一元三次函数的图象和性质-三次函数的性质
三次函数的图象与性质教学设计与实践①.pdf

设计意图 引导学生明确研究对象和研究方法,学会将零点个数的研究转化为函数的极 值或解析式结构形式的研究,并在尝试中猜测、归纳三次函数有不同零点个数时的图象所具 有的基本特征,探究不同零点个数的函数解析式的系数应满足的关系,进一步巩固用导数研
3
究函数性质的方法.
设计意图 本题研究系数 a , b , c , d 对三次函数的单调性的影响.在学生确定研究
对象和研究方法,并认识到函数的单调性有多种情形下,引导学生明晰研究的思路,并正确 进行分类讨论:一要关注分类的标准,二要选择分类的方法,三要注意分类的原则.
5.3 借助探究,拓展应用
问题 3 你能得出函数 f (x) ax3 bx2 cx d(a 0) 只有一个零点时系数应该满足
对函数单调性的影响让我们眼花缭乱,为了简化研究,我们可以选择什么方法?
(3)用图形计算器单独验证系数 a 对三次函数 f (x) 的单调性的影响,你得到什么结
论?你想怎样继续研究函数的单调性? (4)在用图形计算器画不同单调性的图象时,你想过如何界定“不同单调性”吗?用什
么标准对“不同单调性”进行划分?你能借助导数写出不同单调性的情形下,各系数应满足的 关系式吗?
设计意图 迁移本课的研究思路和方法.
5. 已知 n R ,函数 f (x) x2 (x 3) n . (Ⅰ)若曲线 y f (x) 的切线中,斜率最小的切线 l 经过点 A(3,0) ,求 n 值; (Ⅱ)若经过点 A(3,0) 可作曲线 y f (x) 的三条切线,求 n 的取值范围.
2 目标和目标解析
本课是为了进一步掌握用导数研究函数性质的方法,感受导数在解决问题中的作用,体 会导数的思想及其丰富内涵,同时扩展学生的数学视野,发展学生独立获取数学知识的能力, 提高学生应用所学知识解决问题的能力.具体目标是:
4导数研究三次函数的性质

4导数研究三次函数的性质复习目标:掌握三次函数的图象和性质,尤其是利用导数研究单调性、极值情况,以及三次函数的零点。
复习重点难点:(1)三次函数的图象的四种情况;(2)三次函数的极值情况;【典型例题】题型一:三次函数单调性的讨论例1.已知函数32()2f x ax x x =++在R 上恒为增函数,求实数a 的取值范围.例2.已知函数f (x )=-x 3+3x 2+9x +a ,(I )求f (x )的单调递减区间;(II )若f (x )在区间[-2,2]上的最大值为20,求它在该区间上的最小值.题型二:三次函数极值,最值的讨论例3. 已知a 是实数,函数2()()f x x x a =-;(1)若'(1)3f =,求a 的值及曲线()y f x =在点(1,(1))f 处的切线方程;(2)求()f x 在区间[]2,0上的最大值.例4.已知函数()f x 的导数2()33,f x x ax '=-(0).f b =,a b 为实数,12a <<.(1)若()f x 在区间[1, 1]-上的最小值、最大值分别为2-、1,求a 、b 的值;(2)设函数2()(()61)x F x f x x e '=++⋅,试判断函数()F x 的极值点个数.【课后作业】1.过曲线y =x 3+x-2上的点P 0的切线平行于直线y =4x-1,则切点P 0的坐标为2.已知向量a =(x 2,x +1),b =(1-x ,t ).若函数f (x )=a·b 在区间(-1,1)上是增函数,求t 的取值范围.3.函数f (x )=x 3+x 2-x 在区间[-2,1]上的最大值和最小值分别是4.已知某生产厂家的年利润y (单位:万元)与年产量x (单位:万件)的函数关系式为31812343y x x =-+-,则使该生产厂家获得最大年利润的年产量为5.设函数b x a ax x x f +-+-=2233231)( (0<a <1). (1)求函数)(x f 的单调区间; (2)当x ∈[]2,1++a a 时,不等式|()x f/ |≤a ,求a 的取值范围.6.已知函数3221()21(0)32a f x x x a x a =--+> (1)求函数()f x 的极值;(2)若函数()y f x =的图象与值线0y =恰有三个交点,求实数a 的取值范围;(3)已知不等式2'()1f x x x <-+对任意(1,)a ∈+∞都成立,求实数x 的取值范围.7.已知函数()()a x x f -=2()x b -,b a ,为常数,(1)若a b ≠,求证:函数()x f 存在极大值和极小值(2)设()x f 取得极大值、极小值时自变量分别为12,x x ,令点A 11(,()x f x ),B 22(,()x f x ),若a >b ,直线AB 的斜率为12-,求函数()x f 和/()f x 的公共递减区间的长度.答案:【典型例题】1. 61≥a . 2.(I ) 0)(,963)(2<'++-='x f x x x f 令,解得x <-1或x >3所以函数f (x )的单调递减区间为(-∞,-1),(3,+∞).(II ))}2(),2(max{)(,5)1()(,3212m ax m in f f x f a f x f -=+-=-=∴<<-<-)2()2(,22)2(,2)2(->∴+=+=-f f a f a f 于是有 22+a =20,解得 a =-2.故f (x )=-x 3+3x 2+9x -2,因此f (-1)=-7,即函数f (x )在区间[-2,2]上的最小值为-7.3. 解析:(1)2'()32f x x ax =-.因为'(1)323f a =-=,所以0a =.又当0a =时,(1)1,'(1)3f f ==,所以曲线()(1,(1))y f x f =在处的切线方程为3x y --2=0.(2)令'()0f x =,解得1220,3a x x ==. 当203a ≤,即a ≤0时,()f x 在[0,2]上单调递增,从而max (2)84f f a ==-. 当223a ≥时,即a ≥3时,()f x 在[0,2]上单调递减,从而max (0)0f f ==. 当2023a <<,即03a <<,()f x 在20,3a ⎡⎤⎢⎥⎣⎦上单调递减,在2,23a ⎡⎤⎢⎥⎣⎦上单调递增,从而max 84,0 2.0,2 3.a a f a -<≤⎧⎪=⎨<<⎪⎩综上所述,max 84, 2.0, 2.a a f a -≤⎧⎪=⎨>⎪⎩4.解(Ⅰ)由已知得,323()2f x x ax b =-+; 由()0f x '=,得10x =,2x a =. ∵[1, 1]x ∈-,12a <<,∴ 当[1, 0)x ∈-时,()0f x '>,()f x 递增;当(0, 1]x ∈时,()0f x '<,()f x 递减.∴ ()f x 在区间[1, 1]-上的最大值为(0)f b =,∴1b =. 又33(1)11222f a a =-+=-,33(1)1122f a a -=--+=-,∴ (1)(1)f f -<. 由题意得(1)2f -=-,即322a -=-,得43a =.故43a =,1b =为所求. (Ⅱ) 2222()(3361)33(2)1x x F x x ax x e x a x e ⎡⎤=-++⋅=--+⋅⎣⎦. ∴ []222()63(2)233(2)1x x F x x a e x a x e '⎡⎤=--⋅+--+⋅⎣⎦22[66(3)83]x x a x a e =--+-⋅.二次函数266(3)83y x a x a =--+-的判别式为22236(3)24(83)12(31211)123(2)1a a a a a ⎡⎤∆=---=-+=--⎣⎦,令0∆≤,得:21(2),22333a a -≤-≤≤+令0∆>,得2,233a a <->+或 ∵20x e >,12a <<,∴当22a ≤<时,()0F x '≥,函数()F x 为单调递增,极值点个数为0;当12a <<()0F x '=有两个不相等的实数根,根据极值点的定义,可知函数()F x 有两个极值点.【课后作业】1.(1,0)或(-1,-4)2.解:f (x )=a·b =x 2(1-x )+t (x +1)=-x 3+x 2+tx +t ,……4分∴f ′(x )=-3x 2+2x +t . …………7分∵f (x )在(-1,1)上是增函数,∴-3x 2+2x +t ≥0在x ∈(-1,1)上恒成立.∴t ≥3x 2-2x , ……………11分令g (x )=3x 2-2x ,x ∈(-1,1).∴g (x )∈⎣⎡⎭⎫-13,5,∴t ≥5. ……………15分3. f (x )max =1,f (x )min =-2。
高中数学常见幂函数、二次函数、三次函数的图象及其性质

(3)当 时, 在 上单调递减,在 上单调递增,所以函数 的最大值为 或 ,最小值为 .
(1)当 时, 在 上单调递增,所以函数 的最大值为 ,最小值为 ;
(2)当 时, 在 上单调递减,所以函数 的最大值为 ,最小值为 ;
(3)当 时, 在 上单调递增,在 上单调递减,所以函数 的最大值为 ,最小值为 或 .
单调增区间为: 和 ;
单调减区间为:
在R上单调递增
单调增区间为:
单调减区间为: 和
在R上单调递减
三次函数的图象和性质
定 义
我们把形如 的函数,称为三次函数.
导 数
判别式
我们把 叫做三次函数的导函数 的判别式.
极值点
当 时,导函数 有两个零点,原函数 有两个极值点,不妨记为 、 ,且 .
拐 点
令三次函数 的二阶导数 ,即 ,解得 ,我们把点 叫做三次函数的拐点.
图 象
定义域
R
值 域
R
对称中心
单调性
高中常见幂函数的图象和性质
定义
形如 的函数(其中 是常数, 是自变量)称为二次函数.
常见的五种幂函数图象
性质
(1)当幂指数 为奇数时,幂函数为奇函数;当幂指数 为偶数时,幂函数为偶函数.
(2)当 时,幂函数的图象都过 、 点,且在 上单调递增;
(3)当 时,幂函数的图象都过 点,不过 点,且在 上单调递减;
(4)在直线 的右侧,幂指数 越大,图象越高.
幂函数
定义域
单调增区间
单调减区间
无
和
无
无
无
二次函数的图象和性质
3.4 一元二次函数的图象与性质课件-2023届广东省高职高考数学第一轮复习第三章函数

知识点1 知识点2 知识点3 知识点4 知识点5
1.一元二次函数的定义 形如y=ax2+bx+c(a≠0)的函数叫做一元二次函数.它的定义域是 R,图象是一条抛物线.
知识点1 知识点2 知识点3 知识点4 知识点5
2.二次函数y=ax2+bx+c(a≠0)的性质
y=ax2+bx+c
【解析】
(1) 依 题 意 : 抛 物 线 开 口 向 下 , 对 称 轴 为
x
=
m+n 2
=
-2+t2-2-t=-2,如图观察得知:f(-1)>f(1).
(2)依题意得对称轴为 x=m+2 n=-12+7=3,则x1+2 x2=3,从而求得
两根之和为 6.
例5 分别求满足下列条件的二次函数y=f(x)的解析式. (1)图象过点(-1,-22),(0,-8),(2,8); (2)顶点为(-1,-8),且过点(0,-6); (3)过点(1,-8),函数与x轴的两个交点坐标分别为(5,0),(-1, 0). 【分析】 本题考查一元二次函数的三种解析式的求法.一般式:y
=ax2+bx+c;顶点式:y=a(x-m)2+n;交点式:y=a(x-x1)(x-x2).
【解】 (1)设二次函数 f(x)=ax2+bx+c,将点(-1,-22),(0,-
8),(2,8)代入解析式:
a-b+c=-22
c=-8
,解得 a=-2,b=12,c=-8,
4a+2b+c=8
所以函数解析式为 f(x)=-2x2+12x-8.
例4 (1)如果函数f(x)=x2+bx+c对任意实数t,都有f(3+t)=f(3
-t),则(
)
A.f(3)<f(1)<f(4) B.f(1)<f(3)<f(4)
4.3 一次函数的图象(第1课时)正比例函数的图象和性质课件(31张PPT) 北师大版八年级数学上册

y = -3x
y
4
3
2
1
-5 -4 -3 -2 -1 O
-1
-2
-3
-4
y = 2x
这两个函数图
象有什么共同
特征?
1 2 3 4 5 x
归纳总结
y = kx (k 是常数,k≠0)的图象是一条经过原点的直线
y = kx (k≠0)
经过的象限
k>0
第一、三象限
k<0
两点
作图法
第二、四象限
15 x
,即
解:
(1) y 5
100
(2)列表 x
0
y
0
描点
连线
(3)当 x = 220 时,
.
4
3
y/元
6
5
4
3
2
1
(元). O
1 2 34 56 7
答:该汽车行驶 220 km 所需油费是 165 元.
x/km
画正比例函数图象的一般
步骤:列表、描点、连线
正比例函
数的图象
和性质
图象:经过原点的直线.
(x2,y2),若 x1<x2 ,则 y1 > y2.
2. 正比例函数 y = k1x 和 y = k2x 的图象如图,则 k1 和 k2
y y = k1x
的大小关系是( A )
y = k2x
A. k1>k2
B. k1 = k2
o
x
C. k1<k2
D. 不能确定
例3 已知正比例函数 y = mx 的图象经过点 (m,4),且
y 的值随着 x 值的增大而减小,求 m 的值.
解:∵正比例函数 y = mx 的图象经过点(m,4),
考点03 一次函数的图像与性质(解析版)

考点三一次函数的图像与性质知识点整合一、正比例函数的概念一般地,形如y=kx(k是常数,k≠0)的函数,叫做正比例函数,其中k叫做正比例系数.二、一次函数1.一次函数的定义一般地,形如y=kx+b(k,b为常数,且k≠0)的函数叫做x的一次函数.特别地,当一次函数y=kx+b中的b=0时,y=kx(k是常数,k≠0).这时,y叫做x的正比例函数.2.一次函数的一般形式一次函数的一般形式为y=kx+b,其中k,b为常数,k≠0.一次函数的一般形式的结构特征:(1)k≠0,(2)x的次数是1;(3)常数b可以为任意实数.3.注意(1)正比例函数是一次函数,但一次函数不一定是正比例函数.(2)一般情况下,一次函数的自变量的取值范围是全体实数.(3)如果一个函数是一次函数,则含有自变量x的式子是一次的,系数k不等于0,而b可以为任意实数.(4)判断一个函数是不是一次函数,就是判断它是否能化成y=kx+b(k≠0)的形式.(5)一次函数的一般形式可以转化为含x、y的二元一次方程.三、一次函数的图象及性质1.正比例函数的图象特征与性质正比例函数y=kx(k≠0)的图象是经过原点(0,0)的一条直线.k的符号函数图象图象的位置性质k>0图象经过第一、三象限y随x的增大而增大k<0图象经过第二、四象限y随x的增大而减小2.一次函数的图象特征与性质(1)一次函数的图象一次函数的图象一次函数y=kx+b(k≠0)的图象是经过点(0,b)和(-b k,0)的一条直线图象关系一次函数y=kx+b(k≠0)的图象可由正比例函数y=kx(k≠0)的图象平移得到;b>0,向上平移b个单位长度;b<0,向下平移|b|个单位长度图象确定因为一次函数的图象是一条直线,由两点确定一条直线可知画一次函数图象时,只要取两点即可(2)一次函数的性质函数字母取值图象经过的象限函数性质y=kx+b(k≠0)k>0,b>0一、二、三y随x的增大而增大k>0,b<0一、三、四y=kx+b(k≠0)k<0,b>0一、二、四y随x的增大而减小k<0,b<0二、三、四3.k,b的符号与直线y=kx+b(k≠0)的关系在直线y=kx+b(k≠0)中,令y=0,则x=-bk,即直线y=kx+b与x轴交于(–bk,0).①当–bk>0时,即k,b异号时,直线与x轴交于正半轴.②当–bk=0,即b=0时,直线经过原点.③当–bk<0,即k,b同号时,直线与x轴交于负半轴.4.两直线y=k1x+b1(k1≠0)与y=k2x+b2(k2≠0)的位置关系:①当k1=k2,b1≠b2,两直线平行;②当k1=k2,b1=b2,两直线重合;③当k1≠k2,b1=b2,两直线交于y轴上一点;④当k1·k2=–1时,两直线垂直.四、待定系数法1.定义:先设出函数解析式,再根据条件确定解析式中未知数的系数,从而得出函数解析式的方法叫做待定系数法.2.待定系数法求正比例函数解析式的一般步骤(1)设含有待定系数的函数解析式为y=kx(k≠0).(2)把已知条件(自变量与函数的对应值)代入解析式,得到关于系数k的一元一次方程.(3)解方程,求出待定系数k.(4)将求得的待定系数k的值代入解析式.3.待定系数法求一次函数解析式的一般步骤(1)设出含有待定系数k、b的函数解析式y=kx+b.(2)把两个已知条件(自变量与函数的对应值)代入解析式,得到关于系数k,b的二元一次方程组.(3)解二元一次方程组,求出k,b.(4)将求得的k,b的值代入解析式.五、一次函数与正比例函数的区别与联系正比例函数一次函数区别一般形式y=kx+b(k是常数,且k≠0)y=kx+b(k,b是常数,且k≠0)图象经过原点的一条直线一条直线k,b符号的作用k的符号决定其增减性,同时决定直线所经过的象限k的符号决定其增减性;b的符号决定直线与y轴的交点位置;k,b的符号共同决定直线经过的象限求解析式的条件只需要一对x,y的对应值或一个点的坐标需要两对x,y的对应值或两个点的坐标联系比例函数是特殊的一次函数.②正比例函数图象与一次函数图象的画法一样,都是过两点画直线,但画一次函数的图象需取两个不同的点,而画正比例函数的图象只要取一个不同于原点的点即可.③一次函数y=kx+b(k≠0)的图象可以看作是正比例函数y=kx(k≠0)的图象沿y 轴向上(b>0)或向下(b<0)平移|b|个单位长度得到的.由此可知直线y=kx+b(k≠0,b≠0)与直线y=kx(k≠0)平行.④一次函数与正比例函数有着共同的性质:a.当k>0时,y的值随x值的增大而增大;b.当k<0时,y的值随x值的增大而减小.六、一次函数与方程(组)、不等式1.一次函数与一元一次方程任何一个一元一次方程都可以转化为kx+b=0(k,b为常数,且k≠0)的形式.从函数的角度来看,解这个方程就是寻求自变量为何值时函数值为0;从函数图象的角度考虑,解这个方程就是确定直线y=kx+b与x轴的交点的横坐标.2.一次函数与一元一次不等式任何一个一元一次不等式都能写成ax+b>0(或ax+b<0)(a,b为常数,且a≠0)的形式.从函数的角度看,解一元一次不等式就是寻求使一次函数y=ax+b(a≠0)的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=ax+b(a≠0)在x轴上(或下)方部分的点的横坐标满足的条件.3.一次函数与二元一次方程组一般地,二元一次方程mx+ny=p(m,n,p是常数,且m≠0,n≠0)都能写成y=ax+b(a,b为常数,且a≠0)的形式.因此,一个二元一次方程对应一个一次函数,又因为一个一次函数对应一条直线,所以一个二元一次方程也对应一条直线.进一步可知,一个二元一次方程对应两个一次函数,因而也对应两条直线.从数的角度看,解二元一次方程组相当于考虑自变量为何值时,两个函数的值相等,以及这两个函数值是何值;从形的角度看,解二元一次方程组相当于确定两条直线的交点坐标,一般地,如果一个二元一次方程组有唯一解,那么这个解就是方程组对应的两条直线的交点坐标.考向一一次函数和正比例函数的定义1.正比例函数是特殊的一次函数.2.正比例函数解析式y=kx(k≠0)的结构特征:①k≠0;②x的次数是1.典例引领二、填空题变式拓展6.已知y 与1x +成正比,当1x =时,2y =.考向二一次函数的图象及性质1.通常画正比例函数y=kx(k≠0)的图象时只需取一点(1,k),然后过原点和这一点画直线.2.当k>0时,函数y=kx(k≠0)的图象从左向右,呈上升趋势;当k<0时,函数y=kx(k≠0)的图象从左向右,呈下降趋势.3.正比例函数y=kx中,|k|越大,直线y=kx越靠近y轴;|k|越小,直线y=kx越靠近x轴.4.一次函数图象的位置和函数值y的增减性完全由b和比例系数k的符号决定.典例引领【答案】A【分析】本题考查的是一次函数的性质.根据一次函数的性质以及图像上点的坐标特征对各选项进行逐一判断即可.【详解】解:A 、当0x =时,2y =,图象必经过点()0,2,故本选项符合题意;B 、∵10k =-<,20b =>,∴图象经过第一、二、四象限,故本选项不符合题意;C 、∵10k =-<,∴y 随x 的增大而减小,故本选项不符合题意;D 、∵y 随x 的增大而减小,当2x =-时,0y =,∴当2x >时,0y <,故本选项不符合题意;故选:A .4.若一次函数21y x =-+的图象经过点()13,y -,()24,y ,则1y 与2y 的大小关系()A .12y y <B .12y y >C .12y y ≤D .12y y ≥【答案】B【分析】本题主要考查了比较一次函数值的大小,根据函数解析式得到y 随x 增大而减小,据此可得答案.【详解】解:∵一次函数解析式为21y x =-+,20-<,∴y 随x 增大而减小,∵一次函数21y x =-+的图象经过点()13,y -,()24,y ,34-<,∴12y y >,故选:B .5.已知一次函数(2)=-+y k x k ,且y 随x 的增大而减小,则k 的取值范围是()A .2k >B .0k <C .2k <D .2k ≤【答案】C【分析】此题主要考查一次函数的性质,根据一次函数的增减性即在y kx b =+中,k >0时y 随x 的增大而增大;k <0时,y 随x 的增大而减小即可求解.【详解】依题意得20k -<,解得2k <故选C .变式拓展三、解答题9.已知一次函数(2)312y k x k =--+.(1)k 为何值时,函数图象经过点(0,9)?(2)若一次函数(2)312y k x k =--+的函数值y 随x 的增大而减小,求k 的取值范围.【答案】(1)1(2)2k <【分析】(1)将点(0,9)代入一次函数(2)312y k x k =--+,可得关于k 的一元一次方程,求解即可获得答案;(2)根据该函数的增减性,可得20k -<,求解即可获得答案.【详解】(1)解:将点(0,9)代入一次函数(2)312y k x k =--+,可得3129k -+=,解得1k =,∴当1k =时,函数图象经过点(0,9);(2)若一次函数(2)312y k x k =--+的函数值y 随x 的增大而减小,则有20k -<,解得2k <,∴k 的取值范围为2k <.【点睛】本题主要考查了求一次函数解析式、根据一次函数的增减性求参数、解一元一次方程和解一元一次不等式等知识,熟练掌握一次函数的图象与性质是解题关键.10.已知2y -与x 成正比,且当2x =-时,8y =.(1)求y 与x 的函数关系式;(2)当x 取什么范围时,4y >-.【答案】(1)32y x =-+(2)2x <【分析】本题考查待定系数法求解析式,一次函数图象及性质.(1)设y 与x 的函数关系式为2y kx -=,再待定系数法求解即可;(2)利用一次函数图象及性质,代入4y =-后即可得到本题答案.【详解】(1)解:设y 与x 的函数关系式为2y kx -=,将当2x =-时,8y =代入2y kx -=中得:822k -=-,即:3k =-,∴32y x =-+;(2)解:∵32y x =-+,∴30k =-<,y 随x 增大而减小,当4y =-时,432x -=-+,即:2x =,∴4y >-时,2x <,综上所述:当2x <时,4y >-.考向三用待定系数法确定一次函数的解析式运用待定系数法求一次函数解析式的步骤可简单记为:一设,二代,三解,四回代.典例引领1.《国务院关于印发全民健身计划(2021-2025年)的通知》文件提出,加大全民健身场地设施供给,建立健全场馆运营管理机制,提升场馆使用效益.某健身中心为答谢新老顾客,举行大型回馈活动,特推出两种“冬季唤醒计划”活动方案.方案1:顾客不购买会员卡,每次健身收费30元.方案2:顾客花200元购买会员卡,每张会员卡仅限本人使用一年,每次健身收费10元.设王彬一年内来此健身中心健身的次数为x (次),选择方案1的费用为1y (元),选择方案2的费用为2y (元).(1)分别写出1y ,2y 与x 之间的函数关系式;(2)在如图的平面直角坐标系中分别画出它们的函数图象;(3)预计王彬一年内能来此健身中心12次,选择哪种方案比较合算?并说明理由.【答案】(1)130y x =,210200y x =+(2)见解析(3)他选择方案二比较合算,理由见解析【分析】(1)本题主要考查了列函数关系式,根据两种方案分别列出函数关系式即可,理解题意是解题的关键;(2)本题主要考查了画函数图像,分别确定两个函数图像上的两个点,然后连接即可;理解函数图像上的点满足函数解析式是解题的关键;(2)本题主要考查了不等式的应用,解不等式3010200x x <+,即可确定来此健身中心12次费用较小的方案.正确求解不等式是解题的关键.【详解】(1)解:根据题意得:130y x =,210200y x =+;所以12y y ,与x 之间的函数表达式分别为130y x =,210200y x =+.(2)解:当0x =时,10y =,2200y =;当4x =时,1120y =,2240y =.据此描点、连线画出函数图像如下:(3)解:王斌择方案二比较合算,理由如下:解不等式3010200x x >+,解得:10x >,所以当10x >时,方案二优惠,因为1210>,王斌择方案二比较合算.2.已知4y +与3x -成正比例,且1x =时,0y =(1)求y 与x 的函数表达式;(2)点(1,2)M m m +在该函数图象上,求点M 的坐标.【答案】(1)22y x =-+(2)点M 的坐标为(1,0)【分析】(1)利用正比例函数的定义,设4y +=(3)k x -,然后把已知的对应值代入求出k 即可;(2)把(1,2)M m m +代入(1)中的解析式得到关于m 的方程,然后解方程即可.【详解】(1)设y 与x 的表达式为4(3)y k x +=-,把1x =时,0y =代入4(3)y k x +=-得24k -=,解得2k =-,由题意,得52024x x ≥⎧⎨-≥⎩,解这个不等式组,得58x ≤≤,因为x 为整数,所以x 的值为5,6,7,8.所以安排方案有4种:方案一:装运食品5辆、药品10辆,生活用品5辆;方案二:装运食品6辆、药品8辆,生活用品6辆;方案三:装运食品7辆、药品6辆,生活用品7辆;方案四:装运食品8辆、药品4辆,生活用品8辆.【点睛】本题考查了列出实际问题中的函数关系式和一元一次不等式组的应用,正确理解题意、列出函数关系式和不等式组是解题的关键.5.习主席在二十大报告中提到“中国人的饭碗必须牢牢掌握在咱们自己手中”.为优选品种,提高产量,某农业科技小组对甲、乙两个水稻品种进行种植对比实验研究.去年甲、乙两个品种各种植了100亩,收获后甲、乙两个品种的售价均为2.8元/千克,且甲的平均亩产量比乙的平均亩产量低100千克,甲、乙两个品种全部售出后总收入为644000元.(1)请求出甲、乙两个品种去年平均亩产量分别是多少;(2)今年,科技小组加大了水稻种植的科研力度,在甲、乙种植亩数不变的情况下,预计甲、乙两个品种平均亩产量将在去年的基础上分别增加20x 千克和10x 千克.由于甲品种深受市场的欢迎,预计售价将在去年的基础上每千克上涨0.05x 元,而乙品种的售价将在去年的基础上每千克下降0.1x 元.若甲、乙两个品种全部售出后总收入为y 元,请写出y 与x 的关系式;若今年甲、乙两个品种全部售出后总收入比去年增加9500元,水x 的值.【答案】(1)甲水稻品种去年平均亩产量是1100千克,乙水稻品种去年平均亩产量是1200千克(2)x 的值为5【分析】(1)设甲水稻品种去年平均亩产量是m 千克,乙水稻品种去年平均亩产量是n 千克,根据:甲的平均亩产量比乙的平均亩产量低100千克,甲、乙两个品种全部售出后总收入为644000元,即可求解;(2)根据总收入等于甲乙两个品种的收入之和即可列出y 与x 的关系式,进而得到关于x 的方程,解方程即得答案.【详解】(1)设甲水稻品种去年平均亩产量是m 千克,乙水稻品种去年平均亩产量是n 千克,根据题意得1002.8100 2.8100644000n m m n -=⎧⎨⨯+⨯=⎩,解得m 11001200n =⎧⎨=⎩.答:甲水稻品种去年平均亩产量是1100千克,乙水稻品种去年平均亩产量是1200千克.(2)根据题意得:()()()()2.80.0510******* 2.80.1100120010y x x x x =+⨯++-⨯+,整理得1900644000y x =+,∴y 与x 的关系式1900644000y x =+.∵今年甲、乙两个品种全部售出后总收入比去年增加9500元,可得6440095001900644000x +=+,解得5x =.答:x 的值为5.【点睛】本题考查了二元一次方程组的应用,列出实际问题中的函数关系式,正确理解题意、找准相等关系是解题的关键.变式拓展c<时,如图2.②当0综上所述,d的取值范围是t≥时:当x t=时,①当0之间的关系如图所示.(1)求出图中a 、b 、c 的值;(2)在乙出发多少秒后,甲、乙两人相距60米?【答案】(1)8a =,92b =,123c =;(2)乙出发68秒或者108秒后,甲、乙两人相距60米.【分析】(1)由函数图象可以分别求出甲的速度为4米/秒,乙的速度为5米/秒,就可以求出乙追上甲的时间a 的值,b 表示甲跑完全程时甲、乙之间的距离,c 表示乙出发后多少时间,甲走完全程就用甲走完全程的时间−2就可以得出结论;(2)分别求出8秒到100秒和100秒到123秒的解析式,再把60y =代入即可解出x 值.【详解】(1)解:由题意及函数图象可以得出:甲的速度为:824÷=(米/秒),乙的速度为:500÷100=5(米/秒),8548a ÷-=()=(秒);500410292b -⨯==(米),50042123c ÷-==(秒),所以8,92,123a b c ===.(2)设8~100秒和100~123秒的解析式分别为11y k x b =+和22y k x b =+,把()()8010092,、,代入11y k x b =+得11110892100k b k b =+⎧⎨=+⎩解得1118k b =⎧⎨=-⎩,把()()123010092,、,代入22y k x b =+得2222012392100k b k b =+⎧⎨=+⎩解得224492k b =-⎧⎨=⎩,8~100秒解析式:8y x =-,100~123秒的解析式4492y x =-+,当60y =时,则68108x =或者,所以在乙出发68秒或者108秒后,甲、乙两人相距60米∵0<x ≤1000,∴860≤x ≤1000.故答案为:y 1=0.5x ;y 2=0.3x +40;0<x ≤200;200≤x ≤860;860≤x ≤1000.(2)根据题意可得,推出优惠活动后,y 1=0.5a +0.25(x ﹣a )=0.25x +0.25a ,则有,0.257000.250.3700400.258600.250.386040a a ⎧⨯+≥⨯+⎨⨯+≤⨯+⎩解得300≤a ≤332.∴此时a 的取值范围为:300≤a ≤332.【点睛】本题主要考查了一元一次不等式组的应用,明确题意,列出不等式组是解题的关键.考向四一次函数与方程、不等式1.方程ax +b =k (a ≠0)的解⇔函数y =ax +b (a ≠0)中,y =k 时x 的值.2.方程ax +b =k (a ≠0)的解⇔函数y =ax +b (a ≠0)的图象与直线y =k 的交点的横坐标.3.一次函数y =ax +b (a ≠0)与一元一次不等式ax +b >0(或ax +b <0)的关系:ax +b >0的解集⇔y =ax +b 中,y >0时x 的取值范围,即直线y =ax +b 在x 轴上方部分图象对应的x 的取值范围;4.ax +b <0的解集⇔y =ax +b 中,y <0时x 的取值范围,即直线y =ax +b 在x 轴下方部分图象对应的x 的取值范围.5.二元一次方程kx -y +b =0(k ≠0)的解与一次函数y =kx +b (k ≠0)的图象上的点的坐标是一一对应的.6.两个一次函数图象的交点坐标,就是相应二元一次方程组的解,体现了数形结合的思想方法.典例引领1.直线1l :1y kx b =+过点()0,4A 和()1,3D ,直线2l :225y x =-和y 轴交于点B 和直线1l 交于C 点.(1)求两条直线交点C 的坐标及ABC 的面积;(2)x 取何值时,120y y >>.∵()0,4A ,()0,5B -,()3,1C ,∴9AB =,3CN =,∴112793222ABC S AB CN =⋅=⨯⨯= .(2)∵14y x =-+,225y x =-,∴当120y y >>时,4250x x -+>->,解得:532x <<.2.已知直线443y x =-+与x 轴,y 轴分别交于点且把AOB 分成两部分.(1)若AOB 被分成的两部分面积相等,求k 与b ;⎩3.如图,在平面直角坐标系中,直线轴于点C和点D,两条直线交于点(1)求点A的坐标;(2)在直线CD上求点M【答案】(1)点A的坐标为(2)点M的坐标为44⎛∵3ABC MAB S S = ,∴23MBC ABC S S =△△,∵12ABC A S BC y =⋅△,121∵3ABC MAB S S = ,∴43MBC ABC S S =△△,(1)求点C的坐标;(2)求AOB的面积;(3)点D在直线122y x =+求点D的坐标.变式拓展(1)求点A,B,C的坐标.(2)若点P在直线1l上,且(3)根据图象,直接写出当【答案】(1)48, A⎛-(1)直接写出点A的坐标为。
四种常见函数的图象和性质总结

一、内容综述:四种常见函数的图象和性质总结图象特殊点性质一次函数与x轴交点与y轴交点(0,b)(1)当k>0时,y随x的增大而增大;(2)当k<0时,y随x的增大而减小.正比例函数与x、y轴交点是原点(0,0)。
(1)当k>0时,y随x的增大而增大,且直线经过第一、三象限;(2)当k<0时,y随x的增大而减小,且直线经过第二、四象限反比例函数与坐标轴没有交点,但与坐标轴无限靠近。
(1)当k>0时,双曲线经过第一、三象限,在每个象限内,y随x的增大而减小;(2) 当k<0时,双曲线经过第二、四象限,在每个象限内,y随x的增大而增大。
二次函数与x轴交点或,其中是方程的解,与y轴交点,顶点坐标是(-,)。
(1)当a>0时,抛物线开口向上,并向上无限延伸;对称轴是直线x=-, y最小值=。
(2)当a<0时,抛物线开口向下,并向下无限延伸;对称轴是直线x=-, y最大值=注意事项总结:1.关于点的坐标的求法:方法有两种,一种是直接利用定义,结合几何直观图形,先求出有关垂线段的长,再根据该点的位置,明确其纵、横坐标的符号,并注意线段与坐标的转化,线段转换为坐标看象限加符号,坐标转换为线段加绝对值;另一种是根据该点纵、横坐标满足的条件确定,例如直线y=2x和y=-x-3的交点坐标,只需解方程组就可以了。
2.对解析式中常数的认识:一次函数y=kx+b (k≠0)、二次函数y=ax2+bx+c(a≠0)及其它形式、反比例函数y=(k≠0),不同常数对图像位置的影响各不相同,它们所起的作用,一般是按其正、零、负三种情况来考虑的,一定要建立起图像位置和常数的对应关系。
3.对于二次函数解析式,除了掌握一般式即:y=ax2+bx+c((a≠0)之外,还应掌握“顶点式”y=a(x-h)2+ k及“两根式”y=a(x-x1)(x-x2),(其中x1,x2即为图象与x轴两个交点的横坐标)。
一元三次函数的图象和性质

2007.10教与学科学思想方法!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!A.抛物线B.椭圆C.双曲线D.线段失误分析:学生凭猜想选A,但稍一细想,就觉不对.因为这不是同一平面内到定点和定直线的距离相等,必须转化到同一平面内来研究.解:过点M在底面上的射影N作NQ⊥AC于Q,连接MQ,则MQ⊥AC.如图5.在直角三角形MNQ中,∠MQN为二面角P-AC-B的平面角,MN∶MQ=sin∠MQN.因MP=MN,所以MP∶MQ=sin∠MQN(常数),即点M到定点P和定直线AC的距离之比等于定值,且定值在0和1之间.故点M的轨迹是椭圆的一段.空间轨迹问题分两大类,一类是利用基本轨迹,另一类是利用转化思想进行化归.基本轨迹有:(1)到定点的距离等于定长的点的轨迹是球面;(2)到定直线的距离等于定长的点的轨迹是圆柱面;(3)到一个定平面的距离等于定长的点的轨迹是到这个平面的距离等于该定长的两个平行平面;(4)到两定点的距离相等的点的轨迹是这两点连线段的垂直平分面;(5)到两相交平面距离相等的点的轨迹是两组二面角的平分面;(6)与两定点连线段的夹角等于定值的点的轨迹是两个球冠.所谓转化化归就是利用基本轨迹及交轨的方法(如例1和例2)或利用立体几何知识把空间问题平面化来解决(如例3).图4图5在高中阶段,一元二次函数一直是函数部分教学的重点和难点,在教学中对这部分内容相当重视,因此,学生对一元二次函数的图象及性质比较熟悉.随着导数的引入,由于一元三次函数的导数是一元二次函数,因此,在综合性考试中,常见一元三次函数和一元二次函数综合考查的题目.学生应掌握一元三次函数的图象和性质.下面,讨论一下一元三次函数的图象和性质.性质1:对函数f(x)=ax3+bx2+cx+d(a≠0),若a>0,则当x→+∞时,f(x)→+∞,当x→-∞时,f(x)→-∞;若a<0,则当x→+∞时,f(x)→-∞,当x→-∞时,f(x)→+∞.一元三次函数的图象和性质□河北邢台市第八中学袁胜新452007.10教与学证明:f(x)=ax3+bx2+cx+d=x(ax2+bx+c)+d.若a>0,当x→+∞时,ax2+bx+c→+∞,x(ax2+bx+c)→+∞,∴f(x)=ax3+bx2+cx+d→+∞.当x→-∞时,ax2+bx+c→+∞,x(ax2+bx+c)→-∞,∴f(x)=ax3+bx2+cx+d→-∞.同理可证当a<0时的情况.由此可知,在画f(x)=ax3+bx2+cx+d的图象时,若a>0,左侧应从下逐渐上升,右侧自右至左应从上逐渐下降.若a<0,左侧应从上逐渐下降,右侧自右至左应从下逐渐上升.性质2:对函数f(x)=ax3+bx2+cx+d(a≠0),其导函数为一元二次函数f′(x)=3ax2+2bx+c,它的!=(2b)2-4×(3a)c=4(b2-3ac).当!=4(b2-3ac)≤0时,函数f(x)=ax3+bx2+cx+d(a≠0)在R上为单调函数.若a>0,导函数y=f′(x)≥0恒成立,函数f(x)为增函数;若a<0,导函数y=f′(x)≤0恒成立,函数f(x)为减函数.当!=4(b2-3ac)>0时,导函数f′(x)=3ax2+2bx+c=0有两个相异实数根x1,x2且x1<x2,因此,若a>0,导函数f′(x)在(-∞,x1)和(x2,+∞)上恒正,故函数f(x)在(-∞,x1)和(x2,+∞)上为增函数;导函数f′(x)在(x1,x2)上恒负,所以函数f(x)在(x1,x2)上为减函数;同样可得,若a<0,函数f(x)在(-∞,x1)和(x2,+∞)上为减函数,在(x1,x2)上为增函数.性质3:对函数f(x)=ax3+bx2+cx+d(a≠0),其导函数为一元二次函数f′(x)=3ax2+2bx+c,它的!=(2b)2-4×(3a)c=4(b2-3ac).由性质2可得当!=4(b2-3ac)≤0时,函数f(x)=ax3+bx2+cx+d(a≠0)不存在极值.当!=4(b2-3ac)>0时,函数y=f(x)在x=x1和x=x2处取极值,若a>0,函数f(x)在x1处取极大值f(x1),在x2处取极小值f(x2).若a<0,函数f(x)在x1处取极小值f(x1),在x2处取极大值f(x2).性质4:对函数f(x)=ax3+bx2+cx+d(a≠0),其导函数为一元二次函数f′(x)=3ax2+2bx+c,!=(2b)2-4×(3a)c=4(b2-3ac).当!=4(b2-3ac)≤0时,方程ax3+bx2+cx+d=0有且只有一个实数根.当!=4(b2-3ac)>0时,函数y=f(x)在x=x1和x=x2处分别取极值f(x1),f(x2),当函数f(x)的极大值小于0或极小值大于0时,方程ax3+bx2+cx+d=0有且只有一个实数根;当函数f(x)的极大值等于0或极小值等于0时,方程ax3+bx2+cx+d=0有且只有两个实数根;当函数f(x)的极大值大于0且极小值小于0时,方程ax3+bx2+cx+d=0有且只有三个实数根.性质5:函数f(x)=ax3+bx2+cx+d(a≠0)关于(-b3a,f(-b3a))呈中心对称图形.例题(2005年全国统考卷II(文))22.设a为实数,函数f(x)=x3-x2-x+a.(1)求f(x)的极值;科学思想方法462007.10教与学!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!随着信息社会的迅猛发展,多媒体教学正逐步融入我们的课堂,它以特有的功能,弥补了传统教学方式在直观性、主体性和动态感等方面的不足,使一些抽象难懂的内容,变得易于理解和掌握,能取得传统教学方法无法取得的效果.在教学中,教师应结合数学学科内容和学生年龄小的特点,合理地运用电教媒体,发挥电教媒体教学的功能优势,激发学习兴趣,从而达到优化数学课堂教学,提高效率的目的.下面就如何合理运用电教媒体谈一些体会.一、运用电教媒体,激发学习兴趣兴趣是学生学习的最佳动力,是发展智力的基础.在目标教学的前提测评环节中,我充分利用电教媒体的直观性与可操作性强等特点,结合教材内容,或以鲜艳的图片刺激学生的感官,或以有趣的情境激发学生的兴趣,或以直观演示展现新旧知识的矛盾点,激发学生的探究欲.例如,在讲“平行四边形面积的计算”时,我首先出示一张投影,通过数方格的方法求出投影上所画的平行四边形的面积,然后启发学生思考:如果一块地或一个操场是平行四边形,能用数方格的方法求出面积吗?不用数方格的方法,又怎样计算平行四边形的面积呢?通过设问,学生感到有趣,急于知晓计算平行四边形面积的方法.二、运用电教媒体,培养创新能力从发展的求异思维入手,培养和训练学生敏锐的洞察力和迅捷的判断力,鼓励学生大胆质疑,标新立异,沿着不同的方向去思考,以求获得尽可能多的解决问题的方法,从而培养学生的创新能力.运用电教媒体,可化静为动,化抽象为具体,展现给学生一个丰富多彩的世界.在这种极富创新的空间中,学生也会不知制作运用电教媒体提高数学教学效率□河南临颍县北街学校丁书贞(2)当a在什么范围内取值时,曲线y=f(x)与x轴有且只有一个交点.解:(1)三次项系数=1>0,!=(-1)2-3×1×(-1)=4>0,故函数y=f(x)存在极值.y=f(x)的导函数为f′(x)=3x2-2x-1,令f′(x)=3x2-2x-1=0,解得x1=-13和x2=1.所以函数y=f(x)在x1=-13处取极大值f(-13)=a-727,函数y=f(x)在x2=1处取极小值f(1)=a-1.(2)要使曲线y=f(x)与x轴有且只有一个交点,即f(x)=0有且只有一个实根,只需极大值f(-13)=a-727<0或极小值f(1)=a-1>0,解得a<727或a>1.现代教育技术47。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
= 2+ b -
= 韭 夏
() 1 △<0时 ,对 V R, )>0恒 成立 ,f( ) 区间 ∈ f ( 在
。x 的单调性 和极值情况列表如下 : ( ∞,+ 。上 递增 ,厂 ) 一 a) ( 的图象没有 与 轴平行或 重合 的切线 , ( 。 0 由 < 知 > 9,对函数, )
、
一
元 三次 函数 的图象和性质
函数 f( =O。 x +c ) . +b +d ≠0 X )称作 关于 的一元三
次函数. 用导数知识和二次函数知识对三次函数的性质和图象探
讨如下 :
厂( ) a b =3 x+2x+c ,记 △=( b 2 )一4・ a・ 4 b 一 a ) 3 c= ( 3c .
当 圹一 时 f x-i ,当 扩+∞ 时. — + . 在( ∞,+ ()- . - + 厂 )+ ∞,厂 ( ) 一 ∞)
( ∞, ) 一 2
, ()
X 2
0
(2 1 ,X )
+
筇 l
O , () 故. ) ( 一o ∞) . 的图象如图 l , 厂 所示.
质进行 系统探讨 ,并分 析几道 应用 的例 子 ,可 供备考教 学 中对
“ 导数 ”复习时作参考.
一
形象地说 , 二次方程, () 0 = 的实根 耽将区间(a,+ ) 一。 ∞
( 即 轴) “ 两刀 三段 ” .( 从 左到右 在三段上 依次是增 函数 、 ,厂 ) 减函数 、增 函数. 2口 . <0的情形
3 a
( > 知 < 2, 函 J 的单调性和极值情况列表如下 : 由a 0 。 ) 对 数 r ) (
( ∞,衲) 一 ,( ) + X l 0 (l x,勋) 2 0 ( 耽,+ ∞) +
数 、三次方程 ” 的问题在 中学数学 中 占居 了重要 的地位 ,尽 管
N。 01 O9 2 1
J u a fChn s te t s E u ain o r lo ie e Mah mai d c t n c o
— —
21 0 1年
第 9期
摘要 :“ 一元三 次函数、三次方程 ”问题在 中学数 学中具 有 重要地位 。与 高等数 学具有 紧密联 系 ,文章 以 “ 导数 ”和 “ 三
) (: 中学数学 教材 “ 数 ”一 章仅对 三次 函数 的极值 、区间上的最 ,() 增函数 极大值,(- 减函数 极小值, ) 增函数 导 当 一 时,( 一一 0 ∞ ) O,当 圹 + ∞ 时,( ) ∞, x f  ̄ + 一+ f( )C l J 值 、图象 切线作 了非常简 单的应用 示例 ,但每年 ( 文科 )高考
3 9
, 的图象如图6 形象地说,方程 () 的实根 () . =0
将区间( ∞,+ ( 一 ∞)即 轴) 两刀三段 ” , 从左到右在三段上 “ , () 依次是减 函数 、增函数 、减 函数 .
对三 次函数的考查都非常突 出. “ 三次 函数 和 三次方 程 问题 ”对 “ 导数 ”知识 和 “ 三个二
次”知识 有着非 常典 型的应用 ,与高等数 学紧 密联系 ,能较好
象如 图 3 所示 .
地 拓展学 生的视 野 ,它是 培养学 生数学 素养 、检查学生 数学能
力 的很好的素材.因此 ,在 “ 导数”一章的教学中 ,有必要对三 次 函数 、三次方 程问题 作一些 拓展 ,在 高三备 考复 习教 学 中有 必要 对三次 函数 问题作 系统 的探讨.下文对三次函数的 图象 和性
( △ 0 对V e , ) 0 成 且 ,( ) 2 = 时, xR f ≥ 恒 立, 除 = ) 一
收稿 日期 :2 1 — 3 1 0 10—4 教 学及其研 究工作.
f() 减函数 极小值f x) 增函数 极大值r ) 减函数 x (: (-
’
作者简介 :张国坤 ( 6一 ,男 ,云南曲靖会 泽人 ,中学高级教师 ,云 南省数 学特级教师 ,云南省曲靖 市学术技 术带头人 。主要从 事高 中数学 1 7) 9
元 三次 函数 图 象和 性质作 全 面深 刻探 讨 并获得 了一般 性 的结 且当 一一 ∞时,( ) a,当 + ∞时,( ) ∞, ) 一一。 + 一+ ,( l 虱象如 论 。对一元 三次方程 实根 情 况进行 了深入 的探 讨 ,对一元 三次 图 2所示. 函数 图象的切 线作例 示探 讨 ,文章 列举 了若干典 型例题进行 分 () 3 △>0时 ,二次 方 程 , ( ):0有 两个 不 等实 根 : I =
极点 分布 和函数单调性研 究.
-
关键词 :一元三次 函数 ;函数 图象;图象性质 中学 数学对一元二次方程问题研究得 比较透彻 , 三个二次 ” “ 的知识在 中学数 学 中得 到 了 比较广 泛 的应 用 .近年来 “ 次函 三
2 -x E b /
=
土
3 a
互
-b x- = 2+ / 韭 堑 E
个二 次 ( 即二 次函数 、二次方程、二次 不等 式) ”知识 为工具对
一
霉
, 一 :外 有 )0, )( , 是 函 , 0 恒 , >,(在一 +) 增 数 (b) ( ∞ 上
, )图 有 只 一 与 轴 行 重 的 线 y ( , 的 象 且 有 条 平 或 合 切 := 一 , 蚤)
.
可作与 n 0 > 情形类似 的讨论 , 结果如下 : () 1 △≤ 0 , () 一 时 厂 在( ∞,+ 上是减 函数 , 中 △< 时 ∞) 其 0
厂 图象如图 4所示 ,△=0时.( 图象如 图 5所示. () 厂 )
分两类情形讨论 .
1 o>0的情形 .
( ) 0时 ,二次方程 厂 () 有两个不等实根 : = 2 △> =0