丙
例4-9,etc
1.极差(Range) (全距)
符号:R 意义:反映全部变量值的
R X max X min
变动范围。
580
优点:简便,如说明传染病、
560 540
食物中毒的最长、最短潜 520
伏期等。
500
缺点:1. 只利用了两个 极端值
表2-2 115名正常成年女子血清转氨酶(mmol/L)含量分布
转氨酶含量
人数
12~
2
15~
9
18~
14
21~
23
24~
19
27~
14
30~
11
33~
9
36~
7
39~
4
42~45
3
人数
25
20 15
10 5
0
13.5 19.5 25.5 31.5 37.5 43.5. 血清转氨酶(mmol/L)
图2-2 115名正常成年女子血清转氨酶的频数分布
lg 表示以10为底的对数;
lg 1表示以10为底的反对数
X 0,为正值 (0,负数?)
几何均数的适用条件与实例
适用条件:呈倍数关系的等比资料或对数正态分 布(正偏态)资料;如抗体滴度资料
例 血清的抗体效价滴度的倒数分别为:10、
100、1000、10000、100000,求几何均数。
XG
lg1
图 2-3 101 名 正 常 人 血 清 肌 红 蛋 白 的 频 数 分 布
2. 描述计量资料的分布特征
①集中趋势(central tendency):变量值集中 位置。本例在组段“4.7~4.9”。

统计学第二章计量资料的统计描述

统计学第二章计量资料的统计描述
数据。同时,还需要对数据进行质量控制和预处理,以消除误差和异常值的影响。
02
统计数据整理与展示方法
数据清洗与预处理技巧
80%
缺失值处理
根据数据的分布情况和实际背景 ,选择合适的缺失值填充方法, 如均值、中位数、众数等。
100%
异常值处理
采用箱线图、散点图等方法识别 异常值,并根据实际情况选择删 除、替换或保留。
分类
根据测量水平的不同,计量资料可分为离散型和连续型两类。离 散型数据只能取整数值,如人口数、医院床位数等;连续型数据 则可以取实数范围内的任何值,如身高、体重等。
计量资料特点分析
数值性
计量资料以数值形式表示,具有数量化的特点,便 于进行数学运算和统计分析。
连续性
连续型计量资料在实数范围内可以取任意值,数据 分布的连续性使得统计推断更为精确。
06
统计图表在数据可视化中应用
常见统计图表类型介绍
条形图(Bar Chart)
用于展示分类数据之间的比较,横轴表示分类,纵轴表示数量或比例。
折线图(Line Chart)
用于展示时间序列数据或连续性数据的趋势变化,横轴表示时间或类 别,纵轴表示数量或比例。
散点图(Scatter Plot)
用于展示两个变量之间的关系,横轴和纵轴分别表示两个变量,点的 位置表示变量的取值。
一组观察值中出现次数最多的数。
计算方法
应用场景
中位数计算需先将数据排序,然后取中间 位置的数;众数计算则是统计各数值出现 的次数,取出现次数最多的数。
适用于各种类型的数据,尤其适用于偏态 分布数据。中位数和众数对极端值不敏感 ,因此能较好地反映数据的集中趋势。
不同集中趋势指标比较
算术平均数、中位数和 众数都是描述数据集中 趋势的指标,但各有特 点。

计量资料和计数资料的统计方法

计量资料和计数资料的统计方法

计量资料和计数资料的统计方法计量资料和计数资料是统计学中常见的两种数据类型,它们在统计分析中有着不同的处理方法和应用场景。

本文将分别介绍计量资料和计数资料的统计方法,并探讨其在实际问题中的应用。

一、计量资料的统计方法计量资料是指可以用数值表示的数据,例如身高、体重、温度等。

统计学中常用的计量资料分析方法有描述统计和推断统计。

1. 描述统计描述统计是对收集到的数据进行总结和描述的方法。

常用的描述统计量有平均值、中位数、众数、标准差、方差等。

平均值是计量资料最常用的描述统计量,它可以反映数据的集中趋势。

中位数和众数则可以反映数据的位置和分布情况。

标准差和方差则可以衡量数据的离散程度。

2. 推断统计推断统计是基于样本数据对总体进行推断的方法。

在推断统计中,常用的统计分析方法有假设检验和置信区间估计。

假设检验用于验证关于总体的某个参数的假设,例如总体均值是否等于某个特定值。

置信区间估计则可以给出总体参数的一个区间估计,例如总体均值的置信区间。

二、计数资料的统计方法计数资料是指不连续的、以计数形式出现的数据,例如人数、次数、事件发生次数等。

计数资料的统计方法主要包括频数分布、列联表分析和卡方检验。

1. 频数分布频数分布是计数资料最常用的分析方法之一,它将数据按照不同的取值进行分类,并统计每个类别的频数。

通过频数分布可以直观地了解数据的分布情况和特征。

2. 列联表分析列联表分析是用于分析两个或多个分类变量之间关系的方法。

通过构建列联表可以清晰地展示不同变量之间的交叉频数,并计算各个格子的期望频数和卡方值。

列联表分析可以帮助我们判断两个变量之间是否存在相关性。

3. 卡方检验卡方检验是用于检验两个或多个分类变量之间是否存在显著差异的统计方法。

卡方检验基于计数资料的频数分布和列联表,通过计算观察频数与期望频数的差异,并进行假设检验来判断变量之间是否独立。

三、计量资料和计数资料的应用计量资料和计数资料在实际问题中具有广泛的应用。

统计学-计量资料的统计描述方法

统计学-计量资料的统计描述方法

计量资料的统计描述方法怎样表达一组数据?描述计量资料的常用指标—A 、描述平均水平(中心位置):均数X 、中位数和百分位数、几何均数G 、众数(mode ) B 、描述数据的分散程度:标准差、四分位数间距、 变异系数、方差、全距(一)均数mean 和标准差standard deviation1. (算术)均数X均数是描述一组计量资料平均水平或集中趋势的指标。

*直接计算公式:12nX X X X X nn+++==∑应用条件:适用于对称分布,特别是正态分布资料。

2. 中位数(median )M 和百分位数(percentile )A.中位数M是将一组观察值从小到大排序后,居于中间位置的那个值或两个中间值的平均值。

应用条件:用于任何分布类型,包括偏态资料、两端数据无界限的资料。

计算:n 为奇数时--1()2n M X+=n 为偶数时--()(1)2212n n M X X +⎛⎫=+ ⎪⎝⎭9人数据:12,13,14, 14, 15, 15, 15, 17, 19天B.百分位数是将N 个观察值从小到大依次排列,再分成100等份,对应于X%位的数值即为第X 百分位数。

中位数是第百分50位数。

四分位数间距(quartile range )= 第25百分位数(P25)~第75百分位数(P75)。

四分位数间距用于描述偏态资料的分散程度(代替标准差S ),包含了全部观察值的一半。

)(天155219===+X X M 8845122221415214.5()M X X X X ⎛⎫==== ⎪⎝⎭+如果只调查了前八位中学生,则:+(+)(+)天百分位数计算(频数表法):(%)XX XL Xi P L nX f f =+-∑X L :第X 百分位数所在组段下限 L Σf :小于X L 各组段的累计频数 X i :第X 百分位数所在组段组距n :总例数 f x :所在组段频数注:有的教材X= r ;L f ∑=C例:求频数表的第25、第75百分位数(四分位数间距)组段 频数f 累积频数∑f 56~ 2 2 59~ 5 762~ 12 19 ∑f 25 L 25 65~15 34 P 25在此68~ 25 5971~ 26 85 ∑f 75 L 75 74~19 104 P 75在此77~ 15 119 80~ 10 129 83~851 130合 计130① 确定Px 所在组段:P 25所在的组段:n X %=130×25%=32.5,65~组最终的累积频数=34,32.5落在65~组段内;P 75所在的组段:n X %=130×75%=97.5, 此值落在74~组段 ② 确定Px 所在组段的X L 、X i 、f x 、L Σf ③ P 25=65+3x[(130x25%-19)/15]=65.90P 75=74+3x[(130x75%-85)/19]=74.66四分位数间距=65.90~74.66 (次/分)3.几何均数G (geometric mean )应用:适用于成等比数列的资料,特别是服从对数正态分布资料。

医学统计学 第二章 计量资料的统计描述

医学统计学 第二章 计量资料的统计描述

肌红蛋白含量
人数
0~
2
5~
3
10~
7
15~
9
20~
10
25~
22
30~
23
35~
14
40~
9
45~50
2
18
人数
25 20 15 10
5 0
2.5 12.5 22.5 32.5 42.5 52.5 血 清 肌 红 蛋 白(μg / m L)
图 2-3 101 名 正 常 人 血 清 肌 红 蛋 白 的 频 数 分 布
医学统计学 第二章 计量资料的统计 描述
计量资料(定量资料、数值变量资料) 总体:有限或无限个(定量)变量值 样本:从总体随机抽取的n个变量值:
X1,X2,X3,……,Xn
n为样本例数(样本大小、样本含量)
2
统计描述——描述其分布规律 1、用频数分布表(图)
要求:大样本 如 n〉30
2、用统计指标 描述 集中趋势 离散趋势
6
➢制表步骤 了解分布
1. 求极差(range) 极差也称全 距,即最大值和最小值之差,记作R。 本例
R 5 .7 1 2 .3 5 3 .3 6 ( m m o l/L )
7
2.确定组距(i) :
组段数通常取组 10-15组 本例组距
i 3 .3 6 /1 0 0 .3 3 6 0 .3 0
累计频率(%) (4)
0
402
402
35.80
1
330
732
65.18
2
232
964
85.84
3
118
1082
96.35
4
27
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

计量资料的统计描述方法
怎样表达一组数据?
描述计量资料的常用指标—
A、描述平均水平(中心位置):
均数X、中位数和百分位数、几何均数G、众数(mode)
B、描述数据的分散程度:
是将一组观察值从小到大排序后,居于中间位置的那个值或两个中间值的平均值。

应用条件:
用于任何分布类型,包括偏态资料、两端数据无界限的资料。

计算:
n 为奇数时--
1
(
)2
n M X
+=
n 为偶数时--
()(1)2212n n M X X +⎛
⎫=+ ⎪
⎝⎭
9人数据:12,13,14, 14, 15, 15, 15, 17, 19天
B.百分位数
是将N 个观察值从小到大依次排列,再分成100等份,对应于X%位的数值即为第X 百分位数。

中位数是第百分50位数。

四分位数间距(quartile range )
= 第25百分位数(P25)~第75百分位数(P75)。

四分位数间距用于描述偏态资料的分散程度(代替标准差S ),包含了全部观察值的一半。

)
(天1552
19===+X X M 88451
22221415214.5()
M X X X X ⎛⎫
==== ⎪⎝⎭+如果只调查了前八位中学生,则:
+(+)(+)天
百分位数计算(频数表法):
(%)
X
X X
L X
i P L nX f f =+-∑
X L :第X 百分位数所在组段下限 L Σf :小于X L 各组段的累计频数
65~组最终的累积频数=34,32.5落在65~组段内;
P 75所在的组段:n X %=130×75%=97.5, 此值落在74~组段 ② 确定Px 所在组段的X L 、X i 、f x 、L Σf ③ P 25=65+3x[(130x25%-19)/15]=65.90
P 75=74+3x[(130x75%-85)/19]=74.66
四分位数间距=65.90~74.66 (次/分)
3.几何均数G(geometric mean)
应用:
适用于成等比数列的资料,特别是服从对数正态分布资料。

原始数据分布不对称,经对数转换后呈对称分布的资料。

可用于反映一组经对数转换后呈对称分布或正态分布的变量值
平均抗体效价为: 1:57
加权法:
众数
是一组观察值中出现频率最高的那个观察值;若为分组资料,众数则是出现频率最高的那个
组段的组中值。

适用于大样本但较粗糙。

例:有16例病人的发病年龄为42,45,48,51,52,54,55,55,58,58,58,58,61,61,62,62,试求众数。

正态分布时:均数=中位数=众数
正(右)偏态分布时:均数 > 中位数 >众数
负(左)偏态分布时:均数 < 中位数 <众数
标准差的5应用:
描述变异程度、计算标准误、计算变异系数、
描述正态分布、估计正常值范围
S用于正态分布资料
怎样使用均数和标准差?
论文中常用X±S描述对称、正态或近似正态分布数据的特征。

描述偏态资料的分散程度需用四分位数间距P25~P75(代替标准差S)。

方差:
2。

医用。

正态分布曲线理论上的特征
(1)以X= μ均数为中心, X值呈钟型分布,中央高、两端对称性减少、与X轴永不相交。

(2 )在 X= μ处,f(x)取最大值(例数最多)。

(3 )正态分布由均数μ、标准差σ决定曲线的左右位置和高低形状:
正态分布有两个参数,即位置参数--均数μ和形态参数--标准差σ。

若固定标准差σ,改变均数μ值,曲线沿着X轴平行移动,其形状不变。

若固定μ,σ越小,曲线形状越陡峭;反之,σ越大,曲线越平坦。

正态分布均数(位置参数)、标准差(变异度)变化示意图
正态曲线面积分布规律:
①X轴与正态曲线所夹面积恒等于1或100%;
②区间μσ
±的面积为68.27%;
③区间 1.96
μσ
±的面积为95.00%;
④区间 2.58
μσ
±的面积为99.00%。

正态分布u值表(标准正态分布概率单位值)
变量值
分布范围(%) 尾部面积
α
单侧u值双侧u值
80 0.20 0.84 1.28
90 0.10 1.28 1.64
95 0.05 1.64 1.96
99 0.01 2.33 2.58
尾部面积为α的u值,记为uα,称为u界值:
尾部面积各为2.5%时(黑色处),其对应的u值为u=±1.96;u=(-2.58,2.58)区间的面积为0.99(空白处)
正态分布的应用:
1.估计正态分布X值在特定值范围内的分布比例(概率)。

2.制定某临床指标的参考值范围
3.利用估计变量值的范围或对极端值做取舍。

4.许多统计方法的统计推断建立在正态分布基础上。

有足够的样本例数(一般不低于100例)
2. 确定参考值范围的百分界限(常用95%)
3. 考虑制定单侧或双侧诊断界值:
新药肯定比旧药好(旧药肯定比新药差)——单侧
新药可能好,也可能差------------------------------双侧
双侧标准较高,结论较可靠(常用)
4. 依分布(正态或偏态) 确定计算方法:(1)正态分布法
X±µ·S,其中
双侧95%参考值范围公式:X±1.96S 单侧95%参考值范围公式:X+1.64S。

相关文档
最新文档