特征值与特征向量定义与计算

合集下载

特征值与特征向量的求解方式

特征值与特征向量的求解方式

特征值与特征向量的求解方式在线性代数中,特征值与特征向量是重要的概念。

它们的求解在机器学习、图像处理、物理学等诸多领域中具有重要的应用。

本文将介绍特征值与特征向量的概念和求解方式。

一、特征值与特征向量的定义给定一个n阶方阵A,如果存在非零向量x,使得Ax=kx,其中k是一个常数,那么 k 称为矩阵A的特征值,x称为特征值k对应的特征向量。

特别的,当 k=0 时,x称为矩阵A的零向量。

特征值与特征向量有以下重要性质:1. 一个n阶方阵最多有n个不同的特征值。

2. 若A为实对称矩阵,则其特征向量对应的特征值均为实数。

3. 若A为正定矩阵,则其特征值均为正数。

4. 若A可逆,则其特征值均非零。

特征向量的长度一般不为1,我们可以将其归一化得到单位向量,使得 Ax=kx 中的特征向量x满足 ||x||=1。

二、1.利用特征多项式对 n 阶矩阵 A,设λ 为其特征值,用 |A-λI| =0 表示,其中 I 为n 阶单位矩阵。

化简方程,即得到 A 的特征值λ 的解析式。

求得λ 后,代入 (A-λI)x=0,可以得到对应的特征向量 x。

举个例子,对于矩阵 A=[1 2;2 1],我们有| A-λI |= | 1-λ 2; 2 1-λ| = (1-λ)^2 -4 = 0解得λ1=3, λ2=-1。

将λ1,λ2 代入 (A-λI)x=0 中分别求解,即可得到 A 的两个特征向量。

该方法简单易懂,但对于高阶矩阵,求解特征多项式需要高代数计算,计算复杂度较高。

2.利用幂法幂法是求最大特征值与对应特征向量的较为有效的方法。

该方法基于一下简单事实:给定一个向量 x,令 A 去作用若干次,Ax,A^2x,A^3x,...,A^nx,它们的向量长度将快速增长或快速衰减,且它们的比值趋于最大特征对应的幂指数。

假设 A 有一个不为零的特征向量 x,它对应的特征值为λ1,即Ax=λ1x。

那么,A^mx = A^mx/λ1^m λ1x当 m 充分大时, A^mx 与λ1^mx 相比变化就很小了。

一特征值与特征向量的概念

一特征值与特征向量的概念

一特征值与特征向量的概念特征值与特征向量是矩阵与线性变换理论中的重要概念。

它们有助于我们理解矩阵的性质、矩阵的相似性以及线性变换的本质。

在本文中,我将详细介绍特征值和特征向量的概念、计算方法以及它们的应用。

一、特征值与特征向量的定义对于一个n阶矩阵A,如果存在一个非零向量x使得Ax=kx,其中k为一个数,则k称为矩阵A的一个特征值,x称为对应于特征值k的特征向量。

特征值与特征向量的存在是基于以下原理:矩阵A作为一个线性变换,将一个向量x变换成另一个向量Ax。

如果存在一个向量x使得变换后的向量与原向量方向相同或相反,那么这个向量就是一个特征向量,对应的特征值就是这个变换的比例因子。

特征值与特征向量是配对存在的,一个特征向量可以对应多个特征值,一个特征值也可以对应多个特征向量。

二、特征值与特征向量的计算方法要计算矩阵的特征值与特征向量,可通过以下步骤进行:1. 在方程Ax=kx中,对于给定的特征值k,求解齐次线性方程组(A-kI)x=0,其中I为单位矩阵,x即为对应特征值k的特征向量。

2.将齐次线性方程组(A-kI)x=0化为(A-kI)x的行阶梯形式,并求得零空间的基础解系,即特征向量。

对于n阶矩阵A,通常会有n个特征值,但特征值可以有重复。

若特征值的重复次数大于对应特征向量的个数,则称该特征值为特征值的几何重数。

若特征值的重复次数等于对应特征向量的个数,则称该特征值为特征值的代数重数。

三、特征值与特征向量的应用特征值与特征向量在数学和工程领域具有广泛的应用,以下介绍几个重要的应用场景:1.特征值分解特征值分解是将一个矩阵分解为特征值和特征向量的形式,可以用于简化计算、求逆矩阵以及进行数值计算。

特征值分解在信号处理、机器学习中有着重要的应用,例如主成分分析(PCA)和矩阵奇异值分解(SVD)等。

2.矩阵相似性如果两个矩阵具有相同的特征值和对应的特征向量,它们就是相似矩阵。

特征值和特征向量可以帮助我们判断矩阵之间的相似性,进而分析矩阵的性质。

特征值与特征向量的计算方法

特征值与特征向量的计算方法

特征值与特征向量的计算方法特征值与特征向量是矩阵理论中的重要概念,用于解决矩阵特征与变换特性的相关问题。

在本文中,将介绍特征值与特征向量的定义和计算方法,以及它们在实际问题中的应用。

一、特征值与特征向量的定义在矩阵理论中,对于一个n阶方阵A,如果存在一个非零向量x,使得Ax=kx(k为标量),那么k称为矩阵A的特征值,x称为对应于特征值k的特征向量。

特征向量可以理解为在矩阵变换下保持方向不变的向量,而特征值则表示特征向量在变换中的伸缩比例。

二、要计算特征值和特征向量,可以使用以下步骤:1. 首先,由于特征值和特征向量的定义基于方阵,所以需要确保矩阵A是方阵,即行数等于列数。

2. 接下来,根据特征值和特征向量的定义方程Ax=kx,将其改写为(A-kI)x=0(I为单位矩阵)。

3. 为了求解此方程组的非零解,需要求出(A-kI)的零空间(核)。

4. 将(A-kI)的零空间表示为Ax=0的齐次线性方程组,采用高斯消元法或其它线性方程组求解方法,求得方程的基础解系,即特征向量。

5. 特征向量已找到,接下来通过将每个特征向量代入原方程式Ax=kx中,计算出对应的特征值。

值得注意的是,特征值是一个多重属性,即一个特征值可能对应多个线性无关的特征向量。

此外,方阵A的特征值计算方法存在多种,如幂迭代法、QR迭代法等。

三、特征值与特征向量的应用特征值与特征向量在物理、工程、经济等领域具有广泛的应用。

1. 物理学中,特征值与特征向量可用于解析力学、量子力学等领域中的问题,如研究振动系统的固有频率、粒子的角动量等。

2. 工程学中,特征值与特征向量可用于电力系统的稳定性分析、机械系统的振动模态分析等。

3. 经济学中,特征值与特征向量可用于描述经济模型中的平衡点、稳定性等重要特征。

此外,特征值与特征向量在图像识别、数据降维、网络分析等领域也有重要的应用。

总结:特征值和特征向量在矩阵理论中有着重要的地位和应用价值。

通过计算特征值和特征向量,可以揭示矩阵在变换中的性质和特点,并应用于各个学科领域,为问题求解提供了有效的工具和方法。

特征值与特征向量定义与计算

特征值与特征向量定义与计算

特征值与特征向量定义与计算特征值(eigenvalue)和特征向量(eigenvector)是线性代数中重要的概念,在许多数学和科学领域中都有广泛的应用。

特征值和特征向量可以帮助我们理解和解决许多实际问题,如物理的振动问题、量子力学中的量子态等。

设A是一个n阶方阵,如果存在一个非零向量x使得Ax=kx,其中k 是一个常数,那么常数k称为矩阵A的特征值,非零向量x称为矩阵A对应于特征值k的特征向量。

特征值和特征向量的计算:对于给定的方阵A,我们可以通过求解特征方程来计算其特征值和特征向量。

设λ为矩阵A的特征值,x为A对应于λ的特征向量,则有方程(A-λI)x=0,其中I是单位矩阵。

求解特征方程的一般步骤如下:1.计算A-λI,形成一个新的矩阵。

2.根据这个矩阵,设置行列式为0,形成特征方程。

3.解特征方程,即求特征值λ的值。

4.将每一个特征值代入(A-λI)x=0,形成一个线性方程组。

5.解线性方程组,求解特征向量x。

需要注意的是,对于一个n阶矩阵A,其特征值的个数不超过n,且特征值可以是复数。

特征值和特征向量的性质:1.矩阵A和其转置矩阵A^T有相同的特征值。

2.两个矩阵A和B的特征值之和等于它们的直和A⊕B的特征值。

3.两个矩阵A和B的特征值之积等于它们的张量积A⊗B的特征值。

4.方阵A与其逆矩阵A^(-1)的特征值互为倒数,非零特征值满足这个特性。

5.方阵A的特征向量张成一个特征子空间,而特征值决定了这个特征子空间的维度。

特征值和特征向量在线性代数中有许多重要应用,包括:2.特征向量的正交性:特征向量张成的特征子空间中的向量是两两正交的,可以用于求解正交变换、对角化、正交投影等。

3.特征值的重要性:特征值大小可以用于判断矩阵的稳定性、收敛性等性质,可以用于分析无线电信号的频域特征等。

总而言之,特征值与特征向量是矩阵分析中非常重要的概念和工具,它们在物理、工程、计算机科学等领域中都有广泛的应用。

线性代数矩阵的特征值与特征向量

线性代数矩阵的特征值与特征向量

线性代数矩阵的特征值与特征向量矩阵的特征值和特征向量是线性代数中非常重要的概念,具有广泛的应用。

在此,我们将详细介绍特征值和特征向量的定义、性质和计算方法。

希望能对读者理解这两个概念有所帮助。

1.特征值和特征向量的定义在线性代数中,对于一个n阶矩阵A,如果存在一个非零向量x,使得Ax=λx,其中λ是一个标量,则称λ是矩阵A的特征值,x是对应于特征值λ的特征向量。

2.特征值和特征向量的性质(1)对于任意矩阵A和非零向量x,如果Ax=λx,则(x,λ)是(A-λI)的一个特征对,其中I是单位矩阵。

(2)对于任意非零常数k,kλ和kx也是特征值λ和特征向量x的特征对。

(3)如果矩阵A的特征向量x1和x2对应于不同的特征值λ1和λ2,则x1和x2线性无关。

(4)若矩阵A的特征值都不相同,则它一定能够对角化。

3.特征值和特征向量的计算(以2阶矩阵为例)对于一个2阶矩阵A,我们可以通过以下步骤来计算其特征值和特征向量:(1)解特征方程det(A-λI)=0,其中I是单位矩阵。

(2)将特征值代入(A-λI)x=0,求解x的向量,即为对应于特征值的特征向量。

4.实对称矩阵的特征值和特征向量对于实对称矩阵,其特征值一定是实数且存在线性无关的特征向量。

具体计算方法为:(1)求解特征方程det(A-λI)=0,得到特征值λ1, λ2, ..., λn。

(2)将特征值代入(A-λI)x=0,解出x的向量,即为对应于特征值的特征向量。

5.正交矩阵的特征值和特征向量对于正交矩阵,其特征值的模一定是1,且特征向量是两两正交的。

具体计算方法同样为求解特征方程和特征向量方程。

6.特征值和特征向量的应用特征值和特征向量有广泛的应用,例如:(1)主成分分析(PCA):利用特征值和特征向量可以找到数据的主要特征方向,用于数据降维和分析。

(2)图像处理:利用特征值和特征向量可以进行图像压缩、增强和分析。

(3)物理学中的量子力学:波函数的特征值和特征向量对应着物理量的测量结果和对应的本征态。

特征值与特征向量的概念与计算

特征值与特征向量的概念与计算

求数量矩阵 的特征值和特征向量.

因此,所有n维非零向量都是此数量矩阵的特征向量,即特征向量可表示为

例 设矩阵 A 可逆, 且 解2 Nhomakorabea1
3

设 为矩阵 的特征值, 求 的特征值;
若 可逆,求 的特征值.
4

01

02


5.1.2 特征子空间
1
因此,(λI - A) X = 0 的解空间就是A 的特征子空间
3
2
特征向量是齐次线性方程组 (λI - A) X = 0 的解
特征值与特征向量的计算
是关于 的一个多项式,称为矩阵A的特征多项式,
称为矩阵A的特征方程,
定义
特征方程
记为 f (λ),
01
04
02
03
5.1 特征值与特征向量的概念与计算
单击此处添加副标题
5.1.1 特征值与特征向量的定义 定义 设 A 是 n 阶方阵, 是方阵A的一个特征值, 为方阵A的对应于特征值 的一个特征向量. 若存在数 和 n 维非零列向量 ,使得 成立,则称



设 A2 = A , 证明:A 的特征值为 0 或 1 .

定理 设n阶方阵 的n个特征值为

称为矩阵A的迹.(主对角元素之和)
注 A可逆的条件.
证明
设A为3阶方阵, A的特征值分别为 -1、4、2, 求
01

02

代入齐次线性方程组
求非零解.
齐次线性方程组为
当 时,
系数矩阵
自由未知量
令 得基础解系
常数)是对应于

特征值和特征向量的基本定义及运算

特征值和特征向量的基本定义及运算

特征值和特征向量的基本定义及运算特征值和特征向量是线性代数中的两个重要概念,广泛应用于机器学习、图像处理、信号处理等领域中。

本文旨在介绍特征值和特征向量的基本定义及运算,并探讨其在实际中的应用。

一、特征值与特征向量的定义在线性代数中,矩阵是一个非常重要的概念。

一个 n × n 的矩阵 A 是由 n 行 n 列的元素组成的,并且可以用列向量的形式表示为 A = [a1, a2, ..., an]。

其中,ai 表示矩阵 A 的第 i 列的列向量。

矩阵 A 的特征向量是指一个非零向量 v,满足Av = λv,其中λ 是一个常数,称作该矩阵的特征值。

通常情况下,特征向量 v 与特征值λ 是成对出现的,即一个特征向量对应一个特征值。

二、特征值与特征向量的求解特征值和特征向量的求解是线性代数中的一个经典问题。

一般情况下,可以通过求解矩阵 A 的特征多项式来求解其特征值。

设矩阵 A 的特征多项式为f(λ) = |A - λI|,其中 I 表示单位矩阵。

则 A 的特征值即为方程f(λ) = 0 的根。

对于每个特征值λ,可通过解如下方程组来求解对应的特征向量:(A - λI)v = 0其中,v 表示特征向量,0 表示零向量。

上述方程组的解空间为 A - λI 的零空间,也称为矩阵 A 的特征子空间。

如果矩阵 A 的特征值λ 是重根,则λ 对应的特征向量有多个线性无关的向量。

此时,可求解齐次线性方程组 (A - λI)v = 0 的基础解系,从中选取线性无关的向量作为特征向量。

三、特征值与特征向量的性质特征值与特征向量有一些重要的性质,其中较为常见的包括:1. 特征值的和等于矩阵的迹设矩阵 A 的特征值为λ1, λ2, ..., λn,则有:λ1 + λ2 + ... + λn = tr(A)其中,tr(A) 表示矩阵 A 的迹,即主对角线上元素的和。

2. 特征值的积等于矩阵的行列式设矩阵 A 的特征值为λ1, λ2, ..., λn,则有:λ1 λ2 ... λn = |A|其中,|A| 表示矩阵 A 的行列式。

线性代数中的特征值和特征向量

线性代数中的特征值和特征向量

线性代数中的特征值和特征向量线性代数是一门研究向量空间和线性变换的数学分支。

在其核心概念之一中,常常涉及到特征值和特征向量。

特征值和特征向量是在变换下保持方向的向量,这样的向量在研究中经常被用到,因为它们描述了变换对向量空间的作用。

在特征值及其对应的特征向量方面,我们可以从以下几个方面来展开:一、特征值和特征向量的定义特征值是指线性变换作用于某一向量时,其结果与这个向量的数量关系,这个数量关系可以用一个数值来表示,这个数值就称为这个向量在该变换下的特征值。

特征向量是一条非零向量,变换作用在这个向量上时,仅改变向量的长度,而不改变它的方向。

也就是说,这个向量在该变换下的方向不变,只是相应地拉伸或缩短了。

二、特征值和特征向量的计算方法在计算特征值和特征向量时,可以采用以下方法:1.求解对角矩阵对于n阶矩阵A,如果存在一个列向量X,使得AX=kX,其中k为一个数,则称k是矩阵A的一个特征值,而X称为A的对应于特征值k的特征向量。

而一个矩阵的特征值和特征向量可以通过求解其对角化矩阵得到。

2.求解特征多项式特征多项式是矩阵的特征值所满足的多项式方程,我们可以通过求解这个方程来求解矩阵的特征值和特征向量。

对于一个n阶方阵,其特征多项式是由其任意一行(列)对角线上各元素和行(列)号交织奇偶性给出。

三、特征值和特征向量在实际应用中的作用特征值和特征向量在实际应用中有着广泛的应用。

比如说,在图像处理中,我们可以采用特征向量的方法来实现图像的压缩和去噪;在机器学习中,我们可以采用特征值和特征向量的方法来实现数据的降维和特征选择。

另外,在计算机图形学、信号处理、量子力学和金融等领域中,特征值和特征向量也被广泛运用,它们帮助我们将复杂的问题转化成简单的数学运算,提高了问题的解决效率和精度。

总之,特征值和特征向量是线性代数中的重要概念,在实际应用当中发挥着不可替代的作用。

了解它们的定义、计算方法和应用,对于我们掌握基本的数学分析能力和工程应用能力是必不可少的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

特征值与特征向量
特征值与特征向量的概念及其计算
定义1. 设A是数域P上的一个n阶矩阵,λ是一个未知量,
称为A的特征多项式,记ƒ(λ)=| λE-A|,是一个P上的关于λ
的n次多项式,E是单位矩阵。

ƒ(λ)=| λE-A|=λn+α1λn-1+…+αn= 0是一个n次代数方程,称为A 的特征方程。

特征方程ƒ(λ)=| λE-A|=0的根 (如:λ0) 称为A的特征根(或特征值)。

n次代数方程在复数域内有且仅有n 个根,而在实数域内不一定有根,因此特征根的多少和有无,不仅与A有关,与数域P也有关。

以A的特征值λ0代入 (λE-A)X=θ,得方程组 (λ0E-A)X=θ,是一个齐次方程组,称为A的关于λ0的特征方程组。

因为 |λ0E-A|=0,(λ0E-A)X=θ必存在非零解X(0),X(0) 称为A的属于λ0的特征向量。

所有λ0的特征向量全体构成了λ0的特征向量空间。

一.特征值与特征向量的求法
对于矩阵A,由AX=λ0X,λ0EX=AX,得:
[λ0E-A]X=θ即齐次线性方程组
有非零解的充分必要条件是:
即说明特征根是特征多项式 |λ0E-A| =0的根,由代数基本定理
有n个复根λ1, λ2,…, λn,为A的n个特征根。

当特征根λi(I=1,2,…,n)求出后,(λi E-A)X=θ是齐次方程,λi 均会使 |λi E-A|=0,(λi E-A)X=θ必存在非零解,且有无穷个解向量,(λi E-A)X=θ的基础解系以及基础解系的线性组合都是A的特
征向量。

例1. 求矩阵的特征值与特征向量。

解:由特征方程
解得A有2重特征值λ1=λ2=-2,有单特征值λ3=4
对于特征值λ1=λ2=-2,解方程组 (-2E-A)x=θ
得同解方程组 x1-x2+x3=0
解为x1=x2-x3 (x2,x3为自由未知量)
分别令自由未知量
得基础解系
所以A的对应于特征值λ1=λ2=-2的全部特征向量为
x=k1ξ1+k2ξ2 (k1,k2不全为零)
可见,特征值λ=-2的特征向量空间是二维的。

注意,特征值在重根时,特征向量空间的维数≤特征根的重数。

对于特征值λ3=4,方程组 (4E-A)x=θ
得同解方程组为
通解为
令自由未知量 x3=2 得基础解系
所以A的对于特征值λ3=4 得全部特征向量为 x= k3 ξ3例2.求矩阵的特征值与特征向量解:由特征方程
解得A有单特征值λ1=1,有2重特征值λ2=λ3=0
对于λ1=1,解方程组 (E-A) x = θ
得同解方程组为
同解为
令自由未知量 x3=1,得基础解系
所以A的对应于特征值λ1=1的全部特征向量为 x=k1ξ1 (k1≠0)
对于特征值λ2=λ3=0,解方程组 (0E-A)=θ
得同解方程组为
通解为
令自由未知量 x3=1,得基础解系
此处,二重根λ=0 的特征向量空间是一维的,特征向量空间的维数<特征根的重数,这种情况下,矩阵A 是亏损的。

所以A的对应于特征值λ2=λ3=0 得全部特征向量为 x=k2ξ3
例3.矩阵的特征值与特征向量
解:由特征方程
解得A的特征值为λ1=1, λ2=i, λ3=-i
对于特征值λ1=1,解方程组 (E-A)=θ,由
得通解为
令自由未知量 x1=1,得基础解系ξ1=(1,0,0)T,所以A的对应于特征值λ1=1得全部特征向量为 x=k1ξ1
对于特征值λ2=i,解方程组 (iE-A)=θ
得同解方程组为
通解为
令自由未知量 x3=1,得基础解系ξ2=(0,i,1)T,所以A对应于特征值λ2=1的全部特征向量为 x=k2ξ2 (k2≠0)。

对于特征值λ3=-i,解方程组 (-E-A)x=θ,由
得同解方程组为
通解为
令自由未知量 x3=1,,得基础解系ξ3=(0,-i,1)T,所以A的对应于λ3=-i的全部特征向量为 x=k3ξ3。

特征根为复数时,特征向量的分量也有复数出现。

特征向量只能属于一个特征值。

而特征值λi的特征向量却有无穷多个,他们都是齐次线性方程组 (λi E-A)x=θ的非0解。

其中,方程组(λi E-A)x=θ的基础解系就是属于特征值λi的线性无关的特征向量。

性质1. n阶方阵A=(a ij)的所有特征根为λ1,λ2,…, λn(包括重根),则
证第二个式子:
由伟达定理,λ1λ2…λn=(-1)nαn
又 |λE-A|=λn+α1λn -1+…+αn-1λ1+αn中用λ=0 代入二边,得:|-A|=αn,而 |A|=(-1)nαn= λ1λ2…λn,
性质2. 若λ是可逆阵A的一个特征根,x为对应的特征向量,则是A-1的一个特征根,x仍为对应的特征向量。

证:
可见是A-1的一个特征根。

其中λ≠0,这是因为0不会为可逆阵的特征根,不然,若λi=0, |A|= λ1λ2…λn=0,A奇异,与A可逆矛盾。

性质3. 若λ是方阵A的一个特征根,x为对应的特征向量,则
λm是A m的一个特征根,x仍为对应的特征向量。

证:1) Ax=λx,二边左乘A,得:A2x=Aλx=λAx=λλx=λ2x,
可见λ2 是 A2 的特征根;
2) 若λm 是 A m 的一个特征根,A m x= λm x,
二边左乘A,得:A m+1x=AA m x=Aλm x=λm Ax=λmλx=λm+1x,
得λm+1是A m+1的特征根
用归纳法证明了λm 是 A m 的一个特征根。

性质4. 设λ1,λ2,…, λm是方阵A的互不相同的特征值。

x j是属于λi的特征向量( i=1,2,…,m),则 x1,x2,…,x m线性无关,即不相同特征值的特征向量线性无关。

性质4给出了属于不相同特征值的特征向量之间的关系,因而是一个很重要的结论。

性质4可推广为:设λ1,λ2,…, λm为方阵A的互不相同的特征值,x11,x12,…,x1,k1是属于λ1的线性无关特征向量,……,x m1,x m2,…,x m,k1是属于λm 的线性无关特征向量。

则向量组 x11,x12,…,x1,k1,…,
x m1,x m2,…,x m,k1也是线性无关的。

即对于互不相同特征值,取他们各
自的线性无关的特征向量,则把这些特征向量合在一起的向量组仍是线性
无关的。

(注:文档可能无法思考全面,请浏览后下载,供参考。

可复制、编制,期待你的好评与关注)。

相关文档
最新文档