KC-900二次脉冲电缆故障测试仪-

KC-900二次脉冲电缆故障测试仪-
KC-900二次脉冲电缆故障测试仪-

KC-900二次脉冲电缆故障测试仪-

西安华傲开发研制系列电缆故障测试仪及地

下管线探测仪、管道泄漏检测仪器已有十多年历

史,公司自成立以来就立足于进展我国自己的水、

电、气测试仪器,努力打破国外企业在这些行业的

垄断,通过十年的困难奋斗,我们有了自己的电缆

测试产品体系、管道测试产品体系,产品技术处于

国内领先地位,达到国际水平。KC-900电缆故障

测试仪(二次脉冲法)是公司的又一杰作,技术达

到国际先进水平,打破了国外公司在此领域的垄断,让中国人用上性能优、价格低的国际最先进的电缆故障弧发射测试技术是华傲人的愿望。

测过电力电缆故障的人都明白,遇到故障为高阻时测距时波形判定是复杂并需要体会的,过去有句行话“三分仪器,七分靠人”讲的确实是波形判定的复杂性,为了克服这一难题,科技人员发明了弧反射法(二次脉冲法)。与传统的测试方法相比,二次脉冲法的先进之处,是将冲击高压闪络法中的复杂波形简化为最简单的低压脉冲短路故障波形,因此判读极为简单,可准确标定故障距离。弧反射法的参考波形是脉冲反射仪发出的低压测试脉冲,在不击穿被测电缆故障的情形下得到的;接着冲击高压击穿电缆故障产生燃弧后,发出低压测试脉冲,从而得到准确的故障波形。两条波形自动叠加的变化点便是故障点。

电缆的测试端施加给故障电缆,让电缆的高阻故障点发生击穿燃弧。同时,在测试端加入测量用的低压脉冲(行波),测量脉冲到达电缆的高阻故障点

时,遇到电弧,在电弧的表面发生反射。由于燃弧时,高阻故障变成了瞬时的短路故障,低压测量脉冲将发生明显的特点变化,使得测量脉冲的行波分析变得专门清晰。

Kc-900型电缆故障仪要紧有高压冲击单元、中央操纵单元(滤波过压爱护及弧反射)和波形记录分析仪三大部分组成。

1、高压脉冲发生器高压脉冲发生器是该套电缆故障预定位仪的能量提供部分,向外提供高压高能的电压脉冲。要紧由升压变压器、高压整流二极管、充电电容、放电球隙组成。目前采纳传统的方法制造高压脉冲发生器IG 以使得高压脉冲发生器IG 的输出电压达到16~50 kV,输出的稳态电流达到20~100 mA。

2 、中央操纵单元

由两部分组成:1)滤波过压爱护;2)弧反射滤波仪

滤波过压爱护单元是高压脉冲和低压测量脉冲汇合的部件,它对信号的处理直截了当阻碍着仪器的测量精度、稳固性以及测量成功的几率。高压滤波单元能够滤掉高压脉冲的毛刺,使高压脉冲变得平滑,并在故障点形成稳固的燃弧,同时也可减少高压脉冲对波形记录分析仪信号采集的干扰。过压爱护单元除了爱护着弧反射仪和波形记录分析仪不受高压脉冲的冲击之外,依旧低压测量脉冲的分压采样的重要部件,是测量脉冲输出、输入交互的接口电路。弧反射滤波仪那个电路负责向电缆输入测量脉冲,并判定什么时候触发电路发送测量脉冲最为合适,为保证仪器成功捕捉到故障点的技术关键。同时,它还负责把采集到的信号进行滤波,提出其中的有用的测量脉冲,送给波形记录分析仪进行记录和分析。

3波形记录分析仪(测距主机)

那个部分是整个仪器的大脑,负责向其他部件发送各种指令,和谐各部件的工作,并向操作者提供人机对话的界面。它的要紧功能是对测量脉

冲进行高速的采样和记录,采样频率在100 MHz 以上,再对采集的到信号进行高速的运算分析。

测试方法:二次脉冲法、冲击高压电流取样法、低压脉冲

冲击高压:低于35KV;

数据采样速率: 80MHz、40MHz、20MHz、10MHz;

测试距离:>30Km

读数辨论率:1m

系统测试精度小于50cm;

二次脉冲发送及故障反射信号的自动显示。

所有的高阻故障波形仅有一种,即类似低压脉冲法的短路故障波形。

具有测试波形储存功能:能将现场测试到的波形按规定顺序方便地储存于仪器内,供随时调用观看。

能将测得的电缆故障相波形与电缆的全长开路波形同时显示在屏幕上进行同屏对比和叠加对比。

彩色大屏幕显示:波形清晰,专门在二次脉冲法中,两个波形以不同颜色同时显示,更易于识不。

功能菜单简单易用,功能强大。

内置电源:充满电后一起可连续工作3小时以上,亦可外接交流电源工作。

工作条件: 温度-10℃~+45℃,相对湿度 90%。

中央操纵单元;

波形记录分析仪(测距主机); 高压脉冲发生器(分立); 模拟路径仪 DZY-2000L ; 电缆故障定位仪 DZY-2000

电缆综合探测仪 DTY-2000; 电缆故障智能定位仪 DDY-3000;

轻型多功能一体化交直流高压发生器 GYT-2000;

直埋电缆故障测试仪ZMY-2000;

电桥电缆故障测试仪

电桥电缆故障测试仪基于MURRAY电桥原理而设计,适用于敷设后各种电线电缆的击穿点(低阻、高阻及闪络型击穿)及没有击穿但绝缘电阻偏低点的定位:如用兆欧表发现电缆阻值较低,但运行电压下不击穿的绝缘缺陷点。当然,也可用于电缆厂内各种线缆的缺陷点定位。粗测电缆故障定位方法有电桥法及波反射法二种。目前波反射法定位仪较普及。其缺点为:部分仪器现场连线复杂,有定位盲区。波形不典型时,要求定位人员熟练掌握仪器,并富有经验才能分辩脉冲波形。有几种电缆故障很难用波反射法查找:如,高压电缆护套绝缘缺陷点,钢带铠装低压力缆,PVC 电缆,没有反射波,无法定位。短电缆,无法定位。一些高阻击穿点,在冲击电压下无法击穿,也难以定位。高压电桥电缆故障测试仪内含高频高压恒流源,解决了电源对电桥高灵敏放大的干扰难题,电源与电桥合为一体。测量电缆为专用的高压电缆,采用四端法电阻测量原理,定位精度高。电桥置于高压侧,而操作钮安全接地。彻底解决了电桥法用于高阻定位的局限性,使电桥法无盲区、精确、方便的特点得以发挥。与波反射法相比,高压电桥电缆故障测试仪特别适用于: 1.敷设后电缆的高阻击穿点,特别是难以烧成低阻的线性高阻击穿点,如电缆中间接头的线性高阻击穿(这种主要是由于电缆接头制作工艺不过关造成的。施加高压时只泄露爬弧不击穿放电)。 2. 高压电桥平衡法没有测试盲区,用于判断短电缆及靠近电缆端头的击穿点。 3. 高压电桥法仅仅要求电缆相线电阻的均匀性即可进行测量。而行波传输特性不好的电缆,如介质损耗很大的PVC低压电缆; ◎设备采用高频高压开关电源构成高压恒流源,电压高,电流稳定,体积小,重量轻。 ◎采用高灵敏度放大器及检流计指示平衡,与比例电位器构成平衡电桥,整体置于高电位。面板上的操作钮处于低电位,通过绝缘杆操作电桥。

电缆故障测试仪说明书

电缆故障测试仪说明书 第一节概述 有线通信的畅通和电力的输送有赖于电缆线路的正常运行。一旦线路发生障碍,就会造成通信及时查出故障并迅速予以排除,就会造成很大的经济损失和不良的社会影响。因而,电缆故障测试仪是维护各种电缆的重要工具。电缆故障智能测试仪采用了多种故障探测方式,应用当代最先进的电子技术成果和器件,采用计算机技术及特殊性电子技术,结合本公司长期研制电缆测试仪的成功经验而推出的高科技,智能化,功能全的全新产品。 电缆故障智能测试仪是一套综合性的电缆故障探测仪器。能对电缆的高阻闪络故障,高低阻性的接地,短路和电缆的断线,接触不良等故障进行测试,若配备声测法定点仪,可准确测定故障点的精确位置。特别适用于测试各种型号、不同等级电压的电力电缆及通信电缆。

第二节功能介绍及技术指标 一、功能介绍 1.功能齐全 测试故障安全、迅速、准确。仪器采用低压脉冲法和高压闪络法探测,可测试电缆的各种故障,尤其对电缆的闪络及高阻故障可无需烧穿而直接测试。如配备声测法定点仪,可准确测定故障的精确位置。 2.试精度高 仪器采用高速数据采样技术,A/D采样速度为100MHz,使仪器读取分辨率为1m,探测盲区为1m。 3.智能化程度高 测试结果以波形及数据自动显示在大屏幕液晶显示屏上,判断故障直观。并配有全中文菜单显示操作功能,无需对操作人员作专门的训练。 4.具有波形及参数存储,调出功能 采用非易失性器件,关机后波形、数据不易失。 5.具有双踪显示功能。 可将故障电缆的测试波形与正常波形进行对比,有利于对故障进一步判断。 6.具有波形扩展比例功能。 改变波形比例,可扩展波形进行精确测试。 7.可任意改变双光标的位置,直接显示故障点与测试

110千伏高压电缆异常的分析及处理

110千伏高压电缆异常的分析及处理 发表时间:2019-12-27T16:39:25.243Z 来源:《中国电业》2019年18期作者:何义良 [导读] 高压电缆制作、连接、施工等过程中,会受到多种因素的影响而产生故障 摘要:高压电缆制作、连接、施工等过程中,会受到多种因素的影响而产生故障,直接威胁到高压电缆的正常运行。本文根据某高压电缆工程展开分析,针对引起高压电缆异常情况的原因进行分析,采用局部放电试验进行验证,并提出了电缆故障的处理,并提出了高压电缆常见故障处理措施。 关键词:高压电缆;110kV;故障处理 高压电力电缆有着较高的安全性,施工起来比较便捷,已经被广泛应用到电力工程施工当中。随着城市规模的不断变大,要求高压电力电缆不要占用太多的空间,交联聚乙烯电缆有着很好的安全性,不会占用太多的面积。但电力电缆在实际运行过程中经常会存在异常现象,很多故障都是由电缆终端或中间连接部位而导致的,电缆连接终端制作工艺水平与能否安全应用有着直接关系,本文对某变电所110kV 高压电缆应用前的试验过程中发生异常现象进行分析,并制定了切实有效的解决措施,要求工作人员在高压电缆终端制作工艺提高重视,避免应用过程中产生运行故障。 1 110kV高压电缆工程基本情况 某变电所位于市区范围内,110kV高压线路进线采用交联聚乙烯绝缘保护材料,应用无缝铝护套进行防护,电缆长度为150米,采用交联户外油浸终端。按照电力工程施工计划,三根电缆施工完成后进入到试验环节。对外防护套、绝缘性能测试都达到合格标准,工频耐压测试应用串联谐振加压处理方法。采用的试验电压为2Ue,则试验电压为128kV。查找电缆资料可以得知,该高压电缆电容值每公里 0.162uF,然后按照串联谐振频率值进行计算:,电流值则为,公式当中的f则为谐振频率,I为试验样品电流值,则是试验样品电容,是分压器具备的电容值,L是电抗器具备的电感值,U是试验电压值。从试验加压曲线可以得知,A和B相电缆都通过了耐压性能试验,电流值设置在2A。C相电缆试验过程中,把电压提升到额定值,发现试验样品电流值为2.35A,已经超过计算数据1.936A,但还在正常区间。采用额定电压持续加压13分钟,户外电缆终端设备出现了轻微的放电声音,试验运行电流也呈现出变大的趋势。由于放电声音的不断变大,试验运行电流也呈现出变大趋势,如果试验电流上升到保护电流上限数值5A,保护装置会自动把电源完全切除掉,试验则会迫终止。对该高压电缆外观进行仔细地观察,没有发现该电缆存在着较为明显的放电痕迹。对该电缆再次进行加压测试时,试验电压只保持5分钟左右时间,再次出现试验电流超过保护上限值而出现的电源被切断问题,使得高压电缆耐压实验无法继续开展。 2 110kV高压电缆异常情况分析 2.1电缆绝缘或终端密封材料老化而导致的绝缘性能降低 按照以往的电缆测试经验,如果高压电缆运行时间比较长,或者存在绝缘材料局部发电现象,电缆具备的绝缘性能会出现下降问题。油浸电缆终端密封材料出现老化,环境水分进入也会导致电缆绝缘性能降低。由于该电缆为新建设变电所电源进线,还没有正式投入使用。对电缆生产厂家试验报告进行分析,发现每个电缆主绝缘电阻的实际测量值和出厂试验值并没有太大的差别,可以有效地排除掉高压电缆绝缘性能降低使得耐压试验无法继续完成的可能。高压电缆终端密封材料出厂时期只达到了一个月,还没有出现密封材料安装不当或者受损问题。 2.2电缆保护层被损坏而导致的绝缘性能下降 110kV电缆在施工作业过程中,受到异物刺伤而出现绝缘层受损。比如,铁钉、刀片等对电缆绝缘进行了破坏,会使电缆绝缘出现异常。通过对电缆绝缘性测验可以发现,没有存在绝缘受损的现象,具有较好的外绝缘保性性能,绝缘电阻值可以达到1万兆欧左右,表明电缆外绝缘保护层保存完好,在外保护内部的绝缘不会存在受到损坏的可能性,可以排除高压电缆主绝缘受损的可能。 3.3电缆终端制作工艺不合理导致的主绝缘性能降低 随着电缆故障的逐渐排除,把电缆故障的可能性转移到电缆接头制作上来,尤其是户外电缆终端制作时存在的问题,对施工作业人员进行沟通发现,在进行户外电缆终端接头制作过程中,存在着天气影响因素。对制作记录中可以发现,高压电缆终端接头制作前一天有阴雨,制作当天气温降低,气温最低达到了3度,而且空气湿度比较大。对电缆终端接头加入的为聚丁烯油,该绝缘物质可以有效地填充到电缆终端每个部位的间隙中,从而更好地保护电缆内部的绝缘。该绝缘油有着较高的粘稠度,会随着外界温度的减小而变大。该绝缘油在环境温度为5度时,呈现出较高的粘稠度,内部会夹杂着气泡。高压电缆终端接产学研制作厂家对填加的聚丁烯油过程中的温度有着较高的要求,如果环境温度低于20度,应该采用加热措施来减小绝缘油粘度,然后方可以把其注入到电缆终端,但电力工程施工作业现场的人员却没有对环境温度影响因素提高重视,缺少了加热处理工艺。 从上面的分析中可以看出,可以初步确定高压电缆缺陷是由于在户外电缆终端接头加工过程中,外界环境温度不高、空气湿度大而导致的,没有采取合理的加热处理措施,使得绝缘油中存在着气泡,混入了大量的湿度较大的空气。对高压电缆施加2倍额定电压进行性能试验时,绝缘油中存在着水分和气泡,会在高电压作用下形成游离态的气体分子,使得绝缘油中产生数量较多的带电粒子,会在气泡部位出现局部放电。释放出更多的气体会使得气泡体积不断变大,会产生更为明显的局部放电问题,使得试验电流不断变大,当大于设定保护值之后会自动退出试验。在该种条件下,高压电缆投入应用会存在着较大的安全隐患,较长时间的绝缘油内部放电会使得终端接头部位的绝缘性性能减小,最后会使电缆内部被击穿,使得电缆终端接头出现故障,严重情况下会引起爆炸问题。 3局部放电试验对电缆故障的验证 采用三相电缆分别进行局部放电试验,对每相电缆放电性能进行分析来验证,也就是在相同的试验电压和试验方法情况下,比较性能正常的A、B相和具备故障的C相高压电缆局部放电数据,对放电初始电压、熄灭电压和放电波形等进行对比分析,可以进一步证明C相电缆中存在着明显的局部放电现象,可以对故障原因进行证实,可以为后续的处理提供数据支持。 按着相关的标准,可以在环境温度条件下对每相电缆进行局部放电试验,采取的试验方法是先把试验运行电压逐步提高到1.75Ue,然后在该电压条件下保持10秒钟,再缓慢减小到1.5Ue。在该电压值下,如果放电量不超过5pC则达到合格标准。三相高压电缆在相同的性能试验条件下,获取到的试验结果有着较大的不同,从试验数据统计表1中可以看出,C相高压电缆有着较大幅度的局部放电,但该电缆在出厂性能试验中的局部放电量都达到了合格标准,也就是不超过2pC。A、B两相高压电缆在施工现场完成终端接头的制作和安装,电缆具备

HPA30全智能多次脉冲电缆故障测试仪

HPA30全智能多次脉冲电缆故障测试仪 1、产品介绍: HP-A30全智能多次脉冲电缆故障测试仪是迎合工业级电力行业方案和IT时代的快速进展,将原先电缆故障测试仪的局限性用工控嵌入式运算机平台系统、网络服务业务、USB通信技术系统化,极大提高了仪器的使用功能和利用价值以及便利的现场环境操作。专门关于日益增多的地埋电缆资料提供了一套独有的治理软件。整套系统满足中华人民共和国电力行业标准《DL/T849.1~DL/T849.3-2004》电力设备专用测试仪器通用技术条件,该系统测试由系统主机、多次脉冲产生器、故障定位仪和电缆路径仪四部分组成,用于电力电缆各类故障的测试,电缆路径、电缆埋设深度的寻测和电缆档案资料的日常爱护治理。以及铁路机场信号操纵电缆和路灯电缆故障的精确测试。 2、产品特性: ◆国内首家采纳工控嵌入式运算机平台系统,工业级使用环境,实现极强稳固性。锂电供电、方便现场测试。 ◆国内首家采纳12.1英寸大屏幕触摸系统,全电脑XP操作平台集成化软件,完全辞别电缆仪单片机时代,并配有电缆故障测试软件和电缆资料治理软件。 ◆采纳最新的USB通信接口,采集信号稳固,配一款笔记本电脑可实现双控双显,主机可自动选择最低 6.25MHz、最高达100MHz五种采样频率,能满足不同长度电缆的测试要求,减少了粗测误差。 ◆软件实现故障自动搜索,距离自动显示,误卡自动报警功能,双游标移动可精确到0.1米,波形可任意压缩、扩展,重叠,同屏随机显示十个低压脉冲波形供您选择叠加定位,提高测试精度,减少误差。 ◆多次脉冲法产生器一次放电,十次低压脉冲,短路波形直观叠加,容易分析,多次脉冲产生器体积小,重量仅为5KG,真正实现全套设备轻便化。 ◆支持最新开通的3G通信终端或无线上网卡,专用3G软件可实现专家远程现场实时测试技术服务,专家远程操控用户主机,给用户现场测试提供及时、准确波形分析和交流指导,使您无忧工作。可选择3G上网卡或3G通讯手机实现此功能。 ◆20G~80G(可选)内存多类现场波形和现场实物接线图,轻轻一点即可使用,电缆资料治理软件可做完善的电缆档案治理,为电缆的爱护工作和精确定位提供参考和关心。 ◆关键的精确定点仪部分,直截了当数字显示测试者离故障点距离,是国内同类定点技术的又一次创新,为快速准确查找电缆故障,减少停电缺失提供了有力保证。 ◆高压放电部分三种可供用户选择,国内首创最新HP-G35高频高压电源8.4kg替换65kg试验变压器和操作箱,填补国内一项空白。 3、产品指标: (1)、可测试各种35KV以下不同电压等级、不同截面、不同介质及各种材质的电力电缆的各类故障,包括:开路、短路、低阻、高阻泄漏、高阻闪络性故障。 (2)、可测试铁路通信操纵电缆、路灯电缆、机场信号电缆的各类故障。 (3)、可测量长度已知的任何电缆中电波传播的速度。 (4)、可测试电力电缆埋设路径及埋设深度。 显示方式:12.1英寸工业级液晶触摸屏(XP操作平台)储备方式:固定移动两方式20G/2G 测试方法:低压脉冲法、冲闪电流法、多次脉冲法 操作方式:双操作,触摸笔兼触控鼠标操作 测试距离:不小于30km 最短测试距离(盲区):0-5米 精确定点误差:±0.2m 测试误差:系统误差小于±1% 多次脉冲产生器:冲击电压≤40KV 辨论率:V/fm;V为传波速度m/μs;软件游标0.10米。 仪器采样频率:6.25MHz、10MHz、25MHz、50MHz、100MHz、(自适应脉宽) 电源与功耗:AC220V±10%不大于15W DC12V(7AH)不大于20W 待机时刻:可连续使用4小时左右。工作条件:温度-20℃~﹢40℃,相对湿度80%。

电缆故障测试仪的四种实用测定方法

https://www.360docs.net/doc/7011062495.html, 电缆故障测试仪的四种实用测定方法电缆故障测试仪(闪测仪)可用于检测各种电缆的低阻、高阻、短路、开路、泄漏性故障以及闪络性故障,可准确的检测地下电缆的故障点位置、电缆长度和电缆的埋设路径。具有测试准确、智能化程度高、适应面广、性能稳定以及轻巧便携等特点。仪器采用汉字系统,高清晰度显示,界面友好。 一、电缆故障的种类与判断 无论是高压电缆或低压电缆,在施工安装、运行过程中经常因短路、过负荷运行、绝缘老化或外力损坏等原因造成故障。电缆故障分为接地、短路、断线三类。三芯电缆故障类型主要有以下几方面:一芯或两芯接触;二相芯线间短路;三相芯线完全短路;一相芯线断

https://www.360docs.net/doc/7011062495.html, 线或多相断线。对于直接短路或断线故障用万用表可直接测量判断,对于非直接短路和接池故障,用兆欧表遥测芯线间绝缘电阻或芯线对地绝缘电阻,根据其阻值可判定故障类型。 二、电缆故障点的查找方法 1、测声法所谓测声法就是根据故障电缆放电的声音进行查找,该方法对于高压电缆芯线对绝缘层闪络放电较为有效。此方法所用设备为直流耐压试验机。电路接线如图1所示,其中SYB为高压试验变压器,C为高压电容器,ZL为高压整流硅堆,R为限流电阻,Q为放电球间隙,L为电缆芯线。当电容器C充电到一定电压值时,球间隙对电缆故障

https://www.360docs.net/doc/7011062495.html, 芯线放电,在故障处电缆芯线对绝缘层放电产生"滋、滋"的火花放电声,再在杂噪声音最小的时候,借助耳聋助听器或医用听诊器等音频放大设备进行查找。查找时,将拾音器贴近地面,沿电缆走向慢慢移动,当听到"滋、滋"放电声最大时,该处即为故障点。使用该方法一定要注意安全,在试验设备端和电缆末端应设专人监视。 2、电桥法电桥法就是双臂电桥测出电缆芯线的直流电阻值,再准确测量电缆实际长度,按照电缆长度与电阻的正比例关系,计算的故障点。该方法对于电缆芯线间直接短路或短路点接触电阻小于1Ω的故障,判断误差一般不大于3m,对于故障点接触电阻大于1Ω的故障,可采用加高电压烧穿的方法使电阻降至1Ω以下,再按此方法测量。 测量电路首先测出芯线a与b之间的电阻R1,则R1=2RX+R,其中R为a相或b相至故障点的一相电阻值,R为短接点的接触电阻。再就电缆的另一端测出a’和b’芯线间的直流电阻值R2,则R2=2R(L-X)+R,式中R(L-X)为a’相和b’相芯线至故障点的一相电阻值。测完R1与R2后,再按图3所示电路将b’与C’短接,测出b、c两相芯线间的直流电阻值,则该阻值的1/2为每相芯线的电阻值,用RL表示。RL=RX +R(L-X),由此可得出故障点的接触电阻值:R=R1+R2-2RL。因此,故障点两侧芯线的电阻值可用下式表示:RX=(R1-R)/2,R(L-X)=(R2-R)/2。RX、R(L-X)、RL三个数值确定后,按比例公式即可求出故障点距电缆端头的距离X或(L-X):X=(RX/RL)L,(L-X)=(R(L-X)/RL)L,式中L为电缆的总长度。采用电桥法时应保证测量精度,电桥连接线要尽量短,经径要足够大,与电缆芯线连接要采用压接或焊搂,计算过程中小数位要全部保留。

电力电缆故障测试仪地埋线故障检测仪

T-880电力电缆故障测试仪地埋线故障检测仪T-880电力电缆故障测试仪RL024280地埋线故障检测仪RL187405图片 型号:RL024280型号:RL187405 T-880电力电缆故障测试仪RL024280地埋线故障检测仪RL187405内容 型号:RL024280

T-880电力电缆故障测试仪 长度测试+漏电测试 T-880加强版:长度测试+漏电测试+路径查找(功能上取得重大突破:断线点可以实现精确定位,带外铠电缆的对地短路、相线断线也能测试)---10天倒计时上市发售,目前接收预定,6月25日前预定客户到正式上市发售时送精美礼品一份。 长度测试:电缆线的断线、短路距离;也可以测试电缆线总长度(用于工程验收) 漏电测试:针对地埋线路绝缘层被破坏造成的绝缘不好定位; 路径查找:对于不知道地埋走向电缆能方便的查找出其准确走向; 工业级制造标准,不存在接口粗糙连接不好情况,专业指导,售后无忧。 使用ARM技术和FAGA技术一键自动快速测试,不用漫长等待,测试结果直观明了!采用大屏幕真彩液晶显示 适用于测量低压电力电缆的断线、混线(短路)、漏电等故障的精确位置。是缩短故障查找时间、提高工作效率、减轻线路维护人员劳动强度的得力工具。线路查修人员也可以用于线路工程验收和检查电缆电气特性。填补农电故障及小区供电故障没有相应仪表测试的空白。 产品功能: 长度测试单元: ?脉冲反射测试法,可以测试断线、混线(短路)、严重绝缘不良类型的故障距离; ?全自动测试,智能故障诊断,全中文操作菜单,液晶显示具有背光功能; ?自动增益和自动阻抗平衡技术,替代繁琐的电位器调节; ?手动分析功能,方便对电缆进行分析判断; ?可充锂电电池,智能充电,无需值守。 ?脉冲反射测试法:最大测量范围2km,测试分辨率:1m,测试盲区:0m, 脉冲宽度:80ns-10μs自动调节。 漏电测试单元: ?故障智能诊断,辅助耳机音频判断; ?背带包式设计,方便随身携带; ?对于绝缘没处理好或者绝缘层遭到破坏造成的漏电(线间漏电、对地漏电)故障均可测试; ?测试电缆地埋深度不大于3米; ?测试精度:探测误差±5cm; 其他指标: ?充电时间约3个小时,充满后连续工作时间8小时;

脉冲电缆故障测试仪

电缆高频(高次)脉冲电缆故障测试仪 脉冲电缆故障测试仪是应用于电缆故障查找的一种流行原理和方法,具有测试时间短,可靠性高和性价比高的突出优势,满足35kv及以下系统电缆的各种故障的测量,现阶段,经过电磁技术的持续升级,脉冲电缆故障测试仪由单脉冲移植到“二次脉冲”和“多次脉冲”的测试环境中,不过,我们使用频次比较高的还是“单脉冲”,毕竟价格便宜,功能还比较完善。 测量工程案例0713 上图是中粮集团抽风系统电缆临时出现故障,我司携带设备驱车前往现场处理,通过技术人员专业的排查和检测,判定C相故障,类型为高阻,随后开机巡查电缆的路径方向,经过3个小时的处理,最终将故障点定位,开挖后故障属实。

新疆伟华矿业10kv壁挂电缆出现故障导致境内部分设备无法运行,我司技术部门与现场沟通之后,推荐购买脉冲电缆故障测试仪,并由我司提供现场指导,最终在1.7公里处定位故障点,直接减少该单位经济损失达30万元。 脉冲电缆故障测试仪的优势 1、满足各种电压等级电力电缆的断线、接地、高阻故障性故障的测量和定位; 2、“低压阻抗法”+“高压闪络法”双疗法,克服现场环境干扰; 3、图形化可视界面、简单易懂,简洁明了,极易判读; 4、基于嵌入式平台系统、电磁滤波技术、声磁同步技术等优良的技术融合、贯通。 主要技术指标 测量方式:脉冲法、电流法、高阻法和阻抗法;

测量最大长度:长度<20km ;深度>3.5m;软土可达5m; 操作方式:手动按键式操作; 可靠性:98%; 脉冲频段:6MHz、12 MHz、24MHz、48 MHz、96 MHz、192MHz、324MHz ;可调节波速范围:160m/μs~210 m/μs; 供电方式:DC12V 锂电池 传感器类型:磁棒、信号放大器

电缆故障测试仪使用方法

电缆故障零电位测试法 电缆故障零电位测试法也就是电位比较法,它适应于长度较短的电缆芯线对地故障,应用此方法测量简便精确,不需要精密仪器和复杂计算。测量原理如下:将电缆故障芯线与等长的比较导线并联,在b、c两端加电压VE时,相当于在两个并联的均匀电阻丝两端接了电源,此时,一条电阻丝上的任何一点和另一条电阻丝上的对应点之间的电位差必然为零,反之,电位差为零的两点必然是对应点。因为微伏表的负极接地,与电缆故障点等电位,所以,当微伏表的正极在比较导线上移动至指示值为零时的点与电缆故障点等电位,即电缆故障点的对应点。S为单相闸刀开关,E为6E蓄电池或4节1号干电池,G为直流微伏表,测量步骤如下: 1)先在b和c相芯线上接上电池E,再在地面上敷设一根与故障电缆长度相等的比较导线S,该导线要用裸铜线或裸铝线,其截面应相等,不能有中间接头。 2)将微伏表的负极接地,正极接一根较长的软导线,导线另一端要求在敷设的比较导线上滑动时能充分接触。 3)合上闸刀开关S,将软导线的端头在比较导线上滑动,当微伏表指示为零时的位置即为电缆故障点的位置。 电缆故障高压电桥测试法 电缆故障高压电桥测试法就是用双臂电桥测出电缆芯线的直流电阻值,再准确测量电缆实际长度,按照电缆长度与电阻的正比例关系,计算出电缆故障点。该方法对于电缆芯线间直接短路或短路点接触电阻小于1Ω的故障,判断误差一般不大于3m,对于故障点接触电阻大于1Ω的故障,可采用加高电压烧穿的方

法使电阻降至1Ω以下,再按此方法测量。测量电路时,首先测出芯线a与b 之间的电阻R1,R1=2RX+R其中RX为a相或b相至电缆故障点的一相电阻值,只为短接点的接触电阻。再就电桥移到电缆的另一端,测出a1与b1芯线间的直流电阻值R2,则R2=2R(L-X)R,R(L-X)为a1相或b1相芯线至电缆故障点的一相电阻值。测完R1与R2后,再按图3所示电路将b1与c1短路,测出b、c两相芯线间的直流电阻值,则该组织的1/2为每相芯线的电阻值,用RL表示,RL=RX R(L-X),由此可得出故障点的接触电阻值:R=R1 R2-2RL 表,因此,故障点两侧芯线的电阻值可用下式表示:RX=(R1-R)/2,R(L-X)=(R2-R)/2。RX、R(L-X)、RL三个数值确定后,按比例公式即可求出故障点距电缆端头的距离X或(L-X):X=(RX/RL)L,(L-X)=(R(L-2)在电缆的末端在测量每相芯线的电容电流Ia1、Ib2、Ic3的数值,以核对完好芯线与断线芯线的电容之比,初步可判断出断线距离近似点。 根据电容量计算公式C=I/(2ΠfU)可知,正电压U、频率f不变时,C与I成正比。因为工频电压的f(频率)不变,测量时只要保证施加电压不变,电容电流之比即为电容量之比。设电缆全长为L,芯线断线点距离为X,则Ia/Ic=L/X,X=(IC/Ia)L。测量过程中,只要保证电压不变,电流表读书准确,电缆总长 度测量精确,其测定误差比较小。 电缆故障测声测试法 所谓电缆故障测声测试法就是根据故障电缆放电的声音进行查找,该方法对于高压电缆芯线对绝缘层闪络放电较为有效。此方法所用设备为直流耐压试验机,其中TB为高压试验变压器,C为高压电容器,VE为高压整流硅堆,R为限流电阻,Q为放电球间隙,L为电缆芯线。当电容器C充电到一定电压值时,球间隙

电缆故障的探测方法与仪器

电缆故障的探测方法与仪器 本文综述了电缆故障的探测方法与仪器。首先列举了电缆故障探测的传统方法并分析了传统方法的不足,然后介绍了电缆故障探测的新方法及其特点。 随着电缆用量在整个电力传输线路和因特网中所占的比例日益提高,电缆故障出现的几率越来越大。电缆故障对生产造成的危害较大,轻者会造成单台电气设备不能运行,重者会导致整个变电所停电,所以电缆故障点的快速测定和精确定位问题变得非常重要。 一、电缆故障探测的传统方法 (一)电缆故障测距的传统方法 电缆故障测距的传统方法主要有以下四种: 电桥法:这是电力电缆的测距的经典方法。该方法比较简单,但需要事先知道电缆线长度等数据,且只适用于低阻及短路故障。但是,在实际运行中,故障常常为高阻及闪络性故障,因故障电阻很高造成电桥电流很小,因此一般的灵敏度仪表很难探测。 脉冲回波法:针对低阻与断路类型的故障,利用低压脉冲反射方法来测电缆故障比起上面的电桥法简单直接,只需通过观察故障点反射与发射脉冲的时间差来测距。测试时将一低压脉冲注入电缆,当脉冲传播到故障点时会发生反射,脉冲被反射送回到测量点。利用仪器记录发射和反射脉冲的时间差,只需知道脉冲传播速度就可计算出故障发生点的距离。该方法简单直观,不需知道电缆长度等原始数据,还可根据反射波形识别电缆接头与分支点的位置。 脉冲电压法。该方法可用于测量高阻与闪络故障。首先将电缆故障在直流或脉冲高压信号下击穿,然后通过记录放电脉冲在测量点与故障点往返一次所需的时间来测距。脉冲电压法的一个重要优点是不必将高阻与闪络性故障烧穿,直接利用故障击穿产生的瞬时脉冲信号,测试速度快,测量过程也得到简化。但缺点是:①仪器通过一个电容电阻分压器分压测量电压脉冲信号,仪器与高压回路有电耦合,很容易发生高压信号串人,造成仪器损坏,故安全性较差; ②在利用闪测法测距时,高压电容对脉冲信号呈短路状态,需要串一个电阻或电感以产生电压信号,增加了接线复杂性,使故障点不容易击穿;③在故障放电时,特别在冲闪时,分压器耦合的电压波形变化不尖锐,难以分辨。 脉冲电流法:该方法安全、可靠、接线简单。其方法是将电缆故障点用高压击穿,使用仪器采集并记录下故障点击穿产生的电流行波信号,根据电流行波信号在测量端与故障点往返一趟的时间来计算故障距离。该方法用互感器将脉冲电流耦合出来,波形较简单,较安全。这种方法也包括直闪法及冲闪法两种。与脉冲电压法使用电阻、电容分压器进行电压取样不同,脉冲电流法使用线性电流耦合器平行地放置在低压测地线旁,与高压回路无直接电器连接,对记

电缆故障测试

电缆故障测试 一、国内电缆故障检测技术大约经历了: 1.电桥法五、六十年代 2.脉冲电流法七、八十年代 3.单片机技术用于电缆故障检测九十年代 4.计算机技术之笔记本电脑时代二十世纪 5.二次脉冲法一十年代 6.大能量多次脉冲法、计算机技术之虚拟仪器、网络时代 ●电桥法:通过调节桥臂平衡所得数据与电缆总长度计算距离测试 点与故障点的长度,此方法误差较大。 ●脉冲电流法:用高压直流脉冲使故障点击穿,用线性耦合器测量 电流击穿时产生的电流脉冲与发射脉冲的时间差来计算故障点的距离,这主要对高阻故障,实际中成功率随情况而异,录波仪采集到的波形常常会无法识别,这是个很大的弊端。 ●二次脉冲法:针对高阻接地时波形难判断的情况,近几年出现了 二次脉冲理论,其原理是首先对故障电缆发射一个低压脉冲、脉冲在高阻的故障点由于特性阻抗变化不大,不会产生反射:然后对故障点电缆发射一个高压脉冲,故障点被击穿,击穿瞬间变成低阻故障,此时仪器触发一个低压脉冲,低压脉冲在被击穿的故障点处被反射回来。仪器把两次低压脉冲的波形叠加起来,分支点的位置就是故障点的位置。这种方法使操作者很容易判读故障点波形,而且误差很小。

智能型多次脉冲电缆故障测试 二、工作原理: 1、预定位工作原理 ●低压脉冲法的测试原理是依据高频传输线理论中的波反射原理, 即视待测电缆为一根传输线,入射波测试脉冲进入电缆后遇故障点即介质不连续处会产生反射,极端情况是开路、短路时会产生全反射,这样仪器只要自动测试发射波与反射波的时延,即可按公式,给出故障点或全长的距离。(一般Z≤100Ω),低压脉冲则在故障点处无反射,只在全长处有开路反射,这时则需用高压脉冲法(国内也叫冲闪法)进行测试。 ●高压脉冲法的测试原理依然是依据传输线理论中的波反射原理, 只是与低压脉冲法相比大大提高测试脉冲的电压与能量,使该脉冲在故障点处能形成瞬间短路电弧,此电弧使故障性质瞬时变为低阻故障,此时就可形成故障点对入射波的反射波,仪器测其时延,换算出故障距离。而当波形较为复杂时,尤其对无现场经验的新手会感觉此种方法波形分析困难。 ●多次脉冲法的测试基本原理还是传输线理论的波反射原理,只是 相对普通高压脉冲法来说,它用高压脉冲使故障点形成瞬间短路电弧,在故障点燃弧期间再发一组(12个)低压脉冲到故障电缆,此时,即可得到高阻故障的多次脉冲故障波形,此波形比普通高压脉冲波形规律明显、易于判读,完全如同判读分析低压脉冲波形,再加上将多次脉冲测全长的波形与之同屏自动叠加比较

电缆故障事故调查

电缆故障着火事故调查报告 事故发生时间:2006年4月21日凌晨 事故地点:主井井口 事故经过:2006年4月21日凌晨主井口着火,2:20分发现火情时,西面塔衣中部有1.5m见方着火面,因气候干燥、风力大、塔衣又属易燃化纤物,所以很快引起西侧塔衣的全面燃烧及围墙外电缆大面积着火。 电缆着火后引起开关跳闸,吊泵断电停运。潜水泵电源开关跳闸。 施工单位立即组织灭火。6:45分水泵恢复排水。 早7:00通知工程部, 工程部人员赶到现场时。施工单位在做现场清理工作。围墙根部电缆绝缘均已烧毁,堆积部分电缆未发现短路迹象,电缆芯线无过载痕迹。 事故原因分析: 当时下井电缆有三根。 一.吊泵电源:电缆标注型号:VV-3×70+1×35 电缆长度720m,其中井下120m,地面600m盘8字堆放,8字长

4m、宽1m。电压等级660V,井下吊泵功率150kw,额定 电流163A,电流表显示150A。吊泵已连续运转20小时, 运转正常。事故发生后对电缆线径实测,线径不足 50mm2。灭火后将原VV-3×70+1×35电缆复用一部分 给吊泵供电,吊泵正常运转,说明吊泵是好的。 存在问题有: 1、电缆线径不足,容易过载发热; 2、电缆选型不合适,用不阻燃VV型普通电力电缆代替矿用电缆; 3、VV型普通电力电缆电缆不适用于移动电器设备,在抢险时电缆过度弯曲会造成内部绝缘损伤,塑料绝缘破坏,出现局部弧光放电现象; 4、电缆堆放不合适,会产生涡流发热、或因散热不良造成局部发热。 5、部分电缆被塔衣覆盖,散热不良。 二、潜水泵电源:电缆型号:U-3×25+1×16,电压等级380V,负荷7.5kw潜水泵,电缆截面足够,发热量不大。 三、信号电缆:不带负荷,属空载状态。 四、不排除外因火的可能性。 事故教训:本次火灾事故造成VV型电力电缆600m、信号电缆、部分矿用电缆严重损毁,虽未造成人员伤害,但事故的性质很严重。根据事故处理“四不放过”原则,要求施工单位就此事故引以为戒,结合安监局的检查时所提出的问题,制定整改措施,强化安全管理。

电缆故障测试仪的测试方法

https://www.360docs.net/doc/7011062495.html, 电缆故障测试仪的几种测试方法,华天电力是电缆故障测试仪的生产厂家,15年致立研发标准、稳定、安全的电力测试设备,专业电测,产品选型丰富,找电缆故障测试仪,就选华天电力。 电缆故障测试仪可测试各型号35KV以下电压等级的铜、铝芯高、低压电力电缆的各类故障。常见的油浸纸电缆、交联聚乙烯电缆、不滴法电缆和取氯乙烯电缆等四种电缆的电波传播速度已经在仪器中预置。 电缆长度及故障距离的测量均是屏幕直接显示不需要人工换算,可测试各种型号电缆的开路、短路及电力电缆的高阻闪络性故障、高阻泄漏性故障。 电缆故障测试仪测试故障时,具体故障类型按以下方法进行测试。 低电阻接地故障。电缆的单相低电阻接地故障是指电缆的一根芯线对地的绝缘由阻低于100kΩ,而芯线连续性良好。此类故障隐蔽性强,我们可以采用回路定点法原理进行测试。接线图如图所示,将故障芯线与另一完好芯线组成测量回路,用电桥测量,一端用跨接线跨接,另一端接电源、电桥或检流计,调节电桥电阻使电桥平衡,当电缆芯线材质和截面相同时,若损坏的线芯和良好的芯线在电桥上位置相互调换时,则有式中Z——测量端至故障点的距离m;L——电缆总长度,m;R1、R2——电桥的电阻臂。

https://www.360docs.net/doc/7011062495.html, 在正常情况下,这两种接线测量结果应相同,误差一般为0.1%~0.2%,如果超出此范围或者X>L/2,可将测量仪表移到线路的另一端测量。 另外,我们还可以采用连续扫描脉冲示波器法(MST—1A型或LGS—1型数字式测试仪)进行测试。短路或接地故障点处反射波将为负反射,示波器荧屏图如图所示。此时故障点距离可按下列公式计算式中X——反射时间μs;V——波速,m/μs。 两相短路故障点的测试 当出现两相短路故障点,测量接线方法如图所示。测量时可将任一故障芯线作接地线,另一故障芯线接电桥,计算公式和测量方法与单相低电阻接地故障点相同。 三相短路故障点的测试 当发生三相短路故障时,测量时必须借用其他并行的线路或装设临时线路作回路,装设临时线路,必须精确测量该线路的电阻,接线方法如同图所示。可按下式计算,即式中R 为临时线的单线电阻值。 高电阻接地故障点 电缆的高电阻接地故障是指导体与铝护层或导体与导体之间的绝缘电阻值远低于正常值,但大于100kΩ,而芯线连续性良好。 用高压电桥法寻找高阻接地故障 其接线原理如图所示,由于故障点电阻大,必需使用高压直流电源,以保证通过故障点的电流不致太小。桥臂电阻为100等分的3.5Ω左右的滑线电阻,电桥所加电压10~200kV,微安表指示为100~20μA,故障点至测量端的距离可按下式测算,即当调换图中故障芯线与完好芯线的位置时则有式中X——故障点至测量的距离,m;L——电缆线路长度,m;C ——滑线电桥读数。

电缆故障排除原理

摘要:本文主要针对电力电缆的常见故障,从结构设计,人为因素,运行环境等方面进行分析,总结了电力电缆故障原因。并介绍了常用的电力电缆故障查找方法的原理、优缺点及适用范围,针对不同的电力电缆故障采用不同的方法以便快速、准确、方便查找故障,本文结合工作实际,以实际的电力电缆故障来说明各个各个电缆故障查找方法的适用性,具有一定的参考价值。 0 引言 电力电缆作为电力系统的重要组成部份,它的安全运行具有重要意义。一旦发生故障后,如何在最短时间内快速找出故障点一直电缆行业十分注重的研究课题。本文总结了多年来从事电缆运行维护的经验,对电缆故障原因进行了分析,重点介绍几种常用探测方法,并对各方法的优缺点和适用范围进行比较,以实际的例子进行分析,具有一定的参考意义。 1 电缆故障分类 电缆故障可概括为接地、短路、断线三类;如以故障点绝缘特征分类又可分 :1) 开路故障:电缆线芯连续性受到破坏,形成断线。 2 ) 低阻故障:绝缘电阻一般在几百欧姆以下。 3) 高阻故障:用兆欧表测量电缆绝缘电阻低于正常值但高于几百欧姆的故障。 2 形成电缆故障的原因分析 致使电缆发生故障的原因是多方面的,包括电缆运行环境,人为因素,施工质量等,现将常见的几种主要原因归纳如下。 2 .1 外力破坏 09年厦门电力电缆运行情况分析:10 kV电缆故障56次,其中外破28起,占50%。近几年来由于城市建设工程项目遍及各个角落,因施工单位在不明地下管线情况下进行地下管线施工或有些素质不高施工队的野蛮施工,是造成电缆受外力破坏的主要原因。

2 .2 电缆安装、产品质量不合格 09年厦门10kV电缆附件及电缆施工工艺不良造成电缆故障6起,占11%。由于附件施工人员对中间接头制作安装的操作细节不够重视或现场安装工艺条件较差等原因,导致中间接头的制作出现工艺和操作缺陷,对电缆的正常运行带来安全隐患。还有就是电缆附件产品存在质量问题;因此应加强对附件安装人员工艺培训和对电缆附件产品质量的入网把关显得尤为重要。 2 . 3 机械损伤 施工队伍在电缆敷设过程中未按要求和施工规范进行,用力不当或牵引力过大,使用的敷设工具不当或野蛮施工等原因造成电缆的机械损伤,有些机械损伤很轻微,当时并未造成故障,要在数月甚至数年后故障才会暴露出来。这类故障一般表现在 0.4 k V 电缆居多。 2 .4 电缆本体故障 电缆本体故障主要有电缆制造工艺和绝缘老化两种原因。制造工艺造成的故障现在比较少了,因国内中压电缆的制造已经达到国际先进水平了。而电缆的老化现象问题还是存在的,造成电缆提前老化的原因有: 1 、电缆在长期高温或高电压作用下容易产生局部放电,引起绝缘老化而出现故障; 2 、塑料绝缘电缆因长期浸泡在水中或水分侵入,使绝缘纤维产出水解,在电场集中处形成“ 水树枝” 现象,造成绝缘击穿等现象。 3 电缆故障检测方法及实例分析 电力电缆故障查找一般按故障性质诊断、故障测距、故障定点三个步骤进行。故障性质诊断过程是对故障电缆情况做初步了解及分析,然后用兆欧表及万用表进行故障性质判别,根据不同故障性质选择不同方法进行粗测,然后再依据粗测的结果进行精确定位。电缆故障检测的方法有许多,这些方法的适应对象及检测结果也各有不同,以下将介绍电缆故障测距电桥法、低压脉冲法、冲击高压闪络法的工作原理,并以实际的例子说明方法的适用情况,并对各种方法的优缺点进行比较。

电缆故障测试仪的使用方法

https://www.360docs.net/doc/7011062495.html, HTRS-V变压器容量及空载负载测试仪 电缆故障测试仪的使用方法 1、电缆故障测试原理 本仪器主机采用时域反射(TDR)原理,对被测电缆发射一系列电脉冲,并接收电缆中因阻抗变化引起的反射脉冲,再根据电波在电缆中的传播速度和两次反射波的特征拐点代表的时间,可测出故障点到测试端的距离为: S=VT/2 式中:S代表故障点到测试端的距离 V代表电波在电缆中的传播速度 T代表电波在电缆中来回传播所需要的时间这样,在V已知和T已经测出的情况下,就可计算出故障点距测试端的距离S。这一切只需稍加人工干预,就可由计算机自动完成,测试故障迅速准确。 本测试系统故障测试有低压脉冲法、多次脉冲法、直闪电流法、冲闪电流法四种基本方式。 2、低压脉冲方式 低压脉冲用于测试电缆中电波传播的速度、电缆全长、低阻故障(故障相电阻值低于1K)和开路故障及短路故障,主机即可完成任务,无须多次脉冲产生器。同时给下一步应

https://www.360docs.net/doc/7011062495.html, HTRS-V变压器容量及空载负载测试仪 用多次脉冲法测试电缆高阻故障提供了依据。 脉冲测试的基本原理 测量电缆故障时,电缆可视为一条均匀分布的传输线,根据传输线理论,在电缆一端加上脉冲电压,该脉冲按一定的速度(决定于电缆介质的介电常数和导磁系数)沿线向远端传输,当脉冲遇到故障点(或阻抗不均匀点)就会产生反射,且闪测仪记录下发送脉冲和反射脉冲之间的传输时间△T,则可按已知的传输速度V来计算出故障点的距离Lx,Lx=V?△T/2,如图8所示:测全长则可利用终端反射脉冲:L=V?T/2 同样已知全长可测出传输速度:V=2L/T 测试时,在电缆故障相上加上低压脉冲,该脉冲沿电缆

电力电缆事故案例

案例3:可燃气体引发的电力电缆爆破事故 2000年11月25日凌晨至上午9点,武汉市某所变电所低压总空气开关接连发生3次跳闸现象,经查,临时从该所接电,在所住宅区北墙外施工的市自来水公司有1台电焊机电源短路,排除故障后,送电正常。下午5点,位于住宅区西北角新建球场处1个窨井突然发生爆炸,1个面积约2m<sup>2</sup>,厚度50mm的窨井水泥盖板被炸碎。据现场目击者叙述,爆炸前几分钟还有几个小孩在附近玩耍。此时,变电所低压总空气开关未跳闸,而居民家中电灯忽明忽暗非常明显,在距爆炸点正南方10m远处,检查人员听到地下断续放电声响,故判断此处埋设电缆发生故障,随后立即停电,将这2路电缆退出电网,挖开故障点,发现2路电缆已断,中间约1m多长一截电缆不知去向。 2 事故分析 该所住宅区用电是由马路对面所区一容量为315KV·A的变压器采用直埋电缆方式引到住宅区配电房的,损坏的2根电缆1根为截面70mm<sup>2</sup>动力电缆,另1根为截面120mm<sup>2</sup>照明电缆,于1987年在同一壕沟中敷设。1998年,因居民用电量增加,电缆负荷过大,

故对住宅区电网进行一次扩容,另挖一条濠沟,敷设1根截面150mm<sup>2</sup>电缆与原照明电缆并联。 经现场勘察情况发现,可燃易爆的物质就是沼气。原来,所饭店厨房下水通过1条排水沟流入1个面积约2m<sup >2</sup>,深1m多的窨井中。由于近期新球场的建立,使原本透气的排水沟至窨井盖四周被混凝土浇注严实,加上窨井盖为自制水泥盖板,没有透气孔,至使窨井中高浓度有机污水产生的沼气无法顺利排出,而沼气的主要成分是甲烷,其爆炸极限浓度在5%~15%之间,属易燃易爆气体。此外,电缆敷设又不符合规定要求:(1)电缆埋设深度为~,没有敷盖混凝土保护板,电缆外皮有明显划伤痕迹,部分划伤处已开裂;(2)所饭店厨房排水沟位置设置不当,排水沟与埋地电缆交叉,沟底与电缆几乎挨着,没有防渗措施。 综上所述,由于电缆在敷设时,外皮受到机械损伤,埋地深度不够,没有覆盖保护板,加上所饭店厨房排水沟与电缆交叉,沟底与电缆几乎挨着,安全净距为零,且没有采取防渗措施,使电缆长期受到污水浸蚀。当电焊机电源线发生短路时,短路电流使电缆迅速发热,加速了电缆绝缘老化,导致受损处电缆绝缘破损发生相间短路。由于短路产生的电弧温度可以高达6000℃,当电弧遇排水沟中沼气时,就引起窨

浅谈电缆故障测试仪的应用

浅谈电缆故障测试仪的应用 摘要:近年来,襄阳市城市照明发展迅速,路灯电缆敷设范围不断扩大,电缆故障处理难度越来越大。本文以HD4200型电缆故障测试仪在城市照明管理中应用为例,谈谈体会。 关键词:电缆故障测试仪城市照明管理电缆故障检测方法 近年来,襄阳围绕加快建设汉江流域中心城市,全市上下同心同力,城市基础设施建设步伐不断加快,路灯设施覆盖范围也在不断扩大。截止到2017年,襄阳市路灯数量6万多盏,景观灯达20多万盏,敷设路灯电缆总长度700余公里。 随着路灯覆盖范围逐年扩大,维护管理人员大都是新招聘的,再加上外力破坏或自身原因造成线路故障时有发生,从而造成有些故障不能及时的处理,给人们的夜间出行带来了很多不便。如何能够节省处理故障的时间?下面就以笔者使用的HD4200型电缆故障测试仪,谈谈自己的切身体会。 HD4200型电缆故障测试仪 HD4200型电缆故障测试仪是一种集电缆路径探测、埋深测试、相对地绝缘故障定点三位一体的仪器,可探测各种金属传输线的短路、断路故障。该仪器解决了以前各种仪器不能对短路、断路故障精确定点的问题。在设计理论上由以前人们普遍知道的脉冲反射法改为感应法,利用电磁感应的原理来实现该仪器的各种功能。HD4200型电缆故障测试仪中采用了大规模

集成电路和先进的滤波技术,提高了抗干扰力,性能相当稳定,定位精确度高。HD4200型电缆故障测试仪由发射机、接收机、测棒、探头组成的。 电缆故障测试仪在线路故障中应用 案例一:新机场路短路故障 2015年9月16日,接城市照明监控中心监测信号,新机场路2号L2 B无电流,我们赶到现场后,对配电箱里进行初步检查,B相保险丝烧断,用钳形电流表测B相对零线,确认为火零短路,然后我们对故障侧线路,先用钳形电流表进行分段测量线路法,确定故障电缆在哪两根灯杆之间,确定故障区域后再运用故障测试仪查找到故障点,连接好发射机和故障电缆,利用测棒进行电缆路径和可疑故障点的查找,在故障可疑点附近用探针准确定位故障点,最后就是对定位点进行开挖确认,挖开后发现竟是钢管,把钢管口找出来,多余的电缆抽出来后,发现电缆有一根火线和零线却已粘连在一起。修复后线路正常。经分析,故障原因是:在施工过程中放电缆不注意,钢管口把电缆刮伤后导致的。 案例二:武汉路短路故障 2015年5月7日,接城市照明监控中心监测信号,武汉路L1 C相电流低16A。送电后,判断故障在哪两根灯杆之间,确定故障区域后,拿着探棒沿着电缆往前走,若接收机上突然出现信号衰减,我们初步判断此点为可疑故障点,再用探针在这个可疑点附近精确定位,然后开挖证明无误,修复后线路正常。经分析,故障原因是:附近一个灯箱私搭接在我们电缆上,包扎胶带不规范,长期雨水侵蚀导致电缆烧断。

相关文档
最新文档