九年级下册数学28.2.2利用仰俯角解直角三角形教案
人教版-数学-九年级下册---28.2.2(1)仰角、俯角与解直角三角形 教案

典案一教学设计课题第1课时仰角、俯角与解直角三角形授课人教学目标知识技能理解仰角、俯角的概念,并能通过作高构造直角三角形进而解直角三角形.数学思考结合实际问题,弄清仰角、俯角的概念,通过解直角三角形,获得解决物体的高、宽等一些测量经验.问题解决要求学生善于将某些实际问题中的数量关系,归结为直角三角形中元素之间的关系,通过解直角三角形解决实际问题.情感态度运用数形结合思想,把实际问题转化为数学问题,培养学生的自主探究精神,并提高合作交流的能力,培养学数学用数学的思想.教学重点利用俯角、仰角计算物体的高和宽等.教学难点把实际问题转化为数学模型.授课类型新授课课时教具多媒体教学活动教学步骤师生活动设计意图回顾1.解直角三角形的主要依据是什么?2.解直角三角形主要有哪两种类型?1.两锐角的关系、三边之间的关系、边角之间的关系.2.(1)已知两条边;(2)已知一条边和一个锐角.回顾以前所学内容,为本节课的教学内容做好准备.活动一:创设情境导入新课【课堂引入】2012年6月18日,“神舟”九号载人航天飞船与“天宫”一号目标飞行器成功实现交会对接.“神舟”九号与“天宫”一号的组合体在离地球表面343 k m的圆形轨道上运行,如图28-2-37,当组合体运行到地球表面点P的正上方时,从中能直接看到的地球表面最远的点在什么位置?最远点与点P的距离是多少(地球半径约为6400 k m, π取3.142,结果取整数)?图28-2-37通过实际问题,激发学生的学习兴趣,把实际问题转化为数学问题,通过求解,初步体会解直角三角形的内涵,引入课题.活动二:实践探究交流新知1.解决问题:师生活动:教师引导学生分析问题,将实际问题转化为数学问题,并画出示意图.分析问题:从组合体中能直接看到的地球表面最远点,是视线与地球相切时的切点.如图28-2-38,本例可以抽象为以地球中心为圆心、地球半径为半径的⊙O的有关问题:其中点F是组合体的位置,FQ是⊙O的切线,切点Q是从组合体中观测地球时的最远点,PQ︵的长就是地球表面上P,Q两点间的距离.为计算PQ︵的长需先求出∠POQ(即α)的度数.2.仰角、俯角的应用:例题:热气球的探测器显示,从热气球看一栋楼顶部的仰角为30°,看这栋楼底部的俯角为60°,热气球与楼的水平距离为120 m.这栋楼有多高(结果取整数)?仰角与俯角:在视线与水平线所成的角中,视线在水平线上方的是仰角,视线在水平线下方的是俯角.如图28-2-38,仰角α=30°,俯角β=60°. 图28-2-38在Rt△ABD中,α=30°,AD=120,所以可以利用解直角三角形的知识求出BD;类似地,可以求出CD,进而求出BC的长度.设置的实际问题都是从现实生活中提取出来而又高于现实的,既丰富了学生的知识,使他们更有兴趣学习,又让学生进一步经历用三角函数解决实际问题的过程,提高学生运用所学知识解决实际问题的能力.活动三:开放训练体现应用【应用举例】例1如图28-2-39,小明想测量河对岸的一幢高楼AB的高度,在河边C处测得楼顶A的仰角是60°,在距C处60米的E处有幢楼房,小明从该楼房距离地面20米的D处测得高楼顶端A的仰角是30°(点B,C,E在同一直线上,且AB,DE均与地面BE垂直),求楼AB的高度. 图28-2-39分析:过点D作DF⊥AB于点F.设AB的高度为x米,则AF=(x-20)米.在Rt△ABC和Rt△ADF中分别求出BC和DF的长度,然后根据CE=BE-BC,代入数值求出x的值.例1主要考查了解直角三角形的应用,解答本题的关键是根据仰角构造直角三角形,培养学生解决实际问题的能力.【拓展提升】例2如图28-2-40,为了测量顶部不能达到的建筑物AB的高度,现在地平面上取一点C,用测量仪测得点A的仰角为45°,再向前进20米取一点D,使点D在BC的延长线上,此时测得点A的仰角为30°.已知测量仪的高为1.5米,求建筑物AB的高度. 图28-2-40(10 3+11.5)米例2主要是通过两次解直角三角形建立一元一次方程,通过解方程,求出相应的线段,从而解决求建筑物高的问题.【学习目标】1.知识技能(1)进一步掌握解直角三角形的方法;(2)比较熟练地应用解直角三角形的知识解决与仰角、俯角有关的实际问题.2.解决问题(1)通过学习懂得仰角、俯角的意义,学会把实际问题转化为数学模型,发展学生的抽象思维能力;(2)在研究有关仰角、俯角的问题的过程中,发展学生的合情推理能力,体会数形结合的思想.3.数学思考通过解决与仰角、俯角有关的实际问题,发展学生的应用意识.4.情感态度(1)在研究有关仰角、俯角的实际问题的过程中,渗透数学来源于实践又反过来作用于实践的观点,培养生活中应用数学的意识;(2)通过一系列探究活动,培养与他人合作、交流的意识和探究精神.【学习重难点】1.重点:(1)能够灵活应用边与边、角与角、边与角的关系解直角三角形;(2)能将某些与仰角、俯角有关的实际问题中的数量关系,归结为直角三角形元素之间的关系,从而利用所学知识解决实际问题.2.难点:(1)把实际问题转化为数学问题的能力的培养;(2)灵活应用解直角三角形的知识及仰角、俯角等知识解决实际问题.课前延伸【知识梳理】1.解直角三角形是指:__由直角三角形中的已知元素,求出其余未知元素的过程__.2.解直角三角形主要依据什么?课内探究一、课堂探究1(问题探究,自主学习)如图28-2-44,为了测量旗杆的高度AB,在离旗杆33米的C处,用高1.20米的测角仪CD测得旗杆顶端B的仰角α=30°,求旗杆AB的高(精确到0.1米).图28-2-44二、课堂探究2(分组讨论,合作探究)例1如图28-2-45,热气球的探测器显示,从热气球看一栋高楼顶部的仰角为30°,看这栋高楼底部的俯角为60°,热气球与高楼的水平距离为120 m,这栋高楼有多高?图28-2-45 图28-2-46例2如图28-2-46, 在上海的黄浦江东岸,矗立着亚洲第一的电视塔“东方明珠”,某校学生在黄浦江西岸B处,测得塔尖D的仰角为45°,后退340 m到点A测得塔尖D的仰角为30°.设塔底C与A,B在同一直线上,试求该塔的高度(结果保留根号).三、反馈训练1.从1.5 m高的测量仪上,测得某建筑物顶端的仰角为30°,测量仪距建筑物60 m,则该建筑物的高大约为( B )A.34.65 m B.36.14 m C.28.28 m D.29.78 m2.如图28-2-47,某海岛上的观察所A发现海上某船只B并测得其俯角a=30°.已知观察所A的标高(当水位为0 m时的高度)为42 .64 m,当时水位为+2 .14 m,求观察所A 到船只B的水平距离BC=________(精确到1 m).图28-2-473.在山顶上D处有一铁塔,在塔顶B处测得地面上一点A的俯角α=60°,在塔底D 测得点A的俯角β=45°.已知塔高BD=30米,求山高CD(结果保留根号).图28-2-48课后提升如图28-2-49,测量楼房AC的楼顶上的电视天线AE的高度,在地面上一点B处测得楼顶A的仰角为30°,前进15米到点D,测得天线顶端E的仰角为60°.已知楼高AC 为15米,求天线AE的高度.图28-2-49。
教与学 新教案九年级数学下册 28.2.2 仰角、俯角与解

锐角三角函数28.2 解直角三角形及其应用28.2.2 应用举例第1课时仰角、俯角与解直角三角形置疑导入归纳导入悬念激趣肖颖的教室在教学楼的二楼,一天,她站在教室的窗台前看操场上的旗杆,心想:站在二楼上可以利用解直角三角形测得旗杆的高吗?她望着旗杆顶端和旗杆底部,可以测得视线与水平视线之间的夹角各一个,但是,这两个角怎样命名区别呢?如图28-2-25,∠CAE,∠DAE在测量中各叫什么角呢?图28-2-25[说明与建议] 说明:用来源于学生身边的问题吸引他们的注意力,激发他们的好奇心,体会数学来源于生活,并服务生活,诱发学生对新知识的渴求.建议:两个学生一组,一个学生观察物体,另一个学生根据他观察的视线画出示意图,教师选择合适的时机引出仰角和俯角的概念.一棵树AC在地面上的影子BC为10米,如图28-2-26①,在树影一端B处测得树顶A的仰角为 45°,则树高是多少米?如图②,若一只小鸟从树顶A看树影BC的顶端B的俯角为 60°,则树高是多少米?(精确到1米)图28-2-26[说明与建议] 说明:通过仰角和俯角进一步说明,观察点的位置不同,得到的数据不同,观察的方向不同,得到的数据也可能不同.建议:教师让学生根据上述的两个图形,求出树高,进一步理解俯角和仰角的概念.75页例4热气球的探测器显示,从热气球看一栋楼顶部的仰角为30°,看这栋楼底部的俯角为60°,热气球与楼的水平距离为120 m,这栋楼有多高(结果取整数)?图28-2-27【模型建立】根据俯角和仰角的意义,把角转化到相应的直角三角形中,通过解直角三角形解决实际问题. 在实际测量高度、宽度、距离等问题中,常结合视角知识构建直角三角形,利用三角函数或相似三角形来解决问题.常构造的基本图形有如下几种:①不同地点看同一点,如图28-2-28①.②同一地点看不同点,如图28-2-28②.③利用反射构造相似,如图28-2-28③.①②③图28-2-28【变式变形】1.襄阳中考如图28-2-29,在建筑平台CD的顶部C处,顶部A的仰角为45°.底部B的俯角为30°.已知平台CD的高度为5 m,则大树的高度为__(5_3+5)__ m(结果保留根号).图28-2-29 图28-2-302.潍坊中考如图28-2-30,某水平地面上建筑物的高度为AB,在点D和点F处分别竖立高是2米的标杆CD和EF,两标杆相隔52米,并且建筑物AB、标杆CD和EF在同一竖直平面内.从标杆CD后退2米到点G处,在G处测得建筑物顶端A和标杆顶端C在同一条直线上;从标杆EF后退4米到点H处,在H处测得建筑物顶端A和标杆顶端E在同一直线上,则建筑物的高是__54__米.3.自贡中考如图28-2-31,某学校新建了一座吴玉章雕塑,小林站在距离雕塑2.7米的A 处自点B看塑像头顶D的仰角为45°,看塑像底部C的仰角为30°,求塑像CD的高度.(最后结果精确到0.1米,参考数据:3≈1.7)[答案:塑像CD的高度约为1.2米]图28-2-314.台州中考如图28-2-32,某翼装飞行运动员从离水平地面高AC=500 m的点A处出发,沿着俯角为15°的方向,直线滑行1600 m到达点D,然后打开降落伞以75°的俯角降落到地面上的点B.求他飞行的水平距离(结果精确到1 m).图28-2-32解:如图28-2-33,过点D作DE⊥AC,作DF⊥BC,垂足分别为E,F.∵AC⊥BC,∴四边形ECFD是矩形,∴EC=DF.在Rt△ADE中,∠ADE=15°,AD=1600,∴AE=AD·sin∠ADE=1600sin15°,DE=AD·cos∠ADE=1600cos15°. ∵EC=AC-AE,∴DF=EC=500-1600sin15°.在Rt△DBF中,BF=DF·tan∠FDB=EC·tan15°,∴BC=CF+BF=1600·cos15°+(500-1600sin15°)tan15°≈1575(m).答:运动员飞行的水平距离约为1575 m.图28-2-335.绍兴中考九(1)班同学在上学期的社会实践活动中,对学校旁边的山坡护墙和旗杆进行了测量.(1)如图28-2-34①,第一小组用一根木条CD斜靠在护墙上,使得DB与CB的长度相等,如果测量得到∠CDB=38°,求护墙与地面的倾斜角α的度数;(2)如图②,第二小组用皮尺量得EF为16 m(E为护墙的上端点),EF的中点离地面FB的高度为1.9米,请求出点E离地面FB的高度;(3)如图③,第三小组利用第一、二小组的结果,来测量护墙上旗杆的高度.在点P测得旗杆顶端A的仰角为45°,向前走4米到达点Q,测得旗杆顶端A的仰角为60°,求旗杆AE的高度(精确到0.1米).备用数据:tan60°≈1.732,,2≈1.414.图28-2-34解:(1)∵DB=CB,∴∠BDC=∠BCD.∵∠CDB=38°,∴α=∠BDC+∠BCD=76°.即护墙与地面的倾斜角α的度数为76°.(2)如图28-2-35①,设EF 的中点为M ,过点M 作MN ⊥FB ,垂足为N ,过点E 作EG ⊥BF ,垂足为G . ∵EG ⊥FB ,MN ⊥FB ,∴EG ∥MN .又∵M 是线段EF 的中点,∴N 是线段FG 的中点,∴MN 是△EFG 的中位线,∴EG =2MN =2×1.9=3.8(m).即点E 离地面FB 的高度为3.8 m. ① ②图28-2-35(3)如图28-2-35②,延长AE 交PB 于点H .在Rt △A QH 中,由tan ∠AQH =AH QH ,得QH =AHtan60°=AH3,同理,PH =AH tan45°=AH .∵PQ =4,∴AH -13AH =4,解得AH ≈9.46 m ,∴AE =AH -EH ≈9.46-3.8≈5.7(m).故旗杆AE 的高度约为5.7 m.素材三 考情考向分析[命题角度1] 利用仰角解决实际问题利用仰角,画出示意图,解直角三角形,直接求塔高树高等.例 株洲中考孔明同学在距某电视塔塔底水平距离500米处,看塔顶的仰角为20°(不考虑身高因素),则此塔的高约为__182__米(结果保留整数,参考数据:sin20°≈0.3420,sin70°≈0.9397,tan20°≈0.3640,tan70°≈2.7475).[命题角度2] 利用俯角解决实际问题根据题意和俯角的位置,构建直角三角形,设出相应的线段,通过解直角三角形构建一次方程,解此方程,回答相应的问题.例 河南中考如图28-2-36,在中俄“海上联合—2014”反潜演习中,我军舰A 测得潜艇C 的俯角为30°,位于军舰A 正上方1000米的反潜直升机B 测得潜艇C 的俯角为68°.试根据以上数据求出潜艇C 离开海平面的下潜深度.(结果保留整数,参考数据:sin68°≈0.9,cos68°≈0.4,tan68°≈2.5,3≈1.7).[答案:潜艇C 离开海平面的下潜深度约为308米] 图28-2-36[命题角度3] 综合俯角、仰角解决实际问题通过仰角和俯角添加辅助线,构建直角三角形,解直角三角形,解决实际问题.如本课素材二变式变形第1题.素材四 图书增值练习[当堂检测]1. (2013山西)如图,某地修建高速公路,要从B 地向C 地修一座隧道(B 、C 在同一水平面上).为了测量B 、C 两地之间的距离,某工程师乘坐热气球从C 地出发,垂直上升100 m 到达A 处,在A 处观察B 地的俯角为30°,则B 、C 两地之间的距离为( )A.1003 m B.502 m C.503 m D.3 1003m2. (2013衢州)如图,小敏同学想测量一棵大树的高度.她站在B处仰望树顶,测得仰角为30°,再往大树的方向前进4 m,测得仰角为60°,已知小敏同学身高(AB)为1.6 m,则这棵树的高度为()(结果精确到0.1 m,3≈1.73)A.3.5 m B.3.6 m C.4.3 m D.5.1 m3. (2013德阳)如图,热气球的探测器显示,从热气球A看一栋高楼顶部B的仰角为30°,看这栋高楼底部C的俯角为60°,热气球A与高楼的水平距离为120 m,这栋高楼BC的高度为()A.403 m B.803 mC.1203 m D.1603 m4. (2013十堰)如图,在小山的东侧A点有一个热气球,由于受西风的影响,以30米/分的速度沿与地面成75°角的方向飞行,25分钟后到达C处,此时热气球上的人测得小山西侧B点的俯角为30°,则小山东西两侧A、B两点间的距离为____米.5. 小明在楼顶点A处测得对面大楼楼顶点C处的仰角为60°,楼底点D处的俯角为30°.若两座楼AB与CD相距60米,求楼CD的高度为多少米?参考答案1.A2.D3.D4.75025.解:过点A 作AE ⊥CD 于E .在Rt△ACE 中,CE =60×tan60°=603(米), 在Rt△ADE 中,DE =60×tan30°=60×33=203(米), ∴CD =CE +DE =603+203=803(米).素材五 数学素养提升直角三角形中七个的“是否”学习了直角三角形后,我们被其有趣而且丰富的知识所感染。
人教版九年级数学下册28.2.2 第2课时 利用仰俯角解直角三角形 导学案

的邻边的对边A A ∠∠28.2.2 应用举例第2课时 利用仰俯角解直角三角形【学习目标】⑴ 使学生了解仰角、俯角的概念,使学生根据直角三角形的知识解决实际问题. ⑵ 逐步培养学生分析问题、解决问题的能力.⑶ 渗透数学来源于实践又反过来作用于实践的观点,培养学生用数学的意识【学习重点】将某些实际问题中的数量关系,归结为直角三角形元素之间的关系,从而利用所学知识把实际问题解决.【学习难点】实际问题转化成数学模型【导学过程】一、自学提纲:1.解直角三角形指什么?2.解直角三角形主要依据什么?(1)勾股定理:(2)锐角之间的关系:(3)边角之间的关系:tanA=二、合作交流:仰角、俯角当我们进行测量时,在视线与水平线所成的角中,视线在水平线上方的角叫做仰角,在水平线下方的角叫做俯角.三、教师点拨:例3 2003年10月15日“神舟”5号载人航天飞船发射成功.当飞船完成变轨后,就在离地球表面350km 的圆形轨道上运行.如图,当飞船运行到地球表面上P 点的正上方时,从飞船上最远能直接看到的地球上的点在什么位置?这样的最远点与P 点的距离是多少?(地球半径约为6 400 km ,结果精确到0. 1 km)斜边的邻边A A ∠=cos 斜边的对边A A ∠=sin例4热气球的探测器显示,从热气球看一栋高楼顶部的仰角为30o,看这栋离楼底部的俯角为60o,热气球与高楼的水平距离为120 m.这栋高楼有多高(结果精确到0.1m)?四、学生展示:一、课本76页练习第1 、2题五、课堂小结:六、作业设置:课本第78页习题28.2复习巩固第3、4题七、自我反思:本节课我的收获:。
人教版九年级数学下册第二十八章28.2解直角三角形的应用教案

课题:§28.2.2 解直角三角形的应用一、教学目标知识目标:了解仰角、俯角概念,能应用解直角三角形解决观测中的实际问题.帮助学生学会把实际问题转化为解直角三角形问题,从而把实际问题转化为数学问题来解决.能力目标:逐步培养学生分析问题、解决问题的能力.渗透数学建模及方程思想和方法,能将实际问题中的数量关系转化为直角三角形中元素之间的关系.情感与价值观:渗透数学来源于实践又反过来作用于实践的观点,培养学生用数学的意识,同时激发学生对自己家乡的热爱之情及自豪感,更好的激励学习.二、教学重点、难点1.重点:应用解直角三角形的有关知识解决观测问题.2.难点:能够准确分析问题并将实际问题转化为数学模型.三、教学过程1.导入新课[设计说明:明确本节课学习目标,复习解直角三角形的概念及相关方法原则,为接下来的学习做好充分准。
]展示学习目标,交流课前预习内容:解直角三角形中常用的数量关系及相关原则方法.(课前布置预习作业,角、边共同回答,其它直接交流,强调三角函数关系形式灵活,可写为比的形式,也可写为乘积形式)(解直角三角形原则(1)、(2)学生齐声回答)(交流自己添加条件解直角三角形问题挑选所给条件不同形式的作业展示,主要是“一边一角”,“两边”等类型,归纳强调已知条件至少有一个必须是边)2.例题分析[设计说明:联系实际,对问题情境的理解需要学生具有一定的空间想象能力,在审题过程中自然引出仰角、俯角概念,逐步向学生渗透数学建模思想,帮助学生从实际问题中,抽象出数学模型,将实际问题转化为数学问题来解决。
例1讲解,先引导学生分析,然后借助多媒体逐步展示解题过程,规范书写格式,强调解题完整性。
变题1与例1是交换题目条件与结论,情境不变,分别求桥长与飞机高。
变题2-3情境有所变化,由测桥变为测楼,所求问题是飞机高及飞机到楼房距离。
以上问题的解题关键在于转化实际问题为数学问题,着重是示意图的画法及让学生说出题中每句话对应图中的哪条边或哪个角(包括已知什么和求什么),进而利用解直角三角形知识解决问题,并在解题后及时加以归纳,挖掘图形结构及条件的特点。
人教版九年级下册数学教案:28.2解直角三角形应用仰角与俯角

“自学互帮导学法”课堂教学设计课题解直角三角形的应用课时第一课时课型新授修改意见教学目标1.熟练掌握解直角三角形有关知识2.了解仰角和俯角有关知识3.让学生学会运用知识解决问题的能力教学重点仰角和俯角[.Com]教学难点如何将实际问题转化为解直角三角形学情分析学生掌握了解直角三角形有关知识,学习本节内容应不难学法指导合作探究教学过程教学内容教师活动学生活动效果预测(可能出现补救措施修改意见的问题)一一复习引入1.解直角三角形在直角三角形中,除直角外,由已知两元素求其余未知元素的过程叫解直角三角形2.解直角三角形的依据(1)三边之间的关系a2+b2=c2(勾股定理)(2)两锐角之间的关系:∠A+∠B=90º(3)边角之间的关系二、学习新知1.在进行测量时,从下向上看,视线与水平线的夹角叫做仰角;必有一边教师应强调老师引导学生在课堂实学生交流,回答从上往下看,视线与水平线的夹角叫做俯角2.强化训练三、运用知识解决测量中的最远点问题例1:2003年10月15日“神舟”5号载人航天飞船发射成功.当飞船完成变轨后,就在离地球表面350k m的圆形轨道上运行.如图,当飞船运行到地球表面上P点的正上方时,从飞船上最远能直接看到地球上的点在什么位置?这样的最远点与P点的距离是多少?(地球半径约为 6 400k m,结果精确到0.1km)践,体会仰角和俯角[.Com]引导学生从实际问题中画出直角三角形,构建直角三角形模型。
四、仰角与俯角的运用例2: 热气球的探测器显示,从热气球看一栋高楼顶部的仰角为30°,看这栋高楼底部的俯角为60°,热气球与高楼的水平距离为120m,这栋高楼有多高(结果精确到0.1m)练习 11. 建筑物BC上有一旗杆AB,由距BC40m 的D处观察旗杆顶部A的仰角54°,观察底部B的仰角为45°,求旗杆的高度(精确到0.1m)教师引导讲解重点分析如何作辅助线,建直角三角形。
初中数学九年级《解直角三角形的应用(仰角和俯角)》公开课教学设计

课题:28.2.2解直角三角形的应用1(仰角和俯角)课型:新授课 班级:9.7教学目标知识与技能:能根据解直角三角形的知识解决与仰角、俯角有关的实际问题,逐步培养学生分析问题、解决问题的能力.过程与方法:借助辅助线把实际问题转化为解直角三角形的问题,渗透转化思想和数形结合的思想.情感态度与价值观:在探索过程中,发展学生的探究意识和合作交流的习惯. 学情分析解直角三角形的应用1的主要内容是利用解直角三角形的基本理论知识去解决生活中与仰角和俯角有关的简单实际问题.学生已经学习了"锐角三角函数、解直角三角形的条件、方法,已具备了一定的几何识图及计算能力,也掌握了一定的数学思想方法和数学活动经验。
但是把一些实际问题转化为解直角三角形的数学问题,对学生分析问题的能力要求较高,而我所任教班级的学生在这方面的能力有所欠缺,所以这会使学生学习感到困难,因此在教学中我以例题为主,进行了层层递进的变式训练,引导学生学会分析问题,获得解决实际问题的一般策略。
教学重点:根据解直角三角形的知识解决与仰角、俯角有关的实际问题教学难点:将某些实际问题中的数量关系归结为直角三角形中元素之间的关系,从而解决问题.教学流程一、复习回顾:直角三角形ABC 中,∠C=90°,a 、b 、c 、∠A 、∠B 这五个元素间有哪些等量关系呢? (1) 三边之间关系:(2) 锐角之间关系:(3) 边角之间关系:设计意图:引导学生回顾直角三角形中五个元素的关系, 为学生利用解直角三角解决实际问题为做好铺垫。
说明:此环节用PPT 课件显示,省时、高效,知识的内在联系一目了然。
AC B a c b二、新知探究(一)仰角、俯角的概念介绍在进行测量时,从下向上看,视线与水平线的夹角叫做仰角;从上往下看,视线与水平线的夹角叫做俯角.设计意图:结合动画图例,让学生直观地理解仰 角和俯角概念,为例题分析解除知识障碍。
(二)典型例题剖析例题1: 热气球的探测器显示,从热气球看一栋高楼顶部的仰角为30°,看这栋高楼底部的俯角为60°,热气球与高楼的水平距离为120m ,这栋高楼有多高?解法一:(作A D ⊥BC 于D ,在Rt △ABD 和RtACD 中,分别利用tan ∠BAD 和tan ∠CAD 求出BD 和 D和CD ,再求和即可。
2022年人教版《利用仰俯角解直角三角形》公开课教案

28.2.2 应用举例第2课时 利用仰俯角解直角三角形1.使学生掌握仰角、俯角的意义,并学会正确地判断;(重点)2.初步掌握将实际问题转化为解直角三角形问题的能力.(难点)一、情境导入在实际生活中,解直角三角形有着广泛的应用,例如我们通常遇到的视线、水平线、铅垂线就构成了直角三角形.当我们测量时,在视线与水平线所成的角中,视线在水平线上方的角叫做仰角,在水平线下方的角叫做俯角.今天我们就学习和仰角、俯角有关的应用性问题.二、合作探究探究点:利用仰(俯)角解决实际问题 【类型一】 利用仰角求高度星期天,身高均为1.6米的小红、小涛来到一个公园,用他们所学的知识测算一座塔的高度.如图,小红站在A 处测得她看塔顶C 的仰角α为45°,小涛站在B 处测得塔顶C 的仰角β为30°,他们又测出A 、B m ,假设他们的眼睛离头顶都是10cm ,求塔高(结果保存根号).解析:设塔高为x m ,利用锐角三角函数关系得出PM 的长,再利用CP PN=tan30°,求出x 的值即可.解:设塔底面中心为O ,塔高x m ,MN ∥AB 与塔中轴线相交于点P ,得到△CPM 、△CPN是直角三角形,那么x -〔1.6-0.1〕PM=tan45°,∵tan45°=1,∴PM =CP =x Rt △CPN 中,CP PN =tan30°,即x x -1.5+41.5=33,解得x =833+894. 答:塔高为833+894m. 方法总结:解决此类问题要了解角与角之间的关系,找到与和未知相关联的直角三角形.当图形中没有直角三角形时,要通过作高或垂线构造直角三角形.变式训练:见《 》本课时练习“课堂达标训练〞 第7题【类型二】 利用俯角求高度如图,在两建筑物之间有一旗杆EG ,高15米,从A 点经过旗杆顶部E 点恰好看到矮建筑物的墙角C 点,且俯角α为60°,又从A 点测得D 点的俯角β为30°.假设旗杆底部G 点为BC 的中点,求矮建筑物的高CD .解析:根据点G 是BC 的中点,可判断EG 是△ABC 的中位线,求出AB .在Rt △ABC 和Rt △AFD 中,利用特殊角的三角函数值分别求出BC 、DF ,继而可求出CD 的长度.解:过点D 作DF ⊥AF 于点F ,∵点G 是BC 的中点,EG ∥AB ,∴EG 是△ABC 的中位线,∴AB =2EG =30m.在Rt △ABC 中,∵∠CAB =30°,∴BC =AB tan ∠BAC =30×33=103m.在Rt △AFD 中,∵AF =BC =103m ,∴FD =AF ·tan β=103×33=10m ,∴CD =AB -FD =30-10=20m.答:矮建筑物的高为20m.方法总结:此题考查了利用俯角求高度,解答此题的关键是构造直角三角形,利用三角函数的知识求解相关线段的长度.变式训练:见《 》本课时练习“课堂达标训练〞第6题【类型三】 利用俯角求不可到达的两点之间的距离如图,为了测量河的宽度AB ,测量人员在高21m 的建筑物CD 的顶端D 处测得河岸B 处的俯角为45°,测得河对岸A 处的俯角为30°(A 、B 、C 在同一条直线上),那么河的宽度AB 约是多少m(精确到0.1m ,参考数据:2≈1.41,3≈)?解析:在Rt △ACD 中,根据条件求出AC 的值,再在Rt △BCD 中,根据∠EDB =45°,求出BC =CD =21m ,最后根据AB =AC -BC ,代值计算即可.解:∵在Rt △ACD 中,CD =21m ,∠DAC =30°,∴AC =CD tan30°=2133=213m.∵在Rt △BCD 中,∠EDB =45°,∴∠DBC =45°,∴BC =CD =21m ,∴AB =AC -BC =213-21≈15.3(m).那么河的宽度AB m.方法总结:解决此类问题要了解角之间的关系,找到与和未知相关联的直角三角形,把实际问题化归为直角三角形中边角关系问题加以解决.变式训练:见《 》本课时练习“课后稳固提升〞 第3题【类型四】 仰角和俯角的综合某数学兴趣小组的同学在一次数学活动中,为了测量某建筑物AB 的高,他们来到与建筑物AB 在同一平地且相距12m 的建筑物CD 上的C 处观察,测得此建筑物顶部A 的仰角为30°、底部B 的俯角为45°.求建筑物AB 的高(精确到1m ,可供选用的数据:2≈1.4,3≈).解析:过点C 作AB 的垂线CE ,垂足为E ,根据题意可得出四边形CDBE 是正方形,再由BD =12m 可知BE =CE =12m ,由AE =CE ·tan30°得出AE 的长,进而可得出结论.解:过点C 作AB 的垂线,垂足为E ,∵CD ⊥BD ,AB ⊥BD ,∠ECB =45°,∴四边形CDBE 是正方形.∵BD =12m ,∴BE =CE =12m ,∴AE =CE ·tan30°=12×33=43(m),∴AB =43+12≈19(m).答:建筑物AB 的高为19m.方法总结:此题考查的是解直角三角形的应用中仰角、俯角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键.变式训练:见《 》本课时练习“课后稳固提升〞第7题三、板书设计1.仰角和俯角的概念;2.利用仰角和俯角求高度;3.利用仰角和俯角求不可到达两点之间的距离;4.仰角和俯角的综合.备课时尽可能站在学生的角度上思考问题,设计好教学过程中的每一个细节.上课前多揣摩,让学生更多地参与到课堂的教学过程中,让学生体验思考的过程,体验成功的喜悦和失败的挫折,舍得把课堂让给学生,让学生做课堂这个小小舞台的主角.使课堂更加鲜活,充满人性魅力,下课后多反思,做好反响工作,不断总结得失,不断进步.只有这样,才能真正提高课堂教学效率.第2课时百分率和配套问题教学目标1.学会运用二元一次方程组解决百分率和配套问题;2.进一步经历和体验方程组解决实际问题的过程。
部审人教版九年级数学下册教学设计28.2.2 第2课时《利用仰俯角解直角三角形》

部审人教版九年级数学下册教学设计28.2.2 第2课时《利用仰俯角解直角三角形》一. 教材分析人教版九年级数学下册第28.2.2节《利用仰俯角解直角三角形》是直角三角形相关知识的一部分。
这部分内容主要让学生了解并掌握仰俯角的概念,学会利用仰俯角解直角三角形的方法。
教材通过实例引入仰俯角的概念,然后引导学生通过观察、思考、探究,掌握利用仰俯角解直角三角形的方法。
教材内容丰富,既有理论知识,也有实践操作,能够激发学生的学习兴趣,培养学生的动手能力和解决问题的能力。
二. 学情分析九年级的学生已经掌握了直角三角形的相关知识,对解直角三角形有一定的了解。
但是,对于仰俯角的概念和利用仰俯角解直角三角形的方法可能还不够熟悉。
因此,在教学过程中,我需要引导学生通过观察、思考、探究,让他们在实践中掌握这部分知识。
同时,学生已经具备了一定的数学思维能力和解决问题的能力,可以通过引导和启发,让他们自主发现和总结利用仰俯角解直角三角形的方法。
三. 教学目标1.让学生了解并掌握仰俯角的概念。
2.引导学生通过观察、思考、探究,掌握利用仰俯角解直角三角形的方法。
3.培养学生的动手能力和解决问题的能力。
四. 教学重难点1.仰俯角的概念。
2.利用仰俯角解直角三角形的方法。
五. 教学方法1.引导法:通过问题引导,让学生思考和探究,激发学生的学习兴趣。
2.实践法:让学生动手操作,通过实际操作加深对知识的理解和掌握。
3.总结法:引导学生自主发现和总结,培养学生的数学思维能力。
六. 教学准备1.准备相关的教学材料,如PPT、黑板、粉笔等。
2.准备一些实际的例子,以便引导学生观察和思考。
七. 教学过程1.导入(5分钟)通过一个实际问题引入本节课的主题,让学生思考如何利用仰俯角解直角三角形。
例如,可以提出一个关于建筑物高度的问题,让学生思考如何通过测量角度来求解建筑物的高度。
2.呈现(10分钟)讲解仰俯角的概念,并通过实例展示仰俯角的含义和作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
28.2.2 应用举例
第2课时 利用仰俯角解直角三角形
1.使学生掌握仰角、俯角的意义,并学会正确地判断;(重点)
2.初步掌握将实际问题转化为解直角三角形问题的能力.(难点)
一、情境导入
在实际生活中,解直角三角形有着广泛的应用,例如我们通常遇到的视线、水平线、铅垂线就构成了直角三角形.当我们测量时,在视线与水平线所成的角中,视线在水平线上方的角叫做仰角,在水平线下方的角叫做俯角.今天我们就学习和仰角、俯角有关的应用性问题.
二、合作探究
探究点:利用仰(俯)角解决实际问题
【类型一】 利用仰角求高度
星期天,身高均为1.6米的小红、小涛来到一个公园,用他们所学的知识测算一
座塔的高度.如图,小红站在A 处测得她看塔顶C 的仰角α为45°,小涛站在B 处测得塔顶C 的仰角β为30°,他们又测出A 、B 两点的距离为41.5m ,假设他们的眼睛离头顶都是10cm ,求塔高(结果保留根号).
解析:设塔高为x m ,利用锐角三角函数关系得出PM 的长,再利用CP PN
=tan30°,求出x 的值即可.
解:设塔底面中心为O ,塔高x m ,MN ∥AB 与塔中轴线相交于点P ,得到△CPM 、△CPN
是直角三角形,则x -(1.6-0.1)PM
=tan45°,∵tan45°=1,∴PM =CP =x -1.5.在Rt △CPN
中,CP PN =tan30°,即x -1.5x -1.5+41.5=33
,解得x =833+894. 答:塔高为833+894
m. 方法总结:解决此类问题要了解角与角之间的关系,找到与已知和未知相关联的直角三角形.当图形中没有直角三角形时,要通过作高或垂线构造直角三角形.
变式训练:见《课堂内外》本课时练习“课堂达标训练” 第7题
【类型二】 利用俯角求高度
如图,在两建筑物之间有一旗杆EG ,高15米,从A 点经过旗杆顶部E 点恰好看
到矮建筑物的墙角C 点,且俯角α为60°,又从A 点测得D 点的俯角β为30°.若旗杆底部G 点为BC 的中点,求矮建筑物的高CD .
解析:根据点G 是BC 的中点,可判断EG 是△ABC 的中位线,求出AB .在Rt △ABC 和Rt △AFD 中,利用特殊角的三角函数值分别求出BC 、DF ,继而可求出CD 的长度.
解:过点D 作DF ⊥AF 于点F ,∵点G 是BC 的中点,EG ∥AB ,∴EG 是△ABC 的中位线,∴AB =2EG =30m.在Rt △ABC 中,∵∠CAB =30°,∴BC =AB tan ∠BAC =30×33=103m.在Rt △AFD 中,∵AF =BC =103m ,∴FD =AF ·tan β=103×
33
=10m ,∴CD =AB -FD =30-10=20m.
答:矮建筑物的高为20m.
方法总结:本题考查了利用俯角求高度,解答本题的关键是构造直角三角形,利用三角函数的知识求解相关线段的长度.
变式训练:见《课堂内外》本课时练习“课堂达标训练”第6题
【类型三】 利用俯角求不可到达的两点之间的距离
如图,为了测量河的宽度AB ,测量人员在高21m 的建筑物CD 的顶端D 处测得
河岸B 处的俯角为45°,测得河对岸A 处的俯角为30°(A 、B 、C 在同一条直线上),则河的宽度AB 约是多少m(精确到0.1m ,参考数据:2≈1.41,3≈1.73)?
解析:在Rt △ACD 中,根据已知条件求出AC 的值,再在Rt △BCD 中,根据∠EDB =45°,求出BC =CD =21m ,最后根据AB =AC -BC ,代值计算即可.
解:∵在Rt △ACD 中,CD =21m ,∠DAC =30°,∴AC =CD tan30°=213
3
=213m.∵在Rt △BCD 中,∠EDB =45°,∴∠DBC =45°,∴BC =CD =21m ,∴AB =AC -BC =213-21≈15.3(m).则河的宽度AB 约是15.3m.
方法总结:解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角三角形,把实际问题化归为直角三角形中边角关系问题加以解决.
变式训练:见《课堂内外》本课时练习“课后巩固提升” 第3题
【类型四】 仰角和俯角的综合
某数学兴趣小组的同学在一次数学活动中,为了测量某建筑物AB 的高,他们来
到与建筑物AB 在同一平地且相距12m 的建筑物CD 上的C 处观察,测得此建筑物顶部A 的仰角为30°、底部B 的俯角为45°.求建筑物AB 的高(精确到1m ,可供选用的数据:2≈1.4,3≈1.7).
解析:过点C 作AB 的垂线CE ,垂足为E ,根据题意可得出四边形CDBE 是正方形,再由BD =12m 可知BE =CE =12m ,由AE =CE ·tan30°得出AE 的长,进而可得出结论.
解:过点C 作AB 的垂线,垂足为E ,∵CD ⊥BD ,AB ⊥BD ,∠ECB =45°,∴四边形CDBE 是正方形.∵BD =12m ,∴BE =CE =12m ,∴AE =CE ·tan30°=12×
33
=43(m),∴AB =43+12≈19(m).
答:建筑物AB 的高为19m.
方法总结:本题考查的是解直角三角形的应用中仰角、俯角问题,根据题意作出辅助线,
构造出直角三角形是解答此题的关键.
变式训练:见《课堂内外》本课时练习“课后巩固提升”第7题
三、板书设计
1.仰角和俯角的概念;
2.利用仰角和俯角求高度;
3.利用仰角和俯角求不可到达两点之间的距离;
4.仰角和俯角的综合.
备课时尽可能站在学生的角度上思考问题,设计好教学过程中的每一个细节.上课前多揣摩,让学生更多地参与到课堂的教学过程中,让学生体验思考的过程,体验成功的喜悦和失败的挫折,舍得把课堂让给学生,让学生做课堂这个小小舞台的主角.使课堂更加鲜活,充满人性魅力,下课后多反思,做好反馈工作,不断总结得失,不断进步.只有这样,才能真正提高课堂教学效率.。