集成运算放大器的线性应用
6章 集成电路运算放大器的线性运用

模
拟
电
子
技
术
21.输入电压噪声密度(eN) 对于运算放大器,输入电压噪声可以看作是连接到任意一个输入 端的串联噪声电压源,eN通常以 nV / 根号Hz 为单位表示,定义在指 定频率。 22.输入电流噪声密度(iN) 对于运算放大器,输入电流噪声可以看作是两个噪声电流源,连 接到每个输入端和公共端,通常以 pA / 根号Hz 为单位表示,定义在 指定频率。
模
拟
电
子
技
术
3.低温漂型运算放大器 在精密仪器、弱信号检测等自动控制仪表中,总是希望运算放大器的 失调电压要小且不随温度的变化而变化。低温漂型运算放大器就是为此 而设计的。目前常用的高精度、低温漂运算放大器: OP07、OP27、 AD508及由MOSFET组成的斩波稳零型低漂移器件ICL7650等。 5.低功耗型运算放大器 由于电子电路集成化的最大优点是能使复杂电路小型轻便,所以随着 便携式仪器应用范围的扩大,必须使用低电源电压供电、低功率消耗的运 算放大器相适用。常用的运算放大器:有TL-022C、TL-060C等,其工作电 压为±2V~±18V,消耗电流为50~250μA。目前有的产品功耗已达μW级, 例如ICL7600的供电电源为1.5V,功耗为10mW,可采用单节电池供电。 6.高压大功率型运算放大器 运算放大器的输出电压主要受供电电源的限制。在普通的运算放大器中, 输出电压的最大值一般仅几十伏,输出电流仅几十毫安。若要提高输出电压 或增大输出电流,集成运放外部必须要加辅助电路。高压大电流集成运算放 大器外部不需附加任何电路,即可输出高电压和大电流。例如D41集成运放 的电源电压可达±150V,μA791集成运放的输出电流可达1A。
虚断
i1 iF 虚地 uO iF Rf iF Rf Rf i1 R1 R1
集成电路运算放大器的线性应用

高开环增益
输入端几乎不吸收电流, 使得输入信号源不受负
载影响。
输出端具有很低的内阻, 可以驱动较大的负载。
无反馈时的电压放大倍数 极高,使得运算放大器具
有很高的放大能力。
高共模抑制比
对共模信号(两个输入端共 有的信号)有很强的抑制能
力,提高了抗干扰性能。
常见集成电路运算放大器类型
通用型运算放大器
高精度运算放大器
故障诊断与排除方法
01 02 03 04
当运算放大器出现故障时,首先检查电源和接地是否正常,排除电源 故障。
检查输入信号是否正常,以及输入电路是否存在短路或开路现象。
观察运算放大器的输出信号是否正常,如有异常则检查反馈电路和元 件是否损坏。
使用示波器等测试工具对运算放大器进行测试,进一步确定故障原因 并进行修复。
参考运算放大器的典型应 用电路,选择合适的外围 元件和参数。
应用注意事项与技巧
01 在使用运算放大器前,应对其进行充分的测 试和验证,确保其性能稳定可靠。
02
合理设计运算放大器的输入和输出电路,避 免引入不必要的噪声和失真。
03
注意运算放大器的电源和接地设计,确保电 源稳定且接地良好。
04
根据应用需求选择合适的反馈电路和元件, 以实现所需的放大倍数和带宽。
音频滤波器
通过配置运算放大器和外围元件,构成 各种滤波器,如低通、高通、带通等, 对音频信号进行频率选择和处理。
传感器信号调理电路
传感器信号放大电路
01
针对传感器输出的微弱信号,利用运算放大器进行放大,提高
信号的幅度和信噪比。
传感器信号滤波电路
02
去除传感器信号中的噪声和干扰,提取有用的信号成分,提高
集成运算的线性应用实验报告.doc

集成运算的线性应用实验报告篇一:集成运算放大器的线性应用--实验篇集成运算放大器的线性应用一、实验名称:集成运算放大器的线性应用二、实验任务及目的1.基本实验任务用运放设计运算电路。
2.扩展实验任务用运放构成振荡频率为500Hz的RC正弦波振荡器。
3.实验目的掌握运放线性应用电路的设计和测试方法三、实验原理及电路1.实验原理运算放大器的线性应用,即将运放接入深度负反馈时,在一定范围内输入输出满足线性关系。
2.实验电路图2.15.1 U0=5Ui1+Ui2(Rf=100k)电路(注意平衡电阻的取值!)图2.15.2 U0=5Ui2-Ui1(Rf=100k)电路(注意输入端电阻的匹配!)图2.15.3 uo??(Cf=0.01?F)电路?图2.15.4 可调恒压源电路(注意电位器的额定功率!)图2.15.5 恒流源电路(注意负载电阻的取值!)图2.15.6 RC正弦波振荡器四、实验仪器及器件1.实验仪器稳压电源1台,使用正常;数字万用表1台,使用正常;示波器1台,使用正常;函数信号发生器1台,使用正常。
2.实验器件DC信号源1个,使用正常;uA741运放2个,使用正常;1kΩ电阻1个,10kΩ电阻2个,15kΩ电阻1个,17kΩ电阻1个,20kΩ电阻2个,33kΩ电阻1个,51kΩ电阻1个,100kΩ电阻4个,0.01μF电容1个,10kΩ电位器1个,使用正常。
五、实验方案与步骤1.按照图2.15.1接好电路,将输入端接地(ui1=0,ui2=0),万用表监测输出电压,接通±15V电源后,调整调零电位器,尽量使Uo接近零,若不为零,则需记录该失调电压的数值。
将DC信号源接通电源,万用表监测DC信号源输出,按照表格中要求的参数调整旋钮,测量输出电压。
2.按照图2.15.2接好电路,记录该失调电压,将DC信号源接通电源,按照表格中要求的参数调整旋钮,测量输出电压。
3.按照图 2.15.3接好电路,调节函数信号发生器输出1kHz/4V的方波信号。
集成运算放大器的线性应用实验

6 积分器
模拟电路实验箱-集成运算放大器的线性应用
业
一、实验目的
精
于 勤
1、掌握用集成运算放大器构成各种基
本运算电路的方法;
技
精
2、掌握用集成运算放大器构成的各种
于 专
基本运算电路的调试和测试方法;
学 以
3、通过实验初步掌握集成运算放大器 的使用方法。
致
用
模拟电路实验箱-集成运算放大器的线性应用
匠心智拓(天津)科技有限公司
业 精 于 勤 技 精 于 专 学 以 致 用
模拟电路实验箱
模拟电路实验箱-集成运算放大器的线性应用
业
一 实验目的
精 于
二 实验设备
勤
三 实验原理
技
四 实验内容
精 于
五 讨论题
专
六 实验报告
学
以 1 放大器调零
2 反相比例放大器
致 用
3 同相比例放大器
4 加法器
5 减法器
技 端之间,便构成同相比例放大器电
精 路。如右图所示。其运算关系为:
于 专
Uo=(1+Rf/R1)Ui
该式表明,输出电压与输入电
学 压是比例运算关系。
以
若R1不接或Rf=0,则为跟随
致 用
器。
Uo=Ui
模拟电路实验箱-集成运算放大器的线性应用
业 1. 按图接好电路,在反相端加入交流信号Ui=1KHz,
∞ 100K
用
模拟电路实验箱-集成运算放大器的线性应用
业 精 于 勤 技 精 于 专 学 以 致 用
模拟电路实验箱-集成运算放大器的线性应用
业
3.4、加法器
精
电子技术基础--第七章--集成运算放大器的线性应用和非线性应用

i1 i f 0
u O (1
Rf R1
)u i
u I 0 R1i1
uI i2 i1 R1
i1
uI R1
0 u M R2 i2
u M R2 i 2 R2 uI R1
0 u M R3i3
减法器的输出电压为两个输入信号之差乘以放大系数 Rf/R1, 故又称它为差分放大器。 为减小失调误差 R1//Rf=R2//R3
(五)反相积分运算电路
duC i 2 C dt
uC 0 uO
duo i2 C dt
u I 0 R1i1
i1 i2 0
du uI (C o ) 0 R1 dt
vI T
(同相过零比较器)
O
2
3
4
t
电压传输特性
vO
vO VOH
VOH O t
O VOL
vI
VOL
思考
1.若过零比较器如图所示,则它 的电压传输特性将是怎样的? 2.输入为正负对称的正弦波时, 输出波形是怎样的?
+VCC vI + A -VEE vO
vI T 2
+VCC vI + A -VEE vO
具体电路的工作原理,其它问题也就迎刃而解了。
比例运算电路 加法电路
减法电路 积分电路
微分电路
一、运算电路
• (一)反相比例运算电路 • (二)同相比例运算电路
(一)反相比例运算电路
i1 i f 0
u N uo R f i f
if u N uO u O Rf Rf
集成运算放大器的线性应用基础.pptx

R3
=
R1 R2 R1 +49 R2
第50页/共54页
50
3. 有限的开环增益和带宽带导致的误差
Auf
(
j
)=
UO Ui
=
1+
1
- R2 / R1 ( 1 + R2 ) +
Auo
R1
j Auo H
1 + R2 / R1
第51页/共54页
51
4. 有限的压摆率带耒的误差
定义:压摆率SR
SR = duo (V / s )
的 运 算 , 并 要 求 对 ui1 、 ui2 的 输 入 电 阻 均 大 于 等 于 100
k。
15
第16页/共54页
2. 同相相加器
uo
=
1 +
Rf R
R3 || R2 R1 + R3 || R2
ui1
+
R3 || R1 R2 + R3 || R1
ui2
R1 = R2
=
1
+
Rf R
R3 || R1 R1 + R3 || R1
21
第22页/共54页
22
第23页/共54页
23
2.3.5 微分器
uo
(t)
=
-RC
dui (t dt
)
利用积分器和相加器求解微分方程
d2uo (t dt 2
)
+
10
duo (t) dt
+
2uo
(t)
=
ui
(t)
duo (t) dt
=
ui
实验六 集成运算放大器的线性应用(最全)word资料
实验六集成运算放大器的线性应用(最全)word资料实验六 集成运算放大器的线性应用一、设计目的1.熟悉µA741集电路使用技术要求。
2.掌握µA741的运算电路的组成,并能验证运算的功能。
二、电路结构及说明1.反相放大器电路结构:理想条件下,表达式:1f i o u R Ru u A -==。
说明:21R R =时电路保持平衡。
2.同相放大器电路结构理想条件下,表达式:1f i o u 1R R u u A +==。
说明:21R R = ,f 3R R =电路保持平衡,减少输入引起失调电压的误差。
3.反相比例加法器电路结构 理想条件下,表达式)(B A 4fo u u R R u +-=。
说明:43R R =,543//R R R =电路保持平衡;单电源供电,利用分压方式得A u 、B u 。
4.差动减法器电路结构 理想条件下,达式)(B A 3fo u u R R u --=。
说明:43R R =电路保持平衡。
5.反相积分器电路结构理想条件下,表达式:dt t u CR u )(1i 1o ⎰-=。
说明:输入方波信号,输出是输入对时间的积分,负号表示输入与输出反相。
当输入电压为方波时,输出电压为三角波,其输出电压的峰值为:)2(211P -SP P -OP TC R u u -=(1)C 为反馈元件。
f R 为分流电阻,它是给直流反馈提供通路避免失调电压在输出端产生积累电荷,使积分器产生饱和,f R 取大些可改善积分线性。
(2)21R R =保持电路平衡。
(3)当选择时间常数T C R ==1τ时,那么:P -SP 1P -SP P -OP 41)2(21u T C R u u -=-=。
(其中T 表示信号频率的周期) 三、实验仪器1. 直流稳压电源 一台 2.函数信号发生器 一台 3.示波器 一台 4.晶体管毫伏表 一台 5.数字万用表 一块 四、设计要求和内容1.反相放大器。
集成运算放大器的线性应用
电路。 本电路反相输入端同样有“虚地”,根
据理想运放“虚断”的概念可得:
iC
iR
C
d (ui u ) dt
u
uo R
整理可得:
uo
RC
dui dt
若输入为方波信号,且 RC T / 2
则输出为尖顶脉冲波。
此外,我们可以看到微分运算电路对
信号的突变非常灵敏,对信号的缓慢变化反
件 RP RN 代入得:
uo
Rf R1
ui1
Rf R2
ui 2
Rf R3
ui3
3. 加减运算电路
对而u对i1、uui、i23来u说来i4,说R,f 引入R引的f 入是的电是压电并压联串负联反负馈,
反馈。 根据“虚短”和“虚断”的概念可得:
ui1 u ui2 u u uo
R1
R2
Rf
ui3 u ui4 u u
反相比例运算电路引入的是深度电压并联负反馈,输输出入电电阻阻为为::RRi oui0ii
ui iR1
R1
2. 同相比例运算电路
图中引入深度电压串联负反馈,输入电压经
平衡电阻R',加至运放同相端。
根据理想运放“虚短”和“虚断”的概
念,得u: u ui iR1 iRf
又
整iR1理得0 :R1u
,
iRf
R3
R4
R5
整理得:
uo
Rf RN
( RP R3
ui3
RP R4
ui 4
RN R1
ui1
RN R2
ui2 )
将电路参数平衡条件 RP RN 代入得:
在理想情况下, 该电路具有很好的抑制共 模信号的能力。但是它有输入电阻低和增益调
集成运放的线性应用
三、减法运算电路
四、加法运算电路
五、积分运算电路
六、微分运算电路
七、对数运算电路
利用PN结伏安特性所具有的指数规律,将二极管或者三极管 分别接入集成运放的反馈回路和输入回路,可以实现对数运算和指 数运算,而利用对数运算、指数运算和加减运算电路相组合,便可 实现乘法、除法、乘方和开方等运算。
八、指数运算电路
平衡,要求平衡电阻 R2=R1//Rf。该比例电路的反馈是深度电压并联负反馈。其输入 电阻和输出电阻均不高。
二、同相比例运算电路
为了保证集成运放差动输入级的静态平衡,也要求平衡电 阻R2=R1//Rf。该比例电路的反馈是深度电压串联负反馈。其输 入电阻很高,输出电阻较低。
集成运放的线性 应用
集成运算放大器是一种具有高电压放大倍数、 输入电阻很大、输出电阻很小的直接耦合多级放大 电路。当外部接入不同的线性或非线性元器件组成 输入和负反馈电路时,可以灵活地实现各种特定的 函数关系。在线性应用方面,可组成比例、减法、 加法、积分、微分等模拟运算电路。
一、反相比例运算电路
集成运算放大器的基本应用
第7章集成运算放大器的基本应用7.1集成运算放大器的线性应用7.1.1比例运算电路7.1.2加法运算电路7.1.3减法运算电路7.1.4积分运算电路7.1.5微分运算电路7.1.6电压一电流转换电路7.1.7电流一电压转换电路7.1.8有源滤波器♦7. L 9精密整流电路7.2集成运放的非线性应用7. 2.1单门限电压比较器7. 2.2滞回电压比较器7.3集成运放的使用常识7. 3.1合理选用集成运放型号7. 3.2集成运放的引脚功能1. 3.3消振和调零7. 3.4保护本章重点:1.集成运算放大器的线性应用:比例运算电路、加减法运算电路、积分微分运算电路、一阶有源滤波器、二阶有源滤波器2.集成运算放大器的非线性应用:单门限电压比较器、滞回比较器本章难点:1.虚断和虚短概念的灵活应用2.集成运算放大器的非线性应用3.集成运算放大器的组成与调试集成运算放大器(简称集成运放)在科技领域得到广泛的应用,形成了各种各样的应用电路。
从其功能上来分,可分为信号运算电路、信号处理电路和信号产生电路。
从本章开始和以后的相关章节分别介绍它们的应用。
7.1集成运算放大器的线性应用集成运算放大器的线性应用加法运算电路电流超转7. L 1比例运算电路1.同相比例运算电路反馈方式:电压串联负反馈因为有负反馈,利用虚短和虚断比例运算电路同相比例运算电路(点击查看大图〉集成运算旗大器的线性应用虚短: a 二a 二Ui虚断:O ZZi电压放大倍数:辰—1+鱼吗只\平衡电阻后尼必2.反相比例运算(点击査看大图)反馈方式:电压并联负反馈因为有负反馈,利用虚短和虚断0 (虚断)U-二0, u-=u-=0(虚地)a电压放大倍数:例题:凡二10k ,斥二20k , 口二TV。
求:u°、Rx说明凡的作用,&应为多大?21更相比例运算(点击査看大图)A=-^ = -^ = -2 解: 召1°兔二&珀二二2F凡为平衡电阻(使输入端对地的静态电阻相等):R F RE 特点:共模输入电压二0, (u-=L^=0)缺点:输入电阻小(氏二丘)7.1. 2 加法运算电路反相加法器(点击査看大图)1-=2^= 0 (虚断) U-二 0, u-=u-=0 (虚地)+ iz=ifRr”(吗]+叱)平衡电阻:胎Rd/ RJ/R,【例】在上图电路中,设R :=220k Q ,运放的最大输出电压U OPP 二12V , 电路的输出电压为确定&、R :和卍的阻值;若Ui2=0. 5V ,求U"的允许变化范围。