第三讲 基本体三面投影

合集下载

第三章 几何形体的三面投影

第三章 几何形体的三面投影
视图只能表示组合体的形状,而各形体的真实大小及其相互位置,要靠 尺寸标注来确定。 (一)组合体的尺寸类型 定形尺寸:确定组合体各基本几何形状大小的尺寸。
定位尺寸:确定组合体各组成部分之间相位位置的尺寸。
总尺寸:确定组合体的总长、总宽、总高的尺寸。 如图3.12所示。
图3.12 组合体的尺寸标注
(二)标注尺寸应注意以下原则: 1、尺寸标注必须正确,每个尺寸只标注一次,不能有重复和多余的 尺寸,更不能出现遗漏和错误。 2、在标注尺寸时,首先定好尺寸基准,通常是用较大的平面、对称 面、轴线和中线为尺寸基准(如课本图3-17)。
(一)形体分析 分析组合体由哪些基本形体组成以及形体间的位置关 系。
(二)选择视图
分析完组合体的组成,要选择正立面图的投射方向。 1、要求正立面图能够较多地表达物体的形状特征,将反映建筑物外貌特征 的表面平行于正立投影面。 2、让建筑形体处于工作状态,如梁应水平放置,柱子应竖直放置,台阶应 正对识图人员,这样识图人员较易识图
一 棱柱的投影
如图3.2所示,棱柱由棱面、顶面和底面构成,棱柱的侧棱、底 面互相平行。
图3.2 三棱柱
二 棱锥的投影
棱锥也有正棱锥和斜棱锥之分,棱锥由若干个三角形的棱锥面和
三 棱台的投影
将棱锥体用平行于底面的平面切割去上部,余下的部分称为棱台 ,如图3.3(a)所示,将其置于三面投影体系中,投影图如图3.3 (c)所示。
(一)叠加型组合体:由若干个 基本几何形体重叠在一起组成的 形体。如图3.8所示。
图3.8 叠加式组合体
(二)挖切型组合体:指一个基本几何体被挖切后所形成的形体。 如图3.9所示。
图3.9 挖切型组合体
二、组合体的投影
形体分析法就是以上面前三点为基础,根据基本体投影图的特点,将建 筑形体投影图分解成若干个基本体的投影图,分析各基本体的形状,根 据三面投影规律了解各基本体的相对位置,最后综合起来想出形体的整 体形状。

投影基本知识—三面正投影(建筑构造)

投影基本知识—三面正投影(建筑构造)

规定正面V不动,将水平面H绕OX轴向下旋转90°,侧面W绕OZ 轴向右旋转90°,就得到如下图所示的在同一平面上的三个视图。
三面正投影 四、三面投影图的对应关系

X 长



Z 宽
YH
V面投影反映物体长度、高度。 H面投影反映物体长度、宽度。 W面投影反映物体高度、宽度。
YW
V,H两面投影反映物体长度且左右对 齐,称为“长对正” V,W两面投影反映物体高度且上下对 齐,称为“高平齐” H,W两面投影反映物体宽度且前后对 齐,称为“宽相等”
三面正投影
三面正投影 一、正投影的特性
1.显实性 显实性:若线段和平面图形平行于投影面, 其投影反映实长或实形。
正投影的显实性
三面正投影 一、正投影的特性
2.积聚性 积聚性:若线段和平面图形垂直于投影面,其投影积聚为一点或一直线段。
正投影的积聚性
三面正投影 一、正投影的特性
3.类似性 类似性:若线段和平面图形倾斜于投影面,其投影短于实长或小于实形,但与 空间图形类似。
正投影的类似性
三面正投影
1、单面投影
二、三面正投影的由来
2、两面投影
单面投影只能反映物体两个方向的量
两面投影可以反映物 体三维方向的量
但是两面投影可能不是
唯一形体的投影
三面正投影 二、三面正投影的由来
右图为空间3个不同形状的形体,它们在同一投影面上的投影却 是相同的。
由图可以看出:虽然一个投影面能够准确的表现出形体的一个侧面 的形状,但不能表现出形体的全部形状。
三面正投影
举例画出三视图
五、三面正投影的绘制
正三棱锥
正视图
侧视图
俯视图

第三章 基本体的三视图

第三章 基本体的三视图

例3:如图所示,已知球面对V面的转向轮廓线上点的1’ 投影,求1”、1;又知它对V的转向轮廓线上的点水平 投影2,求2’、2”。
球面转向轮廓线上点的投影的求解步骤与上一图例相 似,作图过程如图所示。
2’ 1’ 2”
y
1”
2 y
1
练 习 题
1. 根据立体图,找出相对应的三视 图,并在括号内填写相应编号。 2. 根据立体图及所给观察方向,画 出相应的三视图。 3. 根据立体图及所给观察方向,画 出相应的三视图。
1. 根据立体图找出相应三视图,并在括号内填写相应编号。









11

12
请点击解答显示其内容
2. 根据立体图及所给观察方向,画出相应的三视图。
S
请点击解答显示其内容
3. 根据立体图及所给观察方向,画出相应的三视图。
S
请点击解答显示其内容
k


k

n

n
圆的半径?
辅助圆法
k
n

例1: 已知三棱锥棱线上一点的V面投影1′和另一点 的V面投影2′,求两点的其它各面相应投影1″、1及 2、2″。
作图步骤:
y 1“ 2′ 1′ 2″ ⑴过点的V面投影1’作水平投 射线,投射线与W面相应棱线 投影的交点即为投影1”;根 据“宽一致”的投影规律, 在W面投影中量取1”的Y坐标 值,然后在H面相应棱线的投 影上直接量取Y,得H面投影1。 ⑵过点的V面投影2’分别作水 平投射线和垂直投射线,水 平投射线与W面相应棱线投影 的交点即为投影2”,垂直投 射线与H面相应棱线投影的交 点即为投影2。
作投影图时,先画出正六棱柱的水平投影正六边形,再根据 其它投影规律画出其它的两个投影。如图所示。

形体的三面正投影(基本体)

形体的三面正投影(基本体)

图3-3 4种工程形体的投影
2 棱锥
•正棱锥——底面为正 多边形,顶点过底面 中心垂线的棱锥体。
视图特征: 1)反映底面实形的视图 为多边形(三角形的组 合图形); 2)另两视图均为三角形。
三棱锥的投影图
s
s
b
a c
c
a
b
(b)
c
s
B
a
S C A
3 棱台
•棱台可看成是由棱锥用平行于锥底面的平面截去锥顶而形 成的形体,上、下底面为各对应边相互平行的相似多边形, 侧面为梯形。
【例3.4】如图所示,已知立体表面上的点K的正面投影k',求其 另外两面的投影k、k"。
(a) 已知条件
(b) 作图方法
【例3.5】如图所示,已知圆柱表面上线段AB的正面投影a'b', 求其另外两面上的投影。
(a) 已知条件
(b) 作图方法
【例3.6】如图所示,已知圆锥上点K的正面投影k',求其另两面 上的投影。
【例3.2】如图所示,已知立体表面上直线MK的正面投影m'k', 试作直线MK的水平投影mk和侧面投影m"k"。
(a) 已知条件
(b) 作图方法
【例3.3】如图所示,已知立体表面点K的正面投影k',试求其水 平与侧面投影k、k"。
(a) 已知条件
(b) 一般位置直线作为辅助线 求k点的投影
(c) 特殊位置直线作为辅助线 求k点的投影
视图特征: 1)反映底面实形的视图为两个相似多边形和反映侧面的 几个梯形; 2)另两视图均为梯形(或梯形的组合图形)。
2 曲面体的投影
常见的曲面体多是回转体,如圆柱、圆锥、圆球、圆环等。

第三讲 基本体三面投影

第三讲 基本体三面投影
1’
m’ c’
1
a’ a
b’ b
a”(b”)
求出Ⅰ点的水平投 c” 影1。
m
s
过1作1m ∥ac,再 根据点在直线上的几 何条件,求出m 。
再根据知二求三的 方法,求出m”。(具 体步骤略)
c
正三棱锥的三面投影图
18
s
s 2
2
S
b
b s
a
c
c
c (b)

a C
B
2 A
a
19
s
23
在投影图上表示回转 体,就是把组成立体的 回转面或平面表示出来, 然后判断可见性。如图 所示。
回转面用转向轮廓 线表示。转向轮廓线是 与曲面相切的投射线与 投影面的交点所组成的 线段。
转向轮廓线
转向轮廓线
24
一、圆柱
圆柱表面由圆柱面和顶面、底面所组成。圆柱面是 由一直母线绕与之平行的轴线回转而成。 Z
a’
c’(d’) d
b’ d’
a”(b”)
c’
正面转向轮廓线
a c
b
c’d’ a’ 侧面转向轮廓线 A
d”
d C b c
a”b” c”
圆柱的投影
X
a
26
Y
2、圆柱表面上取点
已知圆柱表面上的点M及N正面投影a’、 b’、 m′和n′,求它们的其余两投影。
b’ a’
(b”)
a”
b a
在圆柱表面上取点
27
m’ a’
X
m”
a”(b”)
2’ c’
c”
YW
a
连接s2,即求出 直线SⅡ的水平投影。 根据在直线上的 点的投影规律,求出 M点的水平投影m。 再根据知二求三 的方法,求出m”。

第三章基本体的三视图分解

第三章基本体的三视图分解

截交线的性质 (1)截交线是截平面与立体表面的共有线,截交线上
的点是截平面与立体表面的共有点。 (2)截交线是封闭的线条。 (3)截交线的形状决定于立体表面的形状和截平面 与立体的相对位置。
一、平面与平面立体相交
单一平面与平面立体相交,截交线是一个多边形,其 顶点是平面立体的棱线或底边与截平面的交点。 多个平面与平面立体相交,如切割与穿孔,则逐个作出截 平面与平面立体的截交线,并画出截平面之间的交线。
两截平面的交线
y1
若增加圆柱孔 结果将如何?
内、外交线分别求解
求外表面交线 求内表面交线 检查孔的轮廓线 检查交线
[例题七]画出左视图
(2)
作上部切片的投影
作下部通槽的投影
判别可见性,整理、加深完成全图
(二)平面与圆锥相交
[例题一] 求水平面与圆锥的截交线
截平面⊥圆锥轴线, 截交线是圆
多个截平面与回转体相交,截交线是各个截平面所 得截交线的结合,其结合点是相邻截平面交线与回转体表 面的交点。
P
P Q
(一)平面与圆柱相交
截平面轴线倾斜 截平面垂直 截平面平行轴 轴线 线 柱面 1底+柱面 2底+柱面
截交线为圆 截交线为矩形 截交线为椭圆
截交线为部分椭 圆
截交线为部分椭 圆
[例题一] 求侧平面与圆柱的截交线
b
1,求特殊点Ⅰ、Ⅱ、Ⅲ、 Ⅳ(长、短轴端点)
3
4
b
a
b 1 a
2,求一般点A、B
3 ,光滑且顺次地连接 各点,整理轮廓线。
a
4
b

2
Ⅱ Ⅲ
1 a 3 b

截平面倾斜圆柱轴线 截交线为椭圆

第3章--基本体的三视图

第3章--基本体的三视图
请点击鼠标左键显示后面内容
例7. 画圆锥体及其表面上各点的三视图。 画圆锥体及其表面上各点的三视图。
k
A
B
S
k’
k ’’
a’
(c’) )
(a”) )
c”
1’
பைடு நூலகம்
b’
b”
(C)
作图步骤: 画各视图的轴线; (1)画各视图的轴线; (2)画俯视图的底圆轮廓; 画俯视图的底圆轮廓; 画主视图的轮廓素线; (3)画主视图的轮廓素线; (4)根据投影规律求第三投影; 根据投影规律求第三投影; 点的三投影; (5) 用素线法求 A 点的三投影; (6)根据B点的特殊位置求其三投影; 根据B点的特殊位置求其三投影; (7) 用辅助平面法求C点的三投影。 用辅助平面法求C点的三投影。
1、圆柱体
圆柱体表面由圆柱面和上、下两个平面组成。圆柱面由直 线AB绕与它平行的轴线等距旋转而成。
Z
O
素线
A V a' d' c' B
b' B A
母线
O
C
X 最左轮 廓素线
Y 最前轮 廓素线
(1)圆柱的投影图
a' b'
c'
d'
分析圆柱轮廓素线的投影
V面投影 轮廓素线
圆柱轮廓 素线(转向 轮廓线)
e
f
请点击鼠标左键显示后面内容
例4. 画正三棱锥及表面上各点的三视图。 画正三棱锥及表面上各点的三视图。
K
k’ k
k” k
D
P
A
作图步骤:
E
S
P
C
e’
b’ b
d’
(d”) )

第三~四章 基本体的投影及表面取点 PPT课件

第三~四章 基本体的投影及表面取点 PPT课件

辅助圆法
k
k
圆的半径?
例 已知属于圆球面的点K 的水平投影,求其另外两面投影
——水平圆为辅助线
例 已知属于圆球面的点K 的水平投影,求其另外两面投影
——正平圆为辅助线
例 已知属于圆球面的点K 的水平投影,求其另外两面投影
——侧平圆为辅助线
例 圆球表面上取点-特殊位置点
例 已知圆球面上的曲线AD 的正面投影,求另外两面投影
底面:水平面 顶面:水平面
侧面: 后面:正平面 左、右后面:铅垂面 左、右前面:铅垂面
正棱柱图例:
五棱柱 五棱柱
六棱柱 六棱柱
三棱柱
三棱柱
四棱四柱棱柱 (长方(长体方) 体)
斜四棱柱
作图步骤: 画底面的投影 画顶面的投影
正面投影 水平投影 判别可见性 水平投影 正面投影
例 已的知正斜面三投棱影柱,表求面该的直两线面段投的影水和平其投表影面的直线段A1I、I II
基本体的三视图
常见的基本几何体
平面基本体
曲面基本体一、平面基Fra bibliotek体1.棱柱
⑴ 棱柱的组成
由两个底面和若干侧棱面
组成。侧棱面与侧棱面的交线
叫侧棱线,侧棱线相互平行。
⑵ 棱柱的三视图
⑶ 棱在柱图示面位上置取时点,六棱柱 a
的点两的底可面见为性水规平定面:,在俯视
(b)
图中反若映由点实于所形棱在。柱的前的平后表面两面的侧都投棱
例 已知圆环面上的曲线AD 的水平投影,求正面投影
小结
重点掌握:
基本体的三视图画法及面上找点的方法。
⒈ 平面体表面找点,利用平面上找点的方法。 ⒉ 圆柱体表面找点,利用投影的积聚性。 ⒊ 圆锥体表面找点,用辅助线法和辅助圆法。 ⒋ 球体表面找点,用辅助圆法。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

a’
c’(d’) d
b’ d’
a”(b”)
c’
正面转向轮廓线
a c
b
c’d’ a’ 侧面转向轮廓线 A
d”
d C b c
a”b” c”
圆柱的投影
X
a
26
Y
2、圆柱表面上取点
已知圆柱表面上的点M及N正面投影a’、 b’、 m′和n′,求它们的其余两投影。
b’ a’
(b”)
a”
b a
在圆柱表面上取点
27
1、圆柱的投影 b’ c’d’ d” a”b” 一个投影为圆,其余二投影 a’ V 如图所示,圆柱的 D B c”W 均为矩形。规定:回转体对 轴线垂直于H面,其上 A C 下底圆为水平面,水 某投影面的转向轮廓线,只 平投影反映实形,其 能在该投影面上画出,而在 c’d’ a’ 正面和侧面投影重影 其它投影面上则不再画出。d”a”b”
正面转向轮廓线 A
X
侧面转向轮廓线
c
Y
29
图3-11 圆锥的三面投影图
圆锥投影图的绘制:
s’ s”
(1) 先绘出圆锥的对 称线、回转轴线。
(2)在水平投影面上 绘出圆锥底圆,正面 投影和侧面投影积聚 为直线。
a’
c’(d’) d
b’
d”
V
a’(b’)
a c
s
b X
a’
(3) 作出锥 顶的正面投 影和侧面投 s’ s” W 影并画出正 S 面转向轮廓 b’ d” 线和侧面转 c’d’ B a” (b”) c” 向轮廓线。 A
m
(n ) (n )
m
a’ (a”)
n
a
m
在圆锥表面上定点
35
三、圆球
1、 圆球的形成
球的表面是球面。 球面是一条园母线绕过 圆心且在同一平面上的 轴线回转而形成的。
2、球的投影
球的三个投影均 为圆,其直径与球直 径相等,但三个投影 面上的圆是不同的转 向轮廓线。
36
3、球面上取点
1’
已知M点的水 平投影,求出其它 两个投影。 m’ o’ m” o”
c”
m
Y
圆锥的三面投影图
33
s’
s” 已知圆锥面上M点 的水平投影m,求出 其m’和m”。 c” 以s为中心,以sm 为半径画圆,
2’ m’
3’
m”
a’
b’
d”
a
2 m
s
3
b
作出辅助圆的正面 投影2’3’。
求出m’及m”的投影。
圆锥的投影及表面上的点
34
已知圆锥表面上点M及 N的正面投影m′和n′,求 它们的其余两投影。
1’
m’ c’
1
a’ a
b’ b
a”(b”)
求出Ⅰ点的水平投 c” 影1。
m
s
过1作1m ∥ac,再 根据点在直线上的几 何条件,求出m 。
再根据知二求三的 方法,求出m”。(具 体步骤略)
c
正三棱锥的三面投影图
18
s
s 2
2
S
b
b s
a
c
c
c (b)

a C
B
2 A
a
19
s
截交线的性质:
⒈ 是一封闭的平面多边形。 ⒉ 截交线的形状取决于被截立 体的形状及截平面与立体的 相对位置。 截交线的投影的形状取决于 截平面与投影面的相对位置。 ⒊ 截交线是截平面与立体表面 的共有线。
一、平面体表面的截交线
截交线是一个由直线组成的封闭的平 面多边形。 截交线的每条边是截平面与棱面的交线。 ⒈ 求截交线的两种方法: ★ 求各棱线与截平面的交点→棱线法。 ★ 求各棱面与截平面的交线→棱面法。 ⒉ 求截交线的步骤: 确定截交 ★ 空间及投影分析 线的形状 ☆ 截平面与体的相对位置 ☆ 截平面与投影面的相对位置 ★ 画出截交线的投影 确定截交线 分别求出截平面与棱面的交 的投影特性 线,并连接成多边形。
Z
a'
d'
e' a" d" e" c"
b'
c'
A
D
E b"
X a b
B
C e
dc
Y
正六棱柱的投影
4
棱柱有六各侧棱面,前后棱面为正平面, 它们的正面投影反映实形,水平投影及侧面投 影重影为一条直线。
Z e' a" b' c' A D E b" X a b B C e Y d" e" c"
a'
d'
dc
s’
Z
s”
Z
a’
X
c’ s
O a”(b”)
b’
c” V
YW
s'
a
b
S
a' b' A a s b
s" W Ca" c" Bc b"
15
X
YH 正三棱锥的三面投影图
c
Y
16
3、三棱锥表面上取点1
作图步骤如下: Z s’ s” 连接s’m’并延长, 与a’c’交于2’, 在投影ac上求出 Ⅱ点的水平投影2。 b’ b
建筑制图与施工图识读
基本体三面投影
常见的基本几何体
平面基本体 曲面基本体
2
立体表面是由若干面所组成。表面均为平面 的立体称为平面立体;表面为曲面或平面与曲 面的立体称为曲面立体。 在投影图上表示一个立体,就是把这些平面 和曲面表达出来,然后根据可见性原理判断那 些线条是可见的或是不可见的,分别用实线和 虚线来表达,从而得到立体的投影图。
40
(2)圆环的三视图
主、左视图是极限位 置素线(图)和内、 外环分圆的投影; 俯视图是上、下的投 影。
41
(3)圆环表面取点
k’ k’’
k
42
m'
(n')
( n)
m
43
44
平面与立体表面相交——截交线
用平面与立体相交,截去体的一部分 ——截切。
用以截切立体的平面——截平面。 截平面与立体表面的交线——截交线。
正六棱柱的投影
5
棱柱的其它四个侧棱面均为铅垂面,其水平投影 均重影为直线。正面投影和侧面投影均为类似形。
Z
a'
d'
e' a" d" e" c"
b'
c'
A
D
E b"
X a
B
C e Y
b
dc
正六棱柱的投影
6
2、 棱柱的三视图
作投影图时,先画出正六棱柱的水平投影正六边形,再 根据其它投影规律画出其它的两个投影。如图3-2所示。
a'
X
s" S 棱面△SAB、 △SBC 棱锥处于图示位置时,其底面 是一般位置平面,它们 W ABC是水平面,在俯视图上反映 的各个投影均为类似形。 b' 实形。侧棱面SAC为侧垂面,另 Ca" 棱面△SAC为侧垂面, 两个侧棱面为一般位置平。 c" A 其侧面投影s”a”c”重影 Bc 为一直线。 b" s a
c”
m
Y
圆锥的三面投影图
31
s’
s”
已知圆锥表面的点 M的正面投影m’,求出 M点的其它投影。 m” 过m’s’作圆锥表面 c” 上的素线,延长交底 圆为1’。 求出素线的水平投 影s1及侧面投影s”1”。 求出M点的水平投 影和侧面投影。
m’ a’ b’ 1’ c’(d’) d s b d”
a’(b’)1”
a
m
1 c
图3-14 圆锥的投影及表面上的点
32
方法二:辅助圆法
过M点作一平行与底 面的水平辅助圆,该圆 的正面投影为过m’且平 行于a’b’的直线2’3’,它 们的水平投影为一直径
a’
Z
s’
s” S
m’
V b’
W
c’d’ A d a
d”
M
m”
等于2’3’的圆,m在圆周
上,由此求出m及m”。
X
Ba” (b”) C b c
b
正三棱锥的投影
Y
13
Z V s' S a' X A s" W b' Ca" c" s Bc b" Y
底边AB、BC 为水平线,AC为 侧垂线,棱线SB为 侧平线,SA、SC为 一般位置直线,它 们的投影可根据不 同位置直线的投影 特性进行分析。
a
b
正三棱锥的投影
14
作图时,先画出底面△ABC的各个投影,再作出锥 顶S的各个投影,然后连接各棱线,即得正三棱锥的三 面投影。如图所示。
23
在投影图上表示回转 体,就是把组成立体的 回转面或平面表示出来, 然后判断可见性。如图 所示。
回转面用转向轮廓 线表示。转向轮廓线是 与曲面相切的投射线与 投影面的交点所组成的 线段。
转向轮廓线
转向轮廓线
24
一、圆柱
圆柱表面由圆柱面和顶面、底面所组成。圆柱面是 由一直母线绕与之平行的轴线回转而成。 Z
过m作平行于V 面的正平圆12。
求正平圆的正面 投影。 在辅助正平圆上 求出m’和m”。 1 m
R
o 2
球的投影及表面上的点
37
2 3 Ⅱ Ⅰ Ⅲ 2" 1" 3"
′ ′ 1 2 ′ 3
1" 2" 3"
相关文档
最新文档