抗肿瘤药物的耐药现象

合集下载

抗肿瘤药物的治疗耐药性机制

抗肿瘤药物的治疗耐药性机制

抗肿瘤药物的治疗耐药性机制引言肿瘤是世界范围内一大健康问题,对人类的生命造成了巨大威胁。

尽管现代医学取得了重大突破,但肿瘤的治疗仍然面临着困难和挑战。

其中一个主要问题就是抗肿瘤药物的治疗耐药性,即患者在接受抗肿瘤治疗后,药物对肿瘤细胞的有效杀伤作用降低或完全失效。

本文将深入探讨抗肿瘤药物的治疗耐药性机制。

一、遗传性耐药1.1 基因突变基因突变是导致抗肿瘤药物治疗耐药性形成的一个主要机制。

在患者接受化学治疗时,某些癌细胞中会发生基因突变,使得它们对特定抗癌药物失去敏感性。

比如,乳腺癌患者常见的HER2阳性转移癌,在使用赫赛汀进行靶向治疗时,可能会出现激酶结构域的突变,使得药物对HER2蛋白产生失去作用的影响。

1.2 基因放大除了基因突变外,肿瘤细胞中某些重要的抗癌基因也可能发生放大。

这种基因放大能够增加该基因表达,从而提供更多的靶点供抗肿瘤药物作用。

比如,HER2阳性乳腺癌患者往往存在HER2基因的放大现象,这意味着更多的受体可以与抗癌药物结合,从而导致治疗耐药性的发展。

1.3 药物转运通道异常在真核生物细胞中存在许多跨膜转运蛋白质,它们可以通过改变药物在细胞内外间的分布、代谢和泵出来调节抗肿瘤药物的有效浓度。

比如ABCB1 (MDR1/P-gp)是一种常见的跨膜转运蛋白,在肿瘤细胞内过度表达该蛋白后会导致许多结构不同、机制各异的化学类似物降低对该类药物的敏感性,最终导致耐药性的发展。

二、非遗传性耐药2.1 肿瘤微环境的改变除了遗传因素外,肿瘤微环境的改变也对抗肿瘤药物的治疗效果产生重要影响。

肿瘤微环境中存在许多细胞类型,包括肿瘤相关巨噬细胞、免疫细胞和血管内皮细胞等,在治疗过程中这些细胞可能分泌一系列因子与抗肿瘤药物相互作用并改变其药理学特性,从而减轻抗肿瘤药物对癌细胞的杀伤作用。

2.2 癌基因启动子甲基化癌基因启动子甲基化是一种表观遗传调控机制,它通过永久性关闭基因转录来参与肿瘤发生和进展。

在某些情况下,这种启动子甲基化可以影响到一些依赖于该基因转录产物敏感性而发挥作用的抗癌药物。

抗肿瘤药物药效学实验方法及指导原则

抗肿瘤药物药效学实验方法及指导原则

抗肿瘤药物药效学实验方法及指导原则一、基本原则1. 抗肿瘤药物分类(1) 细胞毒类药物(cytotoxic agent):包括干扰核酸和蛋白质合成、抑制拓扑异构酶及作用于微管系统的药物等;(2) 生物反应调节剂(biological response modifier);(3) 肿瘤耐药逆转剂(resistance reversal agent);(4) 肿瘤治疗增敏剂(oncotherapy sensitizer);(5) 肿瘤血管生成抑制剂(tumor angiogenesis inhibitor);(6)分化诱导剂(differentiation inducing agent);(7) 生长因子抑制剂(growth factor inhibitor);(8)反义寡核苷酸(antisense oligonucleotide) 。

2. 抗肿瘤药物药效学需研究内容2.1 包括体外抗肿瘤试验,体内抗肿瘤试验。

2.2 评价药物的抗癌活性时,以体内试验结果为主,同时参考体外试验结果以做出正确的结论。

2.3 I类抗肿瘤新药应进行药物作用机制初步研究。

二、体外抗肿瘤活性试验1. 试验目的1.1 对候选化合物进行初步筛选;1.2 了解候选化合物的抗瘤谱;1.3 为随后进行的体内抗肿瘤试验提供参考,如剂量范围、肿瘤类别等。

2. 试验方法选用10-15株人癌细胞株,根据试验目的选择相应细胞系及适量的细胞接种浓度,按常规细胞培养法进行培养;推荐使用四氮唑盐MTT还原法、XTT 还原法、磺酰罗丹明B(SR染色法、或51Cr释放试验、集落形成法等测定药物的抗癌作用。

药物与细胞共培养时间一般为48-72 小时,贴壁细胞需先贴壁24 小时后再给药。

试验应设阳性及阴性对照组,阳性对照用一定浓度的标准抗肿瘤药,阴性对照为溶媒对照。

3. 评价标准以同一样品不同浓度对肿瘤细胞抑制率作图可得到剂量效应曲线,然后采用Logit法计算半数有效浓度(IC50值或EC50值)。

2020年执业药师考试重点内容—第十三章抗肿瘤药

2020年执业药师考试重点内容—第十三章抗肿瘤药
第十三章 抗肿瘤药
概述 (一) )直接影响 DNA 结构和功能的药 -环磷酰胺 (二) )干扰核酸生物合成的药物 -氟尿嘧啶 ,甲氨蝶呤 (三)干扰转录过程和阻止 RNA 合成的柔红霉素 (四)抑制蛋白质合成与功能的药物 -长春新碱 (五)调节体内激素平衡的药物 -性激素 (六)分子和单克隆抗体靶向抗肿瘤药吉非替尼 (七)放疗与化疗止吐药昂丹司琼
第二亚类 破坏 DNA 的铂类化合物 药物 :卡铂、顺铂和奧沙利铂 一、药理作用与临床评价 (一 )作用特点 1.机制 :与 DNA 结合 ,破坏其结构与功能抑制 DNA 和 RNA的合成。 使肿瘤细胞 DNA 复制停止 , 阻碍细胞分裂 ,为细胞增殖周期非特异性抑制剂。 2 特点 : 广谱抗肿瘤药 ,顺铂是非小细胞肺癌、头颈部及食管癌、胃癌的首选药之一。奥沙利 铂与顺铂、卡铂无交叉耐药。
2 博来霉素
(1) 与顺铂合用应谨慎。 顺铂是有肾毒性药 ,可降低肾小球滤过率 ,影响博来霉素的凊除。 博来 霉素的清除率下降会增强博来霉素肾毒性 ,后果严重。
(2)对于非何杰金淋巴瘤用博来霉素与其他细胞毒药联合使用
(甲氨蝶呤、多柔比星、环磷酰
胺、长春新碱和地塞米松) 18%发生急性可逆性肺部反应 ,故应谨慎和严密监测。
,可增强抗肿瘤作用。
二、用药监护
(一 )监护由伊立替康所致的迟发性腹泻
(1)应告知患者发生迟发性腹泻的危脸。
(2)一旦出现第一次稀便 ,开始饮用大量含电解质的饮料 (3)治疗措施 :高剂量的洛哌丁胺
(4)当腹泻合并严重的中性粒细胞减少症时 预防性治疗。
,广谱抗生素
(5)曾出现腹泻患者 ,下周期用药量应酌减
(四 )药物相互作用 1.卡铂 (1)避免与氨基糖苷类同用。 (2)与其他抗肿瘤药联合应用时 ,降低剂量。 (3)在 5%糖水中较为稳定 (增加 )

抗肿瘤药物概述及中药抗肿瘤药的作用机制研究

抗肿瘤药物概述及中药抗肿瘤药的作用机制研究

Part o3
中药抗肿瘤的作用机制
中药抗肿瘤的作用机制
诱导细胞分化
诱导细胞凋亡 干扰核酸的合成 抑制微管蛋白的活性
淫羊藿苷(Icariin)
苦参碱(Matrine) 当归多糖(Angelica Polysaccharide
蟾蜍灵(Bufalin) 莪术提取物榄香烯(Elemene)
丹参酮(Tanshinone ) As2O3(Arsenic Trioxide )
在体外实验中有人从中药制剂筛选出Ans-11、 Fww-13、Tul-17三种中药逆转剂,都能明显增强多药 耐药细胞对抗肿瘤药物的敏感性,有效逆转Pgp高表 达人卵巢肿瘤细胞SKVLB对长春花碱的耐药性。由于 钙离子通道阻滞剂也具有逆转多药耐药作用,它们能 与P170蛋白结合,使细胞内药物浓度增高,起到抗肿 瘤作用,因此推测中药的抗多药耐药或许具有钙离子 通道阻滞剂样作用。



4.拓扑异构酶抑制剂
喜树碱类(camptothecine, CPT)

羟喜树碱、拓扑特肯、依林特肯鬼臼毒素衍
生物
(三)干扰转录过程和阻止DNA合成药物
放线菌素(dactinomycin 更生霉素DACT)嵌入到DNA双螺旋中相邻的鸟嘌 呤和胞嘧啶碱基之间,与DNA结合成复合体阻碍RNA多聚酶的功能,阻止 RNA尤其mRNA的合成。属周期非特异性药。
中占有越来越重要的地位。 临床应用的抗肿瘤药主要有烷化剂和抗代谢物两大类。一些天然产物或
二、肿瘤治疗方法
肿瘤的治疗方法主要有三种:手术治疗、放射治疗、药物治疗。 三种治疗手段各有各的特点,互相补充。
三、抗肿瘤药的分类
(一)根据药物化学结构和 来源 烷化剂 抗代谢物 抗肿瘤抗生素 抗肿瘤植物药 激素 杂类

非小细胞肺癌耐药机制及其逆转耐药的研究进展

非小细胞肺癌耐药机制及其逆转耐药的研究进展

据中国肿瘤登记中心2018年发布的数据显示,肺癌在我国男性肿瘤发病患者中占首位,在女性中位列第三[1]。

按照病理类型,肺癌可分为非小细胞肺癌和小细胞肺癌两大类,非小细胞肺癌(non-small cell lung cancer ,NSCLC )约占80%[2]。

靶向治疗、细胞治疗和免疫治疗的快速发展为患者带来了希望,但目前化疗仍然是NSCLC 治疗的主要手段。

肿瘤细胞对化疗药物的耐药性是导致临床化疗失败的主要原因。

因此,对多药耐药(multidrug resistance ,MDR )机制的研究仍是当今肿瘤研究领域的一个热点。

肺癌的MDR 机制涉及膜转运蛋白介导的药物外排泵、酶介导的肿瘤细胞解毒和DNA 修复功能增强、凋亡调控基因异常、信号转导因子发挥抗凋亡机制等多种途径,这些途径中的关键基因和蛋白都与诱发肿瘤细胞形成耐药表型相关[3,4]。

本文就近年来有关肺癌MDR 的机制研究及中药在逆转NSCLC 耐药性方面的研究进展作一简单综述。

1ATP 结合盒转运体蛋白ATP 结合盒转运体(ATP-bingding cassette transport ,ABC 转运体)蛋白家族是一大类跨膜蛋白,广泛存在于各种生物体。

ABC 转运体利用ATP 水解产生的能量将底物(包括抗癌药物)从细胞内排出,使细胞内药物的浓度降低,在肿瘤细胞表现为耐药。

在ABC 转运蛋白家族中研究较多的是磷酸化糖蛋白(phosphorylated glycoprotein ,P-gp )、MDR 相关蛋白(multidrug resistance-associated protein ,MRP )、乳腺癌耐药蛋白(breast cancer resistance protein ,BCRP )等。

这些细胞膜药物转运蛋白均依赖ATP 供能发挥“药泵”作用,能把进入细胞内的药物排出细胞外,降低细胞内药物浓度,导致药物细胞毒作用减弱甚至丧失,降低药物对肿瘤细胞的杀伤作用,从而导致肿瘤细胞耐药[5]。

药物化学13-抗肿瘤药PPT课件

药物化学13-抗肿瘤药PPT课件
个性化治疗
根据患者的基因组、表型等特征 ,选择最合适的治疗方案,实现 个体化精准治疗。
基因治疗与免疫治疗在抗肿瘤领域的应用
基因治疗
通过修改或调控肿瘤细胞的基因表达 ,抑制肿瘤生长、扩散或诱导细胞凋 亡。
免疫治疗
利用免疫系统激活剂或调节剂,增强 机体对肿瘤的免疫应答,控制肿瘤生 长。
THANKS.
抗肿瘤药的疗效与副
04
作用
抗肿瘤药的疗效评估
01020304临床试验通过对照实验的方式,比较抗 肿瘤药治疗组与对照组的疗效
差异。
生存率
评估患者接受抗肿瘤药治疗后 生存时间的延长情况。
肿瘤缩小率
观察抗肿瘤药对肿瘤的抑制作 用,以肿瘤体积缩小程度为指
标。
症状改善
评估抗肿瘤药对患者症状的改 善程度,提高患者生活质量。
抗肿瘤药的制备工艺
化学合成法
通过一系列化学反应,将原料转 化为目标药物。工艺流程长、技
术难度高,但成本较低。
生物工程技术
利用基因工程和细胞工程技术, 在微生物或细胞中表达目标蛋白 或抗体,再通过分离纯化得到药 物。工艺相对简单,但成本较高。
天然产物提取法
从天然资源中提取具有抗肿瘤活 性的化合物,再进行分离纯化和 结构修饰。成本低,但产量有限。
抗肿瘤药的质量控制
杂质控制
对抗肿瘤药物中的杂质 进行严格控制,确保药 物的安全性和有效性。
稳定性研究
研究药物的稳定性,确 保药物在储存和运输过 程中不会发生降解或变
质。
质量标准制定
制定严格的质量标准, 对抗肿瘤药物的各项指
标进行检测和控制。
生产过程监控
对药物的生产过程进行 实时监控,确保生产出 的药物符合质量要求。

靶向抗肿瘤药物的研究进展

靶向抗肿瘤药物的研究进展

靶向抗肿瘤药物的研究进展靶向抗肿瘤药物的研究进展近年来,随着肿瘤生物学及相关学科的飞速发展,人们逐渐认识到细胞癌变的本质是细胞信号转导通路的失调导致的细胞无限增生,随之而来的是抗肿瘤药物研发理念的重大转变。

研发焦点正从传统细胞毒药物向针对肿瘤发生发展过程中众多环节的新药方向发展,这些靶点新药针对正常细胞和肿瘤细胞之间的差异,可达到高选择性、低毒性的治疗效果,从而克服传统细胞毒药物的选择性差、毒副作用强、易产生耐药性等缺点,为此,肿瘤药物进入了一个崭新的研发阶段。

目前发现的药物靶点主要包括蛋白激酶、细胞周期和凋亡调节因子、法尼基转移酶(FTase) 等,现就针对这些靶点的研发药物做一综述。

1、蛋白激酶蛋白激酶是目前已知的最大的蛋白超家族。

蛋白激酶的过度表达可诱发多种肿瘤。

蛋白激酶主要包括丝氨酸/苏氨酸激酶和酪氨酸激酶,其中酪氨酸激酶主要与信号通路的转导有关,是细胞信号转导机制的中心。

蛋白激酶由于突变或重排,可引起信号转导过程障碍或出现异常,导致细胞生长、分化、代谢和生物学行为异常,引发肿瘤。

研究表明,近80%的致癌基因都含有酪氨酸激酶编码。

抑制酪氨酸激酶受体可以有效控制下游信号的磷酸化,从而抑制肿瘤细胞的生长。

酪氨酸激酶受体分为表皮生长因子受体(EGFR)、血管内皮细胞生长因子受体(VEGFR) 、血小板源生长因子受体(PDGFR) 等,针对各种受体的酪氨酸激酶抑制剂目前已开发上市的主要为表皮生长因子受体酪氨酸激酶(EGFR-TK) 抑制剂、血管内皮细胞生长因子受体酪氨酸激酶(VEGFR-TK) 抑制剂和血小板源生长因子受体酪氨酸激酶(PDGFR-TK)抑制剂等。

基于多靶点的酪氨酸激酶抑制剂目前已成为研究重点,具有广阔的发展前景,其中,包括舒尼替尼和索拉芬尼在内的几个上市新药均获得了良好的临床评价结果。

1.1 EGFR-TK抑制剂许多实质性肿瘤均高度表EGFR,EGFR-TK抑制剂是目前抗肿瘤药研发的热点之一。

抗肿瘤药物多药耐药机制的研究进展

抗肿瘤药物多药耐药机制的研究进展

牡丹江医学院学报 J ournal of MuDanJiang Medical U niversity
Jun. 2021 Vol. 42 No. 3 2021
-pn型受体结合,并被TBR- I识别,形成TBR-n -TGF-p-TBR- I三聚体复合物,复合物中的TBRI被TBR- n磷酸化,促使TBR- I 和 TBR- n的激 活,使调节型Smad2/3磷酸化,磷酸化后的Smad2/3 与 Smad4 结合形成 Smads 复合体并转至胞核, 与多 种转录因子共同调节靶基因转录,从而影响肿瘤细 胞的成长和发展[15]。近年来,TGF-B信号在肿瘤 耐药中的作用受到重视。用阿霉素(50 mmol/L)来 处理HCT-116细胞,发现TGF-p信号上调以及PGP蛋白含量显著增加,相比之下,用siRNA干扰 Smad4,抑制TGF-p信号,发现HCT-116细胞对阿 霉素的敏感性明显增加[16]。在肝癌细胞中,TGF-p 可以调节细胞对紫杉醇耐药[17]。综上所述,可以推 测TGF-p信号可能会成为治疗的新靶点。 3.2 PI3K/AKT信号通路当细胞受各种因子刺激 后使PI3K激活,活化的PI3K在细胞膜上生成 PIP3,PIP3与AKT结合,从而使AKT磷酸化激活, 激活后的AKT转运至胞质或胞核内,进而发生一系 列的底物磷酸化,促进细胞的增殖及抗凋亡等。 mTOR是AKT的下游分子,有研究发现将mTOR抑 制剂RAD00/R与吉非替尼联合治疗吉非替尼耐药 的胃肠道间质瘤,发现能提高耐药患者的治疗效 果[18]。此外,泛素羧基末端水解酶1(UCH-L1)是 泛素羧基末端水酶家族的成员,能够参与泛素单体 循环,还能够调节靶蛋白的讲解和活性,研究表明 UCH-L1可能通过MAPKS信号和PI3K/AKt信号 通路调节P-gP的表达以及其泛素化降解,从而调 控细胞的耐药性[19]。 3.3 JAK/STAT信号通路JAK/STAT信号通路是 近年来研究的热点,它参与细胞的增殖、分化、凋亡 以及免疫调节等过程。 当细胞因子与受体结合后导 致受体发生二聚化,二聚化的受体激活JAKS,活化 的JAKS可以催化STAT上的酪氨酸残基磷酸化,同 时STATS的SH2功能区与受体中磷酸化的酪氨酸 残基作用使STATS活化,STATS进入核内,调节基 因的表达[20]。用siRNA干扰前列腺癌耐阿霉素细 胞株Du145/Adr中STAT-1的表达,发现可以提高 Du145/Adr对多烯紫杉醇的敏感性,这一过程可能 是通过JAK/STAT调节clusterin的表达,从而影响 肿瘤细胞对药物化疗敏感性[21]。Jagadeeshan[22]用 SNME来抑制卵巢癌细胞系NCI/ADR-RES中 JAK1和STAT3的表达,发现STAT3的失活可以抑 制MDR-1的表达从而影响药物在细胞的累积。综 上可以推测JAK/STAT信号通路会调控肿瘤细胞化 学耐药性。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

五、为何总疗程是6-8个周期? • 1、化疗药物的杀灭规律呈对数级杀灭,经 过5个对数级的循环后,理论上直径3cm的肿 瘤其细胞数量会小于1个。 • 2、化疗的耐药性使得疗程要增加1-3个周期。 • 3、肿瘤细胞并不是处于同一时相,并不是 都非常敏感。
六、肿瘤的生长时相 • 1、肿瘤接种于实验动物上,开始并未观察 到生长(滞后期),随后进入快速生长期 (对数生长期),当肿瘤增大到肉眼可见时, 进入平台期(倍增时间30-300天)。 • 2、当处于指数生长期时,化疗效果最佳 (比如手术后2-3周时,大块的肿瘤放疗后)。
化疗知识讲座
台州博爱肿瘤医院 陈国卿
一、化疗药物的抗癌机制 • 1、抑制细胞增殖和肿瘤的生长是其主要作 用机理。 • 2、对于新陈代谢旺盛的正常组织同样具有 毒性,如骨髓细胞,粘膜细胞。 • 3、理想的药物—最大程度的抑制肿瘤细胞, 最小程度的影响正常细胞。 • 4、基因药物是发展方向。
二、化疗药物的作用部位 • 1、细胞大分子的合成功能—所有的细胞毒 性药物均具有该项功能 • 2、胞质结构 • 3、细胞膜的合成功能 • 4、癌细胞的生长环境
十三、药物毒性的分级 • 0级:无毒性反应 • 1级:轻度毒性反应 • 2级:中度毒性反应 • 3级:重度毒性反应 • 4级:威胁生命的毒性反应
七、化疗药物的选择原则联合化疗 • 1、多种药物的联合可以减少耐药细胞株的 出现。 • 2、不同时相的药物可以起到协同作用。 • 3、减少单一药物的药量,从而减少毒性。 • 4、通常药物的联合2-3种。
八、抗肿瘤药物的耐药现象 • 1、获得性耐药和自然耐药。 • 2、细胞动力学与耐药 • 3、生化因素—P糖蛋白的过度表达与耐药。 • 4、药理因素—剂量过低 • 5、非选择性与耐药
• 7)免疫制剂:免疫制剂可以刺激癌 症病人的免疫系统更有效地识别和攻击癌细胞。它们属于特 殊的化疗范畴。
十一、剂量的选择和计算 • 1、根据体表面积计算剂量。 • 2、注意国人的剂量低于国外的剂量。
十二、药物毒性反应的几率 • 十分常见(90-100%) • 常见(15-90%) • 少见(5-15%) • 偶发(1-5%) • 罕见(小于1%)
• 5)杂类:另外一些化疗药物具有不同的 作用机制,不属于上面几类。其中包括门冬酰胺酶和维甲酸。 • 6)激素及激素拮抗剂: • 皮质类固醇激素用于治疗淋巴瘤、白血病和多发性骨髓瘤等 癌症。当激素用于杀死癌细胞或减缓癌细胞生长时,可以把 它们看成化疗药物。皮质类固醇激素有强的松和氟美松。 • 性激素用于减缓乳腺癌、前列腺癌和子宫内膜癌的生长。它 包括雌激素、抗雌激素,抗雄激素、黄体酮和男性激素。 • 性激素的作用方式不同于细胞毒素药物,属于特殊的化疗范 畴。
• 3)抗肿瘤抗生素:抗肿瘤抗生素通过抑 制酶的作用和有丝分裂或改变细胞膜来干扰DNA。抗肿瘤 抗生素为细胞周期非特异性药物,广泛用于对癌症的治疗。 抗肿瘤抗生素主要有博来霉素、更生霉素、阿霉素。 • 4)植物类抗癌药:植物类抗癌药都是植物碱和天然产品, 它们可以抑制有丝分裂或酶的作用,从而防止细胞再生必需 的蛋白质合成。植物类抗癌药常与其它抗癌药合用于多种癌 瘤的治疗。植物类抗癌药主要有长春碱、长春新碱、长春瑞 滨,三尖杉酯碱、足叶乙甙和威蒙,紫杉醇,泰索帝。
三、肿瘤细胞动力学和化疗的关系为 何对化疗药物敏感? • 1、肿瘤细胞的生长速度大于周围的正常组 织,而小于生长活跃的正常组织(如骨髓)。 • 2、细胞周期时间,细胞生长比例,肿瘤细 胞的数目,肿瘤细胞的自身死亡率这四个因 素决定了肿瘤的生长速度。
四、为何每周期化疗的疗程是5-7天? • 一般肿瘤在5-7天内会使所有的肿瘤细胞进入 分裂增物治疗的毒性反应 • 1、发热,乏力和肌肉酸痛—非甾体类消炎 药有效。 • 2、大剂量IL-2造成低血压,毛细血管渗漏综 合征。 • 3、单克隆抗体药物引起低血压和气促。
十、化疗药物的分类
• 1)烷化剂:烷化剂的亲电子基团直接作用于DNA上,产生 替代性反应,铰链反应,链断裂反应。防止癌细胞再生。此 类药物对慢性白血病、恶性淋巴瘤、何杰金氏病、多发性骨 髓瘤、肺癌、乳腺癌和卵巢癌具有疗效。烷化剂主要有白消 安、顺氯氨铂、环磷酰胺(癌得星)、氮烯咪胺、异环磷酰 胺、二氯甲二乙胺(盐酸氮芥)和苯丙氨酸氮芥。 • 2)抗代谢药:周期特异性药物,抗代谢药干扰DNA和RNA 的合成,分别干扰叶酸,嘌呤,嘧啶的合成过程。用于治疗 慢性白血病、乳腺癌、卵巢癌、胃癌和结直肠癌。抗代谢药 主要有5-氟脲嘧啶、甲氨蝶呤、阿糖胞苷和环胞苷。
相关文档
最新文档