金纳米棒
金纳米棒光热效应杀菌 -回复

金纳米棒光热效应杀菌-回复金纳米棒光热效应杀菌是近年来受到广泛关注的一种新型杀菌方法。
它利用纳米棒在受到光照时产生的光热效应,对目标细菌进行选择性杀灭。
本文将一步一步地回答与金纳米棒光热效应杀菌相关的问题。
第一步:介绍金纳米棒和光热效应金纳米棒是一种具有特殊光学性质的纳米颗粒。
它通常由金属纳米颗粒组成,形状呈棒状。
金纳米棒可以根据其尺寸和形状的不同,对入射的光产生特殊的光学响应。
光热效应是指当纳米颗粒被特定波长的光照射时,颗粒会吸收掉一部分光能,并将其转变为热能。
金纳米棒的光热效应是指当金纳米棒被红外光照射时,金纳米棒会产生局部的温度升高。
第二步:金纳米棒光热效应杀菌的原理金纳米棒光热效应杀菌依赖于金纳米棒在红外光照射下产生的热能。
当金纳米棒和细菌共同存在于一个体系中时,金纳米棒会吸收入射的红外光,并将其转化为热能,导致金纳米棒温度升高。
当金纳米棒温度升高到一定程度时,它会发出热量,将周围的介质加热。
这样一来,细菌在金纳米棒周围的环境温度升高,超过它们可以忍受的范围,从而导致细菌的死亡。
第三步:金纳米棒光热效应杀菌的应用金纳米棒光热效应杀菌具有很大的应用潜力。
首先,它可以应用于医疗领域,用于杀灭细菌感染。
其次,金纳米棒光热效应杀菌还可以应用于食品加工、饮用水处理和环境卫生等领域,保障人们的健康。
第四步:金纳米棒光热效应杀菌的优势和挑战金纳米棒光热效应杀菌相比传统的杀菌方法具有一些明显的优势。
首先,它可以实现对细菌的选择性杀灭,不会对周围的健康细胞产生损害。
其次,金纳米棒光热效应杀菌对细菌具有较强的抗性,减少了细菌对抗药物的可能性。
然而,金纳米棒光热效应杀菌仍面临一些挑战。
首先,金纳米棒的合成和功能化一般需要较复杂的工艺,增加了生产成本。
其次,金纳米棒的红外光照射需要有特定的设备和操作条件。
第五步:金纳米棒光热效应杀菌的发展前景尽管金纳米棒光热效应杀菌仍存在一些挑战,但其发展前景仍十分广阔。
科研人员在金纳米棒的合成、表面功能化和应用领域等方面不断进行研究,进一步提高了金纳米棒光热效应杀菌的效率和可行性。
金纳米棒修饰链霉亲和素

金纳米棒修饰链霉亲和素在现代科学的舞台上,有一种小家伙,嘿,就是金纳米棒,它可真是个了不起的角色。
想象一下,这些金色的小棒子,细得像头发丝,能在显微镜下闪闪发光,简直是微观世界的超级明星。
它们可不光是用来装饰的哦,金纳米棒在医学和生物技术上可是大显身手。
比如说,当它们遇上链霉亲和素,那就是一场完美的邂逅。
链霉亲和素可是一种蛋白质,跟细菌有关,听起来挺复杂的,但实际上它们的结合就像是一对最佳拍档,简直天作之合。
咱们得了解链霉亲和素这个家伙。
它对生物分子有着很强的亲和力,能把特定的分子牢牢抓住。
你可以想象成,它像个细心的侦探,总是能找到目标。
然后,再把金纳米棒引入这个舞台,嘿,那场面可就热闹了。
金纳米棒本身就能被激光照射,让它们发光,而链霉亲和素则是个绝佳的“引导者”,它们的结合能提升检测的灵敏度,简直就像是打开了新世界的大门。
科学家们借助这种组合,能够在生物传感器、药物递送等领域实现许多以往难以做到的事情。
再说说金纳米棒的特性,嘿,它们可不简单。
这些小家伙有极好的生物相容性,能在体内游刃有余,不容易引发免疫反应。
这就像是个能混得开的社交达人,谁都不怕,跟谁都能玩得开。
与此同时,它们的表面也容易被改性,能够链接各种分子,真是让人爱不释手。
想想看,如果你能在一个小小的金棒上挂上不同的“饰品”,它就能在不同的场合中扮演不同的角色,这不是太酷了吗?所以,金纳米棒和链霉亲和素的结合,简直就是一场科学界的婚礼。
科学家们在实验室里“牵线搭桥”,让这对小情侣相识。
就像在生活中,总会有一些看似不相关的人,经过一番波折,最后成了最好的朋友。
通过这对组合,科学家们能更有效地识别和捕捉到目标分子,提升各种检测的灵敏度。
就好比把你的注意力放在一个重要的细节上,其他的都成了浮云。
这种组合的应用范围也非常广泛。
想象一下,在癌症早期检测中,金纳米棒可以帮助医生更快找到病灶,提升早期诊断的准确性。
这就像是给了医生一双“透视眼”,让他们能更清晰地看到病情。
金纳米棒在生物传感器中的应用

金纳米棒在生物传感器中的应用生物传感器是一种用于检测生物分子的设备,它可以在研究生物学、医学、环境等领域发挥重要作用。
金纳米棒作为一种新型的纳米材料,在生物传感器中具有广泛的应用前景。
本文将介绍金纳米棒在生物传感器中的应用,并探讨其优点和挑战。
一、金纳米棒的特性首先,需要了解金纳米棒的特性。
金纳米棒是直径大约为10到100纳米,长度大约为20到200纳米的金纳米粒子。
相较于其他金纳米材料,金纳米棒的形状更为规则,有更多的表面积,这使得其表面成键或吸附生物分子的能力更强。
另一方面,金纳米棒的长宽比也决定了其表现出的电磁学性质。
在特定波长范围内,金纳米棒可以吸收、散射和反射光线,这使得其可以通过光谱检测方式进行生物分子检测。
二、金纳米棒的应用金纳米棒在生物传感器中的应用主要可以分为两种情况:一种是将金纳米棒作为生物分子探针;另一种是利用其独特的电磁学性质作为生物分子检测信号。
1. 生物分子探针将金纳米棒作为生物分子探针,主要是将其表面修饰上特定的分子结构,以便能够特异性地识别目标分子。
例如,可以通过硫化作用,在金纳米棒表面修饰上硫醇分子,然后将硫醇分子与一类生物分子(如DNA、蛋白质等)的亲和配对结构相结合。
这样一来,金纳米棒就可以用于检测相应的生物分子。
2. 电磁学性质金纳米棒的独特电磁学性质同样也可以用作生物分子的检测信号。
在金纳米棒表面修饰上目标生物分子后,可以通过纳米棒表面的光电效应对其进行检测。
这种检测方法可用于检测DNA、蛋白质、病毒、细胞等生物分子的存在。
三、金纳米棒的优点相较于传统的生物传感器,金纳米棒在生物传感器中的应用有以下优点:1. 灵敏度高金纳米棒具有较大的比表面积和较高的静电能力,可以精确地识别和捕获大量的生物分子。
这一特性意味着金纳米棒的灵敏度可以比传统传感器更高。
2. 特异性更好金纳米棒的表面可以通过修饰分子引入特异性识别结构,能够更精确地鉴定目标分子和特定的生物学进程。
金纳米颗粒和金纳米棒 bsa的二级结构

金纳米颗粒和金纳米棒 bsa的二级结构下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!一、金纳米颗粒和金纳米棒的概述。
1.1 金纳米颗粒的特点。
金纳米棒电学性质及应用

金纳米棒电学性质及应用金纳米棒是一种由金纳米颗粒组成的纳米材料,其形状呈棒状。
它具有独特的电学性质,被广泛应用于各种领域。
金纳米棒的电学性质主要表现在其导电性和光电性方面。
金是一种优良的导电材料,金纳米棒的导电性能比其他纳米材料更好。
此外,金纳米棒还具有优异的光电性能,其表面等离子共振效应使其在吸收和散射光线时具有很高的效率。
这两个特性赋予了金纳米棒许多独特的应用。
首先,金纳米棒被广泛应用于电子器件中。
由于其优良的导电性能,金纳米棒常被用作电极材料,例如在太阳能电池、柔性电路和传感器中。
金纳米棒的导电性能使得这些器件具有高效的电能转换效率和灵敏的感应能力。
其次,金纳米棒在纳米电子学中也具有重要的应用。
金纳米棒可以用来制作纳米电子器件,例如纳米晶体管和纳米电容器。
由于其尺寸小、热稳定性好和可控制的电学性能,金纳米棒被认为是下一代纳米电子器件的理想选择。
此外,金纳米棒还可用于制备电子显微镜中的导电材料。
传统电子显微镜需要使用导电材料来增强样品的电导率,以便更好地观察样品的表面形貌和内部结构。
金纳米棒可以被均匀分散在样品表面,形成导电薄膜,因此被广泛应用于电子显微镜中。
此外,金纳米棒还具有用于生物医学领域的应用潜力。
由于其生物相容性好、表面修饰容易和高效的光热转换性能,金纳米棒可以用于药物运载、癌症治疗和生物传感器等领域。
例如,在癌症治疗中,可以利用金纳米棒的表面等离子共振效应吸收红外光,将光能转化为热能,从而实现高效的光热治疗。
总之,金纳米棒具有出色的电学性质和多样的应用前景。
通过对金纳米棒的表面修饰和形态控制,可以进一步优化其电学性能,并拓展其应用领域。
随着科学技术的不断发展,金纳米棒有望在电子学、医学和材料科学等领域发挥更大的作用。
金纳米棒的制备方法

金纳米棒的制备方法嘿,朋友们!今天咱来聊聊金纳米棒的制备方法。
这金纳米棒啊,就像是微观世界里的小魔法棒,有着神奇的魅力和用途呢!要制备金纳米棒,咱得先准备好材料。
就好像要做一顿美味大餐,得先有新鲜的食材一样。
然后呢,就是一系列精细的操作啦。
比如说,可以用种子生长法。
这就好比是种小树苗,先要有个小小的种子,然后给它合适的环境,让它慢慢长大、变强壮。
把金种子放在合适的溶液里,给它提供适宜的条件,看着它一点点地变成我们想要的金纳米棒,那感觉可神奇啦!还有一种方法叫电化学法。
这就好像是给微小的物质世界通上电,让它们在电流的作用下发生奇妙的变化。
通过控制电流的大小和方向,来引导金纳米棒的形成,是不是很有意思?你想想看,我们就像微观世界的小魔法师,用各种方法和技巧,让这些小小的金纳米棒乖乖地出现,为我们所用。
这难道不是一件超级酷的事情吗?在制备的过程中,每一个步骤都得小心翼翼,就像走钢丝一样,稍微有点偏差可能就前功尽弃啦。
但这也正是它的魅力所在呀,充满了挑战和惊喜!而且哦,不同的制备方法会得到不同特性的金纳米棒呢。
这就跟不同的烹饪方法能做出不同口味的菜一样。
有的金纳米棒可能更细长,有的可能更粗壮,它们都有着各自独特的用处呢。
制备金纳米棒可不只是在实验室里玩玩哦,它在很多领域都有着重要的应用呢。
比如在医学上,它可以帮助诊断疾病、治疗疾病,就像是小小的健康卫士。
在材料科学里,它能让材料变得更厉害、更有用。
所以说呀,学会制备金纳米棒的方法,那可真是打开了一扇通往神奇微观世界的大门呢!咱可得好好钻研钻研,说不定还能发现更多关于金纳米棒的秘密和惊喜呢!怎么样,是不是对金纳米棒的制备方法充满了好奇和期待呢?那就赶紧行动起来,去探索这个奇妙的微观世界吧!。
金纳米棒的条件控制

金纳米棒的条件控制嘿,朋友们!今天咱们来聊聊金纳米棒这个超酷的小玩意儿。
你可别小看它,它就像微观世界里的超级明星,虽然小得我们肉眼都看不见,但在科学的大舞台上可是闪耀得很呢。
金纳米棒这东西啊,就像一个挑剔的小食客,对它的生长条件那是相当讲究。
就好比它住在一个微观的高级公寓里,环境要是有一点点不对,它就开始闹脾气,不好好生长了。
温度对于金纳米棒来说,就像是它的私人天气管家。
温度高一点,就像夏天里突然来了一阵热浪,金纳米棒可能就会被热得晕头转向,长歪了或者干脆就停止生长了。
而温度低一点呢,就像突然掉进了冰窖,它就像被冻僵的小虫子,变得懒洋洋的,反应也迟钝起来。
还有那反应溶液的浓度,这简直就是金纳米棒的“营养汤”浓度啊。
如果浓度太高,就像在一碗浓汤里加了超级多的料,金纳米棒在里面就像被一群热情过度的粉丝包围着,挤得慌,生长的空间都没有了,最后可能就长成了奇奇怪怪的形状。
而浓度太低呢,就像是清汤寡水,金纳米棒在里面饿得“嗷嗷叫”,长得又瘦又小,完全没有那种超级明星该有的气场。
再说说反应的时间吧。
时间就像是金纳米棒的成长时钟。
如果时间太短,它就像一个被催促着长大的小朋友,还没发育完全就被拉上了舞台,形状不规则不说,性能可能也大打折扣。
但要是时间太长,它就像一个在舞台上赖着不走的老演员,过度生长可能就带来了一些不必要的变化,说不定还会自毁形象呢。
反应中的搅拌速度也不容小觑。
这搅拌速度就像是金纳米棒的专属健身教练。
搅拌得太快,金纳米棒就像在狂风暴雨中的小树苗,被摇得东倒西歪,根本没办法按照自己的节奏生长。
而搅拌得太慢,就像一个没有督促的懒虫,它可能就会在溶液里睡大觉,不均匀地生长,一边胖一边瘦,那模样可滑稽了。
还有那反应体系中的添加剂,就像是金纳米棒的时尚造型师。
合适的添加剂能让金纳米棒像穿上了一身华丽的礼服,性能和外观都提升好几个档次。
但要是选错了添加剂,那就像给它穿上了奇装异服,完全不搭调,在微观世界里沦为笑柄。
金纳米棒浓度计算

金纳米棒浓度计算摘要:一、引言二、金纳米棒的性质三、金纳米棒浓度的计算方法1.质量浓度计算2.体积浓度计算四、金纳米棒浓度计算的实际应用五、总结正文:【引言】金纳米棒作为一种重要的纳米材料,在催化、生物医学、传感器等领域有着广泛的应用。
准确地测量和计算金纳米棒的浓度对于实验研究和实际应用具有重要意义。
本文将介绍金纳米棒的性质以及计算浓度的方法。
【金纳米棒的性质】金纳米棒是一种棒状的纳米金颗粒,具有特殊的光学、电子和催化性能。
其长度通常在数纳米至数十纳米之间,宽度则在数纳米以内。
金纳米棒可以形成有序的阵列结构,这使得它们在催化、电子器件和生物医学领域具有巨大的应用潜力。
【金纳米棒浓度的计算方法】金纳米棒的浓度可以通过质量浓度和体积浓度两种方式来表示。
1.质量浓度计算质量浓度是指单位体积内金纳米棒的质量。
计算公式为:质量浓度(mg/L)= 金纳米棒的质量(mg)/ 溶液的体积(L)2.体积浓度计算体积浓度是指单位质量内金纳米棒的体积。
计算公式为:体积浓度(cm/g)= 金纳米棒的体积(cm)/ 金纳米棒的质量(g)【金纳米棒浓度计算的实际应用】准确地计算金纳米棒的浓度对于实验研究和实际应用具有重要意义。
例如,在催化反应中,需要控制金纳米棒的数量以优化催化效果;在生物医学领域,需要精确地测量金纳米棒在生物体内的分布和代谢;在传感器制造中,需要了解金纳米棒浓度对传感器性能的影响。
【总结】金纳米棒浓度计算是纳米材料研究和应用中的关键环节。
通过掌握金纳米棒的性质和计算方法,可以更好地理解和利用这种重要的纳米材料。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Wet Chemical Synthesis of High Aspect Ratio Cylindrical Gold NanorodsNikhil R.Jana,*Latha Gearheart,and Catherine J.Murphy*Department of Chemistry and Biochemistry,Uni V ersity of South Carolina,631Sumter Street,Columbia,South Carolina29208Recei V ed:March1,2001;In Final Form:March30,2001Gold nanorods with aspect ratios of4.6(1.2,13(2,and18(2.5(all with16(3nm short axis)areprepared by a seeding growth approach in the presence of an aqueous miceller template.Citrate-capped3.5nm diameter gold particles,prepared by the reduction of HAuCl4with borohydride,are used as the seed.Theaspect ratio of the nanorods is controlled by varying the ratio of seed to metal salt.The long rods are isolatedfrom spherical particles by centrifugation.IntroductionThe shape of nanoparticles influences their optical,electronic, and catalytic properties.1-4Plate and rodlike nanoparticles are also attractive due to their liquid crystalline phase behavior.5,6 Gold nanorods and nanowires in particular may be useful for various optoelectronic devices.2,3It is well-known that chemical reduction of gold salts produces spherical gold nanoparticles.7,8 Templates are commonly used for making gold nanorods and nanowires.9-15Gold nanorods have been prepared using elec-trochemical9and photochemical10reduction methods in aqueous surfactant media,porous alumina templates,11,12polycarbonate membrane templates,13and carbon nanotube templates.14,15 Recently we have used a seeding growth method to make varied aspect ratio gold and silver nanorods.16,17The gold particle aspect ratio can be controlled from1to7by simply varying the ratio of seed to metal salt in the presence of a rodlike micellar template.We observed that the use of additives such as AgNO3and cyclohexane strongly influenced the gold nanorod formation.However,preparation of gold rods>7aspect ratio was difficult by varying those additives.We observed that high aspect ratio gold rods could be prepared by carefully controlling the growth conditions.Herein we report a procedure for reproducibly preparing4.6,13,and18aspect ratio rods.The cylindrical shape of our gold rods is distinctly different from an earlier observed needlelike shape.16Our method requires no nanoporous template and therefore may be more practical for large-scale synthesis.Experimental SectionI.Preparation of3.5nm Seed.A20mL aqueous solution containing2.5×10-4M HAuCl4and2.5×10-4M tri-sodium citrate was prepared in a conical flask.Next,0.6mL of ice cold 0.1M NaBH4solution was added to the solution all at once while stirring.The solution turned pink immediately after adding NaBH4,indicating particle formation.The particles in this solution were used as seeds within2-5h after preparation.The average particle size measured from the transmission electron micrograph was3.5(0.7nm.Some irregular and aggregated particles were also observed that were not considered for determining the size distribution.Here,citrate serves only as the capping agent since it cannot reduce gold salt at room temperature(25°C).Experiments performed in the absence of citrate resulted in particles approximately7-10nm in diameter. II.Preparation of4.6(1Aspect Ratio Rod.In a clean test tube,10mL of growth solution,containing2.5×10-4M HAuCl4and0.1M cetyltrimethylammonium bromide(CTAB), was mixed with0.05mL of0.1M freshly prepared ascorbic acid solution.Next,0.025mL of the3.5nm seed solution was added.No further stirring or agitation was done.Within5-10 min,the solution color changed to reddish brown.The solution contained4.6aspect ratio rods,spheres,and some plates.The solution was stable for more than one month.III.Preparation of13(2Aspect Ratio Rod.A three-step seeding method was used for this nanorod preparation.Three test tubes(labeled A,B,and C),each containing9mL growth solution,consisting of2.5×10-4M HAuCl4and0.1M CTAB, were mixed with0.05mL of0.1M ascorbic acid.Next,1.0 mL of the3.5nm seed solution was mixed with sample A.The color of A turned red within2-3min.After4-5h,1.0mL was drawn from solution A and added to solution B,followed by thorough mixing.The color of solution B turned red within 4-5min.After4-5h,1mL of B was mixed with C.Solution C turned red in color within10min.All of the solutions were stable for more than a month.Solution C contained gold nanorods with aspect ratio13.IV.Preparation of18( 2.5Aspect Ratio Rod.This procedure was similar to the method for preparing13aspect ratio rods.The only difference was the timing of seed addition in successive steps.For13aspect ratio rods,the seed or solutions A and B were added to the growth solution after the growth occurring in the previous reaction was complete.But to make 18aspect ratio rods,particles from A and B were transferred to the growth solution while the particles in these solution were still growing.Typically,solution A was transferred to B after 15s of adding3.5nm seed to A,and solution B was transferred to C after30s of adding solution A to B.V.Procedure for Shape Separation.Long rods were concentrated and separated from spheres and surfactant by centrifugation.10mL of the particle solution was centrifuged at2000rpm for6min.The supernatant,containing mostly spheres,was removed and the solid part containing rods and some plates was redispersed in0.1mL water.Absorption spectra of the particle dispersions were measured using a CARY500Scan UV-vis NIR spectrophotometer.*To whom correspondence should be addressed.E-mail:murphy@ ,jana@.4065J.Phys.Chem.B2001,105,4065-406710.1021/jp0107964CCC:$20.00©2001American Chemical SocietyPublished on Web04/21/2001Transmission electron microscopy(TEM)images were acquired with a JEOL JEM-100CXII electron microscope.TEM grids were prepared by placing1µL of the particle solution on a carbon-coated copper grid and evaporating the solution at room temperature.At least200-300particles were counted and measured per grid.Results and DiscussionAscorbic acid is too weak to reduce gold salt in the presence of CTAB and in the absence of seed,as judged by the absence of a gold plasmon band under these conditions.However,gold salt reduction occurs very fast in the presence of3.5nm seed particles,indicated by the solution turning red-brown in color. It is possible to grow the3.5nm seeds into larger nanospheres, depending on the ratio of seed to metal salt(unpublished data). However,when this method was used to make particles>20 nm(in the presence of a relatively low concentration of3.5nm seed),rodlike particles were also observed.This observation suggested that gold nanorods could be prepared by carefully controlling the growth conditions.Following the procedures outline in the Experimental Section, 4.6(1.2,13(2,and18(2.5aspect ratio gold nanorods have been prepared.For making4.6aspect ratio rods,a one-step seeding growth method was used.The13and18aspect ratio rods were separated from spheres by centrifugation.The 4.6aspect ratio rods were too close in size to the spheres to allow for sufficient separation.We found that rod yield decreased substantially when the micellar template(CTAB)was absent.Figure1shows the TEM images corresponding to the three samples of nanorods.The4.6aspect ratio rods were mixed with spheres and plates(Figure1a),and the longer rods(13and18 aspect ratio)were imaged after their separation from spherical products(Figures1b and1c).The short axes of the nanorods were all16(3nm.Solutions of the shape-separated13and18aspect ratio rods were faint blue in color,and solutions of the4.6aspect ratio rods were pink.The electronic absorption spectra of the4.6 aspect ratio rod solutions show the conventional plasmon band at∼525nm,along with an additional long wavelength plasmon band at885nm(Figure1Sa).As the aspect ratio increases,the short wavelength plasmon band blue shifts to∼500nm and becomes very weak,but the long wavelength plasmon band red shifts to∼1750nm for the13aspect ratio rods(Figure1Sb). We did not observe a longitudinal plasmon band for the18 aspect ratio rods within the confines of our scan(Figure1Sc), but a band may occur beyond1800nm.An additional broad band appears at800-900nm region for the18aspect ratio rods, attributed to the nonseparable platelets(Figure1Sc).Platelets of this shape should have another band around350-425nm; however,we did not observe a significant band in this region compared to the longer wavelength band(800-900nm).18The presence of these plates consequently produces a bluish color of the shape-separated rod dispersions.Though platelets are also observed in solutions of13aspect ratio rods,the overall observation from the entire TEM grid indicates that they are relatively small and less concentrated than in the18aspect ratio rod solutions;thus we do not observe the800-900nm“platelet”band in the absorption spectra of the13nm aspect ratio solution unless the solution is very concentrated.The prominent red shift of the longitudinal plasmon band in the absorption and the slightblue shift in the transverse plasmon band in the optical spectra of noble metal particles with increasing aspect ratio is a well-known phenomenon.1,3,9,12-14It is possible to make metallic nanorods using spherical seeds without a micellar template;however,the yield is low,and the aspect ratio is difficult to control.19,20We have observedthat Figure1.(a)TEM images of4.6aspect ratio gold nanorods,(b)shape-separated13aspect ratio gold nanorods,and(c)shape-separated18 aspect ratio gold nanorods.The scale bar(100nm)applies to all three images.4066J.Phys.Chem.B,Vol.105,No.19,2001Lettersusing concentrated CTAB solution enhances the rod yield. Concentrated CTAB has a tendency to form elongated rodlike micellar structures21that possibly assist in rod formation,as well as stabilizing the rods.This template was used earlier for the electrochemical synthesis of gold nanorods,and the aspect ratio was controlled by introducing Ag+ions or a more hydrophobic cosurfactant(compared to CTAB).9The enhanced growth rate in the presence of seed(possibly diffusional growth) and the rodlike micellar template contribute to the rod formation. Until this paper,the synthesis of high aspect ratio rods(>11) in the absence of a mesoporous template has not been reported. We have prepared high aspect ratio gold nanorods by a seeding growth method in an aqueous micellar template and have controlled the nanoparticle aspect ratio by properly adjusting the growth conditions.With this method,uniformly shaped rods with high aspect ratio can be prepared.This method is simple and can be achieved with common laboratory reagents. Acknowledgment.We thank the National Science Founda-tion for funding.Supporting Information Available:Absorption spectra of 4.6,13,and18aspect ratio gold nanorods.This material is available free of charge via the Internet at . References and Notes(1)Creighton,J.A.;Eadon,D.G.J.Chem.Soc.,Faraday Trans.1991, 87,3881.(2)Hu,J.T.;Odom,T.W.;Lieber,C.M.Acc.Chem.Res.1999,32, 435.(3)Link,S.;El-Sayed,M.A.J.Phys.Chem.B1999,103,8410.(4)Wang,Z.L.J.Phys.Chem.B2000,104,1153.(5)van der Kooij,F.M.;Kassapidou,K.;Lekkerkerker,H.N.W. Nature2000,406,868.(6)Nikoobakht,B.;Wang,Z.L.;El-Sayed,M.A.J.Phys.Chem.B 2000,104,8635.(7)Frens,G.Nature1973,241,20.(8)Leff,D.V.;Ohara,P.C.;Heath,J.R.;Gelbart,W.M.J.Phys. Chem.1995,99,7036.(9)Yu,Y.Y.;Chang,S.S.;Lee,C.L.;Wang,C.R.C.J.Phys.Chem. B1997,101,6661.(10)Esumi,K.;Matsuhisa,K.;Torigoe,ngmuir1995,11,3285.(11)Martin,B.R.;Dermody,D.J.;Reiss,B.D.;Fang,M.M.;Lyon, L.A.;Natan,M.J.;Mallouk,T.E.Ad V.Mater.1999,11,1021.(12)van der Zande,B.M.I.;Bohmer,M.R.;Fokkink,L.G.J.; Schonenberger,ngmuir2000,16,451.(13)Cepak,V.M.;Martin,C.R.J.Phys.Chem.B1998,102,9985.(14)Govindaraj,A.;Satishkumar,B.C.;Nath,M.;Rao,C.N.R.Chem. Mater.2000,12,202.(15)Fullam,S.;Cottell,D.;Rensmo,H.;Fitzmaurice,D.Ad V.Mater. 2000,12,1430.(16)Jana,N.R.;Gearheart,L.;Murphy,C.J.Ad V.Mater.Submitted.(17)Jana,N.R.;Gearheart,L.;Murphy,mun.2001, 617.(18)Hornyak,G.L.;Patrissi,C.J.;Martin,C.R.Nanostruct.Mater. 1997,9,705.(19)Brown,K.R.;Walter,D.G.;Natan,M.J.Chem.Mater.2000,12, 306.(20)Jana,N.R.;Gearheart,L.;Murphy,C.J.Chem.Mater.Submitted.(21)Tornblom,M.;Henriksson,U.J.Phys.Chem.B1997,101,6028.Letters J.Phys.Chem.B,Vol.105,No.19,20014067。