双通AAO 多孔阳极氧化铝模板
多孔阳极氧化铝(AAO)的电解制备及着色

多孔阳极氧化铝(AAO )的电解制备及着色一、 实验目的与内容掌握稳压电源的使用;掌握电解法制备多孔材料的原理和方法;着色工艺方法。
二、 实验基本原理铝及其合金在大气中其表面会自然形成一层厚度为40~50Å薄的氧化膜。
虽然能使金属稍微有些钝化,但由于它太薄,孔隙率大,机械强度低,不能有效地防止金属腐蚀。
用电化学方法即阳极氧化处理后,可以在其表面上获得厚达几十到几百微米的氧化膜。
后者的耐蚀性力很好。
硫酸阳极氧化所得的氧化膜厚度在5~20微米之间,硬度较高,孔隙率大,吸附性强,容易染色和封闭。
而且具有操作简便、稳定、成本低等特点,故应用最为广泛。
当把零件挂在阳极上,阴极用铅棒,通入电流后,发生如下反应: 阴极上↑→++2H e 2H 2阳极上Al - 3e → Al 3+6OH - → 3H 2O + 3O 2- 2Al 3+ + 3O 2- → Al 2O 3 + 399(卡)硫酸还可以与Al,Al 2O 3发生反应2Al + 3H 2SO 4 → Al 2(SO 4)3 + 3H 2↑Al 2O 3 + 3H 2SO 4 → Al 2(SO 4)3 + 3H 2O铝阳极氧化膜的“生长”和“溶解”这对矛盾中发生和发展的。
通电后的最初数秒钟首先生成无孔的致密层(叫无孔层,或阻挡层),它虽只有0.01~0.015um 。
可是具有很高的绝缘性。
硫酸对膜产生腐蚀溶解。
由于溶解的不均匀性,薄的地方(孔穴)电阻小,离子可能过,反应继续进行,氧化膜生长,又伴随着氧化膜溶解。
循环往复。
控制一定的工艺条件特别是硫酸浓度和温度可使膜的生长占主导地位。
必须注意,氧化膜的生成和成长过程是由于氧离子穿过无孔层与铝离子结合成氧化膜的,与电镀过程恰恰相反,电极反应是在氧化膜与金属铝的交界处进行,膜向内侧面生长。
铝阳极氧化膜的生长和溶解规律可用其电压—时间曲线来说明。
见图1、图2.A 区:在最初10秒钟内曲线直线上升,电压激剧增高,说明生成了无孔层电阻增大,这时成膜占主导,阻碍了反应继续进行。
AAO模板法制备金属Ni纳米管

活 化及化 学镀 。所 合 成 的 Ni 米 管 具 有 可调 控 的 纳
内径 , 并且 是 两端 开 口的。其 外径 由 氧化铝 模 板 的
孔 径 所 决 定 , 内径 可 以通 过 改 变 沉 积 时 间 来 调 变 。 而
rmo eau l e v l miame rn ] mb a e
s n ii iai n a d a tv t n e s t z to n ci a i v o
b
… lff I 州 l dl l
t a me twi ia e r t n t s ln e h e e t e sd p st n N le ml s e o i o i i
! 墨 :!
CN 2 1 2 / 2 - 3 3 N
长春工程学院学报 ( 自然 科 学 版 )2 1 年 第 1 卷 第 2 01 2 期
J Ch n;h n l s. c . Na. c. d . . 0 l Vo. 2・ . . a ! u n t Te h ( t S iE i) 2 1 ・ 11 No 2 c
横截 面上看 , 的表 面有 一层较 厚 的金 属膜 , 膜 厚度 约
为 5 0r 图 5 0 m( i b右侧 ) 。绝 大部 分 的 孔 道 是空 的 ,
只有 极 少 数 孔 由 于 具 有 比 较 大 的 孔 径 , 积 了 金 属 沉
图 3 镍 纳 米 管 的 S M 形 貌 图 E
得到不 同 内 、 外径 和长度 的 纳米管 。
以多孔 阳极 氧化铝 为 模 板 , 过 化 学 沉积制 备 金 属 通 纳 米管 的有效 方 法是 通 过 5步 操 作 束 实现 的, 即除 去铝 基 底及 其 阻挡 层 、 壁修 饰 、 光 处 理 、 化一 孔 抛 敏
阳极氧化铝模板(aao)的制备与应用研究

阳极氧化铝模板(aao)的制备与应用研究【深度与广度兼具的中文文章】题目:探究阳极氧化铝模板(AAO)的制备与应用研究在科技领域中,阳极氧化铝模板(AAO)作为一种重要的材料,具备多种应用潜力。
本文将深入探讨AAO的制备方法和广泛的应用领域,以及对于未来发展的个人观点和理解。
1. 了解AAO的概念让我们对阳极氧化铝模板(AAO)进行一个简单的概念了解。
AAO是一种通过阳极氧化制备而成的铝氧化物薄膜,具有均匀的孔洞结构和优异的性能。
这种特殊的结构使得AAO在多个领域都具有重要的应用前景。
2. AAO的制备方法在研究AAO的制备方法时,我们发现了多种不同的技术途径。
其中,常见的方法包括模板法、自组装法和阳极氧化法等。
每种方法都有其独特的优势和局限性,需要根据具体的应用需求来选择合适的制备方3. AAO在纳米材料合成中的应用随着纳米技术的发展,AAO在纳米材料合成中发挥着重要作用。
其孔洞结构可以作为模板,用于制备纳米线、纳米颗粒等材料,具有广泛的应用前景。
在这一领域,AAO的制备方法和孔洞结构对最终制备的纳米材料性能有着重要影响。
4. AAO在生物医学领域中的应用除了在纳米材料合成中的应用外,AAO还在生物医学领域中展现出巨大潜力。
AAO的孔洞结构可以用于药物输送系统的设计,具有提高药物载荷量和控制释放速率的优势。
其生物相容性和可调控的孔径大小也为生物医学材料的设计提供了可能性。
5. 个人观点与展望在撰写本文的过程中,我对AAO的制备与应用研究有了更深入的理解。
我认为,未来在这一领域的发展中,需要重点关注制备方法的优化和应用性能的提升。
跨学科的合作也将推动AAO在纳米材料、生物医学等领域的更广泛应用。
通过对AAO的制备和应用研究的探讨,我们深入了解了这一重要材料的特点和潜力。
随着科学技术的不断进步,相信AAO必将在更多领域展现出其重要价值,为人类社会的发展做出贡献。
在撰写本文的过程中,我对AAO的制备与应用研究有了更深入的理解,并对其未来发展充满期待。
AAO无机膜-AAO模板

AA 包括模板即P AA 早在的氧极氧多孔类型的阳多孔渡层景引典型AA 这样和金O 模板,即括单通AAO 板无机膜(上Porous Ano O 。
在 19 世纪中氧化膜,并发氧化工艺最孔型两种氧型,一般来说阳极氧化膜孔型的阳极层。
近年来引起了人们型AAO 结构O 具有蜂窝样的单元中金属之间。
AAO 即阳极氧化O 模板,双上木科技)等odic Alumin 中期,人们发现这层氧最早出现在 2氧化结果。
形说,采用硼膜;采用硫酸极氧化膜。
多,高度有序极大的兴趣构如下图所窝状结构,间有个圆形O 无机化铝模板,A 双通AAO 模等。
但更为准na ,因为阻挡们就发现铝的氧化膜极大地20 世纪 20形成这种不同硼酸等几乎不酸、磷酸、草多孔型阳极氧序AAO/PAA 趣,国内外所示:即由许多六形的小孔。
在机膜-A Anodic Alum 模板,超薄A 准确的说法挡型,即阳的表面通过地提高了铝年代,在不同结构的条不溶解氧化草酸等溶解氧化铝膜过A 膜在现代外学者争开展六角形柱体在孔的下端AAO 模minum Oxid AAO 模板法应该为多孔阳极氧化无孔过电化学阳极铝表面的耐腐不同的氧化条条件主要取决化膜的酸作为解能力较强的过去主要用作代工业和高新展了对它的氧化物原胞端有个半球形模板de ,又称A (上木科技孔阳极氧化孔的氧化层极氧化可以腐蚀性和耐条件下,会决于氧化时为电解质会的酸作为电作着色层和新技术方面的研究。
胞(单元)形的阻挡层AAO 无机膜技),V 型A 化铝, 简称P 层,也可以称以形成一层致耐磨性。
铝的会产生致密型时所用电解质会形成致密无电解质则会形和粘接工艺的面广阔的应用组成的,每层,位于氧化膜,AAO PAA ,称为致密的阳型和质的无孔形成的过用前每个化层典型AAO模板的微观结构示意图超薄双通AAO结构,草酸中制备AA 高纯(阴 两然后压、 电解氧化单通A O 制备过程纯度铝片(阴极)个电极置于后通过恒压电流、时解工艺一般化。
阳极氧化铝模板(aao)的制备与应用研究

标题:深度探究阳极氧化铝模板(AAO)的制备与应用研究一、概述阳极氧化铝模板(AAO)是一种具有微孔结构的材料,由于其独特的性质在众多领域展现出了巨大的应用潜力。
本文将深入探讨AAO的制备方法和其在各个领域的应用研究。
二、AAO的制备方法1. 模板法制备模板法是制备AAO的常见方法,通过模板的作用,在铝基底上形成一定孔径和密度的孔洞结构。
该方法可以利用硬模板或软模板,如聚苯乙烯球和聚苯乙烯磺酸钠等,通过控制模板的大小和形状来调控AAO 的孔洞结构。
2. 自组装制备自组装是一种简单高效的AAO制备方法,通过表面张力和化学吸附等现象,使得前驱体在铝表面形成规整的排列。
随后进行阳极氧化处理,即可得到具有有序孔洞结构的AAO材料。
3. 氧化还原制备氧化还原法是将铝箔经过预处理后,在氧化液中进行氧化还原反应,从而形成具有孔洞结构的AAO材料。
这种方法制备的AAO具有高度可控性和规整性,能够满足一些特殊应用的需求。
三、AAO在材料科学中的应用研究1. 纳米材料制备AAO模板具有均匀、有序的孔洞结构,可以用作纳米材料的制备模板。
通过在孔洞中填充各类材料并去除模板,可以制备出具有规整结构和特殊性能的纳米材料,如纳米线、纳米颗粒等。
2. 光伏领域应用AAO的孔洞结构对光子在介质中的传播和反射具有一定影响,因此在太阳能电池、光子晶体和光子晶格方面具有重要应用潜力。
通过调控AAO的孔洞结构和尺寸,可以提高光电转换效率和光学性能。
3. 储能材料研究AAO的孔洞结构可以用于储存和传输离子或分子,因此在储能材料领域有着广泛的应用。
通过在孔洞中填充导电材料或特定离子,可以制备出具有高效储能性能的新型材料。
四、结语通过对AAO的制备方法和应用研究的探讨,我们可以看到AAO具有广阔的应用前景和重要的研究价值。
在未来的科研工作中,我们需要深入研究AAO在材料科学、光伏领域和储能材料等方面的应用,同时不断改进制备方法,以推动其在实际应用中发挥更大的作用。
AAO模板的制备及其应用

80材料导报2008年8月第22卷专辑ⅪA A O模板的制备及其应用*李晓洁,张海明,胡国锋,李育洁(天津工业大学理学院,天津300160)摘要阳极氧化铝模板由于其价廉,制备工艺简单,以及特殊的结构和多样的组装方法得到了广泛的研究和应用。
主要阐述了A A O模板的制备、影响因素,及其在纳米组装体系中的应用,包括量子点、纳米线、纳米管和“同轴电缆式”层状纳米材料等,介绍了A A O组装体系的应用,最后提出了A A O模板的潜在发展。
关键词二次阳极氧化氧化铝模板纳米材料中图分类号:0611Fa br i c at i on a nd A ppl i ca t i on of A A O Tem pl at eLI X i aoj i e,Z H A N G H ai m i ng,H U G uof eng,L I Y uj i e(Col l ege of Sci e nce,Ti an j i n Po l yt e chni c U ni ver si t y,T i anj i n300160)A bs t ractB ec a u s e of i t s l ow cost,si m pl e pr epa r at i on t ec hnol o gy,as w el l as i t s s peci al s t r uct u r e and va r i ousa ss em bl y m e t hods.t he A A O t e m pl at e ha s been w i de l y r e sear che d and use d.T h i s paper m ai nl y el a bor at es t he pr epar a—t i on,i nf l uenc i ng f act or s of t he A A O t em pl at e,a nd i t s appl i cat i on i n t he nano-a ss e m bl y sys t em,i nc l udi ng quant um dot,na now i r e,na not ube,and coaxi a l cab l e l a m i na r na no-m a t er i al s and SO O i l,T h i s ar ti cl e al s o i n t r o duce s t he appl i cat i on ofA A O a ss em bl y s ys t em and f i nal l y pr opos e s t he pot en t i al deve l opm e nt of t he A A O t em pl at e.K ey w or ds t w o-st e ps a nodi za t i on,al um i num oxi de t e m pl a t e,nano m at e r i al s0引言1953年K el l er等首先报道了用电化学的方法制备多孔氧化铝膜,此后这种具有独特结构的模板被广泛用于各种纳米结构材料的制备。
AAO模板的制备与应用

第二阶段:生成的致 密氧化铝膜会和电解 液发生反应,被酸部 分溶解。
第三阶段:当溶解到一定程度时,铝表面会生成规则排列的空点, 称为孔核,这是孔道生长的基础。因为在孔核里,原来均匀分布的 电场将会集中,从而使孔核底部的溶解速率增加,同时由于在孔核 内电场较其它地方更强,电流更大,所以局部温度升高,加快了底 部的反应过程。于是由于孔核底部溶解速度较之侧壁更快,孔核便 会不断生长,成为孔道。在阻挡层的生成速度和溶解速度持平时, 孔道进入稳定生长阶段。
临界电流密度模型 临界电流密度模型:这种模型认为, 对于阳极氧化来说,总存在一个临 界电流密度,在电流大于临界电流 时,氧化过程为致密氧化铝的生长 过程,此过程的电流效率为100%; 在电流小于临界电流时,为多孔氧 化铝的生长过程,此过程的电流效 率小于60%。
应力模型 应力模型:这种模型认为,在铝与电 解液发生反应生成氧化铝的过程中, 由于生成氧化铝的体积比原来铝的体 积大,所以在小孔周围会有膨胀应力, 应力作用使小孔按照能量最低的原则 排列为六角形状。
铝箔的X射线衍射图谱。(a)退火前,(b)退火后
退火后铝箔的表面形貌图
超声清洗
超声清洗主要是为了除去表面可能存在的油脂和尘 埃,为获得光滑平整的表面做准备。在没有除脂的情况 下,可以预期,铝表面会有吸附的灰尘以及一些有机物。 并且难以判断它们的体积大小,最有可能的情况是各种 杂质对于体积大小有一个分布,在纳米量级以上各个阶 段都存在,而影响最大的应该是有机物。无机物在抛光 过程中很可能被除去,而有机物由于附着力大以及不参 与阳极反应的缘故,在阳极氧化的过程中也会存在。由 于难以完全确定有机物的种类,故它们对成核和孔道生 长的影响难以判断。不过可以相信,有机物的存在,会 在一定程度上影响有序孔道的生长。
二次阳极氧化法制备氧化铝模板(AAO)工艺

❖ 溶胶的黏度随温度变化比较大,不同溶胶都 可能有各自的最正确灌注黏度,使得AAO模 板的填充率难以控制,几乎没有规律可循
利用会聚离子束刻蚀得到具有人为可控图案的AAO模板
以AAO为根底的复型模板,例如:Ni模板,Co模板
搅拌加热至沸腾
棕黑色均匀溶胶
制备的sol是比较均匀的流体,所以我们可以利用真 空抽吸的方法使它进入多孔氧化铝模板;下面是真空 灌注的示意图:
SOL
GEL PRECURSOR
NANOWIRE
溶胶凝胶模板方法合成一维纳米材料示意图
溶胶-凝胶方法的缺陷
❖ 不能直接在液相成相,需要再次烧结或者退 火,导致产物为多晶居多
ห้องสมุดไป่ตู้
多孔有序Ni模板的形貌照片
在PMMA复模根底上开展制备出UTAM,进而 利用UTAM制备功能材料的量子点阵列
CdSe 量子点阵列
CdS 量子点阵列
离子束沉积方向以及UTAM的深度对于形成的 量子点的形貌可以做到人为可控
不 同 的 UTAM 深 度 对 于 量 子点的形貌有巨大的影响, 可以到圆饼状,半球状, 尖锥状的量子点
人有了知识,就会具备各种分析能力, 明辨是非的能力。 所以我们要勤恳读书,广泛阅读, 古人说“书中自有黄金屋。 ”通过阅读科技书籍,我们能丰富知识, 培养逻辑思维能力; 通过阅读文学作品,我们能提高文学鉴赏水平, 培养文学情趣; 通过阅读报刊,我们能增长见识,扩大自己的知识面。 有许多书籍还能培养我们的道德情操, 给我们巨大的精神力量, 鼓舞我们前进。
在 UTAM 的 根 底 上 配 合离子束刻蚀技术开 展出制备功能材料纳 米管。先在衬底上加 UTAM , 再 蒸 镀 所 需 要的功能材料,然后 用离子束刻蚀,再除 去 UTAM 得 到 纳 米 管 阵列。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
双通AAO的技术说明
将单通AAO的阻挡层去除,就可以获得双通AAO模板。
单通AAO由于有铝基底的支撑,为表面彩色的不透明样品,而一般双通AAO模板是半透明的。
下面是不同尺寸的AAO双通膜。
双通模板的颜色主要和电解液组成、电解电压或电流密度,以及电解时间有关。
双通膜的晶态与电解电流密度关系较大,在超大电流密度下,比如2000-4000A/m2,所形成的膜可以转变为晶体。
双通AAO模板的强度取决于孔隙率和模板厚度,一般空隙率越低,强度越高;模板厚度增加,强度增大。
双通AAO模板的正反面,一般正面的有序度优于反面,在包装过程中,样品正面向上,及当打开样品盒时,向上的一面为正面。
双通AAO模板的孔排列结构和有序度,除了特殊规格样品外(比如独特的表面形貌设计或独特的截面结构设计),和单通AAO模板产品一样。
需要指出的是对于不同孔径范围,比如小于50nm和大于100nm,需要使用不同的电解液,孔的排列及其有序度是不一样的。
12mm直径双通AAO模板
24mm直径双通AAO模板
46mm直径双通AAO模板
大于100cm2的大面积双通AAO模板,可以根据客户需要定制
双通AAO 模板截面,孔间距100nm,笔直的孔道相互平行
双通AAO 模板截面,孔间距400nm 左右,笔直的孔道相互平行
双通AAO 模板截面,孔间距400nm 左右,笔直的孔道相互平行
双通AAO 模板截面,孔深60微米左右,笔直的孔道相互平行。