聚乙二醇的应用

合集下载

聚乙二醇4000的作用原理

聚乙二醇4000的作用原理

聚乙二醇4000的作用原理
聚乙二醇4000是一种聚合物化合物,具有多个氧化乙烷单元。

它在许多领域中有着广泛的应用,其作用原理如下:
1. 溶剂和胶体稳定剂:聚乙二醇4000具有较高的溶解性,可
以溶解许多有机和无机化合物,并且能够在水中形成胶体稳定剂。

这种溶解性和稳定性使其在化妆品、药物和食品等行业中被广泛应用。

2. 化学反应中的催化剂:聚乙二醇4000可以在某些化学反应
中充当催化剂。

其独特的化学结构使其具有较高的反应活性和选择性,从而提高反应速率和产物纯度。

这种催化剂作用常见于有机合成和催化加氢反应中。

3. 药物运载剂:由于聚乙二醇4000对水和有机溶剂的溶解性
良好,并且具有低毒性和生物相容性,因此被广泛应用于药物运载系统中。

聚乙二醇4000可以包裹药物分子,延长其在体
内的血浆半衰期,提高药物的生物利用度和治疗效果。

4. 聚合物添加剂:聚乙二醇4000可用作聚合物的一种添加剂,改善其流动性、柔韧性和耐久性。

它可以与聚合物链相互作用,增加聚合物的分子量和粘度。

这种添加剂作用广泛应用于塑料、橡胶和纤维等材料的制备中。

综上所述,聚乙二醇4000作为一种多功能化合物,具有溶剂
胶体稳定剂、催化剂、药物运载剂和聚合物添加剂等多种作用原理,广泛应用于不同领域中。

电镀助剂 聚乙二醇

电镀助剂 聚乙二醇

电镀助剂聚乙二醇电镀助剂是指在电镀过程中起到增强电化学反应速度、提高电镀质量和效率的化学物质。

其中,聚乙二醇是一种常用的电镀助剂。

本文将介绍聚乙二醇在电镀过程中的作用机制和应用情况。

聚乙二醇是一种具有多元醇性质的聚合物,常用的分子量范围为200~6000。

在电镀过程中,聚乙二醇作为一种表面活性剂和增塑剂,具有以下几个方面的作用。

聚乙二醇可以作为表面活性剂,降低电镀液的表面张力,提高电镀液与基材的接触性能。

这样可以减小电镀液在基材表面的接触角,使电镀液更容易湿润基材表面,提高电镀液在基材表面的分散性和渗透性。

这对于提高电镀液在基材表面的均匀性和覆盖性非常重要,可以减少电镀液在基材表面形成气泡和孔洞的可能性,从而得到更加均匀光滑的电镀层。

聚乙二醇还可以作为增塑剂,改善电镀层的柔韧性和韧性。

由于聚乙二醇具有大量的羟基官能团,可以与电镀层中的金属离子形成配位键,提高电镀层中金属离子的稳定性和结晶度。

这样可以使电镀层具有较好的结构紧密性和内应力分布均匀性,从而提高电镀层的耐腐蚀性和机械性能。

聚乙二醇还具有一定的分散性和抗极化能力,可以减少电镀液中的杂质和极化现象。

电镀过程中,由于电流的通过,会产生一些不良反应,例如气泡、极化和沉淀等。

聚乙二醇具有较好的分散性和抗极化能力,可以避免这些不良反应的发生,从而提高电镀液的稳定性和电镀层的质量。

聚乙二醇作为电镀助剂,广泛应用于各种金属的电镀过程中。

例如,在铜电镀中,聚乙二醇可以提高铜镀液的稳定性和分散性,减少镀液中的杂质和沉淀,得到更加均匀光滑的铜镀层。

在镍电镀中,聚乙二醇可以改善镀液的分散性和润湿性,提高电镀层的柔韧性和耐腐蚀性。

在锌电镀中,聚乙二醇可以增加电镀层的结晶度和致密性,提高电镀层的耐腐蚀性和机械性能。

聚乙二醇作为一种常用的电镀助剂,在电镀过程中发挥着重要的作用。

它可以作为表面活性剂降低电镀液的表面张力,提高电镀液与基材的接触性能;同时也可以作为增塑剂改善电镀层的柔韧性和韧性。

聚乙二醇在药剂学中的应用

聚乙二醇在药剂学中的应用

聚乙二醇在药剂学中的应用聚乙二醇,听起来是不是有点科学怪人?其实它在药剂学里的应用可谓是“神通广大”。

想象一下,你喝水的时候,水流畅地进入你的身体,然后你就觉得神清气爽。

聚乙二醇就是那种让药物在你体内流畅进入的好帮手,简直是药剂界的“顺风车”。

它的结构像个“海绵”,能吸水又能包裹药物,形成一种温柔的保护膜,帮助药物稳定释放。

这样一来,药效就能慢慢发挥,真是“细水长流”啊!再说了,聚乙二醇在制药中的一大魅力就是它的亲水性。

想想,很多药物在体内待不久,像个小白兔,转眼就跑了。

聚乙二醇就像个“粘人精”,把药物牢牢地吸附住,不让它们轻易逃跑。

通过这种方式,药效能持久,效果倍儿棒!特别是对于那些需要长时间释放的药物,比如慢性病患者用的药,聚乙二醇的作用更是显而易见。

它让患者的生活质量大大提升,真是药品中的“超级英雄”。

然后,聚乙二醇还有个让人惊讶的好处,那就是它的安全性。

它在身体里不会引发过多的副作用,反而可以让药物更温和地进入体内。

就像一位贴心的朋友,永远在你身边,守护着你的健康。

这种材料不仅可以用在口服药物里,甚至还能用在注射剂中。

比如说一些生物制药,聚乙二醇还可以帮助它们更好地“隐身”,让药物在体内不容易被免疫系统发现,增加了疗效。

想想,这就像是给药物加了一层“隐形斗篷”,偷偷完成它们的使命。

此外,聚乙二醇的应用还不仅限于药物。

它在医学中也扮演了重要角色。

比如,做手术时,医生们常常需要用到聚乙二醇来制作某些材料,以确保手术过程的顺利进行。

这些材料能帮助伤口更快愈合,就像是给伤口包了一层“暖暖的被子”,让它们在恢复过程中倍感温暖和舒适。

不得不提的是,聚乙二醇在制药工业中的“调味料”作用。

药物的口感、外观和稳定性,这些都能通过聚乙二醇的调配来改变。

想象一下,原本苦涩的药物,加上一点聚乙二醇,瞬间变得“口感绝佳”。

孩子们再也不会对吃药感到恐惧,真是“药到病除”的绝佳体验!这样一来,不仅患者更乐意服药,连家长的心里也轻松多了,何乐而不为呢?聚乙二醇还在持续改进和创新。

聚乙二醇在药物制剂中的应用

聚乙二醇在药物制剂中的应用

聚乙二醇在药物制剂中的应用聚乙二醇别名聚氧乙烯醇或聚氧乙烯二醇,系环氧乙烷与单乙二醇或双乙二醇在碱性催化剂催化之下聚合而成,分子质量因聚合度不同而异,通常在200~35 000之间,PEG 的性质随分子质量而变化,目前常见的PEG种类有PEG200、PEG300、PEG400、PEG600、PEG2000、PEG4000、PEG6000、PEG8000等;药物溶剂PEG200、PEG300、PEG400、PEG600 系无色、略有微臭的粘性液体,化学性质稳定,安全低毒,故常作为药物的溶剂;另外,为了增加难溶性药物的溶解度,常使用潜溶剂即乙醇、甘油、丙二醇、苯甲醇、聚乙二醇等与水组成的混合溶剂;用于软胶囊剂软胶囊剂的囊材多以一定比例的明胶、增塑剂和水等组成,因此对蛋白质性质无影响的药物和附加剂均可填充;如各种油类、液态药物、药物溶液、药物混悬液和固体药物等;由于低分子质量PEG 能与水混溶,故是水溶性药物和某些有机药物很好的溶剂,如硝苯地平软胶囊;目前,软胶囊剂多为固体药物粉末混悬在油性或非油性PEG400 等分散介质中包制而成;另有报道,水合氯醛应用聚乙二醇作为溶剂可大大降低它对明胶蛋白的分解作用用于注射剂由于PEG200~PEG600 可提高难溶性药物的溶解度且对水不稳定药物有稳定作用,故可作为注射用溶剂;单一以PEG 作为注射用溶剂的注射剂并不多见,如噻替哌注射液以PEG400 或PEG600作为溶剂,可避免噻替哌在水中的聚结沉降作用;盐酸苄去氢骆驼莲碱注射液以 PEG200 作为溶剂,安全稳定,贮放 2 a 保持不变;但一般多用混合溶剂潜溶剂,如以V PEG300: V苯甲醇: V 丙二醇 = 80:5:15 时可作为质量分数为5 % 黄体酮或睾丸酮注射液的混合溶剂,此2 种注射液经肌肉注射后,与体液接触即在局部析出药物沉淀,形成药物仓库,逐渐从组织中释放,具有长效作用,售商品有病毒灵注射液、安乃近注射液、痢菌净注射液、穿心莲注射液、菌毒杀星注射液等;用于滴眼剂研究表明,以PEG400 为溶剂,可制成吲哚美辛滴眼剂;对此滴眼剂进行的稳定性研究结果表明,PEG400 处方优于Span80 处方;另外,PEG 可作为滴眼剂中的增稠剂,增加粘度,使药物在眼内停留时间延长,从而增加药效,减少刺激作用;润滑剂与粘合剂PEG4 000、PEG6 000是片剂中水溶性润滑剂的典型代表,在片剂处方中可直接加入适量聚乙二醇进行整粒,也可将其先配成醇溶液、混悬液或乳液进行制粒,润滑效果不变;利用聚乙二醇制得片剂的崩解和溶出不受影响,可提高主药在胃内的溶解性,最终有助于增加生物利用度;近年来,聚乙二醇在片剂中的使用越来越广泛,它们不仅可用作润滑剂,还可作为粘合剂,以PEG4 000最为常用;如以 PEG4 000为粘合剂熔点较低,在高速搅拌下呈熔融态,α -乳糖为填充剂,交联聚乙烯吡咯烷酮为崩解剂,硬脂酸镁为润滑剂,采用熔融制粒法可制备卡马西平速释片另外对于热不稳定药物,若采用 PEG4 000为粘合剂,可在干燥状态下进行粉末直接压片,效果较为理想;市售商品主要有痢菌净片、多钙片、钙中钙片、痢特灵片等;药物载体PEG 随分子量的增加则由液体逐渐呈半固体至固体,熔点也随之升高;由于PEG 对人体无毒无害,亦无致畸,致癌和基因突变等副作用,且可增加某些药物的溶出速率,提高药物的生物利用度,故是最常用的水溶性载体之一;基质PEG 是一类亲水性基质,其性质稳定,对皮肤无刺激性,而具有润滑性,故广泛应用于软膏剂、栓剂、凝胶剂、滴丸剂、乃至胶囊剂;如水硫软膏基质系由PEG300 与PEG4 000质量比为 2:1 时于70 ℃水浴熔合而成;复方磺胺甲恶唑SMZ栓以mPEG6 000 : mPEG4 000:m水=57:33:10 为基质,其融变时限和体外药物溶出速率均优于可可豆酯、半合成脂肪酸酯等基质;以PEG 为基质,加入主药和一些药物赋形剂可制备水凝胶剂,如氯硝西泮水凝胶,擦在病人身体上可使药物快速透过皮肤进入血液循环从而发挥抗惊厥作用;另外,PEG400、1 500、4 000~20 000 均可作为半固体基质,将硬胶囊改装液体或半固体药液,如硝苯地平1 份、液体 PEG 5 ~25份、PVP ~10 份混合药液罐装的硬胶囊剂具有长效作用,可广泛用于心绞痛的治疗聚乙二醇作为软膏剂水溶性基质,市售的品种有百多邦莫匹罗星、环丙沙星霜等;作为栓剂基质,市售的品种有制霉菌素栓、甲硝唑栓、新霉素栓等;固体分散材料固体分散体系指药物以分子、胶态、无定型、微晶等状态均匀分散在某一固体载体物质中所形成的分散体系;PEG 分子质量为1 000~20 000 是一类常用的水溶性载体材料,可用于增加药物的溶出速率,如以 PEG6 000作为载体,采用熔融法制备格列苯脲固体分散体,其溶出速率和生物利用度与市售达安宁片相比显着提高PEG 也可作为缓释固体分散体的载体材料,如采用熔融法,将药物溶解于熔化的PEG 中,将药液装入硬胶囊中,室温下药液固化,药物按溶蚀机制缓慢释放,故具有缓释作用;另外,药物从PEG 载体中溶出的快慢主要受PEG 分子质量的影响,一般随着 PEG分子质量增大,药物溶出速率会降低;当药物为油类时,宜用分子质量更大的 PEG 类作为载体,如PEG12 000 或PEG6 000与PEG20 000 的混合物,若单用 PEG6 000作载体,固体分散体会变软,特别是在温度高时载体会发粘稳定剂目前,蛋白质类药物制剂的主要问题是药物稳定性差;对于液体剂型蛋白质类药物,可通过加入辅料稳定剂如聚乙二醇、糖类、盐类、表面活性剂等改变其性质增加稳定性;高浓度的PEG常作为蛋白质的低温保护剂和沉淀/ 结晶剂,它可与蛋白质的疏水链作用;研究表明,不同分子量的PEG 作用不同,如 PEG300 质量分数为 %或2 % 可抑制rhKGF 重组人角化细胞生长因子的聚集;PEG200、400、600 和1 000可稳定 BSA 和溶菌酶;PEG4 000不同质量分数可高达质量分数15 %可抑制低分子量尿激酶的热聚集此外,复合型乳剂稳定性差也是妨碍其广泛应用的主要原因;W/O/W型复乳常见的问题是分层,不过发生了分层的复乳经振摇后可复原;油膜破裂使内水相外溢是W/O/W型复乳不稳定的主要原因;若在内外水相中加入高分子物质作为稳定剂可增加其稳定性,如在外水相中加入PEG 、泊洛沙姆等可使复乳的粘度增大,降低复乳乳化膜的流动性,这对减小W/O/W型复乳的分层是有利的,且不影响其倾倒性和通针性;增塑剂与致孔剂PEG 是亲水性高分子物质,可作为增塑剂以改变聚合物的物理机械性质,使其更具柔顺性、塑性;如为了使明胶微囊具有良好的可塑性,不粘连且分散性好,常需加入增塑剂如聚乙二醇,山梨醇,丙二醇,甘油等;研究表明,在单凝聚法制备明胶微囊时,加入增塑剂可减少微囊聚集,降低囊壁厚度,且加入增塑剂的量同释药半衰期之间呈负相关;PEG 作为增塑剂也广泛应用于薄膜包衣材料中,PEG 带有羟基,可作为某些纤维素衣材的增塑剂,如以醋酸纤维素为膜材,PEG400 为增塑剂,阿拉伯胶为渗透压活性物质和助悬剂所制备的难溶性药物萘普生的单室单层渗透泵上下面均有释药小孔以零级速率释药,药物在12 h 的累积释放率可达 81 %;此外,PEG 作为增塑剂在膜剂和涂膜剂中也有应用;PEG 是能与水互溶的聚合物分子,所以 PEG 可作为膜控型缓控释药物的致孔剂;PEG 这类致孔剂能很快溶于介质中,形成较大的孔道,随着孔道的增加,外部溶剂很容易扩散穿过控释膜,加速了药物的释放;因而通过选择合适的聚合物衣膜和致孔材料可使药物达到恒速释放;如头孢氨苄缓释小丸以乙基纤维素为包衣材料,PEG6 000为致孔剂,此缓释胶囊包衣增质量 30 %,在 7 h内表现为药物零级释放,释药重现性良好;又如伪麻黄碱渗透泵无释药小孔以醋酸纤维素为膜材,酞酸二乙酯和PEG400 为致孔剂,碳酸氢钠为渗透压活性物质,其在12 h 内遵循零级释药规律修饰材料聚乙二醇类PEG 修饰剂是 pH中性、无毒、水溶性的聚合物,具有高度的亲水性和良好的生物相容性及血液相容性,并且没有免疫原性;故采用PEG 进行结构修饰可改善药物的以下性质:1 增加稳定性,降低酶降解作用;2 改善药物动力学性质,如延长血浆半衰期、降低最大血药浓度、血药浓度波动减小等;3 降低免疫原性和抗原性;4降低毒性,提高体内活性;5改善体内药物分布,靶向性增强;6 减少用药频率,提高病人依从性用于修饰脂质体传统脂质体和免疫脂质体易被网状内皮系统RES 的细胞识别并摄取,导致血循环半衰期很短通常低于30 min,到达靶器官之前即被清除,故应用很受限制;若在脂质体膜表面引入亲水性聚合物分子PEG ,可在脂质体表面形成一层水化膜,掩盖脂质体表面的疏水性结合位点,阻碍血浆成分接近脂质体,从而降低RES 对脂质体的识别和摄取,延长脂质体的血循环时间;PEG 修饰脂质体可以在病变部位如肿瘤、感染、心肌梗死等区域通过所谓的“被动靶向” 或代偿滤过机制缓慢积累,并促进药物在这些区域的转运;如PEG 修饰的多柔比星脂质体在动物实验及人体临床试验中均取得显着效果,且已有产品长效脂质体多柔比星Doxil 上市;此外,PEG 修饰的阿霉素脂质体与传统的阿霉素脂质体相比,药代动力学特征显着变化,抗肿瘤活性明显增强,毒性有所降低;这表明了PEG 修饰脂质体是一种很有前景的药物传递系统;用于修饰乳剂长循环乳剂是指对静脉注射用脂肪乳剂表面进行适当的修饰,以避免单核吞噬细胞系统MPS 的吞噬,延长体循环时间的乳剂;乳滴表面被柔顺而亲水的 PEG 链覆盖,亲水性增强,减少血浆蛋白与其相互作用的几率,降低被 MPS 吞噬的可能性;以二棕榈酰磷脂酰胆碱为乳化剂,助乳化剂,三油酸甘油酯为油相,加入适量PEG 修饰的二硬脂酰磷脂酰乙醇胺DSPE-PEG,可制得粒径为44 nm 的微乳,静注后在血中的清除率比未经修饰的微乳明显降低布洛芬溶解度极小,市售只有其衍生物氟布洛芬酯的乳剂,Park 等以油酸乙酯为油相、卵磷脂为乳化剂、DSPE-PEG 为助乳化剂制备了氟布洛芬微乳,与前者相比,t1/2、AUC、MRT都显着增加,同时可降低MPS的吞噬;另外,据文献23 报道,以 PEG 和叶酸修饰的阿柔比星微乳对于癌细胞具有显着的靶向性;用于修饰纳米粒和微球可生物降解的聚合物纳米粒作为药物输送载体有很多优势,如可控释、靶向、低毒等;但是,由于聚合物纳米粒经静脉给药后,数秒或数分钟内会被RES 清除而无法普遍应用;为克服这一缺点,可引入亲水性聚合物PEG 对聚合物进行修饰;研究表明,亲水性PEG 修饰的纳米粒,用于静脉给药时,血液清除和RES 摄取显着减小,并且PEG 引入会影响纳米粒的生物降解行为,调节释药方式;如Ruxandra 等以乳化溶剂蒸发法制备的环孢酶素CyA PLA-PEG共聚物纳米粒粒径分布很窄,呈单峰分布,且此分散体系性质稳定,包封率很高83 ℅ ~96 ℅ ,其体外释药符合扩散机制;另外,PEG 修饰的吲哚美辛脂质微球与传统的脂质微球相比,体内总清除率明显降低,药物靶向性显着提高,药物动力学参数如t1/2、AUC、MRT都显着增加用于修饰多肽和蛋白类药物 PEG 末端的醇羟基化学性质不活泼,为保证其与药物活性基团间有适宜的反应速率,需对醇羟基进行活化,以利于与蛋白质的α-和ε-氨基的反应;按PEG 与蛋白质氨基形成的连接键类型,活化PEG 可分为以下两类:1 烷基化 PEG ,如醛基化 PEG 、PEG-三氟乙基磺酸酯PEG-T 等;2 酰化 PEG ,如 PEG 琥珀酰亚胺基琥珀酸酯PEG-SS、PEG 琥珀酰亚胺基碳酸酯PEG-SC等;蛋白质和多肽类药物主要包括酶、细胞因子等一些具有特殊功能的蛋白质,其PEG 的修饰即PEG 化,是将活化的 PEG 通过化学方法偶联到蛋白质和多肽上;PEG 修饰蛋白药物可以延长药物的半衰期、降低免疫原性和毒副作用,同时最大限度地保留其生物活性;自从1991 年第一种用 PEG 修饰的腺苷脱氨基酶PEG-ADA被 FDA 批准上市后, PEG 修饰药物蛋白的技术飞速发展,近几年上市的还有PEG-干扰素、PEG-GSF、PEG-生长抑素;如普通干扰素α-2b 的半衰期只有 4 h,而经过聚乙二醇化的干扰素α-2b 的半衰期达 40 h ,可在体内持续作用168 h,刚好满足1 周1 次给药;故聚乙二醇干扰素又叫长效干扰素商品名:佩乐能;另外,PEG 修饰的重组人粒细胞集落刺激因子也已经上市,其体内半衰期显着延长,临床上用于治疗化疗引起的嗜中性白血球减少症;目前处于临床前研究的 PEG 修饰的蛋白药物有几十种,处于临床实验的有:超氧化物歧化酶即将上市,美国Enzon 公司、白介素-2 Ⅱ期临床,挪威Chiron 公司、水蛭素Ⅱ期临床,德国 BASF AG公司、抗-TNFα抗体片段Ⅲ期临床,瑞典Pharmacia公司、牛血红蛋白Ⅰ期临床,美国Enzon 公司、抗-PDGF 抗体片段Ⅱ期临床,英国Celltech公司等;渗透促进剂渗透促进剂是指能可逆的改变皮肤角质层的屏障功能,又不损伤任何活性细胞的化学物质;理想的渗透促进剂应无药理活性、无毒、无刺激性、无致敏性,与药物、基质和皮肤有良好的相容性,无臭无味;常见的渗透促进剂有亚砜类、表面活性剂类、多醇类、吡咯酮类等;多醇类化合物有乙醇、丙二醇、聚乙二醇、异丙醇和丙三醇等;多元醇类的作用机制是使角蛋白溶剂化,占据蛋白质的氢键结合部位,减少药物与组织间结合,增加并用的其他渗透促进剂在角质层的分配;Chaudhuri等比较了心得安在 5 种介质中的人体透皮速率,结果 PEG > 二乙醇 > pH 磷酸盐缓冲液 > 辛醇 > 肉豆蔻酸异丙酯;据 Touitou等报道,包含油酸、PEG 等基质能使茶碱对大鼠的透皮吸收增强260 倍;另有研究表明,在1 % 普萘洛尔水溶液中各加 5 % 的促渗剂,对 5 种渗透促进剂促渗效果进行了比较,结果二甲基亚砜 > PEG400 ,油酸 > 丙三醇 > Span80 ;综上,PEG 在透皮吸收制剂中的作用并不亚于油酸;但据研究报道,PEG 由于含有大量的醚氧原子,与药物产生氢键结合可能性很大,这势必降低药物的热力学活性;同时,由于 PEG 本身粘度较大,故会增加载体微环境的的粘度,这样不仅抑制了角质层的水合,而且角质层会因其高渗作用发生脱水,促渗效果并不理想;因此,PEG 应与油酸、氮酮、丙二醇等促渗剂联合应用应用局限性聚乙二醇有以下缺点:作为软膏基质时,长期应用可引起皮肤干燥;可与一些药物如苯甲酸、水杨酸、鞣酸、苯酚等络合,导致基质过度软化,也会降低酚类防腐剂的活性;聚乙二醇作为软胶囊填充剂时,由于选择性吸收胶囊壳内水分,导致囊壳硬化,从而影响药物释放速率;制备栓剂易出现孔洞影响外观;随高分子量的聚乙二醇加入量增加,水溶性药物的释放率减小;对粘膜的刺激性比脂肪性基质大;聚乙二醇的不良反应已有报道:局部用药可能引起过敏反应,包括荨麻疹和延迟性过敏反应;最严重的不良发应在烧伤病人局部应用聚乙二醇产生的高渗性,代谢物的酸中毒和肾功能减退;低分子量的聚乙二醇毒性最大,但二醇类毒性是相当低的;。

聚乙二醇辅料作用

聚乙二醇辅料作用

聚乙二醇辅料作用聚乙二醇辅料作用聚乙二醇(Polyethylene Glycol,简称PEG)被广泛应用于药物研发和制备中,其中最常见的是作为辅料。

PEG具有多种特性和功能,可以提高药物的稳定性、溶解度和生物可利用性,同时还可以改善口感、延长保质期和减少毒性等影响。

1.增加溶解度:药物分子通常包含极性基团和非极性基团,极性基团的药物在水中容易溶解,但非极性基团会影响药物在水中的溶解度。

PEG可以作为溶剂、增溶剂或包覆剂来增加药物的溶解度,特别是对于脂溶性药物,PEG在提高其生物利用度方面有很好的效果。

2.保护药物:PEG可以作为保护剂,防止药物在制备过程中的分解或者在环境中的氧化等影响。

PEG可以作为保护剂来保持药物的稳定性。

这是因为PEG的弱亲和力和不活泼的化学性质,使得其有利于形成复杂的高分子体系,从而保护药物。

3.控制释放速度:压片制剂或制成胶囊、片剂等无需立即释放的控释剂可以利用PEG的特性加以实现。

PEG可以形成有利于药物控制释放的复合体显著地减缓药物的释放速度,并且能够更长时间地积存于体内,达到长时间控制释放的效果。

4.改善口感:药物制剂中添加PEG还可以显著改善口感,特别是对于含有糖酸盐和苦味化合物的药物。

PEG能够分散苦味化合物和糖酸盐,从而改善口感。

5.增加可制剂数量:PEG具有良好的渗透性,可以减少表面质量和粘附性到容器上的机会,从而减少变造、断裂和浸润剂的使用,提高药物的制剂质量和数量,从而降低药品制造的成本。

6.减少毒性:PEG是一种非常安全的化合物,可以用于减少药物的毒性和副作用。

PEG能够减少药物的刺激性,并且有效地减缓或减少一些药物的副作用。

PEG不与人体内分泌系统中的激素反应,并被人体的肝脏和肾脏很好地代谢和清除出体外。

在药物制剂中,PEG的作用是多重的,它可以提高药物的稳定性、溶解度和生物可利用性,保护药物、控制释放速度、改善口感、增加可制剂数量和减少毒性等。

通过PEG的运用,能够提高药品的质量和效果,进而使得药物的治疗作用更加显著,药品质量更高,成本更低,使社会公众获益更为明显。

聚乙二醇在医药方面的应用及其研究进展

聚乙二醇在医药方面的应用及其研究进展

聚乙二醇在医药方面的应用及其研究进展聚乙二醇(Polyethylene Glycol,简称PEG)是一种无色无味、具有良好的溶解性和稳定性的高分子聚合物。

由于其独特的生物相容性和多功能性,聚乙二醇在医药领域得到了广泛的应用,并取得了许多重要的研究进展。

以下是对聚乙二醇在医药方面应用及其研究进展的详细介绍。

聚乙二醇在药物传递方面的应用较为广泛。

聚乙二醇可以作为聚合物药物载体,通过不同的修饰方法实现药物的控释、靶向和增强疗效等功能。

例如,PEG可以与一些生物活性分子结合,形成纳米粒子或胶束,作为药物传递系统应用于肿瘤治疗。

另外,PEG还可以通过修饰药物分子的化学结构,延长药物在体内的半衰期,改善药物的生物可利用性。

除了药物传递,聚乙二醇还被用于组织工程和再生医学领域。

PEG材料可以模拟组织基质的物理和化学特性,为细胞提供合适的支撑和环境,促进组织修复和再生。

例如,PEG水凝胶可以用作三维细胞培养的载体,用于制备人工组织,如人工血管、人工皮肤等。

此外,PEG还可以应用于生物打印技术,用于3D打印复杂结构的组织和器官。

值得一提的是,聚乙二醇在研究进展方面也取得了一些重要的突破。

一方面,研究人员不断开发新型的聚乙二醇衍生物,以实现更多样化的功能和应用。

例如,聚乙二醇共聚合物可以通过改变单体种类和比例调控材料的性能,如溶解性、粘度、降解速率等。

另一方面,研究人员对聚乙二醇材料的组织相容性、代谢行为和毒性进行了深入研究,以确保其安全性和有效性。

总的来说,聚乙二醇在医药领域的应用和研究进展非常丰富和广泛。

从药物传递到组织工程再到基因治疗,聚乙二醇的应用广泛涉及到多个领域。

未来,随着新技术的不断涌现和研究的深入,相信聚乙二醇在医药领域的应用还会有更多的突破和进展。

聚乙二醇200有什么用途

聚乙二醇200有什么用途

聚乙二醇按照纯度差异可分为医药级,化妆品级,食品级和工业级等几种系列,被广泛应用于食品、制药、饲料、个人护理品、化学等行业的生产。

在医药、化妆品工业生产中用作基质,起调节粘度、熔点的作用,用来制药膏和药物等;在橡胶、金属加工工业中用作润滑剂、冷却剂,增强研磨效果,增强金属表面的光泽;在农药、颜料工业生产中用作分散剂、乳化剂;在纺织工业中用作抗静电剂、润滑剂;在造纸与农药工业中用作润湿剂;日用化学工业中用作保湿剂、无机盐增溶剂、粘度调节剂等。

其中PEG-200 可作为有机合成的介质及有较高要求的热载体,在日用化学工业中用作保湿剂、无机盐增溶剂、粘度调节剂;在纺织工业中用作柔软剂、抗静电剂;在造纸与农药工业中用作润湿剂。

PEG-400最适合来做软胶囊。

由于PEG400为液体、它具有与各种溶剂的广泛相容性,是很好的溶剂和增溶剂,被广泛用于液体制剂,如口服液、滴眼液等。

当植物油不适合作活性物配料载体时,PEG则是首选材料。

这主要是由于
PEG稳定、不易变质,含有PEG的针剂被加热到150摄氏度时是很安全、很稳定的。

此外还可以同高分子量的PEG混合,混合物具有很好的溶解性和良好的与药物相容性。

PEG-1450,3350最适合来做膏剂、栓剂、霜剂。

由于较高的水溶性和较宽的熔点范围,PEG1450,3350单独使用或混配可以制出保存时间场和符合药物与物理效果要求的熔点变化范围。

使用PEG基质的栓剂比用传统的油脂基质刺激性小。

PEG-4000,6000,8000用于片剂、胶囊剂、薄膜衣、滴丸、栓剂等。

以上就是今天分享的全部内容,感谢大家一直以来的阅读与支持。

聚乙二醇造孔剂原理

聚乙二醇造孔剂原理

聚乙二醇造孔剂原理聚乙二醇(Polyethylene glycol,PEG)是一种具有多个氧原子的线性高分子化合物,常用于制备各种功能性材料。

在化学和生物科学领域,聚乙二醇常被用作造孔剂,用于制备具有孔隙结构的材料。

本文将介绍聚乙二醇造孔剂的原理及其应用。

聚乙二醇造孔剂的原理主要基于其溶解度和相互作用能力。

聚乙二醇可以与多种溶剂形成混合物,并通过控制溶剂的选择和添加量来调节聚乙二醇的溶解度。

当聚乙二醇溶解于溶剂中时,其分子链会发生构象变化,形成不规则的三维结构。

在溶剂中,聚乙二醇的分子链会与其他分子发生相互作用,例如与水分子形成氢键。

这些相互作用力会导致聚乙二醇分子链的聚集和交联,形成孔隙结构。

这些孔隙可以起到吸附和分离材料的作用,使材料具有更大的比表面积和更好的质量传递性能。

聚乙二醇造孔剂的应用非常广泛。

在材料科学领域,聚乙二醇可以用于制备具有高孔隙率和可控孔径的多孔材料。

这些多孔材料可以应用于催化剂、吸附剂、分离膜等领域,具有优异的表面活性和质量传递性能。

在生物医学领域,聚乙二醇造孔剂可以用于制备药物载体、组织工程支架等材料,用于控制药物释放和细胞生长。

聚乙二醇造孔剂的制备方法多种多样。

一种常用的方法是溶剂挥发法。

在这种方法中,将聚乙二醇溶解于溶剂中,然后通过挥发溶剂使聚乙二醇分子链聚集和交联,形成孔隙结构。

另一种方法是模板法,通过添加模板剂来调控聚乙二醇的分子组装,形成具有特定孔径和结构的孔隙材料。

聚乙二醇造孔剂具有许多优点。

首先,聚乙二醇是一种生物相容性较好的材料,不会引起明显的毒性和免疫反应。

其次,聚乙二醇的分子量和分子量分布可以调控,从而实现对孔隙结构的控制。

此外,聚乙二醇可以与其他材料进行共混,进一步扩展了其应用范围。

聚乙二醇造孔剂是一种制备多孔材料的有效工具。

通过调控聚乙二醇的溶解度和相互作用能力,可以获得具有优异性能的孔隙材料。

随着对多孔材料需求的增加,聚乙二醇造孔剂在材料科学和生物医学领域的应用前景将更加广阔。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.2.2三相相转移催化合成
固载化聚乙二醇类三相催化剂自1977年Regen[13]首次合成并应用以来,吸引了很多人的注意,三相相转移催化剂(triphase phase transfercatalyst。TPPTC)具有比相转移催化剂(phasetransfer catalyst。PTC)更明显的优点:不溶于水、酸、碱和有机溶剂,反应结束只需简单过滤即可定量回收.并可多次重复使用,而活性不降低或稍降低。反应产物从反应体系中的分离提取也很方便。
3、疗效与安全性
PEG修饰所带来的药物动力学变化具有重要的临床意义。由于药物半衰期延长,血药浓度能够长时间维持在较平稳的水平,从而使疗效增强。使药物浓度在靶浓度附近维持更长时间常常是有临床益处的,特别是在抗病毒治疗中,因为持续的抗病毒压力可防止病毒复制,从而抑制耐药变异株的产生。此外,给药间隔延长可提高患者对治
所有PEG(不论呈液体、膏状体或固体)均有良好水溶性,即使大分子量PEG其水溶性亦能达50%左右,故PEG在各行各业(尤其医药工业)中有着广泛的用途。例如一些常用药剂如滴眼药水和栓剂均使用PEG作为药物赋形剂,使主药能更顺畅地进入眼内(或体内)。
聚乙二醇的两羟基具有伯醇性质.尤能进行酯化和醚化反应,低分子量聚乙二醇的反应产物易同油相混,高分子量聚乙二醇的反应产物趋于水溶性。聚乙二醇是具有醚结构的大分子化合物,近年来在有机合成中得到了广泛的应用
1.1催化原理
其作用是在两相反应中将不溶于有机相的反应物带人有机相与不溶于水相的有机反应物进行反应,其带人能力就是PTC催化反应的主要指标。季铵盐是最常见的相转移催化剂,其它的季膦盐、冠醚、穴醚和开链聚醚。聚乙二醇是最简单、最便宜和最有效的开链聚醚的代表。
PEG作为相转移催化剂可以归结于它具有和各种离子或分子生成络合物的独特性质,一是能使无机盐或碱金属以离子对形式迁移到有机相:二是当无机盐溶解时,在溶液中存在的抗衡离子是溶剂化很低的“裸露”的阴离子,它的反应活性甚为活泼,加速了亲核取代反应的进行。
1.2.1 PEG亲水性单纯PEG2000,以任意线圈构象存在时,每个分子能结合136±4个水分子,而以Brush构象存在的DHP-PEG2000中的每个PEG2000分子能结合210±6个水分子。随PEG-脂质复合物浓度增加至约7mol%时,脂质体双分子层绝热压缩系数增加,提示脂质头基区水分子减少,使脂质体表层脂质双分子层缺如降低,磷脂酰基链侧面包蔽增加。PEG水合作用与脂质头基区去水合作用对含有5~7mol%PEG-脂质复合物的脂质体热力学稳定性均有正向作用,而当PEG-脂质复合物浓度更高时,由于PEG侧面排斥作用,脂质头基区水合增加,双分子层包蔽弱化,脂质体稳定性反而降低[10]。
四、聚乙二醇在有机合成中的应用研究进展
聚乙二醇(PEG)作为一种环境友好型的相转移催化剂、溶剂和有机分子支载体在有机合成中的应用,介绍了PEG的作用原理和其与新技术结合的研究成果,并对其今后的主要发展方向进行了展望。
1、聚乙二醇的相转移催化作用
相转移催化(Phase Transfer Catalysis.简称PI’C),是20世纪6O年代末以后发展起来的一种新型合成方法,70年代起,关于PTC的研究开始不断深入,并在工业生产中应用。PEG为开链的聚乙二醇,作为一种环境友好型催化剂,近年的研究显示其在液液、液固、三相催化中都表现出很高的活性。
据药理研究,由PEG为基质加工成的水凝胶剂实际上是一种良好的“药物渗透泵”,可将难溶或低溶药物顺利送进体内从而发挥其药效。
综上所述,聚乙二醇是一种用途极其广泛的药用辅料。其令人感兴趣的新用途是:如将一些沿用已久的老药与PEG加工成耦合体制剂不仅能提高其药效,还可减轻药物的毒性、增加生物利用度,降低药物剂量。可以相信,今后将会有更多的PEG耦合体新型制剂问世,其市场前景无限广阔。
1.2相转移催化的应用
1.2.1液一液相转移催化合成
二苯并[b,f]一1,4一嗯唑频(dibenz[b,f]一1,4一oxazepine)作为一种精细有机中间体以前只在高沸点的非质子溶剂DMF和DMSO中高温合成,在IO0~C以上反应10h可以得到最高产率为74%。
Yogesh R.Jorapur等[1]采用如下反应在PEG一400的催化下可以得到89%的产率,此合成反应有效地减少了有毒溶剂的使用并大幅度提高产率,此实验还对比了不同聚合度的PEG对反应的影响.发现在分子量小于1000时PEG得到的产率维持在88%左
聚乙二醇的应用
邢圣枚化工系2009060119
摘要:综述了聚乙二醇(PEG)修饰对药物特性的影响,聚乙二醇在医药制剂中的新用途,聚乙二醇在脂质体中的作用,聚乙二醇在有机合成中的应用研究进展,从而对聚乙二醇进一步认识。
关键词:聚乙二醇;医药制剂;脂质体;有机合成;相转移催化剂
聚乙二醇(PEG)系一种常用药用辅料,世界各国的均收载有PEG条目。聚乙醇的制备十分简单。将环氧乙烷与单乙二醇(或双乙二醇)在碱性催化剂催化之下经聚合而形成聚乙二醇。只要适当改变聚合条件即可使PEG的分子量发生变化。目前生产的PEG的分子量通常在200~35000之间。
单甲氧基聚乙二醇(MPEG5000)与预先制备好的脂质体膜中的二棕榈酰磷脂酰乙醇胺(DPPE)共价结合,制成SLs。后者在体外血浆中能稳定存在,其与血浆成分的吸附比不含MPEG的脂质体慢;体内
研究表明,与末修饰的t1/2最长的脂质体相比,SLs的血循环清除可减慢30%[5]。
1.2影响PEG立体位阻的因素
药片等固体药物制剂配方中如加入适量大分子PEG可增加打片时药物的流动性,并提高主药的胃内溶解性最终有助于增加生物利用度。
PEG在医药行业的其它新用途溶性药物如加工成常规口服制剂(片剂或胶囊)由于其体内溶解度小而影响药物的生物利用度。如若将难溶药物与PEG一起加工成乳化剂可大大增加药物的生物利用度,最终可提高药效并相应减少用药剂量。
PEG的性质随分子量而变化。分子量在400以下的PEG在室温中为非挥发性液体。而PEG600的熔点为17~22℃,当温度低于这一界限时PEG600呈油膏状。分子量在800~2000的PEG通常为膏状体;分子量超过3000的PEG则为固体(片状或粉末状物质)。分子量大于35000的PEG目前在工业上暂时还无法合成。随着分子量的增加,PEG的硬度也随之增加,但无论PEG分子量有多大,其熔点最多只有60℃左右。
右,但从PEG一2000开始随分子增加,溶液的粘度增大,溶液的混匀程度下降,导致反应物无法充分接触,得到的产率也下降至65%左右。
N.N一二乙基苯胺是制备优秀染料、药物和彩色显影剂的重要中间体,传统合成方法是将定量的苯胺、氯乙烷放人装有液碱的高压釜中,夹套蒸气升温到120~C,压力1.2MPa时,停气。其后由于反应热产生,温度可升到215~230~C,压力达4.5~5.5 MPa,反应3h,出料用水汽蒸馏,得粗品,加苯二甲酸酐酯化,再进行一次蒸馏得成品。
二、聚乙二醇在医药制剂中的新用途
PEG对人体无毒无害,亦无致癌、致畸(胎)和基因突变等不良副作用,故PEG近几年来在医药工业中用途不断扩大。在过去10年里PEG主要用作液体制剂(如眼药水)中的稠化剂以便增加其与眼粘膜的接触时间。其次,PEG还可用作软膏剂的基质。大分子量固体PEG与小分子量液体PEG按比例混合后可作为难溶药物的助溶剂以此提高后者的溶解度从而可增加药物的体内生物利用度。
三、聚乙二醇在脂质体中的作用
脂质体(Ls)和免疫脂质体(ILs)作为药物载体有许多优点,如易被生物降解,无毒,能提高药物治疗指数,降低药物毒副作用和减少用药剂量等。但传统脂质体(CLs)和免疫脂质体易被网状内皮系统(RES)的细胞识别并摄取,导致血循环半减期(t1/2)很短(通常低于30分钟),到达靶器官之前即被清除,故应用很受限制。脂质体膜表面引入聚合物分子而形成的空间稳定脂质体(SLs)为脂质体的发展注入了新的活力,其中最常用的也是研究最多的聚合物分子是聚乙二醇(PEG)。PEG具有结构简单,价廉,无毒,无免疫原性和端羟基易于衍生化等优点。本文就PEG延长脂质体的血循环作用及其立体位阻影响因素,对脂质体渗漏的影响,被动靶向作用,在空间稳定免疫脂质体中的桥接作用及应用作一综述。
1,2.2 PEG柔顺性脂质体表面包被亲水性的葡聚糖不能保护脂质体免受血浆成分作用,也不能使t1/2延长[8,11]。因此作为保护剂,单有亲水性还不够,柔顺性更重要,后者可使脂质体表面聚合物层出现一个构象云,使之在相对较低的浓度时也能阻止溶质渗透。
该假说已使用高分子溶液的简单统计模型建立[12],模型把高分子溶液视为一个三维网络,每格均被一个聚合单元或溶剂(水)分子所占据。聚合物分子柔顺性越好,聚合单元相对于邻近单元的运动就越独立,这样它可能构象的总数就越多,从一个构象转变为另一个构象的速率就越快,结果是水溶性使高分子所有可能的构象分布柔顺成为一种统计“云”而存在。高分子的柔顺性使其在溶液中占据许多格,可瞬时把水分子挤出,故使那些需要自由水分子进行扩散的溶质变得不可通透。因此,少量的具有水溶性和高柔顺性的聚合物分子就能在脂质体表面形成足够密的“构象云”,从而保护脂质体不受破坏或发生修饰作用。如果固定在脂质体上的聚合物有一刚性链,其可能构象很少,构象之间转变很慢,这就导致其“构象云”密度很低且不均匀,其在网络模型中,表现为存在足够多的水分子空间,使得血浆蛋白能扩散到达脂质体表面。
1、PEG对脂质体血循环的延时作用
1.1 PEG立体位阻
一般认为,决定脂质体与RES产生亲和作用的是脂质体与RES细胞的非特异性疏水作用和一些血浆成分(主要是调理素,opsonin)对脂质体的特异性调理作用[1-2]。PEG的亲水性使其在脂质体表面形成一层水化膜,掩盖脂质体表面的疏水性结合位点,阻碍血浆成分接近脂质体,从而降低RES对脂质体的识别和摄取,延长脂质体的血循环时间[3-4]。
一、聚乙二醇(PEG)修饰对药物特性的影响
1、药物稳定性
蛋白多肽类药物的一个主要局限是酶降解导致的稳定性问题。大量文献表明PEG修饰后,药物对抗酶降解的能力有所提高。这可能是因为PEG长链可以形成一定的空间位阻,从而阻碍了酶与药物的有效结合。随着修饰程度的提高,药物分子与酶结合位点被掩蔽的可能性也越大,耐酶能力也相应增强。
相关文档
最新文档