稀土镁合金的研究进展及应用

合集下载

稀土镁合金的研发及应用现状

稀土镁合金的研发及应用现状

四、未来发展趋势
1、新材料研发:随着科技的发展,未来将会有更多新型的稀土镁合金问世。 通过改进合金成分和制备工艺,进一步提高稀土镁合金的性能,满足不同领域的 需求。
2、环保与可持续发展:在环保和可持续发展的背景下,研发环保型的稀土 镁合金及其回收再利用技术将成为未来的重要方向。这将有助于减少对环境的负 面影响,并促进稀土资源的可持续利用。
三、稀土镁合金的应用现状
1、航空航天领域:由于稀土镁合金具有优良的轻量化和抗腐蚀性能,因此 在航空航天领域的应用尤为广泛。例如,飞机机身、起落架、发动机部件等都使 用了稀土镁合金。
2、汽车领域:汽车工业是稀土镁合金的重要应用领域。镁合金可以大幅度 减轻车身重量,提高燃油效率,降低碳排放。在汽车零部件如发动机罩、车门、 座椅骨架等方面都有广泛应用。
英美青春剧往往以校园生活为背景,年轻人的成长、友情和爱情。情节通常 围绕主角们的学校生活、家庭关系以及情感经历展开。这些剧集往往给观众留下 深刻的印象,其主要特点如下:
1、情节曲折:英美青春剧的情节设置往往更加曲折,人物关系也更为复杂。 主角们通常会经历一系列的挫折和磨难,例如与朋友之间的矛盾、考试失败、失 恋等。这些情节让观众感同身受,也使得剧情更具吸引力。
通常采用化学合成、物理沉积、热解等方法制备稀土发光材料。而在应用领 域方面,稀土发光材料已广泛应用于显示、照明、医疗等多个领域。
应用进展
1、显示技术:稀土发光材料在显示技术领域的应用进展主要体现在发展新 型的稀土发光显示器。目前,基于稀土发光材料的显示器具有高亮度、高对比度、 宽色域等优点,已成为新一代显示技术的重要发展方向。
3、跨领域合作:未来稀土镁合金的发展将需要多学科交叉合作,包括材料 科学、工程学、物理学、化学等。通过跨领域合作,可以促进稀土镁合金技术的 创新和进步,进一步拓宽其应用领域。

高塑性稀土变形镁合金的研究的开题报告

高塑性稀土变形镁合金的研究的开题报告

高塑性稀土变形镁合金的研究的开题报告一、研究题目高塑性稀土变形镁合金的研究二、研究背景和意义镁合金具有密度低、强度高、刚性好等优异的综合性能,是一种理想的结构材料。

但是其低温塑性差、易发生晶间断裂等问题限制了其应用范围。

近年来,研究表明,在稀土元素的引入下,可以显著提高镁合金的塑性和韧性,使得其应用范围得到了更大的拓展。

因此,本文将以高塑性稀土变形镁合金为研究对象,通过对其组织、力学性能等方面的研究,探索出一种可行的制备方法和应用途径,为镁合金的进一步应用和发展提供理论依据和技术支持。

三、研究内容和方法本文将以高塑性稀土变形镁合金为研究对象,通过以下几个方面展开研究:1. 制备高塑性稀土变形镁合金的方法研究:探索出一种制备高塑性稀土变形镁合金的可行方法,包括材料选取、制备工艺等方面。

2. 组织和相变研究:利用金相显微镜、扫描电镜等手段对高塑性稀土变形镁合金的组织和相变进行研究分析,了解稀土元素对合金组织的影响。

3. 力学性能研究:通过拉伸试验、压缩试验等方法,研究高塑性稀土变形镁合金的力学性能,包括强度、塑性等方面。

4. 应用前景探究:根据研究结果,探究高塑性稀土变形镁合金的应用前景,包括航空航天、汽车制造等领域。

四、研究计划1. 时间安排:本研究计划为期一年。

2. 工作安排:第一季度:调研文献,确定研究方向和内容,制定研究计划。

第二季度:开始实验,制备高塑性稀土变形镁合金。

第三季度:对合金的组织和相变进行分析和研究。

第四季度:进行力学性能测试和分析,初步探究高塑性稀土变形镁合金的应用前景。

五、参考文献1. 王进辉. 稀土对镁合金力学性能影响的研究 [D]. 北京航空材料研究院, 2005.2. 林志兵. 镁合金稀土强化机理 [J]. 材料导报, 2006(20): 25-28.3. 胡胜利, 吴东民. 稀土对镁合金组织和力学性能的影响 [J]. 稀有金属材料与工程, 2008, 37(6): 1086-1089.4. 孙敏, 熊卫华. 稀土对AZ91D镁合金显微组织和力学性能的影响 [J]. 锻压技术, 2012, 37(2): 67-72.5. 刘劲松. 稀土元素对MA14合金组织和力学性能的影响 [J]. 中国有色金属学报, 2006, 16(3): 467-472.。

稀土镁合金的研究现状及应用

稀土镁合金的研究现状及应用

稀土镁合金的研究现状及应用杨素媛,张丽娟,张堡垒(北京理工大学材料科学与工程学院,北京 100081)摘 要:镁合金具有质轻、高比强度、高比刚度等优异性能。

但其强度不高,高温性能较差,为了改善其性能,在熔炼过程中加入稀土制成具有高强、耐热、耐蚀等性能的稀土镁合金,大大增加了材料的抗拉强度、延展性及抗蠕变性能,从而使镁合金在航空航天、汽车工业及电子通讯行业得到了广泛应用。

总结了稀土对镁合金的净化和阻燃作用,分析了稀土元素对合金组织和性能的影响,综述了稀土耐热镁合金、稀土高强镁合金、稀土阻燃镁合金的研究现状,并简述了稀土镁合金的应用及发展前景。

关键词:稀土镁合金;组织;力学性能;应用中图分类号:TG146 2 文献标识码:A 文章编号:1004 0277(2008)04 0081 06镁及镁合金是目前最轻的结构金属材料,具有高的比强度和比刚度,很好的抗磁性,高的电负性和导热性,良好的消震性和切削加工性能。

但是镁合金的强度不高,特别是高温性能较差,大大限制了其应用。

所以提高镁合金的室温强度和高温强度是镁合金研究中要解决的首要问题[1,2]。

大部分稀土元素与镁的原子尺寸半径相差在 15%范围内,在镁中有较大固溶度,具有良好的固溶强化、沉淀强化作用;可以有效地改善合金组织和微观结构、提高合金室温及高温力学性能、增强合金耐蚀性和耐热性等;稀土元素原子扩散能力差,对提高镁合金再结晶温度和减缓再结晶过程有显著作用;稀土元素还有很好的时效强化作用,可以析出非常稳定的弥散相粒子,从而能大幅度提高镁合金的高温强度和蠕变抗力。

因此在镁合金领域开发出一系列含稀土的镁合金,使它们具有高强、耐热、耐蚀等性能,将有效地拓展镁合金的应用领域。

1 稀土在镁合金中的作用1 1 稀土对镁合金熔体的净化作用稀土对镁合金熔体有很好的净化作用,具有除氢净化及除氧化夹杂物的作用。

在熔炼过程中,由于镁的化学性质非常活泼,易与水气发生反应使镁合金具有较强的析氢倾向。

高性能稀土镁合金助力汽车行业迈向绿色环保

高性能稀土镁合金助力汽车行业迈向绿色环保

高性能稀土镁合金助力汽车行业迈向绿色环保稀土镁合金是一种具有广泛应用前景的新材料,尤其在汽车行业中具备独特的优势。

本文将探讨高性能稀土镁合金如何助力汽车行业迈向绿色环保的发展。

1. 引言随着全球环保意识的增强,汽车行业正朝着绿色环保的方向发展。

传统的铝合金和钢材在提升汽车燃油效率和减少二氧化碳排放方面面临着一定的挑战。

而稀土镁合金因其较低的密度、较高的强度和良好的加工性能,正成为汽车行业追求绿色环保的理想材料之一。

2. 稀土镁合金的特性稀土镁合金是由镁和稀土元素组成的合金,其独特的特性使其得到广泛应用。

首先,稀土镁合金具有较低的密度,相比于传统的钢材和铝合金,其密度更低,可以减轻汽车整体重量。

其次,稀土镁合金拥有良好的强度和刚性,能够满足汽车结构的安全性要求。

此外,稀土镁合金还具备优异的耐腐蚀性和良好的耐热性能,能够适应汽车复杂的工作环境。

3. 稀土镁合金在汽车行业中的应用(1)车身结构:稀土镁合金可以应用于汽车的车身结构中,通过替代传统的钢材和铝合金,减轻汽车整体重量,从而提高燃油效率。

稀土镁合金的强度和刚性能够满足车身结构的要求,保证乘员安全。

此外,稀土镁合金的优异耐腐蚀性确保了车身在恶劣环境下的耐久性。

(2)发动机部件:稀土镁合金可以应用于发动机的部件制造,如缸体和曲轴。

稀土镁合金具有良好的耐高温性能和强度,能够承受高温和高压的工作环境,提高发动机的效率和可靠性。

(3)电动车辆:随着电动车辆的兴起,稀土镁合金也在电动车辆中得到广泛应用。

由于稀土镁合金的较低密度,电动车辆使用稀土镁合金材料可以使电池续航里程更长,提高电动车辆的能量利用率。

4. 稀土镁合金的挑战和未来发展稀土镁合金在汽车行业中的应用仍面临一些挑战。

首先,稀土元素的稀缺性和环境影响需要得到合理的管理和利用,以避免对环境产生负面影响。

其次,稀土镁合金的加工和成型技术仍需要进一步改进和发展,以满足汽车行业对材料的高要求。

此外,稀土镁合金的成本仍然较高,降低成本是提高其应用前景的关键。

稀土复合镁合金的开发与应用进展

稀土复合镁合金的开发与应用进展

镁合 金 具有 密度 小 、 比强 度和 比 刚度 高 、 弹性模量 大、 热性 、 导 抗磁性 、 消震性 和切 削 加工性 好 等特 点 , 受 承
冲 击载 荷 能力 比铝 合金 大 , 有机 物 耐
和碱 的腐蚀 性 能好 。 是 镁合 金 的强 但 度 不高 , 别是高 温性能较差 。 特 而稀 土
半 固态 触变 压铸 技术 、 固态射 铸 技 半 术 等 。 空压铸 是 在压 铸过 程 中消 除 真
程 中加 入稀 土 , 够大 幅度 提 高镁 合 能
金制造 零件可 以更薄更轻 。 因此 , 发 开
灏 和 iI 脞 NO . 01 l产 l l 32 1
变形镁合金 的成型技术和应用 领域具 有很大 的实 际意义。 Байду номын сангаас
稀土复合镁合金的 开发与应用进展
■ 文 / 多仁 汪
中 国石 油 吉林 石 化 公 司
稀 土被 认为 是新光磁 源、 能源 、 新 新材 料 的宝 库 , 同时 也是 改造 传 统产 品的“ 维生 素” 是 2 世纪 的新材料 。 , 1 镁 是常 用金 属结 构材 料 中最 轻 的一 种 , 熔点6 1 ,0 5 ℃ 2 ℃的密度 17 g C o .4 / m3镁 的化学 活 性很 强 , 温下 镁在 干燥 空 常
土等元 素 构成 的合 金称 为 镁合 金 , 与
纯 镁 相 比 , 合 金性 能 更 为 优 良 , 很 镁 是 好的构件材料 。
镁合 金液 以高速 的紊 流呈弥散状态 充
填压 铸型腔 , 使腔 内气体无法 排 除, 易 形 成高 压微 孔 或溶 在合 金 内 , 些 气 这 孔在 高温下会析 出或膨胀 导致铸件 变 形 或表面鼓包 。 因此 , 用传 统压铸方 法 生产 的镁合金压 铸件不 能进行热处 理

稀土复合镁合金的开发与应用进展

稀土复合镁合金的开发与应用进展

挤压 铸 造 生产 镁合 金 , 采用 低
的充型速度 和最小 的扰动使金属
液在 高 压 下凝 固 , 够获 得 可热 处 能
在 合金 内 , 些 气孑 在 高 温下 会析 这 L 出或 膨 胀 导 致 铸 件 变 形 或 表 面 鼓 包 。因此 , 传 统压 铸 方法 生 产 的 用 镁 合 金 压 铸 件 不 能 进 行 热 处 理 强 化 , 不能在较 高的温度下使用 。 也
塑性成形 、 冲压等方式进行加工 。
镁 合金 在 室 温下 塑 性 很低 , 轧 制 加 工 比较 困难 , 因此通 常使 用 热 轧 与 温 轧 。轧 制 的 镁 合 金 薄板 用
时效强化作用 , 可以析出非常稳定 的弥散相粒子 , 从而能大幅度提高 镁合 金 的高 温强 度 和蠕 变抗 力 。
际 意义 。 二 、 合金 的加 工 镁
合金的组织和微观结构 , 提高镁合
金 的室 温 及 高温 力 学性 能 , 强 镁 增
高 合金 的起燃 温 度 , 利于合 金 的 有
熔铸 , 提高合金的铸造性能。稀土 元素与镁或合金化元 素生成熔 点 高、 热稳 定性好 的第二相化合 物 , 这些化合物在高温下不宜长大 变
体 无法 排 除 , 易形 成 高 压微 孑 或熔 L
密 度 高 、 械 性 能 好 、 蚀 能 力 机 耐 强 。 高度 自动 化 的 镁 合 金 半 态 射 铸 成形 机 及 其 生 产 线 在 业 发 达 国家发 展 很快 , 成 为 生产 镁 合 将
金 铸件 的主流 。
但 在 潮湿 空 气 中或 温度 高 于 3 0 5 %
镁 合 金具 有 密 度小 、 比强 度 和
比刚度 高 、 弹性模 量 大 、 热性 、 导 抗 磁 性 、 震性 和切是

铸造稀土镁合金的研究综述

铸造稀土镁合金的研究综述

铸造稀土镁合金的研究综述镁合金作为最轻的金属结构材料,具有密度小、铸造性能好比强度和比刚度高、可回收性强等一系列优点,在航空航天、汽车、电子通信等领域得到广泛应用[1]。

在实际应用中,由于镁合金塑性加工困难,镁合金产品主要以压铸为主[2]。

然而与铸造铝合金相比,常规铸造镁合金的力学性能及耐热性能偏低,从而限制了其进一步应用,通过在铸造镁合金中添加稀土可以显著提高合金的力学性能及耐热性能[3],进一步扩大其应用范围。

1.铸造稀土镁合金的研究现状常用的铸造稀土镁合金可分为Mg-Al-RE系,Mg-Zn-RE系,Mg-RE系合金3类。

近些年来,主要采用合金化方法来研究铸造稀土镁合金中的微观组织及其对力学性能的影响。

1.1Mg-Al-RE系Mg-Al系合金是常用铸造镁合金。

在Mg-Al系合金中,主要的强化相为低熔点Mg17Al12相。

当使用温度高于120℃时,Mg17Al12相会软化,且晶界附近富Al的过饱和固溶体会发生β-Mg17Al12相的非连续析出,最终导致合金抗蠕变性能的迅速降低。

因此,可以通过改变Mg17Al12相的结构和增添新的热强相来提高合金的力学性能及耐热性能。

由于RE与Al之间可形成热稳定性高的金属间化合物,并充分抑制Mg17Al12相的形成,因此,Mg-Al-RE合金具有较高的室温、高温力学性能和抗蠕变性能。

CUI X P等[4]研究了Pr对压铸AZ91合金组织与力学性能的影响,发现加入0.4%的Pr后,合金中出现了细小的针状Al11Pr3相和少量的Al6Mn6Pr相。

随着Pr的增加,Al6Mn6Pr相增加并随之粗化,Al6Mn6Pr相数量急剧增加。

AZ91-0.8Pr合金具有较优异的力学性能,其室温抗拉强度、屈服强度和伸长率分别为228MPa、137MPa和6.8%。

Y对AZ91-Sb铸造合金的高温力学性能的影响。

发现在AZ91-0.5Sb合金中加入0.6%的Y后,会有较好的常温和高温力学性能,在150℃时的抗拉强度、屈服强度和伸长率分别为191MPa、111MPa和13%。

2024年稀土镁合金市场发展现状

2024年稀土镁合金市场发展现状

2024年稀土镁合金市场发展现状简介稀土镁合金是由稀土和镁两种元素组成的合金材料。

稀土元素的加入可以显著改变镁合金的性能,使其具有良好的强度、耐腐蚀性能和耐磨性能,因此在许多领域都有广泛的应用。

本文将对稀土镁合金市场的发展现状进行分析。

行业概述稀土镁合金在汽车、航天、航空、电子等众多领域有着广泛的应用。

随着现代工业的发展和对轻量化材料需求的增加,稀土镁合金市场在全球范围内呈现出快速增长的趋势。

市场规模稀土镁合金市场在过去几年里保持稳步增长。

根据市场调研数据,2019年全球稀土镁合金市场规模达到X亿美元,并预计未来几年内会保持较高的增长速度。

稀土镁合金的需求主要来自汽车制造业、航空和航天业以及电子行业。

市场应用汽车行业稀土镁合金在汽车行业中的应用十分广泛。

由于其具有轻量化、高强度和良好的耐腐蚀性能,稀土镁合金可以用于制造汽车结构件、发动机零部件、车轮等。

此外,稀土镁合金还被用于制造电池壳体和电控系统,以支持新能源汽车的发展。

航空和航天业高强度、低密度是稀土镁合金在航空和航天领域的主要应用优势。

稀土镁合金可以用于制造航空发动机叶片、飞机座椅框架、导弹结构件等。

这些应用可以大大减轻飞行器的重量,提高综合性能。

电子行业稀土镁合金在电子行业中主要应用于制造手机壳体、笔记本电脑外壳和其他电子产品外壳。

稀土镁合金具有较高的强度和优良的导热性能,可以对电子产品进行有效的散热,提高产品的稳定性和使用寿命。

市场前景稀土镁合金市场的前景广阔。

随着节能减排和轻量化的需求增加,稀土镁合金作为一种新型材料有着广泛的应用前景。

特别是在汽车、航空和航天等领域,稀土镁合金的应用潜力巨大。

未来几年内,稀土镁合金市场将继续保持较高的增长速度。

结论综上所述,稀土镁合金市场在全球范围内呈现出快速增长的趋势。

其在汽车、航空和航天、电子等领域的应用越来越广泛。

随着现代工业的发展和轻量化材料需求的增加,稀土镁合金市场有着广阔的前景。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

稀土镁合金的研究现状及应用张晓(中北大学材料科学与工程学院,山西太原 030051)摘要:镁合金具有许多优异的性能,如高比强度、高比刚度等。

但它强度不高,高温抗蠕变性能差。

稀土的加入对改善其组织和提高耐腐蚀性,特别是高温性能具有重要作用。

本文介绍了国内外稀土镁合金的研究现状,并展望了稀土镁合金的应用前景。

关键词:镁合金;稀土;现状Study Situation And Application Of Rare-earth Magnesium AlloysZhang Xiao(North University Of China School Of Material Science And Engineering, Taiyuan Shanxi 030051) Abstract: Magnesium Alloy has many inherent advantages of Magnesium Alloy, such as high specific strength,high specific stiffness and so on. But it is not high strength and high temperature creep resistance is poor.the rare earth to improve their organization and improve corrosion resistance, especially high temperature performance has an important role,Study situation of Rare-earth Magnesium Alloys were introduced at home and abroad in the paper and the prospect of application in Rare-earth alloys Magnesium Alloy was looked.Key words: Magnesium Alloy; Rare-earth; situation0 前言镁合金具有低密度、高比强度、高比刚度、高弹性模量、高阻尼性能,还具有优良的切削加工性能、导热性以及抗电磁干扰等特性。

稀土元素由于具有独特的核外电子排布,表现出独特的性质,对0、S和其他非金属元素有较强的亲和力,在冶金过程中可以净化合金熔体、改善合金组织、提高合金室温力学性能、增强合金耐腐蚀性能[1]。

稀土元素原子扩散能力差,对提高镁合金再结晶温度和减缓再结晶过程有显著作用[2]。

近年来,根据对材料的性能要求而研制开发了一系列含稀土的高强、耐热、抗蠕变、阻燃等镁合金,稀土作为主要的合金元素或微合金化元素在镁合金研究领域发挥愈来愈重要的作用。

由于稀土元素的合金化,使镁合金的强度提高了1~2.5倍,极限工作温度提高到350℃,且铸造性能、耐蚀性能均有大幅提高,大大拓展了镁合金的应用领域[3]。

1稀土镁合金相图有关Mg-RE二元相图已有相当详细的研究,我们这里以Ce-Mg、Y-Mg相图,作为轻稀土和重稀土的Mg-RE相图代表[4]。

从相图上看,对于轻稀土,存在有RE:Mg为1:1,1:2,1:3,5:41,2:17,和1:12几相;对于重稀土则有1:1,1:2,1:3,5:24几相。

由于在富镁端相数多,它们之间的包晶反应及固态相变多,因而易形成亚稳态合金。

其中1:2相为Laves 相,对于轻稀土为MgCu2立方晶系,对于重稀土为MgZn2六方晶系,它们的稳定性随稀土元素从轻稀土到重稀土而增加。

最富镁化合物大多是由简单的共晶反应形成,与镁形成共晶平衡。

到镁端,一些稀土元素可在镁中形成固溶体。

根据Hume-Rothery固溶度准则,可估算稀土在镁中固溶量的大小,其中以Sc和Y的为最大Ⅲ,分别为15.9at% 和3.75at%。

稀土元素在Mg基体中具有较大的极限固溶度,而且随温度下降,固溶度变化很大,满足与镁形成时效硬化型合金的必要条件。

总的来讲,稀土在固态镁中的溶解度随稀土原子半径的增大而逐渐下降。

2 稀土在镁合金中的作用2.1 稀土对镁合金熔体的净化作用稀土对镁合金熔体有很好的净化作用,具有除氢净化及除氧化夹杂物的作用。

在熔炼过程中,由于镁的化学性质非常活泼,易与水气发生反应使镁合金具有较强的析氢倾向。

在镁合金液有较大的溶解度的氢,会导致铸件产生气孔、针孔及缩松等铸造缺陷。

在镁合金熔炼过程中加入稀土,稀土元素与水气和镁液中的氢反应,生成高熔点的稀土氢化物和稀土氧化物,比重较轻的稀土氢化物和稀土氧化物上浮成固体渣,从而达到除氢的目的[5]。

镁与氧结合形成稳定的MgO,是镁合金中形成氧化夹杂物的主要原因。

夹杂物使合金的力学性能和耐蚀性能降低,且易使合金产生疲劳裂纹等[6]。

由于稀土元素与氧的亲和力更大,因此在镁溶液中加入稀土元素,稀土将优先与氧结合而生成稀土氧化物,从而达到去除氧化物夹杂的作用。

2.2稀土-镁合金与氢的反应氢在镁中有较大的溶解度,比其在铝中高1~2个数量级,在液态镁中,随温度升高,压力增大,氢的溶解度也增大[7]。

氢的主要来源是潮湿的气氛,在熔炼过程中与空气中的水反应:Mg(1)+H2O(g)=MgO(s)+2[H]氢和镁不形成化合物,在镁中呈间隙式固溶体存在,含氢量过高会使镁合金出现显微气孔。

稀土对除去镁合金中的氢有明显作用。

在加入稀土后,稀土与氢反应生成REH2相;[RE]+2[H]=REH2同时,稀土与MgO发生反应:2 [RE]+3MgO=RE2O3+Mg此反应有较强的驱动力,因此可生成稀土氢化物和氧化物而达到合金溶液除氢的效果,特别对于含锆的镁合金,由于[H]与Zr生成稳定的化合物ZrH2,使锆在镁合金中溶解度减小,增大了锆的损失.因此添加稀土对镁合金除氢具有十分重要的意义。

3 稀土镁合金的发展稀土镁合金的研制可追溯到20世纪的20年代,当时德国进行了Mg-RR(RR为混合稀土代号,下同)的开发工作[8],并在DMW-801D 型飞机发动机上使用了Mg-6RR-11.7Mn合金锻件。

但这种合金存在铸态组织晶粒粗化的缺陷,从而影响了其商业开发。

1937年,德国学者Sauerwald[9]首次进行Zr有效细化Mg-Th-Zr合金晶粒的工作,对镁合金的研制作出了杰出贡献。

Murphy和Payne[9](于1946年)的工作也发现MM和Zr可同时加入镁中,且Zr对镁具有细化晶粒的作用,从而解决了稀土镁合金的工艺问题,使其在商用领域得到了发展。

1959年,Payne等发现银的加入明显改善Mg-RE 合金的时效硬化效应,据此开发了QE22,QE21及EQ21等合金;1979年,Drits等[10]开发了一系列耐热高强WE型镁合金。

后来将钐、钇、钆、钕等稀土元素加入镁合金,又开发出了一些新型镁合金。

20世纪60年代初,美国在铸造镁合金中发展了EK、EZ、QE、ZE等系列产品,后来又发展了耐热高强WE型镁合金及EK、ZK、ZE系列的变形镁合金。

美国科学家对镁合金这一工程材料投入大量的研究,在汽车工业、航空航天工业进行了广泛的新材料研制与推广应用工作,开发出的AE系列镁稀土压铸合金,并将WE系列合金大规模投入应用,取得许多成绩。

在高强耐热镁稀土合金研究与应用方面,美国始终处于领先位置。

前苏联在稀土镁合金方面进行了许多理论与应用研究,一直处于领先地位。

于20世纪70年代,在铸造镁合金中发展了M JI9、M JI10、M JI1、M JI15、M JI17、M JI19系列产品以及阻尼材料MUN(Mg-0.15Zn-5.5Zr-0.58C-0.04Y),在变形镁合金中发展了MA8、MA11、MA12、MA15、MA19、MA20以及导声材料MA17超轻材料MA18等[11]。

欧洲的稀土镁合金研究最为活跃,许多应用型稀土镁合金问世于欧洲。

20世纪80年代,英国对Mg—Y—Nd基合金进行了深人的研究,在上世纪90年代开发出了一系列高温下具有高强度及蠕变性能的WE型镁合金,其中WE54合金,在室温下具有相当于普通铸造铝合金的优良耐腐蚀性能和抗拉性能及蠕变性能[10]。

1989年MEI英国在巴黎航空博览会上推出了一种含钇、钕量较低的WE43合金,该合金在高温下强度略有下降,但具有满足使用要求的延展性和优良的耐腐蚀性能。

俄罗斯主要沿袭前苏联的镁合金发展体系,曾经研制出早期飞机舱盖用M JI7以及大量应用于米格23飞机的M JI10稀土镁合金等,最近几年未宽突破性研究报道。

目前在俄罗斯的航空航天及军事工业已经广泛使用含钇的变形镁合金BM JI10和含钇、钕的铸造镁合金。

对比铝合金结构,这些镁合金的应用可保证降低结构重量的25%~50%[11]。

考虑到成本因素,稀土镁合金中的稀土元素以混合稀土(富Nd、富Ce、富La、Y)形式加入。

随着稀土镁合金应用要求的不断扩大,开发研制了越来越多的单一或混合重稀土镁合金。

欧洲国家开发的Mg-20%Gd、Mg-20%Tb耐热镁合金,其抗拉强度在250℃为280~320MPa,与WE系合金和铝合金相比又有了大幅度提高。

Mg-10% Gd(或Dy)-3Nd-Zr合金,由于高温强度好,具有比AZ91D合金更好的耐蚀性,已成为有希望应用于汽车发动机零件的新合金[12]。

目前,正在积极开发的还有Mg-Sc-Mn-Zr和Mg-Sc-Mn-Gd(Tb)-Zr合金。

日本紧随欧美步伐,相继仿制出与欧美最新研究成果大致相同的MC8(EZ33A)、MC9(QE22A)、MC10 (ZE41A)等镁稀土合金,同时积极研制汽车工业用稀土镁合金。

1999年开发出超高强度的IM Mg-Y系变形镁合金材料,以及可以冷压加工的合金板材。

2001年开发出晶粒尺寸为100~200 nm的高强镁合金Mg-2%Y- 1%Zn(即Y和Zn的原子分数分别为2% 和1% ),其强度为超级铝合金的3倍,并具有超塑性、高耐热性和高耐蚀性[13]。

近年,我国的稀土镁合金也有了很大发展,在铸造镁合金中开发了ZM2、ZM3、ZM4、ZM6以及ZM8等系列产品,在变形镁合金中开发了MB8、MB22、MB25以及在MB25基础上用富Y混合稀土代替高品位Y的MB26。

东北轻合金加工厂研制开发成功的含Nd、含Gd代号为122和127合金的两种耐热高强稀土变形镁合金,其室温强度比MA13和HM21要高得多,且300℃下的高温强度与MA13、HM21相当,已在国防军工上获得广泛应用。

目前,上海交通大学轻合金精密成型国家工程研究中心开发出阻燃效果和力学性能良好的轿车用阻燃镁合金。

湖南大学、中南大学等采用快速凝固粉末冶金、高挤压比及等通道角挤(ECAE)等方法使镁合金晶粒高度细化,从而开发出具有高强度、高塑性甚至超塑性的高强、高韧镁合金如Mg-(5~8) Al-(1~2)Zn-0.5~2)M(M=Pr、Nd、Ce、Y)[14]。

相关文档
最新文档