解直角三角形(仰角与俯角)
知识卡片-解直角三角形的应用-仰角俯角问题

解直角三角形的应用-仰角俯角问题能量储备仰角、俯角:如图2446(1)所示,在进行测量时,从下向上看,视线与水平线的夹角叫做仰角;从上往下看,视线与水平线的夹角叫做俯角。
通关宝典★ 基础方法点方法点:解直角三角形在实际问题中的应用中正确选取直角三角形的边角关系是求解的关键。
例1:如图24410所示,某电视塔高AB 为610米,远处有一栋大楼,某人在楼底C 处测得塔顶B 的仰角为45°,在楼顶D 处测得塔顶B 的仰角为39°。
(1)求大楼与电视塔之间的距离AC ;(2)求大楼的高度CD (精确到1米)。
解:(1)在△ABC 中,∵ ∠ACB =45°,∠A =90°,∴ AC =AB =610米。
答:大楼与电视塔之间的距离AC 为610米。
(2)由矩形的性质可知DE =AC =610米。
在Rt △BDE 中,由tan ∠BDE =BE DE,得BE =DE·tan 39°。
又∵CD =AE ,∴CD =AB -DE·tan 39°=610-610×tan 39°≈116(米)。
答:大楼的高度CD 约为116米。
例2:如图24428所示,为了测得电视塔的高度AB ,在D 处用高为1.2米的测角仪CD ,测得电视塔顶端A 的仰角为42°,再向电视塔方向前进120米,又测得电视塔顶端A 的仰角为61°.求这个电视塔的高度AB .(精确到1米)解:如图24429所示,设AE 为x 米,则塔的高度为(x +1.2)米.∵ tan 61°=AE EF =x EF ,∴ EF =x tan 61°. 又∵ tan 42°=AE CE ,∴ CE =x tan 42°. ∵ CE =120+x tan 61°, ∴ x tan 42°=120+x tan 61°, 解得x ≈215.7,∴ x +1.2≈217(米).∴ 这个电视塔的高度AB 约为217米。
解直角三角形--仰角俯角.仰角俯角问题---解直角三角形

观察下图,判断哪些是仰视哪些是俯视; 哪个是俯角,哪个是仰角.
从A看B的仰角是:
∠BAC
从B看A的俯角是: ∠FBA 从B看D的俯角是: ∠FBD 从D看B的仰角是: ∠BDE 注意:从哪个点看就从哪个点作水平线,俯角就 是水平线与向下看视线的夹角,仰角就是水平线 与向上看视线的夹角。
例1: 如图一学生要测量校园内一棵水杉树高度, 他站在距水杉树8米的E处,测得树顶的仰角 ∠ACD=30°,已知测角仪的架高CE=1.6米, 求树高AB(精确到0.1米) A
问题探究
• 1、仰角、俯角 • 阅读教材:当我们进行测量时,在视线与水平 线所成的角中,视线在水平线上方的角叫做仰角, 在水平线下方的角叫做俯角. • 学生仰视日光灯或俯视桌面 • (以体会仰角与俯角的意义.)
归纳、总结
• 如图,在进行测量时,从下向上看,视线与水平 线的夹角叫做仰角;从上往下看,视线与水平线 的夹角叫做俯角
把问题转化为解直角三角形的问题;
(3)根据直角三角形元素(边、角)之间的关系解有关的直角三角形.
A
D1 D
30 °
C1 50
C
45°
B1 B
2、(2011安徽中考)如图,某高速公路建设中 需要确定隧道AB的长度.已知在离地面1500m高 度C处的飞机,测量人员测得正前方A、B两点处 的俯角分别为60°和45°,求隧道AB的长.
甲、乙两楼相距78米,从乙楼底 望甲楼顶的仰角为45º ,从甲楼顶 望乙楼顶的俯角为30º ,则甲楼和 A 乙楼高为? 30º
D
甲 B
?
45º
?乙
78 C
7.(2006,哈尔滨市)如图,在电线杆上的C处 引位线CE、CF固定电线杆,拉线CE和地面成 60°角,在离电线杆6米的B处安置测角仪,在A 处测得电线杆C处的仰角为30°,已知测角仪AB 高为1.5米,求拉线CE的长.(结果保留根号)
解直角三角形(仰角和俯角)讲义

解直角三角形(仰角和俯角)一、知识点讲解1、仰角和俯角的定义:在进行测量时,从下向上看,视线与水平线的夹角叫做仰角;从上往下看,视线与水平线的夹角叫做俯角。
二、典例分析利用解直角三角形解决仰角、俯角问题例1 一数学兴趣小组为了测量河对岸树AB的高,在河岸边选择一点C,从C处测得树梢A的仰角为45°,沿BC方向后退10米到点D,再次测得A的仰角为30°,求树高.(结果精确到0.1米,参考数据:≈1.414,≈1.732)变式练习:1、如图,为了测得电视塔的高度AB,在D处用高为1米的测角仪CD,测得电视塔顶端A的仰角为30°,再向电视塔方向前进100米达到F处,又测得电视塔顶端A的仰角为60°,则这个电视塔的高度AB(单位:米)为A、50B、51C、50+1D、101第1题第2题第3题2、如图,从坡顶C处测得地面A、B两点的俯角分别为30°、45°,如果此时C处的高度CD为150米,且点A、D、B在同一直线上,则AB两点间距离是米。
3、如图,在数学活动课中,小敏为了测量校园内旗杆AB的高度.站在教学楼的C处测得旗杆底端B的俯角为45°,测得旗杆顶端A的仰角为30°.若旗杆与教学楼的距离为9m,则旗杆AB的高度是m(结果保留根号)4、如图,平台AB高为12m,在B处测得楼房CD顶部点D的仰角为45°,底部点C的俯角为30°,则楼房CD 的高度m(结果保留根号)反馈练习 基础夯实1、如图,某飞机在空中A 处探测到它的正下方地平面上目标C ,此时飞行高度AC =1200m ,从飞机上看地平面 A 、 1200m B 、 1200m C .、 1200m D 、 2400m第1题 第2题 第3题 第4题2、如图,为测量一棵与地面垂直的树OA 的高度,在距离树的底端30米的B 处,测得树顶A 的仰角∠ABO 为α,、 米B D 的仰角为α,从点A 测得点D 的仰角为β,已知甲、乙两建筑物之间的距离为a ,则甲建筑物的高AB 为 。
九年级数学解直角三角形(仰角与俯角)

六、变式提升、走近中考1学校操场上有一 根旗杆,上面有一根开旗用的绳子(绳子 足够长),王同学拿了一把卷尺,并且向 数学老师借了一把含300的三角板去度量旗 杆的高度。 (2)若王同学分别在点C、点D处将 (1)若王同学将旗杆上绳子拉成仰角 (3)此时他的数学老师来了一看,建 旗杆上绳子分别拉成仰角为600、300, 为600,如图用卷尺量得BC=4米,则 议王同学只准用卷尺去量,你能给王 如图量出CD=8米,你能求出旗杆AB的 旗杆AB的高多少? 同学设计方案完成任务吗? 长吗?
2 (1)
(1)2
八、布置作业 P92习题28.2 第3,4题
.
.
谢谢大家
. .
关适 是 何知 ( 找示 先 系出意 将) 角 当 直 图角 求 来与图 实解 三 的 角 形、 直 角 辅 三 ,边 角 求已, 物决 形 助 角 如时 三 解线 形 果 模 实 知尽 型 来 角可, 际 问 求 , 时 示 转角 、能先形 解画,意化 题 出 添 图画 中 边直 为时 直 加 不出 未 的接 几,
分析:从飞船上能最远直接
看到的地球上的点,应是视 线与地球相切时的切点.
①题中有哪些已知条件,所求结论是什么? ②如何把实际问题抽象成数学问题,建立数学模型的?图形中有 符合解直角三角形的图形吗? ③要求的边与已知的边和已知的角有什么关系?应该选择哪一种 三角函数?
• 1、P87例题
如图,⊙O表示地球,点F是 飞船的位置,FQ是⊙O的切线, 切点Q是从飞船观测地球时的 ⌒ 最远点.PQ的长就是地面上P, Q两点间的距离,为计算PQ 的 ⌒ 长需先求出∠POQ(即a)
45
30
解得 x 100 3 100
所以河宽为 (100 3 100)米.
利用俯角和仰角解直角三角形课件

P
45° 37° B 400米 A
解:作PO⊥AB交AB的延长线于O.
设PO=x米, 在Rt△POB中,∠PBO=45°,P
OB=PO= x米.
A. 800sinα米
B. 800tanα米
α
C.s8in00a 米
D.t8a0n0a 米
解直角三角形及其应用
利用俯角和仰角解直角三角形
(一)俯角、仰角问题 在测量中,我们把在视线与水平线所成的角中,视线在 水平线上方的叫做仰角,视线在水平线下方的叫做俯角.
视线
巧记“上仰下俯”
铅 仰角 直 线 俯角
水平线
视线
(二)一个观测点构造两个直角三角形解答实际问题
例1 热气球的探测器显示,从热气球 看一栋楼顶部的仰角为30°,看这栋楼底 部的俯角为60°,热气球与楼的水平距离
1. 如图,在电线杆上离地面高度5m的C点处引两根拉线固定
电线杆,一根拉线AC和地面成60°角,另一根拉线BC和地
面成45°角.则两根拉线的总长度为
10 3
3
5
2 m(结果用
带根号的数的形式表示).
(三)两个观测点构造两个直角三角形解答实际问题 例2 如图,直升飞机在长400米的跨江大桥AB的上方P点
答案:点B到AD的距离为20m.
E
(2) 求塔高CD(结果用根号表示).
解:在Rt△ABE中, ∵∠A=30°,∴∠ABE=60°, ∵∠DBC=75°,∴∠EBD=180°-60°-75°=45°, ∴DE=EB=20m,
解直角三角形的应用(仰角和俯角问题)

计算角度证结果:检 查计算结果是 否满足三角形 内角和为180
度的条件
添加标题
确定已知条件:已知三角形的边长和角度
添加标题
利用正弦定理:sin/ = sinB/b = sinC/c
添加标题
利用余弦定理:cos = (b^2 + c^2 - ^2) / (2bc)
正弦定理:在直角三角形中 任意一边的长度等于其对角 的正弦值乘以斜边的长度
余弦定理:在直角三角形中 任意两边长度的平方和等于 斜边的平方
正切定理:在直角三角形中 任意一边的长度等于其对角 的正切值乘以斜边的长度
余切定理:在直角三角形中 任意两边长度的平方差等于 斜边的平方
正割定理:在直角三角形中 任意一边的长度等于其对角 的正割值乘以斜边的长度
确保测量工具的 准确性和稳定性
避免在危险区域 进行测量如高空、
高压电等
遵守操作规程确 保人身安全
做好防护措施如 佩戴安全帽、手
套等
及时清理现场避 免杂物影响测量
结果
遇到突发情况及 时停止操作并寻
求帮助
仰角和俯角为0度:此时三角形退化为直线无法求解
仰角和俯角为90度:此时三角形退化为直角三角形可以直接求解
全站仪等
测量误差:注 意测量误差对 仰角和俯角测 量结果的影响
测量环境:注 意测量环境的 影响如温度、 湿度、风速等
测量方法:注 意测量方法的 选择如直接测 量、间接测量
等
测量误差:测量工具的精度、测量人员的操作水平等
计算误差:计算过程中的舍入误差、公式使用错误等
环境误差:温度、湿度、光照等环境因素对测量结果的影响
添加文档副标题
目录
01.
02.
解直角三角形的仰角俯角问题

解直角三角形的仰角俯角问题
仰角和俯角是解直角三角形问题中常见的概念。
在直角三角形中,仰角是锐角的补角,而俯角是锐角的余角。
1.仰角:在直角三角形中,与直角的锐角相邻的角叫做仰角。
仰角是锐角的
补角,即仰角= 90° - 锐角。
2.俯角:与直角的锐角相对的角叫做俯角。
俯角是锐角的余角,即俯角= 锐
角。
解这类问题时,通常需要利用三角函数的性质和关系,如正切、正弦、余弦等,以及直角三角形的边和角的关系,如勾股定理等。
以下是一个简单的例子:
题目:一个塔的高度是30米,从塔顶测得某建筑物顶部的仰角为24°,从地面测得该建筑物顶部的俯角为66°,求这个建筑物的高度。
解:设建筑物的高度为h 米。
根据三角函数的性质和关系,我们有:
塔顶到建筑物顶部的距离= 塔的高度× 正切(仰角) = 30 × tan(24°)。
建筑物顶部到底部的距离= 建筑物的高度× 正切(俯角) = h × tan(66°)。
由于直角三角形中的勾股定理,我们有:
塔顶到建筑物顶部的距离^2 + 建筑物顶部到底部的距离^2 = 塔高度的^2。
代入已知数值,我们可以得到一个关于h 的方程,并解出h 的值。
《解直三角形应用(仰角和俯角)》教学设计

28.2.2解直三角形应用(1)教学目标(一)知识与能力:了解仰角、俯角的概念,能根据直角三角形的知识解决实际问题.(二)方法与过程:逐步培养分析问题、解决问题的能力.(三)情感、态度与价值观:渗透数形结合的数学思想,培养学生良好的学习习惯.教学重点:要求学生善于将某些实际问题中的数量关系,归结为直角三角形中元素之间的关系,从而解决问题.教学难点:要求学生善于将某些实际问题中的数量关系,归结为直角三角形中元素之间的关系,从而解决问题.教学过程:(一)回忆知识1.解直角三角形指什么?2.解直角三角形主要依据什么?(1)勾股定理:a 2+b 2=c 2(2)锐角之间的关系:∠A+∠B=90°(3)边角之间的关系:tanA=的邻边的对边A A ∠∠(二)合作探究一例 2003年10月15日“神舟”5号载人航天飞船发射成功.当飞船完成变轨后,就在离地球表面350km 的圆形轨道上运行.如图,当飞船运行到地球表面上P 点的正上方时,从飞船上最远能直接看到的地球上的点在什么位置?这样的最远点与P 点的距离是多少?(地球半径约为6 400 km ,结果保留整数)分析:从飞船上能最远直接看到的地球上的点,应是视线与地球相切时的切点. 如图,⊙O 表示地球,点F 是飞船的位置,FQ 是⊙O 的切线,切点Q 是从飞船观测地球时的最远点. 弧PQ 的长就是地面上P, Q 两点间的距离.为计算弧PQ 的长需先求出(即)斜边的邻边A A ∠=cos 斜边的对边A A ∠=sin(引导学生先把实际问题转化成数学模型然后分析提出的问题是数学模型中的什么量在这个数学模型中可用学到的什么知识来求未知量?)解:在上图中,FQ是⊙O的切线,是直角三角形,弧PQ的长为由此可知,当飞船在p点正上方时,从飞船观测地球时的最远点距离P点约2070 km.(三)合作探究二1.仰角、俯角当我们进行测量时,在视线与水平线所成的角中,视线在水平线上方的角叫做仰角,在水平线下方的角叫做俯角.教学时,可以让学生仰视灯或俯视桌面以体会仰角与俯角的意义2.例热气球的探测器显示,从热气球看一栋高楼顶部的仰角为30o,看这栋离楼底部的俯角为60o,热气球与高楼的水平距离为120 m.这栋高楼有多高(结果精确到0.1m)?分析:在中,,.所以可以利用解直角三角形的知识求出BD;类似地可以求出CD,进而求出B C.解:如图, ,,答:这栋楼高约为277.1m.(四)巩固练习:文峰塔是阜阳标志性建筑之一.如图,在一次数学课外实践活动中,老师要求测塔的高度AB.小明在D处用高1.5m的测角仪CD,测得塔顶端A的仰角为30°,然后向塔前进224m 到达E处,又测得塔顶端A的仰角为60°.求文峰塔的高度AB.(结果保留根号)(五)总结反思请学生总结:本节课通过两个例题的讲解,要求同学们会将某些实际问题转化为解直角三角形问题去解决;今后,我们要善于用数学知识解决实际问题.(六)达标检测1.如图(2),在高出海平面100米的悬崖顶A处,观测海平面上一艘小船B,并测得它的俯角为45°,则船与观测者之间的水平距离BC=__ _______米.2.如图(3),两建筑物AB和CD的水平距离为30米,从A点测得D点的俯角为30°,测得C点的俯角为60°,则建筑物CD的高为_____米.(七)作业布置小刘想测量学校操场旗杆顶端到地面的距离,但旗杆底部不能直接到达,请你应用今天所学知识,帮助他设计一个测量方案,画出示意图,相关数据用字母表示,并与同学交流。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B
α=30° 120 D β=60°
A
C
如图,有两建筑物,在甲建筑物上从A到E点挂 一长为30米的宣传条幅,在乙建筑物的顶部D点测 得条幅顶端A点的仰角为45°,条幅底端E点的俯 角为30°.求甲、乙两建筑物之间的水平距离BC
A
D
E
B
C
小结:
1.有关概念:仰角、俯角 2.用解直角三角形知识解决此类问题的一般步骤:
1.什么叫解直角三角形?
在直角三角形中,由已 知元素求未知元素的过程, 叫做解直角三角形.
2.直角三角形(除直角外)五元素的 关系是什么?
(1)三边之间的关系: a2 + b2 = c2 (勾股定理) (2)锐角之间的关系: ∠A + ∠B = 90° (3)边角之间的关系
A的对边 sin A 斜边
OQ
OF
∵
COS a =
=
6400
6400+350
≈
0.948
F P α 8 6400 3.14 640 2009 .6 180
当飞船在P点正上方时,从飞船观测地球时的最远点距离P点约 2009.6km
例2:热气球的探测器 显示,从热气球看一栋 高楼顶部的仰角为 30°,看这栋高楼底部 的俯角为60°,热气球 与高楼的水平距离为 120m,这栋高楼有多 高? (结果保留小数 点后一位)
(1)通过读题把实物图转化为数学图形;
(2)找出直角三角形和已知、未知元素; (3)选合适的锐角函数关系求未知数; (4)解题.
分析:从飞船上能最远直接
看到的地球上的点,应是视 线与地球相切时的切点.
如图,⊙O表示地球,点F是飞船的位置,
F P
Q
FQ是⊙O的切线,切点Q是从飞船观测
地球时的最远点.PQ 的长就是地面 上P、Q两点间的距离,为计算PQ 的 长需先求出∠POQ(即a)
α O·
解:在图中,FQ是⊙O的切线,△FOQ是直角三角形.
A的邻边 cos A 斜边
A的对边 tan A A邻边
仰角:在视线与水平线所形成的角中,视线在水平线上方的角. 视线 铅 仰角 垂 线 视线 俯角:在视线与水平线所形成的角中,视线在水平线下方的角. 俯角 水平线
例3: 2003年10月15日“神舟”5号载人航天飞船发射成功.当飞船完成变 轨后,就在离地球表面350km的圆形轨道上运行.如图,当飞船运行到地 球表面上P点的正上方时,从飞船上最远能直接看到地球上的点在什么位置? 这样的最远点与P点的距离是多少?(地球半径约为6 400km,结果精确到 0.1km)