5.4一次函数的图象和性质(3)

合集下载

一次函数的图象及性质

一次函数的图象及性质
极小值点
在某个点处,函数的导数为0,并且在该点左侧导数小 于0,右侧导数大于0,那么这个点就是极小值点。
一次函数的凹凸性
凹函数
如果在某个区间内,函数的二阶导数大于 0,那么这个函数在这个区间内是凹函数 。
VS
凸函数
如果在某个区间内,函数的二阶导数小于 0,那么这个函数在这个区间内是凸函数 。
04
一次函数与数列的关系
数列是一次函数图象上多个点的集合,表示在多个自变 量下函数的值的变化规律。通过对数列的研究,我们可 以找到一次函数图象上对应的多个点。
一次函数与数列的关系还表现在解决实际问题中,如等 差数列和等比数列的问题,通过建立一次函数模型可以 解决实际问题的最优解。
06
一次函数的扩展知识
一次函数与方程的关系还表现在求解未知数 的运算过程中,通过对方程的求解可以得到
一次函数的解析式。
一次函数与不等式的关系
不等式可以看作一次函数图象上某一段的横坐标,表 示在这一段上函数的值大于或小于零。通过对不等式 的求解,我们可以找到一次函数图象上对应的区间。
一次函数与不等式的关系还表现在解决实际问题中, 如时间、速度、价格等问题,通过建立一次函数不等 式模型可以解决实际问题的最优解。
为截距。
当自变量取值为`x`时,函数值 计算公式为`y = kx + b`。
绘制点
根据计算出的函数值和自变量的取值,绘制散点图。
对于每个自变量值,计算其对应的函数值,并在坐标系中绘制一个点。
连接点
使用线段或曲线连接散点图中的点。
对于一次函数,通常使用直线连接点,因为一次函数的图像是一条直线。
03
一次函数的应用
一次函数在代数中的应用
求解方程

一次函数的图象ppt课件

一次函数的图象ppt课件

3
探究新知
正比例函数的图象
知识点
探究1:画出正比例函数y=2x的图象
怎样画出给定函数的图象?一般可以分为哪几个步骤?
“描点法”,分成“列表、描点、连线”三个步骤.
(1) 列表:
x
… -3
-2
-1
0
1
2
3

y=2x
… -6
-4
-2
0
2
4
6

4
4
探究新知
探究1:画出正比例函数y=2x的图象
y=-2x
交点的坐标:y=3x 和y=-3x+2.
解:对于函数y=3x,取x=0,得y=0,
得到点(0,0);取x=1,得y=3,
得到点(1,3).
过点(0,0),(1,3)画直线,
就得到函数y=3x的图象,它与坐标
轴的交点是原点(0,0).
y
5
4
3
2
1
y=3x
-3 -2 -1 O1 2 3 x
-1
-2
பைடு நூலகம்-3
-4
2
它与x轴的交点是( 3 ,0),与y轴
的交点是(0,2).
y
5
4
3
2
1
y=3x
-3 -2 -1 O1 2 3 x
-1
-2
-3
-4
y=-3x+2
-5
15
15
探究新知
例3 画出一次函数y=2x-1与y=-0.5x+1的图象,并求出它们与
坐标轴的交点坐标.
y
y=2x-1
解:列表:
x
y=2x-1
y=-0.5x+1

考点08 一次函数的图象与性质【无答案】

考点08 一次函数的图象与性质【无答案】

考点08 一次函数的图象和性质一次函数的图象与性质是中考数学中比较重要的一个考点,也是知识点牵涉比较多的考点。

各地对一次函数的图象与性质的考察也主要集中在一次函数表达式与平移、图象的性质、图象与方程不等式的关系以及一次函数图象与几何图形面积等五个方面。

也因为一次函数是一个结合型比较强的知识点,所以其图象和性质也是后续函数问题学习的一个基础。

故考生在复习这块知识点时,需要特别熟记对应考点的方法规律。

一、一次函数的图象与平移二、一次函数的性质三、待定系数法求解一次函数的表达式四、一次函数与方程、不等式的关系五、一次函数与三角形面积考向一:一次函数的图象与平移一.一次函数的图象1.下列函数:①y=4x;②y=﹣;③y=;④y=﹣4x+1,其中一次函数的个数是()A.1B.2C.3D.42.如图,在平面直角坐标系中,函数y=k(x﹣1)(k>0)的图象大致是()A.B.C.D.3.如图,同一直角坐标系中,能表示一次函数y=x+kb和y=kx+b(k、b为常数,且k≠0)的图象是()A.B.C.D.4.在平面直角坐标系中,直线是函数y=6x﹣2的图象,将直线l平移后得到直线y=6x+2,则下列平移方式正确的是()A.将1向右平移4个单位长度B.将1向左平移4个单位长度C.将1向上平移4个单位长度D.将1向下平移4个单位长度5.直线y=2x﹣4向上平移2个单位后所得的直线与x轴交点的坐标是.6.如图,在同一平面直角坐标系中,一次函数y1=k1x+b1与y2=k2x+b2的图象分别为直线l1和直线l2,下列结论正确的是()A.k1k2<0B.k1+k2<0C.b1﹣b2>0D.b1b2>0考向二:一次函数的性质对于任意一次函数y=kx+b(k≠0),点A (x1,y1)B(x2,y2)在其图象上1.一次函数y=﹣3x+1的图象经过()A.第一、二、四象限B.第一、三、四象限C.第一、二、三象限D.第二、三、四象限2.已知点A(﹣3,y1),B(﹣1,y2)都在直线y=(m2+1)x+m上,则y1,y2的大小关系是()A.y1>y2B.y1<y2C.y1=y2D.大小不确定3.已知A(x1,y1),B(x2,y2)是关于x的函数y=(m﹣1)x图象上的两点,当x1<x2时,y1<y2,则m 的取值范围是()A.m>0B.m<0C.m>1D.m<14.对于一次函数y=﹣2x+1的相关性质,下列描述错误的是()A.函数图象经过第一、二、四象限B.图象与y轴的交点坐标为(1,0)C.y随x的增大而减小D.图象与坐标轴调成三角形的面积为5.已知点(﹣2,y1),(2,y2)都在直线y=2x﹣3上,则y1y2.(填“<”或“>”或“=”)考向三:待定系数法求一次函数的解析式1.一个正比例函数的图象过点(﹣2,3),它的表达式为()A.B.C.D.2.已知一次函数y=mx﹣4m,当1≤x≤3时,2≤y≤6,则m的值为()A.2B.﹣2 C.2或﹣2D.m的值不存在3.已知y与x成正比例,且当x=2时,y=﹣3.则当x=﹣时,y=.4.已知一次函数的图象经过A(2,0),B(0,4)两点.(1)求此一次函数表达式;(2)试判断点(﹣1,6)是否在此一次函数的图象上.5.如图,在平面直角坐标系xOy中,直线y=﹣2x+a与y轴交于点C(0,6),与x轴交于点B.(1)求这条直线的解析式;(2)直线AD与(1)中所求的直线相交于点D(﹣1,n),点A的坐标为(﹣3,0).求n的值及直线AD的解析式.考向四:一次函数与方程不等式间的关系1.已知方程2x﹣1=﹣3x+4的解是x=1,则直线y=2x﹣1和y=﹣3x+4的交点坐标为()A.(1,0)B.(1,1)C.(﹣1,﹣3)D.(﹣1,1)2.如图,直线y=ax+b(a≠0)过点A(0,1),B(2,0),则关于x的方程ax+b=0的解为.3.如图,一次函数y=2x+1的图象与y=kx+b的图象相交于点A,则方程组的解是()A.B.C.D.4.如图,已知直线y=ax+b和直线y=kx交于点P,若二元一次方程组的解为x、y,则x+y=.5.若定义一种新运算:,例如:2@4=2+4﹣3=3,2@1=2﹣1+3=4,下列说法:①(﹣1)@(﹣2)=4;②若x@(x+2)=5,则x=3;③x@2x=3的解为x=2;④函数y=(x2+1)@1与x轴交于(﹣1,0)和(1,0).其中正确的个数是()A.4B.3C.2D.16.如图,已知一次函数y1=kx﹣b与y2=nx函数图象相交于点M,当kx﹣b=nx时,x的值是,当y1>y2时,x的取值范围是,当y1<y2时,x的取值范围是.7.小时在学习了一次函数知识后,结合探究一次函数图象与性质的方法,对新函数y=2﹣|x﹣1|及其图象进行如下探究.(1)自变量x的取值范围是全体实数,x与y的几组对应值如表:x…﹣3﹣2﹣1012345…y…﹣2﹣1m1210n﹣2…其中m=,n=.(2)请在给出的平面直角坐标系中画出该函数的图象,并结合图象写出该函数的一条性质:.(3)当时,x的取值范围为.考向五:一次函数与三角形面积一.一次函数与坐标轴围成三角形面积的规律方法归纳3.求三角形面积时,三角形有边在水平或者竖直边上,常以这条边为底,再由底所对顶点的坐标确定高;二.一次函数图象与几何图形动点面积1.此类问题需要将动点所在几何图形与一次函数图象同时分析,对照一次函数图象得出动点所在几何图形的边长信息2.对函数图象的分析重点抓住以下两点:①分清坐标系的x轴、y轴的具体意义②特别分析图象的拐点——拐点一般表示动点运动到几何图形的一个顶点3.动点所在几何图形如果是特殊图形,如等腰三角形、等腰直角三角形、含30°的直角三角形,注意对应图形性质与辅助线的应用。

一次函数图像及性质

一次函数图像及性质

第4讲、一次函数的图象与性质姓名:____________【知识回顾】一、一次函数的图像1、一次函数通过列表、描点、连线画出来的图像是一条直线,因此我们也把一次函数y=kx+b(k ≠0)的图象叫做直线y=kx+b.特例:(0)y kx k =≠的图像是经过坐标原点的一条直线。

2、一次函数图像的画法:用取两点A (kb-,0),B (0,b )画直线的方法画图像 3、一次函数y=kx+b 中的k 叫做直线的斜率,b 叫做直线在y 轴上的截距,kb-叫做直线在x 轴上的截距;二、一次函数的性质:【典例精讲】◆【要点1】正比例函数的图像性质:正比例函数的图象是通过坐标原点的一条 直线: 当k>0时,图象在一、三象限,呈上升趋势,y 随x 的增大而增大; 当k<0时,图象在二、四象限,呈下降趋势,y 随x 的增大而减小; ◆【要点2】一次函数的图像性质:当121212k k b b =≠ 且时,∥,当1212k k ⋅⊥=-1,则,l l【例1】1、已知函数:①、0.26y x =+;②、172y x =-+;③、32y x =-;④、2y x =-; 其中y 随x 的增大而增大的函数是 ;y 随x 的增大而减小的函数是 ;2、若正比例函数3(3)m y m x -=-的图象经过二、四象限,则这个正比例函数的解析式是 ;3、点A (1x ,1y )和点B (2x ,2y )在同一直线y kx b =+上,且0k <.若12x x >,则1y ,2y 的关系是( )xyxyb >0b <0k >0k <xy Ox yO xyO xyO0b >0b <A B C D-1-111-11-11y=-x+1y=-x+1y=-x+1y=-x+1xy xy xy xyA 、12y y >B 、12y y <C 、12y y =D 、无法确定4、函数b ax y +=与y bx a =+的图象在同一坐标系内的大致位置正确的是( )变式训练1:关于一次函数y =-x +1的图象,下列所画正确的是( )◆【要点3】----求直线与坐标轴的交点直线y kx b =+与x 轴的交点坐标,令0y =,得交点(kb-,0);求与y 轴的交点坐标,令0x =,得交点(0,b );【例2】1、直线23y x =-+经过 象限,与x 轴的交点坐标是 ,直线与y 轴的交点坐标是 ,图象与坐标轴所围成的三角形面积是 ; 2、 若直线14-=+-=x y m x y 与的图象交于y 轴上一点,则________m =;3、(12培优)若直线p x y +=3与直线q x y +-=2的图象交x 轴于同一点,则p 、q 之间的关系式为 ; 练习:1、(12∙重点轮动)直线2y kx =+与x 轴交于点(1-,0),则______k =;2、(桂林)直线1-=kx y 一定经过点( )A 、(1,0) B 、(1,k ) C 、(0,k ) D 、(0,1-) 3.已知一次函数y= -2x+3, 填空:(1)此一次函数的图像是 ,它经过 象限,y 随x 的增大而(2)直线y= -2x+3的斜率是 ,在y 轴上的截距是 ,在x 轴上的截距是 与x 轴的交点坐标是 ,直线与y 轴的交点坐标是 ,交点之间的距离是 ,与两坐标轴所围成的面积是xy O xyO xyO xyOAB C D(3)将此直线向左平移3个单位得直线 ,再向上平移4个单位得直线 (4)当x 时,y >0,当x= 时,y=0, 当x 时,y <0,当 -1<y <3时,x 的取值范围是 ,当 -2<x <1时,y 的取值范围是 .(5)若一直线y=kx+b 与直线y= -2x+3平行,且过点(-3,1),则这条直线的解析式是 . ◆【要点4】----一次函数与方程(组)及不等式的关系 例3、1:函数x y =1,34312+=x y .当21y y >时,x 的范围是( ) A..x <-1 B .-1<x <2 C .x <-1或x >2 D .x >2y 2y 1(2,2)(-1,1)xyy=-2x+6o36xy2.已知函数62+-=x y 的图象如图所示,根据图象回答:⑴当x= 时,y=0,即方程062=+-x 的解为 思考:⑵当x 时,y >0,即不等式062>+-x 的解集为⑶当x 时,y <0,即不等式062<+-x 的解集为 总结:当y=0时,正好是图象与 轴的交点 当y >0时,图象位于 轴 方 当y <0时,图象位于 轴 方 ◆【要点5】、一次函数与二元一次方程组之间的关系 直线1 : y=11b x k + 直线:2 y=22b x k +(1)、当12121212k k b b =≠ 且时,∥,这时与没有公共点,所以方程组没有解 (2)、当21212121 与重合,这时与时,且b b k k ==有无数个公共点,方程组有无数个解。

一次函数的图像和性质

一次函数的图像和性质

课题 一次函数的图像与性质1、一次函数的图像的画法(1)画函数图像的三步:列表-描点-连线. (2)一次函数的图象是一条直线。

一次函数y=kx+b (k 、b 是常数,且k ≠0)的图象是一条直线。

一次函数y=kx+b 也称为直线y=kx+b ,这时,我们把一次函数的解析式y=kx+b 称为这一直线的表达式。

(3)因为一次函数y=kx+b (k 、b 是常数,且k ≠0)的图象是一条直线,根据“两点确定一条直线”的基本性质,画一次函数的图象时只需描出图象上的两个点,再作过这两点的直线即可。

2、一次函数的图像的性质(1)一次函数与x 轴交点的纵坐标为0,与y 轴交点的横坐标为0.(2)一次函数111(y k x b k =+、110b k ≠为常数,)与222(y k x b k =+、220b k ≠为常数,)的图像平行时,则12k k =。

反之,当12k k =时,两直线平行,且当12k k =,12b b =时,两直线重合。

(3)当一次函数111(y k x b k =+、110b k ≠为常数,)与222(y k x b k =+、220b k ≠为常数,)的图像的截距相同且不平行时,则12b b =,12k k ≠。

(4)一次函数y=kx+b (k 、b 是常数,且k ≠0)当k>0时函数值随着x 的增大而增大、减小而减小,即该函数为增函数;当k<0时函数值随着x 的增大而减小、减小而增大。

即该函数为减函数。

3、一次函数图像的平移一次函数y=kx+b (k 、b 是常数,且k ≠0)的图象向上平移h 个单位后的函数解析式为y=kx+b+h;向下平移h 个单位后的函数解析式为y=kx+b-h 。

4、一次函数图像经过的象限示意图k 、b 的符号直线y=kx+b 经过的象限增减性一.基础练习:1.一次函数y=3x-6的图像是,它与x轴的交点坐标是,它与y轴的交点坐标是2.将直线y=x向下平移4个单位,得到直线3.将直线y=-3x-5向上平移4个单位,得到直线4.若直线y=3x-5与直线y=kx-4相互平行,则k=5.若直线y=-2x-5与直线y=6x+b相交于y轴上同一点,则b=6. 请你在不同的平面直角坐标系中画出下列函数的图像(1)y=2x+6 (2)1722 y x=+(3)4833y x=--(4)1344y x=--7,做一做:画出函数y=-2x+2 的图像,结合图象回答下列问题:( 1 )这个函数中,随着x 的增大,y 将增大还是减小?( 2 )当x 取何值时,y=0 ?当y 取何值时,x=0 ?( 3 )当x 取何值时,y>0 ?( 4 )函数的图像不经过哪个象限?8、完成下列各题:(1)下列函数中,y的值随着x的增大而减小的是()A.y=2x-7B.y=0.5x+2C.y=(2-1)x+3D.y=-0.3x+1(2)函数y=4x-3中,y的值随着x值的增大而____(3)函数y=(2m-1)x+2的函数值随x的增大而减小,则m的值为______ (4)一次函数y=2x+4的图像上有两点A(3,a),B(4,b),请判断a与b的大小(5)y=x+5与y=2x-5的增减性(y 随着x 的增加而增加,还是随着x 的增加而减小)是否一样?(6)y=-2x+5与y=-2x-5的增减性是否一样?(7)A(a,6)和B(b,-2)在函数y=2x-5的图像上,请你判断a ,b 的大小关系 9、已知一次函数2(2)28y k x k =--+,分别根据下列条件求k 的值或k 的取值范围: (1)它的图像经过原点(2)它的图像经过点(0,-2)(3)它的图像与y 轴的交点在x 轴上方 (4)y 随着x 的增大而减小(5)这条直线经过一、二、三象限10、要使一次函数y=-3x+4的函数值大于4,求自变量x 的取值范围。

一次函数的图像和性质教案3篇

一次函数的图像和性质教案3篇

一次函数的图像和性质教案1课型:新授教学目标:一、知识与技能目标(1)能根据一次函数的图象和函数关系式,探索并理解一次函数的性质;(2)进一步理解正比例函数图象和一次函数图象的位置关系;(3)探索一次函数的图象在平面直角坐标系中的位置特征。

二、过程与方法目标通过组织学生参与由一次函数的图象来揭示函数性质的探索活动,培养学生观察、比较、抽象和概括的能力,培养学生用数形结合的思想方法探索数学问题的能力。

三、情感、态度与价值观目标通过师生共同探讨,体现数学学习充满着探索性和创造性,感受共同合作取得成功的快乐。

教学重点:一次函数图象的性质。

教学难点:通过图形探求性质以及分析图形的位置特征。

课前准备:本节课为了帮助同学们能正确理解函数的增减性,更清楚、快捷地通过图象探究函数的某些特征。

教师在课前准备好多媒体课件,并选择在多媒体教室完成本节课的教学任务。

【教学过程设计】一、创设情景,引导探究(1)复习一次函数图象的画法师:上节课我们了解了一次函数图象,并学习了图象的画法。

同学们能画出函数y=2x+4和y=-x-3的图象吗?说说看,如何画?生:能。

因为一次函数的图象是一直线,所以,我可以过(1,6)和(0,4)两点画直线y=2x+4。

过(1,-)、(0,-3)两点画直线y=-x-3。

师:很好。

还有不同的取点法吗?生:有,可经过(-2,0)和(0,4),画直线y=2x+4;经过(-2,0)和(0,-3)画直线-x-3。

师:大家说说看,哪一种取法更好呢?众:乙的方法好。

师:对。

我们可以针对函数中不同的k和b的值,灵活取值。

教师要求学生画出这两函数的图象。

【设计说明】:通过对两函数图象画法的讨论,引导学生得出简捷画法,并为后面新知识的研究作一些伏笔。

(2)探究一次函数的增减性师:教师用多媒体呈现给大家一幅画面。

图画上有两个一次函数的图象,而背景是一座山,两一次函数的图象正好对应着背景图中的上山和下山的路线,教师在课件中设计一个人从左边上山顶,并继续下山到右边山脚,并把这一活动来回放两遍给学生看,继而引导学生思考。

浙教版八年级上册第六章《一次函数》知识点及典型例题

浙教版八年级上册第六章《一次函数》知识点及典型例题

新浙教版八年级上册第六章《一次函数》知识点总结及典型例题关于基本概念和性质的知识点1、变量:在一个变化过程中可以取不同数值的量。

常量:在一个变化过程中只能取同一数值的量。

例题:在匀速运动公式vts=中,v表示速度,t表示时间,s表示在时间t内所走的路程,则变量是________,常量是_______。

在圆的周长公式C=2πr中,变量是________,常量是_________.2、函数:一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就把x称为自变量,把y称为因变量,y是x的函数。

★★★判断y是否为x的函数,只要看x取值确定的时候,y是否有唯一确定的值与之对应例题:1、下列说法正确的是:()A 变量x,y满足y2=x,则y是x的函数 B变量x,y满足x+3y=1,则y是x的函数C 等式43πr3是所含字母r的函数 D 在V=43πr3中,43是常量,r是自变量,V是πr的函数例题:2、下列解析式中,y不是x的函数的是()A y+x=0B |y|=2xC y=2|x|D y=2x2+4 例题:3、下列各曲线中,能表示y是x的函数的是()函数的表示方法列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。

解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。

图象法:形象直观,但只能近似地表达两个变量之间的函数关系。

例题:东方超市鲜鸡蛋每个0.4元,那么所付款y元与买鲜鸡蛋个数x(个)之间的函数关系式是_______________.例题:平行四边形相邻的两边长为x、y,周长是30,则y与x的函数关系式是__________.自变量取值范围:一般的,一个函数的自变量允许取值的范围。

确定函数自变量取值范围的方法:(1)必须使关系式成立。

一次函数的图像和性质

一次函数的图像和性质

一次函数的图像和性质一次函数是一个代数函数,也称为线性函数或直线函数。

它是最简单的一种函数形式,在数学和物理等领域中都有广泛的应用。

一次函数的一般形式为y = ax + b,其中a和b是常数,且a≠0。

一次函数的图像是一个直线,在平面直角坐标系中表示为一根斜率为a的直线,并且通过点(0,b)。

斜率a表示函数的变化率,即y随x的变化速度。

当a>0时,表明随着x增大,y也增大;当a<0时,表明随着x增大,y减小;当a=0时,函数是一个常数函数。

一次函数图像的性质包括斜率、截距、与坐标轴的交点等。

1.斜率:一次函数的斜率表示函数图像在x轴方向每单位变化时,y轴方向的变化量。

斜率的计算可以通过选择两个不同的x值,计算对应的y值的差异,然后除以对应x值的差异。

即斜率a=Δy/Δx。

斜率为正的函数图像向上倾斜,斜率为负的函数图像向下倾斜,斜率为零的函数图像是水平的。

2. 截距:一次函数的截距表示函数图像与y轴的交点,它的值可以从函数的形式y=ax+b中得到。

当x=0时,y=b,因此截距为b。

3. 与坐标轴的交点:一次函数的图像与x轴的交点为y=0时的x值,可以通过令y=0,解方程ax+b=0,得到x=-b/a。

图像与y轴的交点已经在上述截距部分提到,为(0, b)。

4.平行:两个斜率相等的一次函数图像是平行的,它们可能在坐标轴上的交点不同,但是平行于同一直线。

5. 垂直平分线:对于一次函数y = ax + b,它的垂直平分线为x =-a/2、如果两个函数的图像关于该直线对称,那么它们是互为反函数。

6. 对称轴:对于一次函数y = ax + b,它的对称轴为x = -b/(2a)。

如果交换a和b的位置,可以得到该函数关于y轴对称函数。

如果交换x和y的位置,可以得到原函数的倒数。

7.等差数列:一次函数的图像可以表示等差数列,其中公差为斜率a。

数列的第一个项为截距b。

8.增长率:一次函数的增长率等于斜率a的绝对值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
路程(千米) 甲仓库 乙仓库 A工地 B工地 20 25 15 20 运费(元/吨· 千米) 甲仓库 乙仓库 1.2 1 1.2 0.8
(1)设甲仓库运往A地水泥x吨,求总运费y关于x 的函数解析式,并画出图象
解:由题意可得 y = 1.2×20 x + 1×25×(100 - x)+1.2×15×(70-x) +0.8×20[110-(100-x)] = -3x+3920 (0≤x≤70)
a< –1 减小,则a满足________ .
3. 直线y=kx+b过第二、三、四象限,则 < < k____0,b____ 0.
1. 已知A(-1, y1), B(3, y2), C(-5, y3)是一次函数
y=-2x+b图象上的三点,用“<”连接y1, y2, y3
y2 <y1< y3 为_________ . 2. 已知A(x1, y1), B(x2, y2), C(x3, y3)是一次函数 y=-2x+b图象上的三点,当x1<x2<x3时,用“<”
-3
-2
-1
o
-1 -2 -3
1
2
3
4
5
6
x
y=-x+3
4. 如图y1= k1x+b1, y2=k2x+b2 , 当x______,有y1>y2
y1= k1x+b1
(4,3)
x=?
y2=k2x+b2
例3:要从甲乙两个仓库向AB两工地运送水泥,已知 甲仓库可运出100吨水泥,乙仓库可运出80吨水泥;A 工地需70吨水泥,B工地需110吨水泥。两仓库到A,B 两工地的路程和每吨每千米的运费如下表:
· · ·
-1
-2
-3
·
平行的直线 从左向右“下降”的直 线
·
你发现这三个 函数图象有什 么相同点吗?
函数 名称
函数解析式 和自变量的 取值范围
图象
性质
y 一 次 函 数 y=kx+b (k≠0) x取 一切实数 k<0 o k>0
当k>0时, (0,b) y 随x 的增大 o x 而增大
y
(0,b)
y1>y2>y3 连接y1, y2, y3为_________ .
y=-x+3, 3. 对于一次函数y= x+3, 4≤y≤7 -1≤y≤2 y 围是___________.
7 6
当1≤x≤4时, y的取值范 < -1 当x>4时,y____;
y=x+3
5
<1 当x____时, y>2.
4 3 2 1
.
1. 一次函数的图象是什么? 一次函数y=kx+b(k≠0)的图象是一条直线 。 2. 如何画一次函数的图象? 作一次函数的图象时,只要确定两个点, 再过这两个点做直线就可以了. 3. 如何求一次函数图像与坐标轴的交点? 与x轴交点:当y=0 与y轴交点:当x=0
y = 2x +3
与y轴:(0,3) 与x轴:(-1.5,0)
· · ·
-1
-2
-3
x
y=2x-3 与y轴:(0,-3) 与x轴:(1.5,0) 平行的直线 从左向右“上升”的直 线
·
你发现这三个 函数图象有什 么相同点吗?
y = -2x +3
与y轴:(0,3) 与x轴:(1.5,0)
y = -2x
(0,0) (1,-2)
y = -2x -3
与y轴:(0,-3) 与x轴:(-1.5,0)
1 坐标(0,1),且平行于直线 y x ,求这 2
个一次函数的解析式. 解:∵
设函数y x b 2
又∵
1 y kx b 平行于直线 y x 2 1
图象与 y 轴的交点坐标(0,1)
b 1
1 y x 1 2
y
k>0 b>0
y
k>0
b<0

y = 2x
(0,0) (1,2)
y = 2x -3
与y轴:(0,-3) 与x轴:(1.5,0)
y=2x+3
y=2x+3 与y轴:(0,3) 与x轴:(-1.5,0) y=2x (0,0) (1,2)
. . . . . . . . . . . . . . .
3
2
·
y
y=2x
·
y=2x-3
1
. . . . . . . . . . . . . . . - 2 -1 0 2 1
与y轴:(0,3)
y=-2x-3
2
. . . . . . . . . . . . . . .
y = -2x +3
y=-2x
3
·
y=-2x+3 x
y
与x轴:(1.5,0)
y = -2x (0,0) (1,-2) y = -2x -3
与y轴:(0,-3) 与x轴:(-1.5,0)
1
. . . . -1 . . . . . . . . . . . -2 2 0
今天我们学会了…
一次函数的性质 对于一次函数y=kx+b(k,b为常数,且 k≠0),当k﹥0时,y随x的增大而增大; 当k﹤0时,y随x的增大而减小。 会根据自变量的取值范围,求一次 函数的取值范围
基本方法:(1)几何图象法;
(2)代数解析法:
及利用图象和性质解决简单的问题
5.一次函数
y kx b 的图象与 y 轴的交点
o x o
y=kx+b
y k<0
(k 0)
y
b>0
o x o
k<0 b<0
x
利用图象解决自变量、应变量取值范围问题
y
求X<1时,函数y的取值范围 求y<2时,自变量x的取值范围
(1,2) O
x
1、选图象
2、看投影
y kx b (k 0)
y
练 习
1.如图,x取何值时
y 1 k1x b1
当k<0时, y 随x 的增大 x 而减小
当k>0时 y
当k<0时
y
b>0
o
b>0
x
o y
x
y
o
x
o
b<0
x
b<0
1. 下列函数中,y随x的增大而增大的是( C ) A. y=–3x C. y=√3 x– 4 B. y= –0.5x+1 D. y= –2x-7
2. 一次函数y=(a+1)x+5中,y的值随x的值增大而
函数:
y= -3x+3920 (0≤x≤70) 的图象如右图 所示:
y
3920 3900
(元)
3800
3710
说明:右图的 纵轴中3700 以下的刻度省 略.
3700
40 60
80
(吨)
x
问题(2):当甲、乙仓库各运往A、B两工地多少吨 水泥时,总运费最省?
问题(2):当甲、乙仓库各运往A、B两工地多少吨水泥时, 总运费最省?
y1 y2
O
(1,3)
x
x=?
y 2 k 2 x b2
解:在一次函数y=-3x+3920 中,K<0 所以y随着 x的增大而减小 因为0≤x≤70 ,所以当 x = 70 时,y的值最小 当x = 70 时,y = -3 x +3920 = -3×70+3920=3710(元)
当甲仓库向A工地运送70吨水泥,则他向B工地运送 30吨水泥;乙仓库不向A工地运送水泥,而只向B工地运送 80吨时,总运费最省
相关文档
最新文档