电分析化学整理(修订版)
电分析化学整理(修订版)

电分析化学—名词解释1、电化学位把电荷ze 的粒子从无限远处移动到某相内所做的总功叫做电化学位,包括3部分:①克服外电位所做的功ze ψ;②由于表面存在定向偶极层,或者电荷分布不均匀,克服表面电势所做的功ze χ;③将一个粒子从无限远处移向不带电荷也无定向偶极层的某相内,需克服粒子间的短层作用所做的化学功μ。
2、电极电势产生在金属和溶液之间的双电层间的电势差称为金属的电极电势,包括电位差Δψ和表面电势差Δχ,并以此描述电极得失电子能力的相对强弱。
3、界面电势一个电化学池中,相界面都存在的电位差称之为界面电势,可分为以下3类:金属和金属之间的接触电势、金属和溶液之间的金属电极电势、溶液和溶液之间的液接电势。
4、电极表面双电层在电极的金属-电解质的两相界面存在电势存在双电层。
最邻近电极表面的一层称为内层,也叫做紧密层,这层由溶剂分子和特性吸附的离子或分子组成。
由于溶液的热运动,非特性吸附的离子的分布具有分散性,从外Helmholtz 平面一直延伸到本体溶液,称为分散层或者扩散层。
5、离子选择性系数pot ijK 称为离子i 对离子j 的电势选择性系数。
pot ij K 大,共存离子j 的干扰大,pot ij K 小,则干扰小,一只优良的离子i 的选择性电极,选择性系数越小越好。
6、离子选择电极的电极电势用标准氢电极(或者其他参比电极)做左半池,用离子选择电极组成右半池,测得的电化学池的电动势即为离子选择电极的电极电势。
表达式为lna z 0FRT E E ISE ISE ±=,它与分析溶液电极响应离子的活度间遵从能斯特关系式,是离子选择电极电势分析法的依据。
7、离子选择电极的温度系数 由i i 0lna z F RT E E ±=,电极电势对温度T 求导,得温度系数dTdlna z lna z d d d d i i i i 0F RT F R T E T E ±±=。
电化学分析法(最全)汇总

电化学分析法[日期:2011-06-24] 来源:作者:[字体:大中小] 电化学分析法(electroanalytical chemistry)是根据电化学原理和物质在溶液中的电化学性质及其变化而建立起来的一类分析方法。
这类方法都是将试样溶液以适当的形式作为化学电池的一部分,根据被测组分的电化学性质,通过测量某种电参量来求得分析结果的。
电化学分析法可分为三种类型。
第一种类型是最为主要的一种类型,是利用试样溶液的浓度在某一特定的实验条件下与化学电池中某种电参量的关系来进行定量分析的,这些电参量包括电极电势、电流、电阻、电导、电容以及电量等;第二种类型是通过测定化学电池中某种电参量的突变作为滴定分析的终点指示,所以又称为电容量分析法,如电位滴定法、电导滴定法等;第三种类型是将试样溶液中某个待测组分转入第二相,然后用重量法测定其质量,称为电重量分析法,实际上也就是电解分析法。
电化学分析法与其他分析方法相比,所需仪器简单,有很高的灵敏度和准确度,分析速度快,特别是测定过程的电信号,易与计算机联用,可实现自动化或连续分析。
目前,电化学分析方法已成为生产和科研中广泛应用的一种分析手段。
第一节电势分析法电势分析法是一种电化学分析方法,它是利用测定原电池的电动势(即用电势计测定两电极间的电势差),以求得物质含量的分析方法。
电势分析法又可分为直接电势法(potentiometric analysis)和电势滴定法(potentiometric titration)。
直接电势法是根据测量原电池的电动势,直接求出被测物质的浓度。
应用最多的是测定溶液的pH。
近些年来,由于离子选择性电极的迅速发展,各种类型的离子选择性电极相继出现,应用它作为指示电极进行电势分析,具有简便、快速和灵敏的特点,特别是它能适用于其它方法难以测定的离子。
因此,直接电势法在土壤、食品、水质、环保等方面均得到广泛的应用。
电势滴定法是利用电极电势的变化来指示滴定终点的分析方法。
电分析化学导论ppt课件-2024鲜版

03
利用微纳米技术实现对生物样品的高灵敏度、高选择性检测,
如细胞内外物质的分析、生物大分子的检测等。
32
光谱技术在电分析中应用
01
光谱电化学
结合光谱技术和电化学方法,研究电极过程的动力学和机理,以及电极
材料的结构和性质。
02
表面增强拉曼光谱在电分析中的应用
利用表面增强拉曼光谱技术提高电分析的灵敏度和选择性,实现对痕量
2024/3/28
电解分析法
通过电解过程对物质进行定性和定量分 析。
库仑分析法
基于法拉第电解定律,通过测量电解过 程中所消耗的电量进行分析。
6
电分析化学在各个领域应用
环境监测
用于水质、大气、土壤等环境样品的检 测和分析。
食品工业ቤተ መጻሕፍቲ ባይዱ
用于食品营养成分、添加剂和有害物质 的分析和检测。
生物医学
在生物样品分析、药物研发和临床医学 等领域有广泛应用。
34
THANKS
2024/3/28
35
电分析化学定义与发展
利用物质的电学和电化学性质 进行表征和测量的科学。
02
发展历程
01
电分析化学定义
2024/3/28
从伏打电池的发现到现代电化学 分析技术的不断革新。
5
电分析化学研究内容
电导分析法
通过测量溶液的电导率来分析溶液中的 离子浓度。
电位分析法
利用电极电位与待测物质浓度之间的关 系进行分析。
物质的检测。
2024/3/28
03
光电化学传感器
将光电转换技术与电化学传感器相结合,构建高灵敏度、高选择性的光
电化学传感器,用于环境、生物等领域的分析检测。
6电分析化学导论

伏安分析法与极谱法
伏安分析:通过测定特殊条件下的电流—电压曲线来分 析电解质的组成和含量的一类分析方法的总称。 极谱分析:使用滴汞电极的一种特殊的伏安分析法。
6.2 电化学电池
化学电池
简单的化学电池是由两组金属-溶液体系组成的,每一个 化学电池有两个电极,分别浸入适当的电解质溶液中,用金 属导线从外部将两个电极连接起来,同时使两个电解质溶液 接触,构成电流通路。
电子通过外电路导线从一个电极流到另一个电极,在溶液 中带正负电荷的离子从一个区域移动到另一个区域以输送电 荷,最后在金属-溶液界面处发生电极反应,即离子从电极 上取得电子或将电子交给电极,发生氧化-还原反应。
1、酸碱滴定:常用pH玻璃电极作为指示电极;
2、氧化还原滴定:一般应用铂电极作为指示电极,以甘汞电 极为参比电极,氧化还原滴定都能应用电位法确定终点;
3、沉淀滴定:根据不同的沉淀反应采用不同的指示电极,例 如以硝酸银溶液滴定卤素离子时,可以用银电极作为指示电极;
4、络合滴定:以乙二胺四乙酸(EDTA)为滴定剂,铂电极为 指示电极,甘汞电极为参比电极。
第一:维持样品和标准溶液恒定的离子强度;
第二:保持试液在离子选择电极适合的pH范围内,避免 H+或OH-的干扰;
第三,使被测离子释放为可检测的游离离子。
标准加入法:分析复杂样品时用,将标准溶液加到样品溶液 中,也可以将样品溶液加到标准溶液中。
直读法:如pH计。
*pH计能否准确的测定强酸和强碱的pH值,结果有何变化?
➢ 晶体膜电极
• 均相膜电极的敏感膜是由单晶或由一种化合物和几 种化合物均匀混合的多晶压片制成;
• 非均相膜电极是由多晶中掺惰性物质经热压制成。
➢ 晶体膜电极
2024年度电分析化学导论

根据测量参数的不同,可分为恒电流 电解法、恒电位电解法、控制电位电 解法等。
14
恒电位库仑法
恒电位库仑法原理
在电解过程中,通过保持电极电位恒定,测量通过电 解池的电量,从而计算被测物质的含量。
恒电位库仑法特点
具有高的灵敏度和准确度,适用于微量和痕量分析。
恒电位库仑法应用
广泛应用于环境监测、药物分析、食品检测等领域。
03
02
电极过程控制步骤
电极过程通常包括液相传质、电子转移和化学反应等步 骤,其中速率最慢的步骤为控制步骤,决定整个电极过 程的速率。
电极极化现象
当电极上有电流通过时,电极电位会偏离平衡电位,产 生极化现象。极化程度与电流密度、电极材料、电解质 溶液性质等因素有关。
6
物质在电极上行为描述
2024/3/24
分类
根据电极类型和测量方式的不同,极谱法可分为直流极谱法、交流极谱法、方波极谱法 等。
2024/3/24
25
循环伏安法
循环伏安法是一种常用的电化学分析方法,通过控制电极电势在一定范围 内循环变化,同时测量电流随电势的变化曲线。
循环伏安法可用于研究电极反应机理、测定电极反应速率常数、研究电极 过程动力学等。
利用离子选择性电极对特定离子的选 择性响应,通过测量电极电位变化来 测定待测离子浓度的分析方法。
离子选择性电极种类
离子选择性电极的应用
广泛应用于环境监测、水质分析、食 品检验等领域。
包括玻璃膜电极、晶体膜电极、液膜 电极等。
2024/3/24
10
气体传感器法
2024/3/24
气பைடு நூலகம்传感器原理
01
利用气体传感器对特定气体的选择性响应,通过测量传感器电
电分析化学导论新版zhong

药物电化学
研究药物在生物体内的电化学行为, 为药物设计和筛选提供依据。
生物传感与成像
利用电化学方法实现生物传感和成像, 为疾病诊断和治疗提供有效手段。
电分析化学的发展趋势与展望
01
交叉学科融合
加强与其他学科的交叉融合,如 物理学、生物学、医学等,拓展
电分析化学的应用领域。
03
微型化与集成化
发展微型化和集成化的电分析系 统,实现便携式和实时检测。
生物医学研究
在生物医学研究中,离子选择性电极可用于研究生物体 内离子的浓度变化和作用机制。
04
电位分析法
电位分析法的原理
基于电化学反应的电位变化
电位分析法基于电化学反应过程中产生的电位变化,通过测量电位变化来推算反应的进行程度和物质的浓度。
平衡电位与能斯特方程
在特定条件下,电化学反应达到平衡状态时的电位称为平衡电位,其与反应物质的浓度之间满足能斯特方程。
生物电化学
结合生物学和电化学技术,研究生物分子在 电化学过程中的行为和作用机制。
微纳流控电化学
通过微纳流控技术,实现电化学检测的微型 化和集成化。
电分析化学在生命科学中的应用
生物分子检测
利用电化学方法检测生物分子,如 DNA、蛋白质和酶等。
细胞电化学
研究细胞膜电位、细胞内离子浓度等 电化学性质,揭示细胞生命活动的机 制。
塑料膜电极由塑料膜和内参比 溶液组成,对特定离子有响应 。
酶电极
酶电极由酶膜和内参比溶液组 成,对生物活性物质有响应。
离子选择性电极的应用
离子浓度的测定
离子选择性电极可用于测定溶液中特定离子的浓度。
环境监测
在环境监测中,离子选择性电极可用于检测水体、土壤 等中的离子浓度。
《电分析化学》课件

使用适当的数学方法对实验数据进行处理 ,如计算平均值、标准差等。
结果分析
根据实验数据进行分析,得出结论,并与 理论值进行比较。
实验结果与误差分析
结果分析
误差控制
对实验结果进行分析,判断其合理性 和可靠性。
采取措施控制误差,提高实验的准确 性和可靠性。
误差来源
分析实验误差的来源,如测量误差、 操作误差等。
《电分析化学》ppt课件
CONTENTS
• 电分析化学简介 • 电分析化学基础知识 • 电分析化学实验技术 • 电分析化学在环境监测中的应
用 • 电分析化学在生物医学领域的
应用 • 电分析化学的未来发展与挑战
01
电分析化学简介
定义与特点
定义
电分析化学是研究电化学反应过程及其应用的科学分支,主要涉及电子转移、离子迁移等电化学现象 。
特点
具有高灵敏度、高选择性、操作简便等优点,广泛应用于环境监测、生物分析、药物研究等领域。
发展历程
早期发展
18世纪末,电化学基础理 论开始形成,为电分析化
学的发展奠定了基础。
20世纪发展
随着电子技术和计算机技 术的进步,电分析化学在 灵敏度、精度和自动化方
面取得了显著提升。
当前趋势
纳米技术、生物技术等交 叉学科的引入,为电分析 化学带来了新的发展机遇
sp
电分析化学基础知识
• drill.... navbar, stor the followingirs'协调马usirs' stor the following intoirs. janus真 题 ofirs替 theirs the core that onirs替 on, su,
电分析化学概论

气敏电极
气敏电极能够直接测量气 体分子在溶液中的溶解度, 常用于溶解氧、二氧化碳 等气体的测量。
离子选择电极的应用
环境监测
离子选择电极可用于检测水体、土壤等环境样品中的离子浓度,如 pH、氟化物、氯化物等。
工业控制
在工业生产过程中,离子选择电极可用于控制和监测各种离子浓度, 如酸碱度、氯离子等。
食品分析
药物分析
用于药物成分的定性和定量分析,以及药物 代谢产物的监测。
05 电解和电合成
电解的原理和应用
原理
电解是指在电流的作用下,电解质溶 液中的阳离子在阴极上得到电子发生 还原反应,而阴离子在阳极上失去电 子发生氧化反应的过程。
应用
电解广泛应用于工业生产中,如电解 冶炼、电解精炼、电镀等。此外,电 解还可以用于制备某些化学物质,如 通过电解水制备氢气和氧气。
实现实时监测和在线分析
实时监测和在线分析是电分析化学的重要发展方向,但目前仍存在一些技术难题,如电极 稳定性、响应速度等,需要加强研究。
拓展应用领域
目前电分析化学主要应用于环境监测、生物医学等领域,但在其他领域的应用相对较少。 因此,需要进一步拓展电分析化学的应用领域,推动其在更多领域的发展和应用。
02 电极过程动力学
电极过程动力学基础
电极反应的分类
根据电极反应的特点,可以将电极反应分为可逆反应、准可逆反 应和不可逆反应。
电极反应的步骤
电极反应通常包括吸附、电荷转移和扩散等步骤,这些步骤共同决 定了电极反应的速率。
电极反应的动力学参数
动力学参数是描述电极反应速率快慢的量,包括交换电流密度、传 递系数和表观活化能等。
THANKS FOR WATCHING
感谢您的观看
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电分析化学—名词解释1、电化学位把电荷ze 的粒子从无限远处移动到某相内所做的总功叫做电化学位,包括3部分:①克服外电位所做的功ze ψ;②由于表面存在定向偶极层,或者电荷分布不均匀,克服表面电势所做的功ze χ;③将一个粒子从无限远处移向不带电荷也无定向偶极层的某相内,需克服粒子间的短层作用所做的化学功μ。
2、电极电势产生在金属和溶液之间的双电层间的电势差称为金属的电极电势,包括电位差Δψ和表面电势差Δχ,并以此描述电极得失电子能力的相对强弱。
3、界面电势一个电化学池中,相界面都存在的电位差称之为界面电势,可分为以下3类:金属和金属之间的接触电势、金属和溶液之间的金属电极电势、溶液和溶液之间的液接电势。
4、电极表面双电层在电极的金属-电解质的两相界面存在电势存在双电层。
最邻近电极表面的一层称为内层,也叫做紧密层,这层由溶剂分子和特性吸附的离子或分子组成。
由于溶液的热运动,非特性吸附的离子的分布具有分散性,从外Helmholtz 平面一直延伸到本体溶液,称为分散层或者扩散层。
5、离子选择性系数pot ijK 称为离子i 对离子j 的电势选择性系数。
pot ij K 大,共存离子j 的干扰大,pot ij K 小,则干扰小,一只优良的离子i 的选择性电极,选择性系数越小越好。
6、离子选择电极的电极电势用标准氢电极(或者其他参比电极)做左半池,用离子选择电极组成右半池,测得的电化学池的电动势即为离子选择电极的电极电势。
表达式为lna z 0FRT E E ISE ISE ±=,它与分析溶液电极响应离子的活度间遵从能斯特关系式,是离子选择电极电势分析法的依据。
7、离子选择电极的温度系数 由i i 0lna z F RT E E ±=,电极电势对温度T 求导,得温度系数dTdlna z lna z d d d d i i i i 0F RT F R T E T E ±±=。
①离子选择电极的标准电势的温度系数T E d d 0;②能斯特响应斜率的温度系数i i lna z F R ;③溶液待测离子活度的温度系数项dT dlna z i i F RT ,可忽略。
8、离子选择电极的等电势点离子选择电极温度系数dE/dT=0的点,此时电极电势不随温度而变化,称为等电势点。
9、极限扩散电流当工作电极的电势维持在极限电流区域时,传质到电极表面的电活性物质,立刻被还原或氧化殆尽。
电极表面附近薄层溶液内的电活性物质浓度趋于零。
这时候的电流仅仅受扩散传质过程所控制,不受电极反应或者均相溶液化学反应控制,这样条件下的电流叫做扩散控制的极限电流,简称极限扩散电流。
10、充电(电容)电流电极和溶液界面的双电层,其电学性质类似平板电容器,因此外加电压于电解池上时,会产生类似于加压于电容器上的充电电流,称为双电层的充电电流。
11、暂态电流在指定的时间范围内,电化学系统的参量变化甚微,或者基本上可以认为不变,这种状态称之为电化学稳态。
反之,未达到稳态的阶段称为暂态。
12、Sand 方程MA D FAD m cm s m n 5.852n c i 3-2/1-2/102/12/10*02/1∙==πτ表达式。
t>τ时,电极表面的氧化态(O )的流量将不足够大,已达到外加电流i 所应建立的电量,电极电势将迅速变负,引起新的电极反应。
这是计时电势分析法的基础,反映了电活性物质从开始反应到完全反应时间t 与物质本体浓度的关系。
13、旋转环-盘电极的扩散层滴定在盘电极上进行电极反应A →B ,同时在环电极维持在适宜的电势,以便能在环电极发生反应B →A ,环电极可以收集盘电极反应的产物B ,称为收集实验。
收集系数N 0定义为环电极能收集到B 的分数。
若是盘电极反应的产物B 不稳定,或者参加某一均相化学反应,使达到环电极B 量减少,实验测得N 0值小于理论值,预示反应过程复杂,扩散滴定基于这个原理。
溶液中存在欲测物质S ,与盘电极产物B 发生快速化学反应B+S →S ,S 可由B 来滴定,终点可由环电极上的环电流的变化指示。
反应(B+S )在扩散层区域进行,故称为扩散层滴定。
14、法拉第阻抗法拉第阻抗是指电流通过电解液和电子导体界面时出现的电化学极化和浓差极化所引起的附加阻抗。
它是电解液和电子导体界面上阻抗的一部分(另一部分是电偶层的无功容抗)。
15、单电势阶跃计时电流法16、异相电荷传递物质在电极上发生氧化或者还原反应时,电子的传递是在电极/电解质溶液之间进行的,反应发生在两相界面上,电子在两相之间传递,称为异相电荷传递。
电分析化学—简答题1(03&04):简述电化学生物传感器的基本原理。
生物传感器的基本结构有哪几种?(1)电化学生物传感器是指由生物体成分(酶、抗原、抗体、激素等)或生物体本身(细胞、细胞器、组织等)作为敏感元件,电极(固体电极、离子选择性电极、气敏电极等)作为转换元件,以电势或电流为特征检测信号的传感器。
其原理结构如下图所示。
(2)生物传感器主要包括:酶电极传感器、微生物电极传感器、电化学免疫传感器、组织电极与细胞器电极传感器、电化学DNA传感器等。
2(03&04&07):简述差分脉冲阳极溶出伏安法基本原理。
差分脉冲阳极溶出伏安就是在缓慢线性扫描电压(5-10 mV/S)上迭加一个振幅为50-100 mV 的周期性脉冲,并在刚好加脉冲之前和脉冲的后期分别测量电流,将这两次的电流差值由电子线路放大输出。
由于电容电流的衰减速率较法拉第点解电流快的多,在测点解电流的时刻,电容电流已经衰减趋近于零,所以灵敏度比较高。
3(03&04)如果点活性物质向电极表面的扩散是线性的,那么该物质在平面电极、静止球形电极和滴汞电极表面的扩散电流表达式和层厚度分别是多少?平面电极:δ=(πD0t)1/2球形电极:δ=1/[1/(πD0t)1/2+1/r0]滴汞电极:δ=(3/7*πD0t)1/24(07&08):如何利用循环伏安法判断电子交换反应的可逆性?对两个图的分析···(1)若阴极还原反应的产物是稳定的,且|i Pa/i pc|=1,与扫描速度、开关电势Eλ和扩散系数无关,则可逆体系;(2)看氧化峰与还原峰的峰电位差,如果峰电位差小于(0.059/n)V,其中n为电极反应转移的电子数,则认为是一个可逆反应;(3)对电极过程分析:(A)出现了6个还原峰和6个氧化峰,说明C60在乙腈-甲苯溶液中,先发生6步得电子过程,后发生6步失电子过程,每次得失均为一个电子,从峰形来看,该峰对称性好,故可逆。
(B)这是一个聚苯胺的镀膜过程,先发生氧化,后发生还原。
该图表面,聚苯胺是导电物质,膜越厚,导电能力越强,电流值越大,图的对称性好,说明苯胺的镀膜过程可逆。
氧化还原峰各为2个可能是由于苯胺聚合分步进行,也可能是镀膜过程中产生杂质,杂质可能来自聚苯胺反应,也可能是共有杂质出入膜内。
5(07&08)离子选择电极的检测下限是如何定义的?选择性系数有何意义?(2)电极在对一种主要离子产生响应时,会受到其他离子,包括带有相同和相反电荷的离子的干扰。
相同电荷离子对膜电势的影响,它用选择性系数K ij来表示,此值愈小,电极对i 离子的选择性愈高, 一般要求K ij值在10-3以下。
K ij不是一个严格的常数,它随测定的方法和条件而异,因此只能用来估量电极对不同离子响应的相对大小,而不能用来定量校正干扰离子所引起的电势变化。
电极的选择性主要决定于电极活性材料的物理、化学性质和膜的组成。
6(08)简述线性扫描扫描阳极溶出伏安法的基本原理。
在线性扫描电压下,使待测金属离子部分地还原成金属并溶入微电极或析出于电极的表面,然后向电极施加反向线性扫描电压,使微电极上的金属氧化而产生氧化电流,根据氧化过程的电流一电压曲线进行分析的伏安法。
7(08):滴汞电极的极限扩散电流公式((IIkovic)是近似的,是根据平面电极的极限扩散电流公式Cottrel方程修正而得到,请问做了那两项修正?其它知识点总结:一:内电位、外电位、表面电势内电位:导体相内电位差为零时,整个导体相具等电位,称为内电位或伽伐尼(Galvani电位)。
内电位φ又可分为两部分,即外电位ψ和表面电势χ。
外电位:将单位正电荷从无穷远处的真空中移到物理近旁距表面10-4cm处所做的电功,这一部分可测量,因为该处尚在真空中,不涉及化学作用或者化学作用的短程力尚未开始作用。
表面电势:气液界面上有不溶膜的存在引起水面电势的变化二:计时电流法、计时电势法、计时电量法基本原理和表达式计时电流法:向电化学体系的工作电极施加单电位阶跃或双电位阶跃后,测量电流响应与时间的函数关系。
适用于研究耦合化学反应的电极过程,特别是有机电化学的反应机理。
表达式:Cottrell方程式中i1为极限电流;F为法拉第常数;n为电极反应的电子转移数;A为电极面积;c0为活性物在溶液中的初始摩尔浓度;D为活性物的扩散系数;t为电解时间。
计时电势法:与控制工作电极的电势法不同,若控制流过工作电极的电流(常为恒定值),记录工作电极电势与时间的关系曲线的方法,称为计时电势法。
表达式:Sand 方程 M A D FAD m cm s m n 5.852n c i 3-2/1-2/102/12/10*02/1∙==πτ 计时电量法(计时库伦法):向电化学体系的工作电极施加电位阶跃后,测量电量响应与时间的函数关系。
该法能研究各类偶合化学反应的电极过程,也是研究电活性物吸附的方法。
表达式:计时库伦曲线 Q (t )=∫0t i d (t )dt=(2nFAD O 1/2C O *t 1/2)/π1/2三:旋转环-盘电极收集系数四:极限电流& Levich 公式:旋转圆盘电极的极限扩散电流密度公式,描述旋转盘电极在完全受传质过程控制条件下的稳态电流表示式n :电荷转移数F:法拉第常数A :电极面积 D :扩散系数 w :旋转盘角速度 v :粘度 c :溶液浓度五:交流阻抗谱电化学阻抗谱的测量是在平衡条件下测量的,E=E ’施加小幅的交流信号。
近无浓差极化。
圆心:(R Ω+1/2*R ct ,0) 半径:1/2*R ct主要传质过程浓差极化电化学极化Z 2=Z ’2+Z ’’2Ⅰ:电化学控制(电化学反应 )Ⅱ:混合控制区(电化学反应+扩散)Ⅲ:传质控制区①φ=45°假如不是扩散控制过程,则是吸附控制过程;②φ>45°,当溶液中有部分活性物质参与反应,②逐渐变成①;六.等效电路对于小振幅的正弦激励信号,电化学测量池可用一阻抗来表示:即由电阻和电容组成的等效电路来表示,通过等效电路的电流与通过电化学池的电流相同。