群论群论基本
群论基本概念

群论基本概念
群论是数学中的一个分支,主要研究群及其性质。
群是一个集合,它满足以下四个基本性质:
1. 封闭性:群中的任意两个元素进行运算后得到的结果仍然属于群中。
2. 结合律:群中任意三个元素a、b、c进行运算时,括号的不同组合得到的结果是相同的,即:(a·b)·c=a·(b·c)。
3. 单位元:存在一个元素e,满足对于群中的任意元素a,e·a=a·e=a。
4. 逆元:群中任意元素a都存在一个元素a’,使得a·a’=a’·a=e。
此外,群还满足以下性质:
5. 唯一性:群中的单位元和逆元各自唯一。
6. 可逆性:群中任意两个元素的运算结果也属于群,且任意元素在群中都存在逆元。
7. 交换律:对于群中任意两个元素a和b,满足a·b=b·a,则称该群为交换群或阿贝尔群。
8. 子群:若群G中的一个非空子集H也满足对于群的四个基本性质,则称H为群G的子群。
9. 同态:若两个群之间存在一个映射,满足相应元素的运算关系保持不变,则称这两个群是同态的。
10. 同构:若两个群之间存在一个双射的同态映射,则称这两个群是同构的,即它们的结构完全相同。
群论群论基础课件

式中 y 称为 x 在B 上的象,而 x 称为 y 在 A 上的原象。
对应规则:与函数的比较
群论-群论基础-集合与运算
满射 单射 一一映射 逆映射: f -1 恒等映射:e
变换: 体系A 的一个自身映射f 称为A 的一个变换 若f 是一一映射,则称为对称变换 一一变换有性质:
物理学中的群论
—— 群论基础
主讲 翦知渐
群论
教材与参考书
教材: 自编
参考书:群论及其在固体物理中的应用 (徐婉棠)
物理学中的群论 (马中骐)
物理学中的群论基础 (约什)
群论
物理学中的群论
第一章 群论基础 第二章 晶体对称群 第三章 群表示理论 第四章 三维转动群 第五章 群论在量子力学中的应用
群论-群论基础
二元运算一般也称为“乘法”—— 数值加法 数值乘法 对称操作……
集合的所有代数性质都由其乘法结果决定
群论-群论基础-集合与运算
乘法表:有限集
A
l
m
O
D3
e
a
b
B
k
l
k
m
C
ee
a
b
k
l
m
aa
b
e
m
k
l
bb
e
a
l
m
k
kk
l
m
e
a
b
ll
m
k
b
e
a
mm
k
l
a
b
e
4 同态与同构
群论-群论基础-集合与运算
设 A 和 B 是两个不同集合,其中分别定义了乘法 ·和 ×; 若有满射 f ,使得对于 yi = f ( xi ), yj = f ( xj )来说有
群论基本知识及一些重要定理

群论基本知识及⼀些重要定理群论⼀.基本定义群:给定⼀个集合G={a,b,c...}和集合上的⼆元运算"·",要求满⾜下⾯四个条件①.封闭性:对于任意a,b\in G,⼀定存在c\in G,使得a·b=c②.结合律:对于任意a,b,c\in G,有(a·b)·c=a·(b·c)③.单位元:存在e\in G,使得对任意a\in G,有a·e=e·a=a④.逆元:对任意a\in G,均存在b\in G,使得a·b=e,其中b称作a的逆元,记作a^{-1}=b如果⼀个集合满⾜这个条件,那么就称这个集合是在运算·下的⼀个群⼦群:设G是⼀个群,H是G的⼀个⼦集,且H在相同意义下仍然构成⼀个群,那么称H是G的⼀个⼦群接下来将运算a·b简记为ab⼆.基本性质:①.⼀个群的单位元是唯⼀的②.群中任意元素的逆元是唯⼀的③.对a,b,c\in G,若ab=ac,则b=c④.(abcd...m)^{-1}=m^{-1}l^{-1}...a^{-1}(这⾥做⼀个说明:群的定义及性质中均没有要求交换律,因此不要想当然地在群运算中进⾏交换操作!)三.置换群:(接下来的内容有个⼈理解成分在内,如果有不准确的部分请及时指出,谢谢!)1.置换的定义:记⼀个序列{a_{n}}={a_{1},a_{2}...a_{n}}是1~n的⼀个排列定义⼀个置换p=\begin{pmatrix} 1&2&...&n\\a_{1}&a_{2}&...&a_{n} \end{pmatrix}其含义是⽤a_{1}取代原来的元素1,⽤a_{2}取代原来的元素2...⽤a_{n}取代原来的元素n置换的运算定义如下:设两个元素p_{1}=\begin{pmatrix} 1&2&...&n\\a_{1}&a_{2}&...&a_{n} \end{pmatrix},p_{2}=\begin{pmatrix} 1&2&...&n\\b_{1}&b_{2}&...&b_{n} \end{pmatrix},则运算p_{1}p_{2}过程如下:p_{1}p_{2}=\begin{pmatrix} 1&2&...&n\\a_{1}&a_{2}&...&a_{n} \end{pmatrix}\begin{pmatrix} 1&2&...&n\\b_{1}&b_{2}&...&b_{n}\end{pmatrix}=\begin{pmatrix} 1&2&...&n\\a_{1}&a_{2}&...&a_{n} \end{pmatrix}\begin{pmatrix}a_{1}&a_{2}&...&a_{n}\\b_{a_{1}}&b_{a_{2}}&...&b_{a_{n}} \end{pmatrix}=\begin{pmatrix} 1&2&...&n\\b_{a_{1}}&b_{a_{2}}&...&b_{a_{n}}\end{pmatrix}同理可以看出:如果我们计算p_{2}p_{1},则得到的结果应当是\begin{pmatrix} 1&2&...&n\\a_{b_{1}}&a_{b_{2}}&...&a_{b_{n}} \end{pmatrix} 2.置换群的定义:那么定义置换群G={p_{1},p_{2}...p_{m}}不难发现,n个元素的⼀个置换与1~n的⼀个排列相对应,因此由1~n的全排列所对应的n!个置换可以构成⼀个群,记作S_{n},称S_{n}为n 个⽂字的对称群(|S_{n}|=n!)3.循环的定义:但是我们发现,每次写⼀个置换太复杂了,因此我们给出⼀个简单记法:记(a_{1},a_{2}...a_{m})=\begin{pmatrix} a_{1}&a_{2}&...&a_{m}\\a_{2}&a_{3}&...&a_{1} \end{pmatrix}稍微解释⼀下:原本的⼀个置换可以写作\begin{pmatrix} 1&2&...&n\\a_{1}&a_{2}&...&a_{n} \end{pmatrix},那么我们可以把这个置换群写成这个形式:\begin{pmatrix} 1&a_{1}&...&n\\a_{1}&a_{p}&...&a_{q} \end{pmatrix}也就是说我们直接把⼀个置换连续相接,就能得出⼀个循环,这样得出的循环就是上⾯那个形式但是,⼀个循环中不⼀定会出现所有n个元素,⽽且⼀个置换可能需要由⼤量这种循环来构成举个例⼦:S_{3}={(1)(2)(3),(2 3),(1 2),(1 3),(1 2 3),(1 3 2)}可以发现,每个元素不⼀定会出现在每个循环之中,原因是如果⼀个元素i满⾜i=a_{i},那么这个元素就不必(也⽆法)写⼊循环了⽽且,如果对于每个i都有a_{i}=i,那么肯定不能全都省略,因此对于这种由多个循环组成的置换我们⼀般把它写成⼀个循环乘积的形式。
数学中的难点解读群论

数学中的难点解读群论数学作为一门学科,无论是在教学中还是在深入研究领域中,都存在一些难以理解和掌握的概念和方法。
群论作为数学的一个重要分支,常常被认为是数学中的难点之一。
本文将对群论的基本概念、应用以及解决群论难题的一些方法进行解读。
一、群论基础群论是数学中的一个分支,研究的是一种代数结构称为“群”。
一个群G是一个集合,其中包含了一种操作,符号一般为“*”,并满足以下四个条件:封闭性、结合律、单位元存在性和逆元存在性。
1. 封闭性:对于群中的任意两个元素a和b,它们的运算结果仍然属于群G,即a * b ∈ G。
2. 结合律:对于群中的任意三个元素a、b和c,它们的运算满足结合律,即(a * b) * c = a * (b * c)。
3. 单位元存在性:在群G中存在一个元素e,称为单位元,它满足对于任意元素a,e * a = a * e = a。
4. 逆元存在性:对于群G中的任意元素a,存在一个元素a',称为a的逆元,使得a * a' = a' * a = e。
群论的基本概念包括群的阶、子群、循环群和正规子群等,这些概念在深入研究和应用中发挥着重要的作用。
二、群论的应用群论作为一种抽象的数学理论,广泛应用于数学、物理、化学、计算机科学等各个领域。
以下是群论在一些具体应用中的例子:1. 密码学:群论被广泛应用于密码学中的数据加密和解密算法中,例如RSA算法就是基于大素数分解和有限域上的群论原理设计的。
2. 对称性:群论为对称性的研究提供了强大的工具,例如分子对称性、晶体对称性等领域都离不开群论的支持。
3. 图论:群论在图论中有重要应用,例如研究图的自同构性质、计算图的同构类数等。
4. 物理学:群论在物理学中是一个基本的数学工具,用于描述自然界的对称性和物理过程中的对称性变换。
三、解决群论难题的方法对于初学者来说,群论中的一些概念和定理可能并不容易理解和应用。
以下是一些解决群论难题的方法:1. 学习基本概念:首先要掌握群论的基本概念和定义,包括群的特性和基本操作的性质等。
群论-群论基础

群论-群论基础物理学中的群论——群论基础主讲翦知渐群论教材教材与参考书教材:⾃编参考书群论及其在固体物理中的应⽤参考书:群论及其在固体物理中的应⽤(徐婉棠)物理学中的群论(马中骐)物理学中的群论基础(约什)群论-群论基础第章群论基础第⼀章群的基本概念和基本性质§1.1 集合与运算§1.2群的定义和基本性质§1.3 ⼦群及其陪集13§1.4 群的共轭元素类§1.5 正规⼦群和商群§1.6 直积和半直积16§1.7 对称群§1.8 置换群§1.1集合与运算抽象代数的基本概念1集合抽象代数研究的对象什么都不是,所以什么都是集合的直乘:C=A×B,表⽰“C的元素是由A和B两个集合的元素构成的⼀对有序元”,也称为A和B的直乘,⽤符号表⽰即:, a2,…, a i,…},B={b1, b2,…, b j,…},则集合设A={aA}B b b}则集合1C=A×B={(a i,b j)| a i∈A, b j∈B}是A与B的直乘。
定义设是两个集合若有种规则使得2映射定义:设A 与B 是两个集合,若有⼀种规则f ,使得A 的每⼀个元素在B 上都有唯⼀的元素与之对应,这种对应规则f 的⼀个映射记为就称为A 到B 的个映射,记为f :A → Bf :x → y = f ( x ) ,或写为f y f (),式中y 称为x 在B 上的象,⽽x 称为y 在A 上的原象。
对应规则函数对应规则:函数满射单射⼀⼀映射逆映射:f -1恒等映射:e变换恒等映射:体系A 的⼀个⾃⾝映射f 称为A 的⼀个变换,若f 是⼀⼀映射则称为对称变换⼀⼀变换有性质:射,则称为对称变换。
变换有性质:f f -1= f -1f = e3⼆元运算定义:若对A 上的每对有序元(a, b ) ,在A 上有唯确定的A每⼀对a,b)A上有唯⼀确定的c与之对应,即有⼀规则R 使得A×A → A,则R 称为A上的⼀个⼆元运算,记为()()R:A×A → A,或R:a, b ) →c= R(a, b)⼀般记为c = a·b,或c = ab。
群论中的群的基本定理和群的生成元

群论是数学中一门重要的分支,研究的是代数结构中的群。
群是以二元运算(通常为乘法)定义的一种数学结构,满足封闭性、结合律、存在单位元和逆元的性质。
在群论中,有两个重要的概念,即群的基本定理和群的生成元。
首先,群的基本定理是群论中的核心定理之一。
它表明,对于任何有限群G,存在一个唯一的素数p以及正整数n₁,n₂,...,nk,使得G同构于n₁个阶为p的循环群、n₂个阶为p²的循环群、...、nk个阶为p^k的循环群的直积。
这个基本定理可以看作是将一个复杂的有限群分解为几个简单的循环群的直积的过程。
通过群的基本定理,我们可以更好地理解有限群的结构和性质,为解决许多数学问题提供了有力的工具。
其次,群的生成元是群论中的另一个重要概念。
对于给定的群G,如果存在元素a₁,a₂,...,an,它们的乘积可以得到G中的所有元素,那么称a₁,a₂,...,an是群G的生成元。
换句话说,生成元是通过群中的有限次操作可以生成整个群的元素。
生成元可以帮助我们更好地理解群的性质,特别是它们的元素之间的关系。
在许多实际问题中,通过寻找群的生成元,我们可以简化问题的复杂度,从而更容易解决。
在群的生成元的概念中,有一个重要的定理,即生成元的个数不唯一。
对于一个群G,它的生成元的个数可以是有限的也可以是无限的。
但是,存在一种特殊情况,即群G的所有生成元的个数都是有限的,这种情况下群G被称为有限生成群。
有限生成群在实际问题中具有重要的应用,如密码学、编码理论等领域。
除了有限生成群,还有一类特殊的群,即无限生成群。
无限生成群由无限多个生成元组成,通常被用来描述无穷集合中的对称性。
例如,无限群中的整数加法群Z和无限循环群C都是无限生成群。
总之,群论中的群的基本定理和群的生成元是群结构研究中的重要内容。
群的基本定理可以帮助我们理解有限群的结构和性质,而群的生成元则可以帮助我们处理复杂的群问题。
通过深入学习和应用群的基本定理和群的生成元,我们能够在数学和其他领域中更好地理解和解决问题。
群论课件ppt

元素数量是有限的集合。
03
02
置换
将一个有限集合的元素重新排列。
乘法
置换之间的运算。
04
循环群
01
02
03
循环群
由一个元素生成的群,即 置换群中所有元素都是该 元素的循环。
循环
将一个元素替换为另一个 元素,其它元素保持不变 。
元素生成
由一个元素开始,通过重 复应用某种变换得到的所 有元素。
群论课件
目录
• 群论基础 • 置换群 • 群论的应用 • 群表示论 • 群论中的问题与挑战 • 群论与其他数学领域的联系
01
CATALOGUE
群论基础
群的定义
群是由一个集合和定义在这个集合上 的一个二元运算所组成的一个代数结 构。这个二元运算被称为群中的“乘 法”。
群中的元素可以是有理数、整数、矩 阵、变换等,具体取决于实际应用和 研究领域。
群论与几何学的联系
对称性
群论在几何学中广泛应用于描述对称性。例 如,晶体学中的晶格结构可以用群论来描述 其对称性。此外,在几何图形中,我们也可 以用群论来描述图形的对称变换。
几何形状的分类
通过群论的方法,我们可以对几何形状进行 分类。例如,根据其对称性,我们可以将几 何形状分为不同的类型。这种分类方法有助 于我们更好地理解和研究几何形状的性质和
群表示是群论中一个重要的概念,它有助于将群的结构和性质转化为线性 代数的语言,从而更好地理解和研究群。
特征标与维数
01
特征标是群表示的一个重要概念 ,它描述了群在某个向量空间上 的作用方式。
02
特征标是一个函数,将群中的每 元素映射到复数域上,它反映
了群元素的性质和作用方式。
数学中的群论

数学中的群论群论是数学中一个重要的分支,在代数学领域中占有重要地位。
它研究的是一种代数结构称为群。
群论的概念和理论对于深入理解和解决许多数学问题都起着关键的作用。
本文将介绍群论的基本概念、性质以及在数学中的应用。
一、群的定义和基本性质群是一个集合G,配合一个二元运算"*",满足以下四个条件:1. 封闭性:对于任意的a,b∈G,a*b仍然属于G.2. 结合性:对于任意的a,b,c∈G,(a*b)*c = a*(b*c).3. 存在单位元:存在一个元素e∈G,对于任意的a∈G,有a*e = e*a = a.4. 存在逆元:对于任意的a∈G,存在一个元素b∈G,使得a*b = b*a = e.群论的基本性质包括:1. 结合律:对于群G中的任意元素a,b,c,有(a*b)*c = a*(b*c).2. 单位元唯一:群G的单位元是唯一的,记作e.3. 逆元唯一:群G中的每个元素a都有唯一的逆元b,满足a*b = b*a = e.4. 取消律:对于群G中的任意元素a,b和c,如果a*b = a*c,那么b = c.二、群的例子1. 整数加法群:整数集合Z构成一个群,其中的二元运算为加法。
2. 整数乘法群:非零整数集合Z*构成一个群,其中的二元运算为乘法。
3. 实数集合R上的乘法群:实数集合R中除去0以外的元素构成一个群,其中的二元运算为乘法。
4. 矩阵群:所有n阶可逆矩阵构成一个群,其中的二元运算为矩阵乘法。
5. 置换群:n个元素的置换构成一个群,其中的二元运算为置换的复合运算。
三、群的作用和应用1. 群在密码学中的应用:群论在密码学中具有广泛的应用,如素数取模、离散对数、RSA加密等加密算法都与群有关。
2. 群在物理学中的应用:群论在量子力学、粒子物理学等多个物理学领域中起着重要的作用,如对称群、李群等。
3. 群在图论中的应用:图的自同构和等价性质的研究中,群论的方法被广泛应用,极大地推动了图论的发展。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.2.2 共轭类 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.3 子群和陪集 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.6.1 Abel群的分类 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.6.2 非Abel群的分类 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
定义 1 (群) 设G是一些元素的集合, G = {g, h, · · · }. 在G中已经定义了二元运算·, 如果G对这种运算满足以下四个条件,
• 封闭: ∀f, g ∈ G, f · g ∈ G; • 结合律: ∀f, g, h ∈ G, (f · g) · h = f · (g · h); • 存在唯一的单位元素: ∃e ∈ G, ∀f ∈ G, ef = f e = f ; • 有逆: ∀f ∈ G, ∃唯一的f −1 ∈ G, f · f −1 = f −1 · f = e, 则称代数结构(G, ·)是一个群, 二元运算“·”称为群的乘法.
1.4.1 置换群 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.4.2 置换可表示为轮换的乘积 . . . . . . . . . . . . . . . . . . . . . . . 15
1.4.3 置换群的共轭类 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.1.2 群的乘法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.3 群的生成元 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
{
}
AB d=ef xy|x ∈ A, y ∈ B .
(1.1.2) (1.1.3) (1.1.4) (1.1.5)
定理 1 (重排定理) 群G的乘法表的每一行(或列)都含有所有元素, 只是排列顺序改 变了:
a ∈ G, aG = G, Ga = G.
(1.1.6)
证明 G封闭 ⇐⇒ ∀g ∈ G, ag ∈ G ⇐⇒ aG ⊆ G. 同样可得a−1 ∈ G, a−1G ⊆ G, G ⊆ aG. 故aG = G.
(1.1.7)
(1.1.8) (1.1.9) (1.1.10)
§1.1.3 群的生成元
先来看一类特殊的有限群.
定义 3 (循环群)
Cn d=ef {e, g, g2, · · · , gn−1|gn = 1}.
(1.1.11)
其中gk表示k个g相乘. 循环群的所有元素都可以由g自乘得到, 所以我们把它称为循
重排定理 (1.1.6)对所有的群都成立, 包括无限群.
§1.1 基本概念
·3·
连续群的乘法无法列表, 例如
{
}
U (1) d=ef g(θ)|g(θ) d=ef eiθ, θ ∈ [0, 2π]
其乘法规则为
g(θ3) = g(θ1)g(θ2), θ3 = θ1 + θ2 mod 2π 其中 φ(θ1, θ2) = θ1 + θ2 mod 2π 称为连续群的结合函数, 相当于有限群的乘法表.
目录
第 1 章 群论基础
1
1.1 基本概念 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.1 群的定义 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3.1 同态和同构 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3.2 同态基本定理 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
称使上式满足的最小自然数k为元素g的阶. 有限群的生成元的数目是有限的, 其中最小的数目称为有限群的秩(rank).
(1.1.15) (1.1.16)
·4·
第 1 章 群论基础
§1.1.4 更多例子
例 4 (正三角形的对称群) D3 = {e, a, b, c, d, f }, 如图 1.1 所示, 乘法规则列于表 1.4
b = a−1 = a, ; b = e, ; a = e, .
• a2 = a a = e, .
• a2 = b, ab = e, ba = e, b2 = a.
所以三元群只有一种, 其乘法表列于表 1.2 中.
很明显, 以这种方式来确定乘法表非常不方便. 后面讲述的一系列定理将帮助我们有
环群的生成元, 并记成
Cn = ⟨g|gn = e⟩.
(1.1.12)
一般的群可能有多个生成元, 这些生成元的集合称为群的生成元组. 例如
G = ⟨p, q|p3 = e, q2 = e, (qp)2 = e⟩
(1.1.13)
有2个生成元, 生成元的乘法满足如下的“对易关系”,
(qp)2 = q(pq)p = e pq = q−1p−1 = qp2,
1.2.6 双陪集* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3 群的分类 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
二元运算是一种映射,
φ : G × G → G, φ(f, g) = h ⇐⇒ f · g = h.
在不引起歧义的情况下, 我们会省略乘法符号. 群G的元素个数称为群的阶(order), 记为|G|. 根据群的元素个数, 可以将群分为有限 群(元素的数目有限)和无限群(元素的数目无限). 在无限群中, 连续群可以用一个或多个 实参数来标记群的元素. 另一种对群的分类方式, 是按照群的乘法是否可以交换位置.
1.2 群的分拆 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.1 集合的分拆 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1.4 更多例子 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.5 半群, 环和域* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5.2 半直积 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.6 有限群的分类定理* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
eab cdf e eab cdf aaedf b c b bfedca c cdf eab ddcabf e ff b caed
表 1.3: ⟨p, q⟩表
对有限群, 必有 ∀g ∈ G, ∃n, m ∈ N, n > m, gn = gm.
记k d=ef n − m ∈ N, 那么 gk = e,
1.5 群的直积 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.5.1 直积 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.2.4 Lagrange定理 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.5 不变子群和商群 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.6.3 小阶群表 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
参考文献
25
文件生成时间: 2013年9月28日 试用讲义. 请不要在网上传播.
第 1 章 群论基础
§1.1 基本概念
§1.1.1 群的定义
表 1.1: 二元群的乘法表
表 1.2: 三元群的乘法表
• a2 = a, 两边同时乘以a−1, 得a = e.
于是可得乘法表 1.1. 三元群G = {e, a, b}的乘法规则同样可以用定义群的四个条件确定. 其中a2有三种可
能,
• a2 = e, 则
– ab = e – ab = a – ab = b
(1.1.14)
于是, 生成元的任意乘积可以写成标准的形式qmpn, 从而|G| = 6. 群的乘法见表 1.3.