构件四种基本变形-受力特点

合集下载

材料力学--名词解释与简答题及答案

材料力学--名词解释与简答题及答案

材料力学—名词解释与简答题及答案一、名词解释1.强度极限:材料σ-ε曲线最高点对应的应力,也是试件断裂前的最大应力。

2.弹性变形:随着外力被撤消后而完全消失的变形。

3..塑性变形:外力被撤消后不能消失而残留下来的变形。

4..延伸率:δ=(l1-l)/l×100%,l为原标距长度,l1为断裂后标距长度。

5.断面收缩率:Ψ=(A-A1)/A×100%,A为试件原面积,A1为试件断口处面积。

6.工作应力:杆件在载荷作用下的实际应力。

7.许用应力:各种材料本身所能安全承受的最大应力。

8.安全系数:材料的极限应力与许用应力之比。

9.正应力:沿杆的轴线方向,即轴向应力。

10.剪应力:剪切面上单位面积的内力,方向沿着剪切面。

11.挤压应力:挤压力在局部接触面上引起的压应力。

12.力矩:力与力臂的乘积称为力对点之矩,简称力矩。

13.力偶:大小相等,方向相反,作用线互相平行的一对力,称为力偶14.内力:杆件受外力后,构件内部所引起的此部分与彼部分之间的相互作用力。

15.轴力:横截面上的内力,其作用线沿杆件轴线。

16.应力:单位面积上的内力。

17..应变:ε=Δl/l,亦称相对变形,Δl为伸长(或缩短),l为原长。

18.合力投影定理:合力在坐标轴上的投影,等于平面汇交力系中各力在坐标轴上投影的代数和。

19.强度:构件抵抗破坏的能力。

20.刚度:构件抵抗弹性变形的能力。

21.稳定性:受压细长直杆,在载荷作用下保持其原有直线平衡状态的能力。

22.虎克定律:在轴向拉伸(或压缩)时,当杆横截面上的应力不超过某一限度时,杆的伸长(或缩短)Δl与轴力N及杆长l成正比,与横截面积A成正比。

22.拉(压)杆的强度条件:拉(压)杆的实际工作应力必须小于或等于材料的许用应力。

23.剪切强度条件:为了保证受剪构件在工作时不被剪断,必须使构件剪切面上的工作应力小于或等于材料的许用剪应力。

24.挤压强度条件:为了保证构件局部受挤压处的安全,挤压应力小于或等于材料的许用挤压应力。

第四单元 构件基本变形的分析

第四单元 构件基本变形的分析
由于杆件原来处于平衡状态,故截开后的两段 也应处于平衡状态。
由平衡方程
FX 0
FN F 0 FN F
左右
截面法求内力的步骤
1、截:在欲求处假想用截面将构件截成两段。 2、取:取其中任意一段为研究对象。 3、代:用作用于截面上的内力,代替切去部
分对留下部分的作用力。 4、平:对研究对象列平衡方程,由外力确定
图4-10
解:(1)计算外力(设约束反力FR)如图 ΣFx = 0 - FR - F1 +F2 = 0
FR = - F1 + F2 = - 50 + 140 = 90KN (FR方向是正确的)
FR
X
(2)计算各截面上的轴力并画出轴力图
1-1截面上的轴力
FN1= - F 1
= - 50KN FR
(杆受压)
第四单元 构件基本变形的分析
学习目标
通过本单元的学习,了解有关构件基 本变形的概念及形式,明确求解构件在各 种基本变形状态下的内力和应力,掌握强 度条件和刚度条件的公式,并能应用其解 决简单的工程问题。
综合知识模块一 基本变形分析的基础
能力知识点1
变形分析的基本概念
一、变形固体及其基本假设
任何物体受载荷(外力)作用后其内部质 点都将产生相对运动,从而导致物体的形状和 尺寸发生变化,称为变形。
构件的承载能力分为:
强度、刚度、稳定性。
一、强度
构件抵抗破坏的能力。 构件在外力作用下不破坏必须具有足够 的强度,例如房屋大梁、机器中的传动轴不 能断裂,压力容器不能爆破等。
强度要求是对构 件的最基本要求。
二、刚度
构件抵抗变形的能力。 在某些情况下,构件虽有足够的强度,但若 受力后变形过大,即刚度不够,也会影响正常工 作。例如机床主轴变形过大,将影响加工精度; 吊车梁变形过大,吊车行驶时会产生较大振动, 使行驶不平稳,有时还会产生“爬坡”现象,需要 更大的驱动力。因此对这类构件要保证有足够的 刚度。

浅析材料力学四种基本变形的异同点

浅析材料力学四种基本变形的异同点

浅析材料力学四种基本变形的异同点公主岭市职业教育中心宋静辉机械基础高等教育中材料力学的研究范围主要限于杆件,即长度远大于宽度和厚度的构件。

作用远杆件上的外力有各种形式,但杆件的基本变形形式只有四种:拉伸或压缩(简称拉压)、剪切、扭转和弯曲。

这四种基本变形是材料力学的重点内容,构成了材料力学理论体系中的一个个独立部分,学生学习时后很容易混淆。

现分析和总结四种基本变形的异同点,便于学生学习和理解。

一、四种变形的不同点1.受力特点不同。

受拉伸或压缩的构件大多是等截面直杆,其受力特点是:作用在杆端的两外力(或外力的全力)大小相等,方向相反,力的作用线与杆件的轴线重合。

工程中的连接件(如铆钉、螺栓等)会发生剪切变形,其受力特点是:作用的构件两侧面上外力的全力大小相等,作用线平行且相距很近;另外,承受剪切作用的连接件在传力的接触面上同时还受挤压力作用。

机械中的轴类零件往往产生扭转变形,其受力特点是:在垂直于轴线的平面内,作用着一对大小相等、方向相反的力偶。

梁是机器设备和工程结构中最重要的构件,主要发生弯曲变形,其受力特点是:作用在梁上的外边与其轴线垂直.若这些外力只是一对等值反向的力偶时,则称为纯弯曲。

2.变形特点不同。

构件在外力作用下发生的几何形状和尺寸变化称为变形。

拉压变形的特点是杆件沿轴线方向伸长或缩短;剪切变形的变形特点是介于两作用之间的各截面有沿作用力方向发生相对错动的趋势;扭转变形的变形特点是轴的各截面绕轴线将由直线变成曲线。

3.内力不同。

物体内某一部分与另一部分间相互作用的力称为内力。

构件在受到外力作用的同时,其内部将产生相应的内力。

对于发生拉压变形的杠件,内力遍及整个杆体内部,因为外力的作用线与杆件的轴线重合,故分布内力的合力作用线也必与杆件轴线重合,这种内力称为轴力。

轴力或为拉力或为压力。

构件受剪切时的内力称为剪刀,剪力分布在剪切面上(受剪件中发生相对错动的截面),其分布比较复杂,在工程实力是一个截面平面内的力偶,其力偶矩称为截面上的扭矩。

机械基础(复习题)

机械基础(复习题)

一、填空题1.两构件之间以 ______ 或_______ 接触的运动副称为高副。

答案:点、线2.构件在不同形式的外力作用下,变形形式也各不相同,其基本变形有四种:___________、 ___________ 、 ___________ 和 ___________ 。

答案:拉伸或压缩变形、剪切变形、扭转变形、弯曲变形3.曲柄摇杆机构如果取 ___________为主动件时,机构将会出现 _________ 位置。

答案:摇杆、止点4.按凸轮的形状,凸轮机构分为 _______ 机构、 _______ 机构和 _______ 机构三种。

答案:盘形凸轮、圆柱凸轮、移动凸轮5.摩擦离合器依靠主动、从动盘接触面产生的摩擦力矩来传递扭矩。

它可分为___________ 和 ___________两种。

答案:单片式、多片式6. ___________ 和 ___________之间的距离,称为力臂。

答案:力、转动轴线7.常用花键按其齿形分为 ___________花键和 ___________花键两类。

答案:矩形花键、渐开线花键8. 联轴器根据对各种相对位移有无补偿能力,可分___________和___________两大类。

答案:刚性联轴器、挠性联轴器9.两构件通过 _______接触的运动副称为低副。

答案:面10.构件在不同形式的外力作用下,变形形式也各不相同,其基本变形有四种:___________、 ___________ 、 ___________和 ___________。

答案:拉伸或压缩变形、剪切变形、扭转变形、弯曲变形11. 满足曲柄存在条件的铰链四杆机构,取最短杆为机架时,为_______机构,取最短杆为连杆时,为_______机构。

答案:双曲柄机构、双摇杆机构12.按凸轮从动件末端形状分类,凸轮机构分为 _______ 机构、_______ 机构和 _______机构三种。

答案:尖顶从动件、滚子从动件、平底从动件。

材料力学--名词解释与简答题及答案

材料力学--名词解释与简答题及答案

材料力学—名词解释与简答题及答案一、名词解释1.强度极限:材料σ-ε曲线最高点对应的应力,也是试件断裂前的最大应力。

2.弹性变形:随着外力被撤消后而完全消失的变形。

3..塑性变形:外力被撤消后不能消失而残留下来的变形。

4..延伸率:δ=(l1-l)/l×100%,l为原标距长度,l1为断裂后标距长度。

5.断面收缩率:Ψ=(A-A1)/A×100%,A为试件原面积,A1为试件断口处面积。

6.工作应力:杆件在载荷作用下的实际应力。

7.许用应力:各种材料本身所能安全承受的最大应力。

8.安全系数:材料的极限应力与许用应力之比。

9.正应力:沿杆的轴线方向,即轴向应力。

10.剪应力:剪切面上单位面积的内力,方向沿着剪切面。

11.挤压应力:挤压力在局部接触面上引起的压应力。

12.力矩:力与力臂的乘积称为力对点之矩,简称力矩。

13.力偶:大小相等,方向相反,作用线互相平行的一对力,称为力偶14.内力:杆件受外力后,构件内部所引起的此部分与彼部分之间的相互作用力。

15.轴力:横截面上的内力,其作用线沿杆件轴线。

16.应力:单位面积上的内力。

17..应变:ε=Δl/l,亦称相对变形,Δl为伸长(或缩短),l为原长。

18.合力投影定理:合力在坐标轴上的投影,等于平面汇交力系中各力在坐标轴上投影的代数和。

19.强度:构件抵抗破坏的能力。

20.刚度:构件抵抗弹性变形的能力。

21.稳定性:受压细长直杆,在载荷作用下保持其原有直线平衡状态的能力。

22.虎克定律:在轴向拉伸(或压缩)时,当杆横截面上的应力不超过某一限度时,杆的伸长(或缩短)Δl与轴力N及杆长l成正比,与横截面积A成正比。

22.拉(压)杆的强度条件:拉(压)杆的实际工作应力必须小于或等于材料的许用应力。

23.剪切强度条件:为了保证受剪构件在工作时不被剪断,必须使构件剪切面上的工作应力小于或等于材料的许用剪应力。

24.挤压强度条件:为了保证构件局部受挤压处的安全,挤压应力小于或等于材料的许用挤压应力。

机械零件与典型机构13构件受力与变形-精选文档

机械零件与典型机构13构件受力与变形-精选文档

机床主轴,在工作过程中虽然没有破坏,但如果
主轴的变形过大,则将影响机床的加工精度而使 零件报废,破坏齿轮的正常啮合,引起轴承的不 均匀磨损,造成机器无法正常工作。
3.足够的稳定性 受压的细长杆和薄壁构件,当载荷增加时,可能出现突然 失去初始平衡形态的现象,称为丧失稳定。 克夫达河桥失稳 莫兹尔桥失稳
力系平面任意力系的平衡方程
∑Fx = 0 ∑Fy = 0 ∑M(F) = 0
二、对机械零件的要求 失效:机械零件丧失工作能力或达不到要求的性能时
称为失效。
1.足够的强度 强度:零件抵抗破坏的能力,称为强度。 机械零部件一般都必须具有足够的强度。
2.足够的刚度 刚度:零件抵抗变形的能力,称为刚度。
成的平行四边形的对角线来表示。
力的合成与分解
2.力矩 力矩的概念: 在力学上用 F 与 d 的乘积及其转向来度量
力 F 使物体绕O点转动的效应,称为力 F
对O点之矩,简称力矩,以符号(F)表示, 即: (F)= ± Fd 点称为力矩中心,简称矩心; 点到力 F 作
用线的垂直距离 d 称为力臂。
力矩的正负:
名称 图示 描述
外力作用线垂 直于杆轴,或外 力偶作用在杆 轴平面内。
名称
图示
描述
各横线仍为直 线,横线之间相 对转动,仍与纵 线正交;纵线变 为弧线,受压侧 弧线变短, 受拉一侧弧线变 长。


变形现象


应力分布
正应力沿截面高 度按直线规律变 化,中性轴上为 零。
强度条件
max
M W max
(2)扭转 机械装置中的轴类零件大都承受扭转的作用。 扭转变形的特点:构件受到大小相等、方向相反、作用 面垂直于轴线的力偶;

机械基础(多学时)第3版 第三章 机械构件的强度与刚度

机械基础(多学时)第3版 第三章  机械构件的强度与刚度
取一等直杆,在其侧面上划两条垂直于轴线的直线ab、 cd,如图a所示。并在杆的两端加一对轴向拉力FP,使其产 生拉伸变形。
如将杆件设想为由无数纵向纤维所组成,由此推想它 们的受力是相同的,在横截面上各点的内力是均匀分布 的,横截面上各点的应力也是相等的。若以FN表示内力 (N),A表示横截面积(mm2),则应力σ(MPa)的大小 为
二、轴向拉伸和压缩时的内力 零件受到外力作用时,由于内部各质点之间的相对位
置的变化,材料内部会产生一种附加内力,力图使各质点 恢复其原来位置。附加内力的大小随外力的增加而增加, 当附加内力增加到一定限度时,零件就会破坏。因此,在 研究零件承受载荷的能力时,需要讨论附加内力。后面的 讨论中所述的内力,都是指这种附加内力。
2.虎克定律 实验表明,轴向拉伸或压缩的杆件,当应力不超过某
一限度时,轴线变形Δl与轴向载荷FN及杆长l成正比,与杆 的横截面面积成反比。这一关系称为虎克定律,即
引进比例常数E,则有
比例常数E称为弹性模量,其值随材料不同而异。 则有
σ = Eε 上式是虎克定律的又一表达形式,即虎克定律可以表述 为:当应力不超过某一极限时,应力与应变成正比。
根据拉伸过程中试样承受的应力 和产生的应变 之间 的关系,可以绘出该金属的 曲线。
图3-5 低碳钢拉伸试验曲线(R-ε曲线)
通过对低碳钢的 曲线分析可知,试样在拉伸过 程中经历了弹性变形(oab段)、塑性变形(bcde段) 和断裂(e点)三个阶段。
弹性变形阶段,试样的变形与应力始终呈线性关系。 应力Rb称为塑性延伸强度 。图中直线oa的斜率就是材料 的弹性模量E。
第三章 机械构件的强度与刚度
第一节 准备知识
一、内力、截面法
1. 内力

构件四种基本变形-受力特点

构件四种基本变形-受力特点
杆件两端垂直杆轴线平面内受到一对大小相等、方向相反的力偶作用
1、宏观变形:构件表面的纵向水平线倾斜了一个角度。
2、微观变形:各横截面绕杆轴线发生了沿力偶作用方向的相对转动。
扭矩
T
弯曲变形
(平面弯曲)
受弯构件
梁、板
杆件受到通过杆轴线平面内的力偶作用、或受到垂直于杆轴线的横向力(集中力、均布荷载)作用
1、宏观变形:构件出现了上Байду номын сангаас下凸或下凹上凸,轴线由直线变成曲线。
四种构件基本变形汇总
基本变形类型
构件名称
典型构件
受力特点
(受力后构件保持平衡)
变形特点
(符合平面假设)
产生内力
轴向拉伸、压缩变形
轴向拉伸、压缩构件
轴压柱
杆件两端沿轴线方向作用一对大小相等、方向相反的轴向力作用
1、宏观变形:
受拉时,杆件伸长、截面变小;
受压时,杆件缩短、截面变大。
2、微观变形:(符合平面假设)
2、微观变形:
纵向纤维:构件由下部至上部,纵向纤维从伸长或压缩逐渐过渡到压缩或伸长,且上、下边缘的变化最大;截面中部有一既不伸长也不压缩的中性层。
横截面:各横截面发生了不同程度的位移和绕截面中性轴的微小转动。
剪力、弯矩
FS、M
纵向纤维:伸长或缩短均相等。
横截面:发生了沿外力作用方向的相对位移。
轴力
FN
剪切变形
受剪构件
铆钉、螺杆
杆件受一对大小相等、方向相反、作用线平行及相距很近的横向力作用
1、宏观变形:在两个力作用中间被剪断。
2、微观变形:介于两横向之间的各横截面沿外力作用方向发生相对错动。
剪力
FS
扭转变形
受扭构件
轴、雨篷梁
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四种构件基本变形汇总
基本变形类型
构件名称
典型构件
受力特点
(受力后构件保持平衡)
变形特点
(符合平面假设)
产生内力
轴向拉伸、压缩变形
轴向拉伸、压缩构件
轴压柱
杆件两端沿轴线方向作用一对大小相等、方向相反的轴向力作用
1、宏观变形:
受拉时,杆件微观变形:(符合平面假设)
杆件两端垂直杆轴线平面内受到一对大小相等、方向相反的力偶作用
1、宏观变形:构件表面的纵向水平线倾斜了一个角度。
2、微观变形:各横截面绕杆轴线发生了沿力偶作用方向的相对转动。
扭矩
T
弯曲变形
(平面弯曲)
受弯构件
梁、板
杆件受到通过杆轴线平面内的力偶作用、或受到垂直于杆轴线的横向力(集中力、均布荷载)作用
1、宏观变形:构件出现了上凹下凸或下凹上凸,轴线由直线变成曲线。
纵向纤维:伸长或缩短均相等。
横截面:发生了沿外力作用方向的相对位移。
轴力
FN
剪切变形
受剪构件
铆钉、螺杆
杆件受一对大小相等、方向相反、作用线平行及相距很近的横向力作用
1、宏观变形:在两个力作用中间被剪断。
2、微观变形:介于两横向之间的各横截面沿外力作用方向发生相对错动。
剪力
FS
扭转变形
受扭构件
轴、雨篷梁
2、微观变形:
纵向纤维:构件由下部至上部,纵向纤维从伸长或压缩逐渐过渡到压缩或伸长,且上、下边缘的变化最大;截面中部有一既不伸长也不压缩的中性层。
横截面:各横截面发生了不同程度的位移和绕截面中性轴的微小转动。
剪力、弯矩
FS、M
相关文档
最新文档