正方形的性质1

合集下载

2020年中考数学必考高分考点:正方形(学生版)

2020年中考数学必考高分考点:正方形(学生版)

专题22 正方形1.正方形定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形。

2.正方形的性质:(1)具有平行四边形、矩形、菱形的一切性质;(2)正方形的四个角都是直角,四条边都相等;(3)正方形的两条对角线相等,并且互相垂直平分,每一条对角线平分一组对角;(4)正方形是轴对称图形,有4条对称轴;(5)正方形的一条对角线把正方形分成两个全等的等腰直角三角形,两条对角线把正方形分成四个全等的小等腰直角三角形;(6)正方形的一条对角线上的一点到另一条对角线的两端点的距离相等。

3.正方形的判定判定一个四边形是正方形的主要依据是定义,途径有两种:先证它是矩形,再证有一组邻边相等。

即有一组邻边相等的矩形是正方形先证它是菱形,再证有一个角是直角。

即有一个角是直角的菱形是正方形。

4.正方形的面积:设正方形边长为a,对角线长为b ,S正方形=222ba【例题1】(2019湖南郴州)我国古代数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的三角形,如图所示,已知∠A=90°,BD=4,CF=6,则正方形ADOF的边长是()A.√2B.2C.√3D.4专题知识回顾专题典型题考法及解析【例题2】(2019•四川省凉山州)如图,正方形ABCD的对角线AC、BD相交于点O,E是OC上一点,连接E B.过点A作AM⊥BE,垂足为M,AM与BD相交于点F.求证:OE=OF.一、选择题1.(2019内蒙古包头)如图,在正方形ABCD中,AB=1,点E,F分别在边BC和CD上,AE=AF,∠EAF=60°,则CF的长是()A.B.C.﹣1D.2.(2019湖南张家界)如图,在平面直角坐标系中,将边长为1的正方形OABC绕点O顺时针旋转45°后得到正方形OA1B1C1,依此方式,绕点O连续旋转2019次得到正方形OA2019B2019C2019,那么点A2019的坐标是()A.(,﹣)B.(1,0)C.(﹣,﹣)D.(0,﹣1)3.(2019•四川省广安市)把边长分别为1和2的两个正方形按图的方式放置.则图中阴影部分的面积为()专题典型训练题()A61()B31()C51()D414.(2019•贵州省铜仁市)如图,正方形ABCD中,AB=6,E为AB的中点,将△ADE沿DE翻折得到△FDE,延长EF交BC于G,FH⊥BC,垂足为H,连接BF、DG.以下结论:①BF∥ED;②△DFG≌△DCG;③△FHB∽△EAD;④tan∠GEB=;⑤S△BFG=2.6;其中正确的个数是()A.2B.3C.4D.5\5.(2019黑龙江省绥化)如图,在正方形ABCD中,E、F是对角线AC上的两个动点,P是正方形四边上的任意一点,且AB=4,EF=2,设AE=x.当△PEF是等腰三角形时,下列关于P点个数的说法中,一定正确的是()①当x=0(即E、A两点重合)时,P点有6个②当0<x<42﹣2时,P点最多有9个③当P点有8个时,x=22﹣2④当△PEF是等边三角形时,P点有4个A.①③B.①④C.②④D.②③二、填空题6.(2019湖南邵阳)公元3世纪初,中国古代数学家赵爽注《周髀算经》时,创造了“赵爽弦图”.如图,设勾a=6,弦c=10,则小正方形ABCD的面积是.127.(2019湖南张家界)如图:正方形ABCD的边长为1,点E,F分别为BC,CD边的中点,连接AE,BF交于点P,连接PD,则tan∠APD=.8.(2019•湖北省随州市)如图,已知正方形ABCD的边长为a,E为CD边上一点(不与端点重合),将△ADE 沿AE对折至△AFE,延长EF交边BC于点G,连接AG,CF.给出下列判断:①∠EAG=45°;②若DE=a,则AG∥CF;③若E为CD的中点,则△GFC的面积为a2;④若CF=FG,则DE=(-1)a;⑤BG•DE+AF•GE=a2.其中正确的是______.(写出所有正确判断的序号)9.(2019福建)如图,边长为2的正方形ABCD中心与半径为2的⊙O的圆心重合,E、F分别是AD、BA的延长与⊙O的交点,则图中阴影部分的面积是.(结果保留π)10.(2019•四川省凉山州)如图,正方形ABCD中,AB=12,AE=AB,点P在BC上运动(不与B、C重合),过点P作PQ⊥EP,交CD于点Q,则CQ的最大值为.11. (2019•广东广州)如图,正方形ABCD的边长为a,点E在边AB上运动(不与点A,B重合),∠DAM=45°,点F在射线AM上,且AF=BE,CF与AD相交于点G,连接EC,EF,EG,则下列结论:①∠ECF=45°;②△AEG的周长为(1+)a;③BE2+DG2=EG2;④△EAF的面积的最大值a2.其中正确的结论是.(填写所有正确结论的序号)12.(2019·广西贺州)如图,正方形ABCD的边长为4,点E是CD的中点,AF平分∠BAE交BC于点F,将△ADE 绕点A顺时针旋转90°得△ABG,则CF的长为.13.(2019•山东青岛)如图,在正方形纸片ABCD中,E是CD的中点,将正方形纸片折叠,点B落在线段AE上的点G处,折痕为AF.若AD=4cm,则CF的长为cm.14.(2019江苏镇江)将边长为1的正方形ABCD 绕点C 按顺时针方向旋转到FECG 的位置(如图),使得点D 落在对角线CF 上,EF 与AD 相交于点H ,则HD= .(结果保留根号)15.(2019辽宁抚顺)如图,在2×6的网格中,每个小正方形的边长都是1个单位长度,网格中小正方形的顶点叫格点,点A ,B ,C 在格点上,连接AB ,BC ,则tan ∠ABC = .三、解答题16.(2019湖南湘西州)如图,在正方形ABCD 中,点E ,F 分别在边CD ,AD 上,且AF =CE .(1)求证:△ABF ≌△CBE ;(2)若AB =4,AF =1,求四边形BEDF 的面积.17. (2019海南)如图,在边长为1的正方形ABCD 中,E 是边CD 的中点,点P 是边AD 上一点(与点A,D 不重合),射线PE 与BC 的延长线交于点Q.第10题图HGFEDCBA(1)求证:△PDE≌△QCE;(2)过点E作EF∥BC交PB于点F,连接AF,当PB=PQ时,①求证:四边形AFEP是平行四边形;②请判断四边形AFEP是否为菱形,并说明理由.18.(2019湖南株洲)如图所示,已知正方形OEFG的顶点O为正方形ABCD对角线AC、BD的交点,连接CE、DG.(1)求证:△DOG≌△COE;(2)若DG⊥BD,正方形ABCD的边长为2,线段AD与线段OG相交于点M,AM=12,求正方形OEFG的边长.19.(2019•湖北省仙桃市)如图,E,F分别是正方形ABCD的边CB,DC延长线上的点,且BE=CF,过点E作EG ∥BF,交正方形外角的平分线CG于点G,连接GF.求证:(1)AE⊥BF;(2)四边形BEGF是平行四边形.20.(2019•山东泰安)如图,四边形ABCD是正方形,△EFC是等腰直角三角形,点E在AB上,且∠CEF=90°,FG ⊥AD,垂足为点C.(1)试判断AG与FG是否相等?并给出证明;(2)若点H为CF的中点,GH与DH垂直吗?若垂直,给出证明;若不垂直,说明理由.21.(2019湖北襄阳)(1)证明推断:如图(1),在正方形ABCD中,点E,Q分别在边BC,AB上,DQ⊥AE于点O,点G,F分别在边CD,AB上,GF⊥AE.①求证:DQ=AE;②推断:的值为;(2)类比探究:如图(2),在矩形ABCD中,=k(k为常数).将矩形ABCD沿GF折叠,使点A落在BC 边上的点E处,得到四边形FEPG,EP交CD于点H,连接AE交GF于点O.试探究GF与AE之间的数量关系,并说明理由;(3)拓展应用:在(2)的条件下,连接CP,当k=时,若tan∠CGP=,GF=2,求CP的长.。

3.正方形的性质与判定第1课时正方形的性质PPT课件(北师大版)

3.正方形的性质与判定第1课时正方形的性质PPT课件(北师大版)

第一章
特殊平行四边形 3.正方形的性质与判定
第1课时 正方形的性质
第1课时 正方形的性质
1 …知…识…回…顾…. 2 …新…知…导…航…. 3 …轻…松…过…招….
第1课时 正方形的性质
知识回顾
正方是轴对称图形,它有 4 条对称轴,即经 过对边中点的直线或两对角线所在直线:正方形又 是中心对称图形,两对角线交点是它的对称中心 (也是对边中点的直线的交点)。 .
第1课时 正方形的性质
新知导航
变式训练
1.已知正方形ABCD的对角线相交于点O. (1)若周长为8,则对角线长为 2 2 , 面积为 4 ; (2)图中共有 8 个等腰直角三角形.
第1课时 正方形的性质
新知导航
2.如图,过正方形ABCD的顶点B作直线l,过点A,C 作l的垂线,垂足分别为E,F,若 AE=1,CF=3.求AB的长.
第1课时 正方形的性质
轻松过招
3.如图,正方形ABCD中,E为CD边上一点,F为 BC延长线上一点,且CE=CF. (1)求证:△BCE≌△DCF;
(1)证明:∵四边形ABCD是正方形,
∴BC=DC,∠BCE=∠DCF=90°
CE=CF
在△BCE和△DCF中, ∠BCE=∠DCF ,
∴△BCE≌△DCF.
解:∵四边形ABCD是正方形, ∴∠CBF+∠FBA=90°,AB=BC, ∵CF⊥BE,∴∠CBF+∠BCF=90°, ∴∠BCF=∠ABE, ∵∠AEB=∠BFC=90°,AB=BC, ∴△ABE≌△BCF(AAS),∴AE=BF=1,BE=CF=3, ∴AB= AE2+BE2 = 1+9 = 10 .
第1课ห้องสมุดไป่ตู้ 正方形的性质
轻松过招

正方形的性质与判断

正方形的性质与判断

正方形的性质与判断正方形是初中数学中非常重要的一个几何形状,它具有独特的性质和判断方法。

在本文中,我将为大家详细介绍正方形的性质,并提供一些实用的判断方法,以帮助中学生和他们的父母更好地理解和应用正方形。

正方形是一种特殊的矩形,它的四条边长度相等且四个角都是直角。

正方形的性质可以从多个角度进行分析。

首先,正方形的对角线相等且相互垂直。

对角线是连接正方形相对顶点的线段,它们的长度相等,可以用勾股定理进行证明。

对角线的垂直性则可以通过证明两个三角形的两条边分别相等,且一条边垂直于另一条边来得到。

其次,正方形的对边平行且相等。

对边是指连接正方形相对边的线段,它们的长度相等,可以通过正方形的定义进行证明。

对边的平行性可以通过证明两个三角形的两个对边分别相等,且夹角相等来得到。

此外,正方形的内角均为直角。

内角是指正方形内部的角度,它们都是直角,即90度。

这个性质可以通过正方形的定义和直角的定义进行证明。

在判断一个图形是否为正方形时,我们可以利用这些性质进行分析。

首先,我们可以测量图形的四条边是否相等,如果相等,则有可能是正方形。

接下来,我们可以测量图形的对角线是否相等,如果相等,则可以判断这个图形是正方形。

最后,我们可以测量图形的内角是否为直角,如果是直角,则可以确定这个图形是正方形。

除了直接测量,我们还可以利用正方形的对称性来判断一个图形是否为正方形。

正方形具有四个对称轴,即对角线和中垂线。

如果一个图形在这些对称轴上对称,那么它很可能是正方形。

我们可以通过观察图形的对称性来判断它是否为正方形。

在实际生活中,正方形的应用非常广泛。

例如,在建筑设计中,正方形常用于规划房间的布局,使得空间更加合理和美观。

在绘画和设计中,正方形常用于构图和排版,给作品带来平衡和稳定的感觉。

在数学问题中,正方形常用于简化计算和推导,使得问题的解决更加简单和直观。

总之,正方形是一种重要的几何形状,它具有独特的性质和判断方法。

通过了解正方形的性质和判断方法,中学生和他们的父母可以更好地理解和应用正方形,提高数学学习的效果。

正方形的性质与判定【十大题型】(举一反三)(浙教版)(原卷版)

正方形的性质与判定【十大题型】(举一反三)(浙教版)(原卷版)

专题5.3 正方形的性质与判定【十大题型】【浙教版】【题型1 正方形的性质(求角的度数)】 (1)【题型2 正方形的性质(求线段的长度)】 (3)【题型3 正方形的性质(求面积、周长)】 (4)【题型4 正方形的性质(探究数量关系)】 (6)【题型5 判定正方形成立的条件】 (10)【题型6 正方形判定的证明】 (12)【题型7 正方形的判定与性质综合】 (16)【题型8 探究正方形中的最值问题】 (19)【题型9 正方形在坐标系中的运用】 (20)【题型10 正方形中的多结论问题】 (23)【题型1 正方形的性质(求角的度数)】【例1】(2022春•建阳区期中)如图,在正方形ABCD中有一个点E,使三角形BCE是正三角形,求:(1)∠BAE的大小(2)∠AED的大小.【变式1-1】如图,已知正方形ABCD在直线MN的上方,BC在直线MN上,E是BC上一点,以AE为边在直线MN上方作正方形AEFG.(1)连接GD,求证:△ADG≌△ABE;(2)连接FC,观察并猜测∠FCN的度数,并说明理由.【变式1-2】(2022•武威模拟)如图,在正方形ABCD中,点E是对角线AC上的一点,点F在BC的延长线上,且BE=EF,EF交CD于点G.(1)求证:DE=EF;(2)求∠DEF的度数.【变式1-3】(2022春•新市区校级期末)如图,在给定的正方形ABCD中,点E从点B出发,沿边BC方向向终点C运动,DF⊥AE交AB于点F,以FD,FE为邻边构造平行四边形DFEP,连接CP,则∠DFE+∠EPC的度数的变化情况是()A.一直减小B.一直减小后增大C.一直不变D.先增大后减小【题型2 正方形的性质(求线段的长度)】【例2】(2022春•牡丹江期末)如图,正方形ABCD的边长为10,点E,F在正方形内部,AE=CF=8,BE=DF=6,则线段EF的长为()A.2√2B.4C.4−√2D.4+√2【变式2-1】(2022春•巴南区期末)如图,四边形ABCD是边长为4的正方形,点E在边CD上,且DE =1,作EF∥BC分别交AC、AB于点G、F,P、H分别是AG,BE的中点,则PH的长是()A.2B.2.5C.3D.4【变式2-2】(2022•越秀区一模)将正方形ABCD与正方形BEFG按如图方式放置,点F、B、C在同一直线上,已知BG=√2,BC=3,连接DF,M是DF的中点,连接AM,则AM的长是()A.√102B.√3C.√132D.32【变式2-3】(2022春•吴中区校级期末)如图,在正方形ABCD中,AB=4√5.E、F分别为边AB、BC的中点,连接AF、DE,点N、M分别为AF、DE的中点,连接MN,则MN的长度为.【题型3 正方形的性质(求面积、周长)】【例3】(2022春•鄞州区期末)有两个正方形A,B.现将B放在A的内部得图甲,将A,B构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为1和12,若三个正方形A和两个正方形B得图丙,则阴影部分的面积为()A.28B.29C.30D.31【变式3-1】(2022春•工业园区校级期中)如图,四边形ABCD为正方形,O为AC、BD的交点,△DCE 为Rt△,∠CED=90°,OE=2√2,若CE•DE=3,则正方形ABCD的面积为()A.5B.6C.8D.10【变式3-2】(2022•台州)如图,在正方形ABCD中,AB=3,点E,F分别在CD,AD上,CE=DF,BE,CF相交于点G.若图中阴影部分的面积与正方形ABCD的面积之比为2:3,则△BCG的周长为.【变式3-3】(2022•江北区一模)如图,以Rt△ABC的各边为边分别向外作正方形,∠BAC=90°,连结DG,点H为DG的中点,连结HB,HN,若要求出△HBN的面积,只需知道()A.△ABC的面积B.正方形ADEB的面积C.正方形ACFG的面积D.正方形BNMC的面积【题型4 正方形的性质(探究数量关系)】【例4】(2022秋•中原区校级月考)如图,线段AB=4,射线BG⊥AB,P为射线BG上一点,以AP为边作正方形APCD,且点C、D与点B在AP两侧,在线段DP上取一点E,使∠EAP=∠BAP,直线CE 与线段AB相交于点F(点F与点A、B不重合).(1)求证:△AEP≌△CEP;(2)判断CF与AB的位置关系,并说明理由;(3)请直接写出△AEF的周长.【变式4-1】(2022春•雁塔区校级期末)在正方形ABCD中,∠MAN=45°,该角可以绕点A转动,∠MAN的两边分别交射线CB,DC于点M,N.(1)当点M,N分别在正方形的边CB和DC上时(如图1),线段BM,DN,MN之间有怎样的数量关系?你的猜想是:,并加以证明.(2)当点M,N分别在正方形的边CB和DC的延长线上时(如图2),线段BM,DN,MN之间的数量关系会发生变化吗?证明你的结论.【变式4-2】(2022春•莆田期末)如图,已知正方形ABCD中,E为CB延长线上一点,且BE=AB,M、N分别为AE、BC的中点,连DE交AB于O,MN交,ED于H点.(1)求证:AO=BO;(2)求证:∠HEB=∠HNB;(3)过A作AP⊥ED于P点,连BP,则PE−PA的值.PB【变式4-3】(2022春•鼓楼区校级期中)如图,正方形ABCD的对角线相交于点O.点E是线段DO上一点,连接CE.点F是∠OCE的平分线上一点,且BF⊥CF与CO相交于点G.点H是线段CE上一点,且CO=CH.(1)若OF=5,求FH的长;(2)求证:BF=OH+CF.【题型5 判定正方形成立的条件】【例5】(2022春•海淀区校级期中)已知四边形ABCD为凸四边形,点M、N、P、Q分别为AB、BC、CD、DA上的点(不与端点重合),下列说法正确的是(填序号).①对于任意凸四边形ABCD,一定存在无数个四边形MNPQ是平行四边形;②如果四边形ABCD为任意平行四边形,那么一定存在无数个四边形MNPQ是矩形;③如果四边形ABCD为任意矩形,那么一定存在一个四边形为正方形;④如果四边形ABCD为任意菱形,那么一定存在一个四边形为正方形.【变式5-1】(2022春•岳麓区校级月考)如图,E、F、G、H分别是AB、BC、CD、DA的中点.要使四边形EFGH是正方形,BD、AC应满足的条件是.【变式5-2】(2022春•汉寿县期中)如图,在▱ABCD中,对角线AC与BD相交于点O,点E,F在AC 上,且OE=OF,连接DE并延长至点M,使DE=ME,连接MF,DF,BE.(1)当DF=MF时,证明:四边形EMBF是矩形;(2)当△DMF满足什么条件时,四边形EMBF是正方形?请说明理由.【变式5-3】(2022春•沛县期中)已知在△ABC中,D为边BC延长线上一点,点O是边AC上的一个动点,过O作直线MN∥BC,设MN与∠BCA的平分线相交于点E,与∠ACD的平分线相交于点F.(1)求证:OE=OF;(2)试确定点O在边AC上的位置,使四边形AECF是矩形,并加以证明.(3)在(2)的条件下,且△ABC满足条件时,矩形AECF是正方形?.【题型6 正方形判定的证明】【例6】(2022春•虹口区期末)如图,在四边形ABCD中,AB∥CD,AD=CD,E是对角线BD上的一点,且AE=CE.(1)求证:四边形ABCD是菱形;(2)如果AB=BE,且∠ABE=2∠DCE,求证:四边形ABCD是正方形.【变式6-1】(2022春•宜城市期末)如图,四边形ABCD是平行四边形,连接对角线AC,过点D作DE ∥AC与BC的延长线交于点E,连接AE交DC于F.(1)求证:BC=CE;(2)连接BF,若∠DAF=∠FBE,且AD=2CF,求证:四边形ABCD是正方形.【变式6-2】(2022秋•市南区期末)已知:在平行四边形ABCD中,分别延长BA,DC到点E,H,使得BE=2AB,DH=2CD.连接EH,分别交AD,BC于点F,G.(1)求证:AF=CG;(2)连接BD交EH于点O,若EH⊥BD,则当线段AB与线段AD满足什么数量关系时,四边形BEDH 是正方形?【变式6-3】(2022•上海)已知:如图,四边形ABCD中,AD∥BC,AD=CD,E是对角线BD上一点,且EA=EC.(1)求证:四边形ABCD是菱形;(2)如果BE=BC,且∠CBE:∠BCE=2:3,求证:四边形ABCD是正方形.【题型7 正方形的判定与性质综合】【例7】(2022•威海)如图1,在正方形ABCD中,E,F,G,H分别为边AB,BC,CD,DA上的点,HA=EB=FC=GD,连接EG,FH,交点为O.(1)如图2,连接EF,FG,GH,HE,试判断四边形EFGH的形状,并证明你的结论;(2)将正方形ABCD沿线段EG,HF剪开,再把得到的四个四边形按图3的方式拼接成一个四边形.若正方形ABCD的边长为3cm,HA=EB=FC=GD=1cm,则图3中阴影部分的面积为cm2.【变式7-1】(2022•萧山区模拟)如图,P为正方形ABCD内的一点,画▱P AHD,▱PBEA,▱PCFB,▱PDGC,请证明:以E,F,G,H为顶点的四边形是正方形.【变式7-2】(2022•萧山区模拟)已知:如图,边长为4的菱形ABCD的对角线AC与BD相交于点O,若∠CAD=∠DBC.(1)求证:四边形ABCD是正方形.(2)E是OB上一点,BE=1,且DH⊥CE,垂足为H,DH与OC相交于点F,求线段OF的长.【变式7-3】(2022春•潜山市期末)如图,已知四边形ABCD为正方形,AB=3√2,点E为对角线AC上一动点,连接DE,过点E作EF⊥DE,交BC于点F,以DE、EF为邻边作矩形DEFG,连接CG.(1)求证:矩形DEFG是正方形;(2)探究:CE+CG的值是否为定值?若是,请求出这个定值;若不是,请说明理由.【题型8 探究正方形中的最值问题】【例8】(2022春•沙坪坝区校级月考)如图,在正方形ABCD中,M,N是边AB上的动点,且AM=BN,连接MD交对角线AC于点E,连接BE交CN于点F,若AB=3,则AF长度的最小值为.【变式8-1】(2022•泰山区一模)如图,M、N是正方形ABCD的边CD上的两个动点,满足AM=BN,连接AC交BN于点E,连接DE交AM于点F,连接CF,若正方形的边长为2,则线段CF的最小值是()A.2B.1C.√5−1D.√5−2【变式8-2】(2022•青山区模拟)已知矩形ABCD,AB=2,AD=4AB=8,E为线段AD上一动点,以CE 为边向上构造正方形CEFG,连接BF,则BF的最小值是.【变式8-3】(2022•郧阳区模拟)如图,P A=2√2,PB=4√2,以AB为边作正方形ABCD,使得P、D两点落在直线AB的两侧,当∠APB变化时,则PD的最大值为.【题型9 正方形在坐标系中的运用】【例9】(2022春•市中区期末)在平面直角坐标系中,对于两个点P、Q和图形W,如果在图形W上存在点M、N(M、N可以重合)使得PM=QN,那么称点P与点Q是图形W的一对平衡点.已知正方形的边长为2,一边平行于x轴,对角线的交点为点O,点D的坐标为(2,0).若点E(x,2)与点D是正方形的一对平衡点,则x的取值范围为()A.﹣3≤x≤3B.﹣4≤x≤4C.﹣2≤x≤2D.﹣5≤x≤5【变式9-1】(2022秋•永新县期末)如图,在平面直角坐标系中,四边形ABCD的顶点坐标分别是A(﹣2,0)、B(0,﹣2)、C(2,0)、D(0,2),求证:四边形ABCD是正方形.【变式9-2】(2022春•顺城区期末)如图,在平面直角坐标系xOy中,直线OC:yOC=3x与直线AC:yAC=﹣x+8相交于点C(2,6).(1)点M从点O出发以每秒1个单位长度的速度沿x轴向右运动,点N从点A出发以每秒3个单位长度的速度沿x轴向左运动,两点同时出发.分别过点M,N作x轴的垂线,分别交直线OC,AC于点P,Q,请你在图1中画出图形,猜想四边形PMNQ的形状(点M,N重合时除外),并证明你的猜想;(2)在(1)的条件下,当点M运动秒时,四边形PMNQ是正方形(直接写出结论).【变式9-3】(2022•河南模拟)如图,正方形OABC 中,点A (4,0),点D 为AB 上一点,且BD =1,连接OD ,过点C 作CE ⊥OD 交OA 于点E ,过点D 作MN ∥CE ,交x 轴于点M ,交BC 于点N ,则点M 的坐标为( )A .(5,0)B .(6,0)C .(254,0)D .(274,0) 【题型10 正方形中的多结论问题】【例10】(2022春•慈溪市期末)如图,正方形ABCD 中,点P 为BD 延长线上任一点,连结P A ,过点P 作PE ⊥P A ,交BC 的延长线于点E ,过点E 作EF ⊥BP 于点F .下列结论:(1)P A =PE ; (2)BD =2PF ;(3)CE =√2PD ; (4)若BP =BE ,则PF =(√2+1)DF .其中正确的个数为( )A .1B .2C .3D .4【变式10-1】(2022春•渝中区校级期中)如图,正方形ABCD 的边长为a ,点E 在边AB 上运动(不与点A ,B 重合),∠DAM =45°,点F 在射线AM 上,且AF =√2BE ,CF 与AD 相交于点G .连接EC 、EF 、EG .下列结论:①∠ECF =45°;②△AEG 的周长为(1+√22)a ;③BE 2+DG 2=EG 2;④当G 是线段AD的中点时,BE =13a .正确的个数是( )A.1个B.2个C.3个D.4个【变式10-2】(2022秋•三水区月考)如图,正方形ABCD中,在AD的延长线上取点E,F,使DE=AD,DF=BD,连接BF分别交CD,CE于H,G,下列结论:①HF=2HG;②∠GDH=∠GHD;③图中有8个等腰三角形;④S△CDG=S△DHF.其中正确的结论个数是()A.1个B.2个C.3个D.4个【变式10-3】(2022春•玉林期末)如图,正方形ABCD中,点E在边CD上,过点A作AF⊥AE交CB的延长线于点F,连接EF,AG平分∠F AE,AG分别交BC、EF于点G、H,连接EG、DH.则下列结论中:①BF=DE;②∠EGC=2∠BAG;③AD+DE=√3DH;④DE+BG=EH;⑤若DE=CE,则CE:CG:EG=3:4:5,其中正确的结论有.。

1.3 正方形的判定与性质(一)

1.3 正方形的判定与性质(一)

关系图:
矩形
平行四边形
有一个角是直角且有一组邻边相等
正方形
菱形
平行四边形
矩形
正方形
菱形
正方形的性质
(正方形既是矩形,又是菱形,它具有 矩形和菱形所 有的性质)
角:四个角都是直角; 边: 四条边都相等; 对角线: 对角线相等且互相垂直平分; 对称性: 既是中心对称也是轴对称图形;
正方形的性质: 正方形的四条边都相等,四个角都是直角, 对角线相等且互相垂直平分。
第一章 特殊平行四边形
第3节 正方形的性质与判定(一)
正方形的性质
复习提问:
一,什么叫做菱形?它有什么性质和判定? 二,什么叫做矩形?它有什么性质和判定?
三,矩形性质的推论是什么?逆定理又是什么?
四,有没有一种四边形,它将菱形和矩形的特点 兼而有之?如果有应该怎么定义它?
正方形定义:有一组邻边相等,有一个角是直 角的平行四边形叫做正方形。
(2)延长BE交DE于点M,(如图1-19). ∵△BCE≌△DCF. ∴∠CBE=∠CDF. ∵∠DCF=90°. ∴∠CDF+∠F=90°. ∴∠CBE+∠F=90°. ∴∠BMF=90°. ∴BE⊥DF.
随堂练习:
1:如图,在正方形ABCD中,对角线AC与BD相 交于点O,图中有多少个等腰三角形? 2:如图,在正方形ABCD中,点F为对角线AC 上一点,连接BF,DF。你能找出图中的全等 三角形吗?选择其中一对进行证明.
性质应用
例1:如图1-18,在正方形ABCD中,E为CD 上一点,F为BC边延长线上一点,且 CE=CF.BE与DF之间有怎样的关系?请说 明理由. 解:BE=DF,且BE⊥DF. 理由如下:
(1)∵四边形ABCD是正方形. ∴BC=DC,∠BCE=90°(正方形的四 条边都相等,四个角都是直角) ∴∠BCE=∠DCF. 又∵CE=CF. ∴△BCE≌△DCF. ∴BE=DF.

三年级数学正方形

三年级数学正方形

三年级数学正方形一、正方形的定义。

在人教版三年级数学中,正方形是四边形的一种特殊形式。

它是由四条边都相等,并且四个角都是直角的四边形。

二、正方形的性质。

1. 边的性质。

- 四条边长度相等。

例如,一个正方形的边长是5厘米,那么它的四条边都是5厘米。

2. 角的性质。

- 四个角都是直角,直角的度数为90度。

可以用三角板中的直角去测量正方形的角来验证。

3. 对角线的性质。

- 对角线互相垂直且相等。

对角线将正方形分成了四个等腰直角三角形。

如果正方形的边长为a,根据勾股定理,对角线的长度为√(2)a。

在三年级阶段,不需要掌握对角线长度的计算,但可以初步认识到对角线的特征。

三、正方形的周长。

1. 周长的概念。

- 封闭图形一周的长度就是它的周长。

对于正方形来说,它的周长就是四条边的长度之和。

2. 周长的计算方法。

- 因为正方形四条边相等,所以正方形的周长 = 边长×4。

例如,一个正方形边长为8厘米,它的周长就是8×4 = 32厘米。

四、正方形的面积。

1. 面积的概念。

- 物体的表面或封闭图形的大小就是它们的面积。

正方形的面积就是这个正方形所占平面的大小。

2. 面积的计算方法。

- 正方形的面积 = 边长×边长。

一个正方形的边长是6分米,它的面积就是6×6 = 36平方分米。

五、正方形与长方形的关系。

1. 相同点。

- 都有四个角且都是直角,都属于四边形。

2. 不同点。

- 长方形是对边相等,而正方形是四条边都相等。

长方形的面积 = 长×宽,正方形的面积 = 边长×边长;长方形的周长=(长 + 宽)×2,正方形的周长 = 边长×4。

专题1-4 正方形的性质与判定-重难点题型(举一反三)(北师大版)(解析版)

专题1.4 正方形的性质与判定-重难点题型【北师大版】【题型1 正方形的性质(求角的度数)】【例1】(2021春•海珠区校级期中)如图,以正方形ABCD的一边AD为边向外作等边△ADE,则∠ABE 的度数是.【分析】由正方形的性质和等边三角形的性质可得AB=AD=AE,∠BAE=150°,进而可求得∠ABE=15°.【解答】解:∵四边形ABCD是正方形,∴AB=AD,∠BAD=90°,∵△ADE是等边三角形,∴AD=AE,∠DAE=60°,∴∠BAE=∠BAD+DAE=150°,AB=AE,∴∠ABE=∠AEB,∴∠ABE=12(180°﹣∠BAE)=15°,故答案为:15°.【点评】本题考查了正方形的性质,等边三角形的性质,等腰三角形的性质,灵活运用这些性质进行推理是本题的关键.【变式1-1】(2021春•黄浦区期末)如图,E为正方形ABCD外一点,AE=AD,BE交AD于点F,∠ADE =75°,则∠AFB=°.【分析】根据等腰三角形的性质得∠AED=∠ADE=75°,由三角形内角和求出顶角∠DAE的度数,根据正方形的性质得△ABE为等腰三角形,再由直角三角形的两锐角互余得答案.【解答】解:∵AE=AD,∴∠AED=∠ADE=75°,∴∠DAE=180°﹣75°﹣75°=30°,∵四边形ABCD是正方形,∴∠BAD=90°,AB=AD,∴AB=AE,∴∠ABE=∠AEB,∵∠BAE=90°+30°=120°,∴∠ABE=180°−120°2=30°,∴∠AFB=90°﹣30°=60°.故答案为:60.【点评】此题考查了正方形的性质,正方形的四个角都是直角,且各边都相等;在几何证明中常运用等边对等角和等角对等边来证明边相等或角相等;在三角形中,要熟练掌握三角形的内角和定理和直角三角形的两个锐角互余.【变式1-2】(2021春•海淀区校级月考)如图,在正方形ABCD内,以AB为边作等边△ABE,则∠BEG =°.【分析】本题通过正方形的性质得到AB=BC=CD=DA,∠ABC=∠BCD=∠CDA=∠DAB=90°,在由等边三角形的性质得到AB=AE=BE,∠EAB=∠ABE=∠AEB=60°.进而得到∠ADE=∠AED=75°,从而得到答案即可.【解答】解:∵四边形ABCD是正方形,∴AB=BC=CD=DA,∠ABC=∠BCD=∠CDA=∠DAB=90°.又∵三角形ABE是等边三角形,∴AB=AE=BE,∠EAB=∠ABE=∠AEB=60°.∴∠DAE=∠DAB﹣∠EAB=90°﹣60°=30°,∴AE=AD,∴∠ADE=∠AED=75°,∴∠BEG=180°﹣∠DAE﹣∠AEB=180°﹣75°﹣60°=45°.故答案为:45.【点评】本题考查了正方形的性质,等边三角形的性质,熟练掌握基础知识是解题的关键.【变式1-3】(2021春•大兴区期中)在正方形ABCD外侧作直线AP,点B关于直线AP的对称点为E连接BE,DE,其中DE交直线AP于点F.连接AE,若∠P AB=20°,求∠ADF的度数.【分析】由对称的性质可得AE=AB,∠EAB=40°,即可求得∠EAD的度数,根据正方形的性质可得∠ADF=∠AED,进而可求解.【解答】解:∵点B关于直线AP的对称点为E,∴AP是对称轴,∴∠P AB=∠P AE=20°,∴∠EAB=2∠BAP=40°,AE=AB,∵四边形ABCD是正方形,∴∠BAD=90°,AB=AD,∴∠EAD=130°,∴AE=AD,∴∠ADF=∠AED,∴∠ADF=180°−130°2=25°.【点评】本题主要考查正方形的性质,对称的性质,等腰三角形的性质,证得AE=AD是解题的关键.【题型2 正方形的性质(求线段的长度)】【例2】(2021春•崇川区校级月考)如图,正方形ABCD的边长为1,点E在对角线BD上,且∠BAE=22.5°,则BE的长为.【分析】先由勾股定理求出BD,再求出AD=ED,根据题意列方程即可得到结论.【解答】解:过E作EF⊥AB于F,设EF=x,∵四边形ABCD是正方形,∴AB=AD,∠BAD=90°,∠ABD=∠ADB=45°,∴BD=√2AB=√2,EF=BF=x,∴BE=√2x,∵∠BAE=22.5°,∴∠DAE=90°﹣22.5°=67.5°,∴∠AED=180°﹣45°﹣67.5°=67.5°,∴∠AED=∠DAE,∴AD=ED,∴BD=BE+ED=√2x+1=√2,∴x=1−√2 2,∴BE=√2−1,故答案为:√2−1.【点评】本题考查了正方形的性质、勾股定理、等腰直角三角形的性质、等腰三角形的判定;证明三角形是等腰三角形,列出方程是解决问题的关键.【变式2-1】(2021春•余杭区月考)边长为4的正方形ABCD中,点E、F分别是AB、BC的中点,连结EC、FD,点G,H分别是EC、DF的中点,连结GH,则GH的长为.【分析】连接CH并延长交AD于P,连接PE,根据正方形的性质得到/A=90°,AD∥BC,AB=AD=BC=4,根据全等三角形的性质得到PD=CF=2√2,根据勾股定理和三角形的中位线定理即可得到结论.【解答】解:连接CH并延长交AD于P,连接PE,∵四边形ABCD 是正方形,∴∠A =90°,AD ∥BC ,AB =AD =BC =4,∵E ,F 分别是边AB ,BC 的中点,∴AE =CF =12×4=2,∵AD ∥BC ,∴∠DPH =∠FCH ,在△PDH 和△CFH 中,{∠DPH =∠FCH ∠DHP =∠FHC DH =FH,∴△PDH ≌△CFH (AAS ),∴PD =CF =2,∴AP =AD ﹣PD =2,∴PE =√AP 2+AE 2=√22+22=2√2,∵点G ,H 分别是EC ,FD 的中点,∴GH =12EP =√2.【点评】本题考查了正方形的性质,全等三角形的判定和性质,解题的关键是掌握正方形的性质,全等三角形的判定和性质.【变式2-2】(2021春•南开区期中)如图,正方形ABCD 和正方形CEFG ,点G 在CD 上,AB =5,CE =2,T 为AF 的中点,求CT 的长.【分析】连接AC ,CF ,如图,根据正方形的性质得到AC =√2,AB =5√2,CF =√2CE =2√2,∠ACD =45°,∠GCF =45°,则利用勾股定理得到AF =√58,然后根据直角三角形斜边上的中线性质得到CT 的长.【解答】解:连接AC 、CF ,如图,∵四边形ABCD 和四边形CEFG 都是正方形,∴AC =√2AB =5√2,CF =√2CE =2√2,∠ACD =45°,∠GCF =45°,∴∠ACF =45°+45°=90°,在Rt △ACF 中,AF =√(5√2)2+(2√2)2=√58,∵T 为AF 的中点,∴CT =12AF =√582,∴CT 的长为√582. 【点评】本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角;正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角;正方形具有四边形、平行四边形、矩形、菱形的一切性质,也考查了直角三角形斜边上的中线性质.【变式2-3】(2021春•綦江区校级月考)正方形ABCD 的边长为3,E 、F 分别是AB 、BC 边上的点,且∠EDF =45°.(1)求证:EF =AE +CF ;(2)当AE =1时,求EF 的长.【分析】(1)延长BC 至H ,使CH =AE ,连接DH ,可得△DAE ≌△DCH ,则DE =DH ,∠ADE =∠CDH ;由于∠ADE +∠FDC =45°,所以∠FDC +∠HCD =45°,可得∠EDF =∠HDF ,这样△EDF ≌△HDF ,可得EF =FH ,结论得证;(2)设EF =x ,由(1)的结论可知CF =x ﹣1,BF =4﹣x ,在Rt △BEF 中,由勾股定理列出方程,解方程即可求解.【解答】解:(1)证明:延长BC 至H ,使CH =AE ,连接DH ,如图,∵四边形ABCD 是正方形,∴AD =CD ,∠A =∠DCE =90°.∴△DAE ≌△DCH (SAS ).∴DE =DH ,∠ADE =∠CDH .∵∠ADC =90°,∠EDF =45°,∴∠ADE +∠FDC =45°.∴∠FDC +∠CDH =45°.即∠FDH =45°.∴∠EDF =∠FDH =45°.在△EDF 和△HDF 中,{DE =DH ∠EDF =∠HDF DF =DF.∴△EDF ≌△HDF (SAS ).∴EF =FH .∵FH =FC +CH =FC +AE ,∴EF =AE +FC .(2)设EF =x ,则FH =x .∵正方形ABCD 的边长为3,∴AB =BC =3.∵AE =1,∴BE=2,CH=1.∴FC=x﹣1.∴BF=BC﹣CF=3﹣(x﹣1)=4﹣x.在Rt△BEF中,∵BE2+BF2=EF2,∴22+(4﹣x)2=x2.解得:x=5 2.∴EF=5 2.【点评】本题主要考查了正方形的性质,三角形的全等的判定与性质,勾股定理.证明一条线段等于两条线段的和的题目一般采用补短法或截长法,通过构造三角形的全等来解决.【题型3 正方形的性质(求面积、周长)】【例3】(2020春•仪征市期末)正方形ABCD中,AB=4,点E、F分别在BC、CD上,且BE=CF,线段BF、AE相交于点O,若图中阴影部分的面积为14,则△ABO的周长为.【分析】由“SAS”可证△ABE≌△BCF,可得S△ABE=S△BCF,∠BAE=∠CBF,可求S△ABO=12×(4×4﹣14)=1,可得2AO•BO=4,由勾股定理可求AO+BO的值,即可求解.【解答】解:∵四边形ABCD是正方形,∴AB=BC,∠ABC=∠BCD=90°,又∵BE=CF,∴△ABE≌△BCF(SAS),∴S△ABE=S△BCF,∠BAE=∠CBF,∴S△ABO=S四边形ECFO,∠BAE+∠AEB=90°=∠CBF+∠AEB=∠AOB,∵图中阴影部分的面积为14,∴S△ABO=12×(4×4﹣14)=1,∴12×AO ×BO =1, ∴2AO •BO =4,∵AB 2=AO 2+BO 2=16,∴(AO +BO )2=20,∴AO +BO =2√5,∴△ABO 的周长=AB +AO +BO =2√5+4,故答案为:2√5+4.【点评】本题考查了正方形的性质,全等三角形的判定和性质,勾股定理,求出AO +BO 的值是本题的关键.【变式3-1】(2021春•仓山区期中)如图,在正方形ABCD 中,AB =4,点E ,F 分别在CD ,AD 上,CE =DF ,BE ,CF 相交于点H .若图中阴影部分的面积与正方形ABCD 的面积之比为3:4,则△BCH 的周长为( )A .2√5−4B .2√5C .2√5+4D .2√6+4【分析】先计算出正方形的面积,再由比例求出空白部分的面积,通过证明△BCE ≌△CDF 可求解S △BCH ,∠BHC =90°,再由勾股定理及完全平方公式可求解BH +CH 的长,即可求出△BCG 的周长﹒【解答】解:∵四边形ABCD 为正方形,BC =CD =AB =4,∠BCE =∠CDF =90°,∴S 正方形ABCD =16,∵S 阴影:S 正方形ABCD =3:4,∴S 阴影=34×16=12, ∴S 空白=16﹣12=4,在△BCE 和△CDF 中,{BC =CD ∠BCE =∠D =90°CE =DF,∴△BCE ≌△CDF (SAS ),∴S△BCH=S四边形EDFH=2,∠HBC=∠DCF,∵∠DCF+∠HCB=90°,∴∠HBC+∠HCB=90°,∴∠BHC=90°,∴BH2+CH2=BC2=16,BH•CH=4,∴(BH+CH)2=BH2+CH2+2BH•CH=16+2×4=24,∴BH+CH=2√6,∴△BCH的周长为BH+CH+BC=2√6+4,故选:D.【点评】本题考查了正方形的性质,全等三角形的判定与性质及面积的和差相关知识,关键是证明全等两个三角形面积全等,得到△BCH面积.【变式3-2】(2021春•海淀区校级期中)如图,在正方形ABCD中,对角线AC与BD相交于点O,E为BC上一点,CE=6,F为DE的中点.若OF的长为1,则△CEF的周长为()A.14B.16C.18D.12【分析】由正方形的性质及三角形的中位线可求得BE=2,由直角三角形斜边上的中线可求得△CEF的周长为ED+EC,利用勾股定理可求解ED的长,进而可求解.【解答】解:在正方形ABCD中,BO=DO,BC=CD,∠BCD=90°,∵F为DE的中点,∴OF为△DBE的中位线,ED=2CF=2EF,∴△CEF的周长为EF+EC+FC=ED+EC,∵OF=1,∴BE=2OF=2,∵CE=6,∴BC=BE+CE=2+6=8,∴CD=BC=8,在Rt△CED中,∠ECD=90°,CD=8,CE=6,∴ED=√CD2+CE2=√82+62=10,∴△CEF的周长为EF+EC+FC=ED+EC=10+6=16,故选:B.【点评】本题主要考查勾股定理,正方形的性质,三角形的中位线,求解ED的长是解题的关键.【变式3-3】(2021春•河西区期中)将5个边长为2cm的正方形按如图所示摆放,点A1,A2,A3,A4是正方形的中心,则这个正方形重叠部分的面积和为()A.2cm2B.1cm2C.4cm2D.6cm2【分析】在正方形ABCD中,作A1E⊥AD,A1F⊥DC,即可证得:△A1EN≌△A1MF,则四边形A1MA2N的面积=四边形EA1F A2的面积=14正方形ABCD的面积,据此即可求解.【解答】解:如图,在正方形ABCD中,作A1E⊥AD,A1F⊥DC,两边相交于M和N,∠A1EN=∠A1MF=90°,∠EA1N+∠ENA1=90°,∠EA1N+∠F A1M=90°,∴∠ENA1=∠F A1M,A1E=A1F,∴△A 1EN ≌△A 1MF (ASA ),∴四边形A 1MA 2N 的面积=四边形EA 1F A 2的面积=14正方形ABCD 的面积,同理可证,另外三个阴影四边形的面积都等于14正方形ABCD 的面积, ∴图中重叠部分(阴影部分)的面积和=正方形ABCD 的面积=4cm 2,故选:C .【点评】本题主要考查了正方形的性质,正确作出辅助线,证得:四边形A 1MA 2N 的面积=四边形EA 1F A 2的面积=14正方形ABCD 的面积是解题的关键.【题型4 正方形的性质(探究数量关系)】【例4】(2020秋•和平区期末)如图,若在正方形ABCD 中,点E 为CD 边上一点,点F 为AD 延长线上一点,且DE =DF ,则AE 与CF 之间有怎样的数量关系和位置关系?请说明理由.【分析】延长AE 交CF 于点G ,根据四边形ABCD 是正方形,证明△ADE ≌△CDF ,进而可得AE =CF ,AE ⊥CF .【解答】解:AE =CF ,AE ⊥CF ,理由如下:如图,延长AE 交CF 于点G ,∵四边形ABCD 是正方形,∴AD =CD ,∠ADC =∠CDE =90°,在△ADE 和△CDF 中,{AD =CD ∠ADE =∠CDF DE =DF,∴△ADE ≌△CDF (SAS ),∴AE =CF ,∠DAE =∠DCF ,∵∠DCF +∠F =90°,∴∠DAE +∠F =90°,∴AG ⊥CF ,即AE ⊥CF .∴AE =CF ,AE ⊥CF .【点评】本题考查了正方形的性质、全等三角形的判定与性质,解决本题的关键是掌握正方形的性质.【变式4-1】(2020春•西山区期末)如图(1),正方形ABCD 的对角线AC ,BD 相交于点O ,E 是AC 上一点,连接DE ,过点A 作AM ⊥DE ,垂足为M ,AM 与BD 相交于点F .(1)直接写出OE 与OF 的数量关系: ;(2)如图(2)若点E 在AC 的延长线上,AM ⊥DE 于点M ,AM 交BD 的延长线于点F ,其他条件不变.试探究OE 与OF 的数量关系,并说明理由.【分析】(1)根据正方形的性质对角线垂直且平分,得到OB =OA ,又因为AM ⊥BE ,所以∠MEA +∠MAE =90°=∠AFO +∠MAE ,从而求证出△AOF ≌△BOE ,得到OE =OF .(2)由“ASA ”可证△AOF ≌△BOE ,得到OE =OF .【解答】解:(1)∵正方形ABCD 的对角线AC 、BD 相交于点O ,AM ⊥DE ,∴∠AOD =∠DOE =∠AME =90°,OA =OD ,∴∠MEA +∠MAE =90°=∠AFO +∠MAE ,∴∠AFO =∠MEA ,在△AOF 和△DOE 中,{∠AFO =∠MEA AO =DO ∠AOF =∠DOE =90°,∴△AOF ≌△BOE (ASA ),∴OE =OF ,故答案为:OE =OF ;(2)OE =OF ,理由如下:∵正方形ABCD 的对角线AC 、BD 相交于点O ,AM ⊥DE ,∴∠AOD =∠DOE =∠AME =90°,OA =OD ,∴∠MEA +∠MAE =90°=∠AFO +∠MAE ,∴∠AFO =∠MEA ,在△AOF 和△DOE 中,{∠AFO =∠MEA AO =DO ∠AOF =∠DOE =90°,∴△AOF ≌△BOE (ASA ),∴OE =OF .【点评】本题考查了正方形的性质,全等三角形的判定和性质,掌握全等三角形的判定定理是本题的关键.【变式4-2】(2020春•安阳县期末)四边形ABCD 是正方形,G 是直线BC 上任意一点,BE ⊥AG 于点E ,DF ⊥AG 于点F ,当点G 在BC 边上时(如图1),易证DF ﹣BE =EF .(1)当点G 在BC 延长线上时,在图2中补全图形,写出DF 、BE 、EF 的数量关系,并证明.(2)当点G 在CB 延长线上时,在图3中补全图形,写出DF 、BE 、EF 的数量关系,不用证明.【分析】由ABCD 是正方形,得到AB =DA 、AB ⊥AD ,由BE ⊥AG 、DF ⊥AG ,结合题干得到∠ABE =∠DAF ,于是得出△ABE ≌△DAF ,即可AF =BE .(1)同理证明△ABE ≌△DAF ,得AF =BE ,DF =AE ,根据图2可得结论;(2)同理证明△ABE ≌△DAF ,得AF =BE ,DF =AE ,根据图3可得结论.【解答】证明:如图1,∵ABCD 是正方形,∴AB =DA 、AB ⊥AD .∵BE ⊥AG 、DF ⊥AG ,∴∠AEB =∠AFD =90°,又∵∠BAE +∠DAF =90°,∠BAE +∠ABE =90°,∴∠ABE =∠DAF ,在△ABE 和△DAF 中,{∠AEB =∠AFD ∠ABE =∠DAF AB =AD,∴△ABE ≌△DAF (AAS ),∴AF =BE ,DF =AE ,∴DF ﹣BE =AE ﹣AF =EF .(1)如图2,DF 、BE 、EF 的数量关系是:BE =DF +EF ,理由是:∵ABCD 是正方形,∴AB =DA 、AB ⊥AD .∵BE ⊥AG 、DF ⊥AG ,∴∠AEB =∠AFD =90°,又∵∠BAE +∠DAF =90°,∠BAE +∠ABE =90°,∴∠ABE =∠DAF ,在△ABE 和△DAF 中,{∠AEB =∠AFD ∠ABE =∠DAF AB =AD,∴△ABE ≌△DAF (AAS ),∴AF =BE ,DF =AE ,∴BE =AF =AE +EF =DF +EF ;(2)如图3,DF 、BE 、EF 的数量关系是:EF =DF +BE ;理由是:∵ABCD 是正方形,∴AB =DA ,AB ⊥AD .∵BE ⊥AG ,DF ⊥AG ,∴∠AEB =∠AFD =90°,又∵∠BAE +∠DAF =90°,∠BAE +∠ABE =90°,∴∠ABE =∠DAF ,在△ABE 和△DAF 中,{∠AEB =∠AFD ∠ABE =∠DAF AB =AD,∴△ABE ≌△DAF (AAS ),∴AF =BE ,DF =AE ,∴EF =AE +AF =DF +BE .【点评】本题主要考查正方形的性质,解答本题的关键是熟练掌握全等三角形的判定与性质定理,此题难度适中.【变式4-3】(2021春•天河区校级期中)如图,已知四边形ABCD 是正方形,对角线AC 、BD 相交于O .(1)如图1,设E 、F 分别是AD 、AB 上的点,且∠EOF =90°,线段AF 、BF 和EF 之间存在一定的数量关系.请你用等式直接写出这个数量关系;(2)如图2,设E 、F 分别是AB 上不同的两个点,且∠EOF =45°,请你用等式表示线段AE 、BF 和EF 之间的数量关系,并证明.【分析】(1)首先证明△EOA ≌△FOB ,推出AE =BF ,从而得出结论;(2)在BC 上取一点H ,使得BH =AE .由△OAE ≌△OBH ,推出AE =BH ,∠AOE =∠BOH ,OE =OH ,由△FOE ≌△FOH ,推出EF =FH ,由∠FBH =90°,推出FH 2=BF 2+BH 2,由此即可解答.【解答】解:(1)EF 2=AF 2+BF 2.理由:如图1,∵四边形ABCD 是正方形,∴OA =OB ,∠OAE =∠OBF =45°,AC ⊥BD ,∴∠EOF =∠AOB =90°,∴∠EOA =∠FOB ,在△EOA 和△FOB 中,{∠EOA =∠FOB OA =OB ∠OAE =∠OBF,∴△EOA ≌△FOB (ASA ),∴AE =BF ,在Rt △EAF 中,EF 2=AE 2+AF 2=AF 2+BF 2;(2)在BC 上取一点H ,使得BH =AE .∵四边形ABCD 是正方形,∴OA =OB ,∠OAE =∠OBH ,∠AOB =90°,在△OAE 和△OBH 中,{OA =OB ∠OAE =∠OBH AE =BH∴△OAE ≌△OBH (SAS ),∴AE =BH ,∠AOE =∠BOH ,OE =OH ,∵∠EOF =45°,∴∠AOE +∠BOF =45°,∴∠BOF +∠BOH =45°,∴∠FOE =∠FOH =45°,在△FOE 和△FOH 中•,{OF =OF ∠FOE =∠FOH OE =OH,∴△FOE ≌△FOH (SAS ),∴EF =FH ,∵∠FBH =90°,∴FH 2=BF 2+BH 2,∴EF 2=BF 2+AE 2,【点评】本题考查正方形的性质、全等三角形的判定和性质,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.【题型5 正方形的性质综合应用】【例5】(2020秋•周村区期末)(1)如图1的正方形ABCD 中,点E ,F 分别在边BC ,CD 上,∠EAF =45°,延长CD 到点G ,使DG =BE ,连接EF ,AG .求证:EF =FG ;(2)如图2,等腰Rt △ABC 中,∠BAC =90°,AB =AC ,点M ,N 在边BC 上,且∠MAN =45°.若BM =1,CN =3,求MN 的长.【分析】(1)证△ADG ≌△ABE ,△F AE ≌△F AG ,根据全等三角形的性质求出即可;(2)过点C 作CE ⊥BC ,垂足为点C ,截取CE ,使CE =BM .连接AE 、EN .通过证明△ABM ≌△ACE (SAS )推知全等三角形的对应边AM =AE 、对应角∠BAM =∠CAE ;然后由等腰直角三角形的性质和∠MAN =45°得到∠MAN =∠EAN =45°,所以△MAN ≌△EAN (SAS ),故全等三角形的对应边MN =EN ;最后由勾股定理得到EN 2=EC 2+NC 2即MN 2=BM 2+NC 2.【解答】(1)证明:在正方形ABCD 中,∠ABE =∠ADG ,AD =AB ,在△ABE 和△ADG 中,{AD =AB ∠ABE =∠ADG DG =BE,∴△ABE ≌△ADG (SAS ),∴∠BAE =∠DAG ,AE =AG ,∴∠EAG =90°,在△F AE 和△GAF 中,{AE =AG∠EAF =∠FAG =45°AF =AF,∴△F AE ≌△GAF (SAS ),∴EF =FG ;(2)解:如图,过点C 作CE ⊥BC ,垂足为点C ,截取CE ,使CE =BM .连接AE 、EN .∵AB =AC ,∠BAC =90°,∴∠B =∠ACB =45°.∵CE ⊥BC ,∴∠ACE =∠B =45°.在△ABM 和△ACE 中,{AB =AC ∠B =∠ACE BM =CE ,∴△ABM ≌△ACE (SAS ).∴AM =AE ,∠BAM =∠CAE .∵∠BAC =90°,∠MAN =45°,∴∠BAM +∠CAN =45°.于是,由∠BAM =∠CAE ,得∠MAN =∠EAN =45°.在△MAN 和△EAN 中,{AM =AE ∠MAN =∠EAN AN =AN,∴△MAN ≌△EAN (SAS ).∴MN =EN .在Rt △ENC 中,由勾股定理,得EN 2=EC 2+NC 2.∴MN 2=BM 2+NC 2.∵BM =1,CN =3,∴MN 2=12+32,∴MN =√10.【点评】本题主要考查正方形的性质,全等三角形的判定和性质、等腰直角三角形的性质以及勾股定理的综合应用,解题的关键是学会添加常用辅助线,构造全等三角形解决问题;【变式5-1】(2021春•余杭区月考)已知正方形ABCD 如图所示,连接其对角线AC ,∠BCA 的平分线CF 交AB 于点F ,过点B 作BM ⊥CF 于点N ,交AC 于点M ,过点C 作CP ⊥CF ,交AD 延长线于点P .(1)求证:BF =DP ;(2)若正方形ABCD 的边长为4,求△ACP 的面积;(3)求证:CP =BM +2FN .【分析】(1)由“ASA ”可证△CDP ≌△CBF ,可得BF =DP ;(2)根据等角对等边易证AP =AC ,根据勾股定理求得AC 的长,然后根据三角形的面积公式即可求解;(3)由全等三角形的性质可得CP =CF ,在CN 上截取NH =FN ,连接BH ,则可以证明△AMB ≌BHC ,得到CH=BM,即可证得.【解答】证明:(1)∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠CAD=∠ACD=45°,∵CP⊥CF,∴∠FCP=90°=∠BCD,∴∠BCF=∠DCP,∵CD=CB,∠CBF=∠CDP=90°,∴△CDP≌△CBF(ASA)∴BF=DP;(2)∵CF平分∠ACB,∴∠ACF=∠BCF=22.5°,∴∠BFC=67.5°,∵△CDP≌△CBF,∴∠P=∠BFC=67.5°,且∠CAP=45°,∴∠ACP=∠P=67.5°,∴AC=AP,∵AC=√2AB=4√2,∴S△ACP=12AP×CD=8√2;(3)在CN上截取NH=FN,连接BH,∵△CDP≌△CBF,∴CP=CF,∵FN=NH,且BN⊥FH,∴BH=BF,∴∠BFH=∠BHF=67.5°,∴∠FBN=∠HBN=∠BCH=22.5°,∴∠HBC=∠BAM=45°,∵AB=BC,∠ABM=∠BCH,∴△AMB≌△BHC(ASA),∴CH=BM,∴CF=BM+2FN,∴CP=BM+2FN.【点评】本题是正方形的性质,全等三角形的判定与性质,等腰三角形的性质等知识,正确作出辅助线是关键.【变式5-2】(2021春•莆田期末)如图1,在正方形ABCD中,∠AEF=90°,且EF交正方形外角的平分线CF于点F.(1)若点E是BC边上的中点,求证:AE=EF;(2)如图2,若点E是BC的延长线上(除C点外)的任意一点,其他条件不变,那么结论“AE=EF”是否仍然成立,若成立,请写出证明过程;若不成立,请说明理由;(3)如图3,若点E是BC边上的任意点一,在AB边上是否存在点M,使得四边形DMEF是平行四边形?若存在,请给予证明;若不存在,请说明理由.【分析】(1)取AB的中点H,连接EH,根据已知及正方形的性质利用ASA判定△AHE≌△ECF,从而得到AE=EF;(2)成立,延长BA到M,使AM=CE,根据已知及正方形的性质利用ASA判定△AHE≌△ECF,从而得到AE=EF;(3)存在,作DM⊥AE于AB交于点M,则有:DM∥EF,连接ME、DF,证明△ADM≌△BAE(ASA),得到DM=AE,由(1)AE=EF,所以DM=EF,所以四边形DMEF为平行四边形.【解答】(1)证明:取AB的中点H,连接EH;如图1所示∵四边形ABCD 是正方形,AE ⊥EF ;∴∠1+∠AEB =90°,∠2+∠AEB =90°∴∠1=∠2,∵BH =BE ,∠BHE =45°,且∠FCG =45°,∴∠AHE =∠ECF =135°,AH =CE ,在△AHE 和△ECF 中,{∠1=∠2AH =CE ∠AHE =∠ECF ,∴△AHE ≌△ECF (ASA ),∴AE =EF ;(2)解:AE =EF 成立,理由如下:如图2,延长BA 到M ,使AM =CE ,∵∠AEF =90°,∴∠FEG +∠AEB =90°.∵∠BAE +∠AEB =90°,∴∠BAE =∠FEG ,∴∠MAE =∠CEF .∵AB =BC ,∴AB +AM =BC +CE ,即BM =BE .∴∠M =45°,∴∠M =∠FCE .在△AME 与△ECF 中,{∠MAE =∠CEF AM =CE ∠M =∠FCE,∴△AME ≌△ECF (ASA ),∴AE =EF .(3)存在,理由如下:点E 是BC 边上的中点,如图3,作DM ⊥AE 于AB 交于点M ,则有:DM ∥EF ,连接ME 、DF ,在△ADM 与△BAE 中,{∠ADM =∠BAE AD =AB ∠DAM =∠ABE ,∴△ADM ≌△BAE (ASA ),∴DM =AE ,由(1)AE =EF ,∴DM =EF ,∴四边形DMEF 为平行四边形.【点评】此题考查学生对正方形的性质及全等三角形判定的理解及运用,解决本题的关键是作出辅助线.【变式5-3】(2021春•江津区期中)在正方形ABCD 中,对角线AC 、BD 相交于点O ,点E 在线段OC 上,点F 在线段AB 上,连接BE ,连接EF 交BD 于点M ,已知∠AEB =∠OME .(1)如图1,求证:EB =EF ;(2)如图2,点N 在线段EF 上,AN =EN ,AN 延长线交DB 于H ,连接DF ,求证:DF =√2AH .【分析】(1)依据四边形ABCD是正方形,即可得出AC⊥BD,∠1=∠2=45°,进而得到∠5=∠FBE,即可得到EF=EB;(2)连接DE,先判定△AOH≌△BOE,即可得出AH=BE,再判定△DCE≌△BCE,即可得到DE=BE =AH=EF,再根据△DEF是等腰直角三角形,即可得出结论.【解答】证明:(1)如图所示:∵四边形ABCD是正方形,∴AC⊥BD,∠1=∠2=45°,∴在Rt△OME和Rt△OEB中,∠3+∠OME=∠4+∠OEB=90°,∵∠OME=∠OEB,∴∠3=∠4,∴∠5=∠1+∠3=∠2+∠4=∠FBE,∴EF=EB;(2)连接DE,∵AN =EN ,∴∠3=∠5,∵∠3=∠4,∴∠4=∠5,∵四边形ABCD 是正方形,∴OA =OB ,AC ⊥BD ,∴∠7=∠8=90°,在△AOH 和△BOE 中,{∠5=∠4OA =OB ∠7=∠8,∴△AOH ≌△BOE (ASA ),AH =BE ,∵四边形ABCD 是正方形,∴DC =BC ,∠1=∠2=45°,在△DCE 和△BCE 中,{DC =BC ∠1=∠2CE =CE,∴△DCE ≌△BCE (SAS ),∴DE =BE =AH =EF ,∵AC ⊥BD ,∴∠6=∠AEB ,∵∠3=∠4,∠4+∠AEB =90°,∴∠3+∠6=90°,即∠DEF =90°,∴△DEF 是等腰直角三角形,∴DF =√DE 2+EF 2=√2EF =√2AH .【点评】本题主要考查了正方形的性质,全等三角形的判定与性质,关键是对全等三角形的判断.③还可以先判定四边形是平行四边形,再用1或2进行判定.【题型6 判定正方形成立的条件】【例6】(2020春•上蔡县期末)下列说法正确的个数是()①对角线互相垂直或有一组邻边相等的矩形是正方形;②对角线相等或有一个角是直角的菱形是正方形;③对角线互相垂直且相等的平行四边形是正方形;④对角线互相垂直平分且相等的四边形是正方形.A.1个B.2个C.3个D.4个【分析】根据正方形的判定、线段垂直平分线的性质、平行四边形的性质和矩形的性质即可求解.【解答】解:①对角线互相垂直或有一组邻边相等的矩形是正方形,故①正确;②对角线相等或有一个角是直角的菱形是正方形,故②正确;③对角线互相垂直且相等的平行四边形是正方形,故③正确;④对角线互相垂直平分且相等的四边形是正方形,故④正确;综上所述,正确的个数为4个,故选:D.【点评】本题考查了正方形的判定、线段垂直平分线的性质、平行四边形的性质和矩形的性质,解题关键是逐个判断即可得出答案.【变式6-1】(2020春•建湖县期中)如图,在△ABC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且BE=BF,添加一个条件,仍不能证明四边形BECF为正方形的是()A.BC=AC B.BD=DF C.AC=BF D.CF⊥BF【分析】根据中垂线的性质:中垂线上的点到线段两个端点的距离相等,有BE=EC,BF=FC进而得出四边形BECF是菱形;由菱形的性质知,以及菱形与正方形的关系,进而分别分析得出即可.【解答】解:∵EF垂直平分BC,∴BE=EC,BF=CF,∵BF=BE,∴BE=EC=CF=BF,∴四边形BECF是菱形;当BC=AC时,∵∠ACB=90°,则∠A=45°时,菱形BECF是正方形.∵∠A=45°,∠ACB=90°,∴∠EBC=45°,∴∠EBF=2∠EBC=2×45°=90°,∴菱形BECF是正方形.故选项A正确,但不符合题意;当BD=DF时,利用正方形的判定得出,菱形BECF是正方形,故选项B正确,但不符合题意;当AC=BF时,无法得出菱形BECF是正方形,故选项C错误,符合题意;当CF⊥BF时,利用正方形的判定得出,菱形BECF是正方形,故选项D正确,但不符合题意.故选:C.【点评】本题考查了菱形的判定和性质及中垂线的性质、直角三角形的性质、正方形的判定等知识,熟练掌握正方形的相关定理是解题关键.【变式6-2】(2020春•开原市校级月考)已知四边形ABCD是平行四边形,再从四个条件中,选两个作为补充条件后,使得四边形ABCD是正方形,现有下列四种选法,其中错误的是()①AB=BC,②∠ABC=90˚,③AC=BD,④AC⊥BDA.选①②B.选①③C.选②③D.选②④【分析】根据要判定四边形是正方形,则需能判定它既是菱形又是矩形进而分别分析得出即可.【解答】解:A、由①得有一组邻边相等的平行四边形是菱形,由②得有一个角是直角的平行四边形是矩形,所以平行四边形ABCD是正方形,正确,故本选项不符合题意;B、由①得有一组邻边相等的平行四边形是菱形,由③得对角线相等的平行四边形是矩形,所以平行四边形ABCD是正方形,正确,故本选项不符合题意;C、由②得有一个角是直角的平行四边形是矩形,由③得对角线相等的平行四边形是矩形,所以不能得出平行四边形ABCD是正方形,错误,故本选项符合题意.D、由②得有一个角是直角的平行四边形是矩形,由④得对角线互相垂直的平行四边形是菱形,所以平行四边形ABCD是正方形,正确,故本选项不符合题意;故选:C.【点评】本题考查了正方形的判定方法:①先判定四边形是矩形,再判定这个矩形有一组邻边相等;②先判定四边形是菱形,再判定这个矩形有一个角为直角.③还可以先判定四边形是平行四边形,再用1或2进行判定.【变式6-3】(2020秋•陕西期中)如图,E、F、G、H分别是AB、BC、CD、DA的中点.要使四边形EFGH 是正方形,BD、AC应满足的条件是.【分析】依据条件先判定四边形EFGH为菱形,再根据∠FEH=90°,即可得到菱形EFGH是正方形.【解答】解:满足的条件应为:AC=BD且AC⊥BD.理由:∵E,F,G,H分别是边AB、BC、CD、DA的中点,∴在△ADC中,HG为△ADC的中位线,∴HG∥AC且HG=12AC;同理EF∥AC且EF=12AC,同理可得EH=12BD,则HG∥EF且HG=EF,∴四边形EFGH为平行四边形,又∵AC=BD,∴EF=EH,∴四边形EFGH为菱形,∵AC⊥BD,EF∥AC,∴EF⊥BD,∵EH∥BD,∴EF⊥EH,∴∠FEH=90°,∴菱形EFGH是正方形.故答案为:AC=BD且AC⊥BD.【点评】此题考查了中点四边形的性质、三角形中位线定理以及正方形的判定.解题时注意:三角形的中位线平行于第三边,并且等于第三边的一半.【题型7 正方形判定的证明】【例7】(2020秋•富平县期末)如图,已知四边形ABCD是矩形,点E在对角线AC上,点F在边CD上(点F与点C、D不重合),BE⊥EF,且∠ABE+∠CEF=45°.求证:四边形ABCD是正方形.【分析】作EM⊥BC于点M,可证EM∥AB,可得∠ABE=∠BEM,∠BAC=∠CEM,由角的数量关系可得∠CEM=45°=∠BAC,可证AB=BC,可得结论.【解答】证明:如图,作EM⊥BC于点M,∵四边形ABCD是矩形,∴AB⊥BC,∴EM∥AB,∴∠ABE=∠BEM,∠BAC=∠CEM,∵∠ABE+∠CEF=45°,∴∠BEM+∠CEF=45°,∵BE⊥EF,∴∠CEM=45°=∠BAC,∴∠BAC=∠ACB=45°,∴AB=BC,∴矩形ABCD是正方形.【点评】本题考查了正方形的判定,矩形的性质,灵活运用这些性质进行推理是本题的关键.【变式7-1】(2021春•娄星区校级期中)已知,如图,在Rt△ABC中,∠ACB=90°,E是两锐角平分线的交点,ED⊥BC,EF⊥AC,垂足分别为D,F,求证:四边形CDEF是正方形.【分析】过E作EM⊥AB,根据角平分线的性质可得EF=ED=EM.再证明四边形EFDC是矩形,可根据邻边相等的矩形是正方形得到四边形CDEF是正方形.【解答】证明:过E作EM⊥AB,∵AE平分∠CAB,∴EF=EM,∵EB平分∠CBA,∴EM=ED,∴EF=ED,∵ED⊥BC,EF⊥AC,△ABC是直角三角形,∴∠CFE=∠CDE=∠C=90°,∴四边形EFDC是矩形,∵EF=ED,∴四边形CDEF是正方形.【点评】此题主要考查了正方形的判定,关键是掌握邻边相等的矩形是正方形.【变式7-2】(2020春•新乡期末)如图,在四边形ABCD中,AB=BC,对角线BD平分∠ABC,P是BD上一点,过点P 作PM ⊥AD ,PN ⊥CD ,垂足分别为M 、N .(1)求证:∠ADB =∠CDB ;(2)若∠ADC = °时,四边形MPND 是正方形,并说明理由.【分析】(1)根据角平分线的性质和全等三角形的判定方法证明△ABD ≌△CBD ,由全等三角形的性质即可得到:∠ADB =∠CDB ;(2)由三个角是直角的四边形是矩形,可证四边形MPND 是矩形,再根据邻边相等的矩形是正方形即可证明四边形MPND 是正方形.【解答】证明:(1)∵对角线BD 平分∠ABC ,∴∠ABD =∠CBD ,在△ABD 和△CBD 中,{AB =BC ∠ABD =∠CBD BD =BD,∴△ABD ≌△CBD (SAS ),∴∠ADB =∠CDB ;(2)当∠ADC =90°时,四边形MPND 是正方形,理由如下:∵PM ⊥AD ,PN ⊥CD ,∴∠PMD =∠PND =90°,∵∠ADC =90°,∴四边形MPND 是矩形,∵∠ADB =∠CDB ,∴∠ADB =45°,∵∠PMD =90°,∴∠MPD =∠PDM =45°,∴PM=MD,∴矩形MPND是正方形,故答案为:90.【点评】本题考查了正方形的判定,全等三角形的判定和性质,角平分线的性质,矩形的判定和性质,解题的关键是熟记各种几何图形的性质和判定.【变式7-3】(2020秋•渠县期末)如图,在△ABC中,AB=AC,D是BC中点、F是AC中点,AN是△ABC的外角∠MAC的平分线,延长DF交AN于点E,连接CE.(1)求证:四边形ADCE是矩形;(2)若AB=BC=4,则四边形ADCE的面积为多少?(3)直接回答:当△ABC满足时,四边形ADCE是正方形.【分析】(1)根据AN是△ABC外角∠CAM的平分线,推得∠MAE=12(∠B+∠ACB),再由∠B=∠ACB,得∠MAE=∠B,则AN∥BC,根据三角形中位线的性质得FD∥AB,可得四边形ABDE为平行四边形,则AE=BD=CD,得出四边形ADCE为平行四边形,再证出AD⊥AE即可得出四边形ADCE为矩形.(2)由(1)知四边形ADCE是矩形,由条件可证明△ABC为等边三角形,求出CD和AD长,则四边形ADCE的面积可求出;(3)由(1)知四边形ADCE是矩形,增加条件能使AD=DC即可【解答】(1)证明:∵AN是△ABC外角∠CAM的平分线,∴∠MAE=12∠MAC,∵∠MAC=∠B+∠ACB,∵AB=AC,∴∠B=∠ACB,。

人教版八年级下册数学第1课时 正方形的性质教案

18.2.3正方形第1课时正方形的性质教学设计课题正方形的性质授课人素养目标1.理解正方形的概念,体会特殊平行四边形之间的关系.2.通过观察、比较、动手操作探究正方形边、角、对角线、对称的性质,培养学生的归纳探究能力和数学表达能力.3.利用正方形的性质定理进行计算或证明,培养学生分析问题和解决问题的能力.教学重点正方形性质的理解及其应用.教学难点正方形与平行四边形、矩形、菱形的区别与联系.教学活动教学步骤师生活动活动一:创设情境,导入新课设计意图通过图片展示,引导学生思考正方形的概念及性质.【情境导入】仔细观察下列实际生活中的图片,你会发现这些都是正方形的形象.正方形是我们熟悉的图形,你还能列举出正方形在生活中应用的其他例子吗?结合已有经验,类比菱形与矩形,正方形的概念是怎样的呢?教师总结:正方形可以定义为有一组邻边相等并且有一个角是直角的平行四边形.下面我们一起来探讨一下正方形的性质吧!【教学建议】让学生根据生活经验及图片思考正方形的概念,学生从矩形和菱形的角度回答正方形的概念也可以,正确即可.活动二:动手操作,探究新知设计意图通过回忆体会正方形与平行四边形、矩形、菱形的区别与联系.探究点正方形的性质1.边、角、对角线的性质探究(1)我们回忆一下小学学过的正方形,它有什么性质?答:正方形的四条边都相等,四个角都是直角.(2)上面正方形的概念中提到有一组邻边相等的平行四边形是什么图形?答:菱形.(3)上面正方形的概念中提到有一个角是直角的平行四边形是什么图形?答:矩形.事实上,如果把矩形、菱形各添加一个条件,平行四边形添加两个条件均可得到正方形,可以用下面结构图直观呈现这种关系:归纳总结:正方形既是矩形,又是菱形,它既有矩形的性质,又有菱形的性质.我们根据前边的学习,除了边和角,还可以研究一下正方形的对角线,那么它的对角线就是互相平分、相等且垂直.【教学建议】让学生回忆并类比平行四边形、矩形、菱形的性质来研究正方形的性质,引导学生从正方形是特殊的平行四边形、矩形、菱形入手,分别从边、角、对角线、对称性等几个方面进行归纳总结.设计意图引导学生发现直角三角形斜边上的中线的性质.正方形的对角线除了上述基本性质外,还有无其他性质呢?事实上,它可以将正方形分成四个全等的等腰直角三角形.我们可以试着证明:(教材P58例5)求证:正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形.已知:如图,四边形ABCD 是正方形,对角线AC ,BD 相交于点O.求证:△ABO ,△BCO ,△CDO ,△DAO 是全等的等腰直角三角形.证明:∵四边形ABCD 是正方形,∴AC =BD ,AC ⊥BD ,AO =BO =CO =DO.∴△ABO ,△BCO ,△CDO ,△DAO 都是等腰直角三角形,并且△ABO ≌△BCO ≌△CDO ≌△DAO.2.正方形的对称性我们再想一想:正方形是轴对称图形吗?它的对称轴是什么?答:如图,取一张正方形纸片,将它沿过对边中点的直线和对角线折叠,折叠后的两部分均能重合.归纳总结:正方形是轴对称图形,它的对称轴有四条,分别是对边中点的连线以及两条对角线所在的直线.【对应训练】1.正方形的一条边长是3,那么它的对角线长是322.如图,在正方形ABCD 中,点E 在BD 上,且BE =CD ,则∠BEC 的度数为67.5°.3.如图,在正方形ABCD 中,点E ,F 分别在AB ,BC 边上,AE =BF ,连接AF ,DE.求证:△ADE ≌△BAF.证明:∵四边形ABCD 为正方形,∴AD =BA ,∠DAE =∠ABF =90°.在△ADE 和△BAF 中,AD =BA ,∠DAE =∠ABF ,AE =BF ,∴△ADE ≌△BAF(SAS).活动三:综合运用,巩固提升设计意图强化学生对正方形性质的掌握.例如图,在正方形ABCD 中,点E 在边BC 上,点F 在CD 的延长线上,且BE =DF.(1)求证:AE =AF ,AE ⊥AF ;(2)若BD 与EF 相交于点M ,连接AM ,试判断AM 与EF 的数量关系和位置关系,并说明理由.(1)证明:∵四边形ABCD 为正方形,∴∠ABE =∠BAD =∠ADC =∠ADF =90°,AB =AD.又BE =DF ,∴△ABE ≌△ADF(SAS),∴AE =AF ,∠BAE =∠DAF.∴∠DAF +∠EAD =∠BAE +∠EAD ,即∠EAF =∠BAD =90°,∴AE ⊥AF.【教学建议】提醒学生:(1)与正方形性质相关的证明题往往是利用正方形边、角、对角线的性质,将其转化为证明三角形全等的条件;(2)正方形两条对角线将正方形分割为四个全等的等(2)解:AM =12EF ,AM ⊥EF.理由如下:如图,过点E 作EN ∥CD ,交BD 于点N ,∴∠MNE =∠MDF ,∠MEN =∠MFD ,∠NEB=∠C =90°.∵四边形ABCD 为正方形,∴∠NBE =45°,∴∠BNE =90°-∠NBE =45°,∴∠NBE =∠BNE ,∴BE =NE.又BE =DF ,∴NE =DF ,∴△MNE ≌△MDF(ASA),∴EM =FM.∵AE =AF ,∠EAF =90°,∴AM =12EF ,AM ⊥EF.【对应训练】1.如图,AC 是正方形ABCD 的对角线,若以AD 为边向正方形内部作等边三角形ADE ,边DE 交AC 于点F ,则∠EFC =75°.2.如图,E ,F 是正方形ABCD 的对角线AC 上的两点,AC =8,AE =CF =2,则四边形BEDF 的周长是85.3.教材P59练习第2题.腰直角三角形,可得到45°角.活动四:随堂训练,课堂总结【课堂总结】师生一起回顾本节课所学主要内容,并请学生回答以下问题:正方形的概念是什么?正方形有哪些性质?正方形与平行四边形、矩形、菱形有怎样的区别和联系?【知识结构】【作业布置】1.教材P 61习题18.2第7,12,15,17题.2.相应课时训练.板书设计18.2.3正方形第1课时正方形的性质一、正方形的概念二、正方形的性质1.边.2.角.3.对角线.4.对称性.教学反思正方形性质的探究内容依旧集中在边、角、对角线三个方面,教学中注意引导学生思索平行四边形、矩形、菱形和正方形的区别与联系,使其形成完整的四边形知识网络.的应用,可以培养学生的应用意识从本节课的授课过程来看,灵活运用了多种教学方法,既有与现实生活的联系,又有动手操作,调动了学生学习的积极性,充分发挥了学生的主体作用.解题方法:如何区分平行四边形、菱形、矩形、正方形的性质?①从边的角度来看:平行四边形、矩形、菱形、正方形都具有对边平行且相等的性质,而菱形和正方形还具有四条边都相等的性质.②从角的角度来看:平行四边形、矩形、菱形、正方形都具有对角相等且邻角互补的性质,而矩形和正方形还具有四个角都是直角的性质.③从对角线的角度来看:平行四边形、矩形、菱形、正方形都具有对角线互相平分的性质,而矩形和正方形还具有对角线相等的性质,菱形和正方形还具有对角线互相垂直的性质.例1如图为某城市部分街道示意图,四边形ABCD 为正方形,点G 在对角线BD 上,GE ⊥CD ,GF ⊥BC ,AD =1500m ,小敏行走的路线为B→A→G→E ,小聪行走的路线为B→A→D→E→F.若小敏行走的路程为3100m ,则小聪行走的路程为4600m .解析:如图,连接GC.∵四边形ABCD 为正方形,∴∠BCD =90°,AD =CD ,∠ADB =∠CDB =45°.又GE ⊥CD ,∴△DEG 是等腰直角三角形.∴DE =GE.在△AGD 和△CGD AD =CD ,∠ADG =∠CDG ,DG =DG ,∴△AGD ≌△CGD(SAS ),∴AG =CG.∵GE ⊥CD ,GF ⊥BC ,∴∠GEC =∠ECF =∠GFC =90°,∴四边形GECF 是矩形.∴EF =CG ,∴EF =AG.∴BA +AD +DE +EF -BA -AG -GE =AD =1500m .∵小敏共走了3100m ,即BA +AG +GE =3100m ,∴小聪行走的路程为BA +AD +DE +EF =3100+1500=4600(m ).例2如图,在边长为6的正方形ABCD 中,M 为对角线BD 上一点,连接AM 并延长,交CD 于点P.若PM =PC ,求AM 的长.解:∵四边形ABCD 是边长为6的正方形,∴AD =CD =6,∠ADC =90°,∠ADM =∠CDM =45°.在△ADM 和△CDM DM =DM ,∠ADM =∠CDM ,AD =CD ,∴△ADM ≌△CDM(SAS ),∴∠DAM =∠DCM.∵PM =PC ,∴∠CMP =∠DCM ,∴∠APD =∠CMP +∠DCM =2∠DCM =2∠DAM.∵∠APD +∠DAM =180°-∠ADC =90°,∴∠DAM =30°.设PD =x ,则AP =2PD =2x ,PM =PC =CD -PD =6-x ,∴AD =AP 2-PD 2=3x =6,解得x =2 3.∴PM =6-x =6-23,AP =2x =43,∴AM =AP -PM =43-(6-23)=63-6.例1如图,正方形ABCD 的边长为4,E ,F 分别是BC ,CD 上一动点,且BE =CF ,连接AE ,BF 交于点P ,连接CP ,则CP 的最小值是(A )A .25-2B .32-2C .22D .2+2解析:在正方形ABCD 中,AB =BC ,∠ABC =∠BCD =90°.在△ABE 和△BCF =BC ,ABE =∠BCF ,=CF ,∴△ABE ≌△BCF(SAS ),∴∠BAE =∠CBF.∵∠CBF +∠ABF =90°,∴∠BAE +∠ABF =90°,∴∠APB =90°.如图,设AB 的中点为G ,连接GP ,GC ,则GP =GB =12AB =12×4=2.∵GP +CP≤GC ,∴当点C ,P ,G 在同一条直线上时,CP 有最小值GC -GP.∵BC =4,BG =2,∴GC =BC 2+BG 2=42+22=2 5.∴CP 的最小值是25-2.故选A .例2如图,正方形OABC 的边OA ,OC 在坐标轴上,点B 的坐标为(-4,4).点P从点A 出发,以每秒1个单位长度的速度沿x 轴向点O 运动;同时,点Q 从点O 出发,以相同的速度沿x 轴的正方向运动,规定点P 到达点O 时,点Q 也停止运动.连接BP ,过点P 作BP 的垂线,与经过点Q 且平行于y 轴的直线l 相交于点D.BD 与y 轴交于点E ,连接PE.设点P 运动的时间为t s .(1)∠PBD 的度数为45°,点D 的坐标为(t ,t)(用含t 的代数式表示).(2)当t 为何值时,△PBE 为等腰三角形?(3)探索△POE 的周长是否随时间t 的变化而变化?若变化,说明理由;若不变,试求这个定值.解:(1)解析:由题意可得AP =OQ =1×t =t ,∴易得AO =PQ.∵四边形OABC 是正方形,∴AO =AB =BC =OC ,∠BAO =∠AOC =∠OCB =∠ABC =90°.∵DQ ∥OC ,∴∠PQD =∠AOC =90°.∵DP ⊥BP ,∴∠BPD =90°.∴∠BPA =90°-∠DPQ =∠PDQ.∵AO =PQ ,AO =AB ,∴AB =QP.在△BAP 和△PQD BAP =∠PQD ,BPA =∠PDQ ,=QP ,∴△BAP ≌△PQD(AAS ).∴AP =QD ,BP=PD.∵∠BPD =90°,BP =PD ,∴∠PBD =∠PDB =45°.∵AP =t ,∴QD =t.∴点D 的坐标为(t ,t).(2)①若PB =PE ,由△BAP ≌△PQD 得PB =PD ,显然PB≠PE ,∴这种情况不存在,应舍去.②若EB =EP ,则∠BPE =∠PBE =45°.∴∠BEP =90°.∴∠PEO =90°-∠BEC =∠EBC.在△POE 和△ECB PEO =∠EBC ,POE =∠ECB ,=BE ,∴△POE ≌△ECB(AAS ).∴OE =CB =OC.∴点E 与点C 重合.∴点P 与点O 重合.∴AP =AO =t.∵B(-4,4),∴AO =CO =4.此时t =4.③若BP =BE ,在Rt △BAP 和Rt △BCE =BE ,=BC ,∴Rt △BAP ≌Rt △BCE(HL ).∴AP=CE.∵AP=t,∴CE=t.∴PO=EO=4-t.∵∠POE=90°,∴EP=PO2+EO2=2(4-t).如图,延长OA到点F,使得AF=CE,连接BF.在△FAB和△ECB=CB,BAF=∠BCE=90°,=CE,∴△FAB≌△ECB(SAS).∴FB=EB,∠FBA=∠EBC.∵∠EBP=45°,∠ABC=90°,∴∠ABP+∠EBC=45°.∴∠FBP=∠ABP+∠FBA=∠ABP+∠EBC=45°.∴∠FBP=∠EBP.在△FBP和△EBP =BE,FBP=∠EBP,=BP,∴△FBP≌△EBP(SAS).∴FP=EP.∴EP=FP=FA+AP=CE+AP.∴EP=t+t=2t.∴2(4-t)=2t.解得t=42-4.综上所述,当t为4或42-4时,△PBE为等腰三角形.(3)△POE的周长不随时间t的变化而变化.由(2)可得EP=CE+AP,∴OP+PE+OE=OP+AP+CE+OE=AO+CO=4+4=8.∴△POE的周长是定值,这个定值为8.。

1.3第1课时正方形的性质-北师大版九年级数学上册习题课件


(2)如图 2,结论不变.DM⊥EM,DM=EM.理由:在图 2 中,延长 EM 交 DA
2.正方的形是延轴对长称图线形,于它的对H称.轴∵有(四边) 形 ABCD 是正方形,四边形 EFGC 是正方形,∴∠ADE=∠
10.【易错题】已知正方形ABCD中,点E为直线BC上一点,若AE=2BE,则∠DAE=__________度.
1.正方形具有而矩形不具有的性质是( )
11.如图,正方形OABC的边OA和OC都在坐标轴上,将正方形OABC绕点O旋转到OA′B′C′,这时点A′的坐标为(2,3),则点B′的坐标为__________.
∴∠FAE+∠AED=90°, 注意:正方形既是特殊的矩形,又是特殊的菱形,即有一组邻边相等的矩形是正方形或有一个角是直角的菱形是正方形.
知识点1 正方形的定义 有一组邻边相等,并且有一个角是直角的平行四边形叫做正方形. 注意:正方形既是特殊的矩形,又是特殊的菱形,即有一组邻边相等的矩形是 正方形或有一个角是直角的菱形是正方形.
第一章 特殊平行四边形
上一页 返回导航 下一页
数学·九年级(上)·配北师
知识点2 正方形的性质 (1)定理1:正方形的四个角都是直角,四条边都相等. (2) 定 理 2 : 正 方 形 的 对 角 线 相 等 且 互 相 垂 直 平 分 , 每 一 条 对 角 线 平 分 一 组 对 角. (3)对称性:正方形是中心对称图形,对角线的交点是它的对称中心.正方形是 轴对称图形,两条对角线所在的直线,以及过每一组对边中点的直线都是它的对称 轴.
90°,∴∠DAF+∠EAD=90°,即∠EAF=90°,∴EF= AE2+AF2= 2AE=5 2.
第一章 特殊平行四边形
上一页 返回导航 下一页

正方形的对角线与面积的关系

正方形的对角线与面积的关系一、正方形的性质1.正方形是四边相等、四角为直角的平面图形。

2.正方形的对角线互相垂直,并且平分对方。

3.正方形的对角线长度相等。

二、对角线与面积的关系1.正方形的面积等于对角线长度的乘积的一半。

2.正方形的面积可以用对角线的长度来表示,即面积 = (对角线1 × 对角线2) / 2。

3.假设正方形的对角线长度分别为d1和d2,边长为a。

4.正方形可以分成两个等腰直角三角形,每个三角形的直角边为a,斜边为d1(或d2)。

5.根据勾股定理,可得a² + a² = d1²(或d2²)。

6.化简得a² = d1² / 2(或d2² / 2)。

7.正方形的面积为a²,所以面积 = (d1 × d2) / 2。

8.已知正方形的对角线长度,可以求出正方形的面积。

9.已知正方形的面积,可以求出正方形的对角线长度。

10.正方形是特殊的矩形,矩形的对角线与面积也有类似的关系。

11.正方形是特殊的长方形,长方形的对角线与面积也有类似的关系。

12.正方形的对角线与面积有直接的关系,可以通过对角线的长度来计算正方形的面积。

13.正方形的面积公式为面积 = (对角线1 × 对角线2) / 2。

习题及方法:已知正方形的对角线长度为8cm,求正方形的面积。

根据知识点,正方形的面积等于对角线长度的乘积的一半。

所以,可以将对角线长度乘以自身再除以2来求得面积。

已知正方形的面积为36cm²,求正方形的对角线长度。

对角线2) / 2。

因此,可以将面积乘以2再开平方根来求得对角线的长度。

已知正方形的边长为5cm,求正方形的对角线长度。

根据知识点,正方形的对角线长度等于边长的√2倍。

所以,可以将边长乘以√2来求得对角线的长度。

已知正方形的对角线长度为10cm,求正方形的边长。

根据知识点,正方形的对角线长度等于边长的√2倍。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2021/3/9
11
放映结束 感谢各位的批评指导!
谢 谢!
让我们共同进步
2021/3/9
12
3
探究(一):什么样的四边形是正方形?
做一做:用一张长方形的纸片(如图所 示)折出一个正方形.
学生在动手中对正方形产生感性认识, 并感知正方形与矩形的关系.问题:什么 样的四边形是正方形?
正方形定义:有一组邻边相等并且有一 个角是直角的平行四边形叫做正方形.
其定义包括了两层意: ⑴有一组邻边相等的平行四边形 (菱形) ⑵有一个角是直角的平行四边形 (矩形
独树一初中八年级数学组
2021/3/9
1
教学目标: • 正方形的性质 • 正方形的性质的应用
2021/3/9
2
复习
定义
矩形
有一角是直角的平行 四边形叫做矩形.
菱形
有一组邻边相等的平行四 边形叫做菱形.
性边 质角
对角线
平行四边形的性质 四条边都相等
四个角都是直角 相等
互相垂直且平分每一组对角
2021/3/9
2021/3/9
4
0D
• 探究(二)
2. 正方形的性质
正方形性质定理1:
正方形的四个角都是直角. 正方形的四条边都相等.2021/3来自95探究(三)
• 正方形性质定理2: • 正方形的两条对角线相等,并且互相
垂直平 分,且每条对角线平分一组对 角.
2021/3/9
6
典例剖析
• 例1 求证:正方形的两条对角线把正方形 分成四个全等的等腰直角三角形.
2021/3/9
7
典例剖析
例2已知:如图,正方形ABCD中,对角线的交 点为O,E是OB上的一点,DG⊥AE于G, DG交OA于F.
求证:OE=OF.
2021/3/9
8
综合评价
1、正方形的四条边____ __,四个角___ ____,两条对角线____ ____.
2、已知:如图,四边形ABCD为正方形, E、F分别分为CD、CB延长线上的点, 且DE=BF.
求证:∠AFE=∠AEF. F
B
A
2021/3/9
C
D
E
9
综合评价
3、.如图,E为正方形ABCD内一点,且 △EBC是等边三角形,求∠EAD与∠ECD
4.已知:如图,点E是正方形ABCD的边 CD上一点,点F是CB的延长线上一点, 且DE=BF.
求证:EA⊥AF.
2021/3/9
10
作业:
• 必做:课本107页练习1,2 • 课外:基础训练109-111页
相关文档
最新文档