解直角三角形(仰角俯角)

合集下载

知识卡片-解直角三角形的应用-仰角俯角问题

知识卡片-解直角三角形的应用-仰角俯角问题

解直角三角形的应用-仰角俯角问题能量储备仰角、俯角:如图24­4­6(1)所示,在进行测量时,从下向上看,视线与水平线的夹角叫做仰角;从上往下看,视线与水平线的夹角叫做俯角。

通关宝典★ 基础方法点方法点:解直角三角形在实际问题中的应用中正确选取直角三角形的边角关系是求解的关键。

例1:如图24­4­10所示,某电视塔高AB 为610米,远处有一栋大楼,某人在楼底C 处测得塔顶B 的仰角为45°,在楼顶D 处测得塔顶B 的仰角为39°。

(1)求大楼与电视塔之间的距离AC ;(2)求大楼的高度CD (精确到1米)。

解:(1)在△ABC 中,∵ ∠ACB =45°,∠A =90°,∴ AC =AB =610米。

答:大楼与电视塔之间的距离AC 为610米。

(2)由矩形的性质可知DE =AC =610米。

在Rt △BDE 中,由tan ∠BDE =BE DE,得BE =DE·tan 39°。

又∵CD =AE ,∴CD =AB -DE·tan 39°=610-610×tan 39°≈116(米)。

答:大楼的高度CD 约为116米。

例2:如图24­4­28所示,为了测得电视塔的高度AB ,在D 处用高为1.2米的测角仪CD ,测得电视塔顶端A 的仰角为42°,再向电视塔方向前进120米,又测得电视塔顶端A 的仰角为61°.求这个电视塔的高度AB .(精确到1米)解:如图24­4­29所示,设AE 为x 米,则塔的高度为(x +1.2)米.∵ tan 61°=AE EF =x EF ,∴ EF =x tan 61°. 又∵ tan 42°=AE CE ,∴ CE =x tan 42°. ∵ CE =120+x tan 61°, ∴ x tan 42°=120+x tan 61°, 解得x ≈215.7,∴ x +1.2≈217(米).∴ 这个电视塔的高度AB 约为217米。

解直角三角形--仰角俯角.仰角俯角问题---解直角三角形

解直角三角形--仰角俯角.仰角俯角问题---解直角三角形

观察下图,判断哪些是仰视哪些是俯视; 哪个是俯角,哪个是仰角.
从A看B的仰角是:
∠BAC
从B看A的俯角是: ∠FBA 从B看D的俯角是: ∠FBD 从D看B的仰角是: ∠BDE 注意:从哪个点看就从哪个点作水平线,俯角就 是水平线与向下看视线的夹角,仰角就是水平线 与向上看视线的夹角。
例1: 如图一学生要测量校园内一棵水杉树高度, 他站在距水杉树8米的E处,测得树顶的仰角 ∠ACD=30°,已知测角仪的架高CE=1.6米, 求树高AB(精确到0.1米) A
问题探究
• 1、仰角、俯角 • 阅读教材:当我们进行测量时,在视线与水平 线所成的角中,视线在水平线上方的角叫做仰角, 在水平线下方的角叫做俯角. • 学生仰视日光灯或俯视桌面 • (以体会仰角与俯角的意义.)
归纳、总结
• 如图,在进行测量时,从下向上看,视线与水平 线的夹角叫做仰角;从上往下看,视线与水平线 的夹角叫做俯角
把问题转化为解直角三角形的问题;
(3)根据直角三角形元素(边、角)之间的关系解有关的直角三角形.
A
D1 D
30 °
C1 50
C
45°
B1 B
2、(2011安徽中考)如图,某高速公路建设中 需要确定隧道AB的长度.已知在离地面1500m高 度C处的飞机,测量人员测得正前方A、B两点处 的俯角分别为60°和45°,求隧道AB的长.
甲、乙两楼相距78米,从乙楼底 望甲楼顶的仰角为45º ,从甲楼顶 望乙楼顶的俯角为30º ,则甲楼和 A 乙楼高为? 30º
D
甲 B

45º
?乙
78 C
7.(2006,哈尔滨市)如图,在电线杆上的C处 引位线CE、CF固定电线杆,拉线CE和地面成 60°角,在离电线杆6米的B处安置测角仪,在A 处测得电线杆C处的仰角为30°,已知测角仪AB 高为1.5米,求拉线CE的长.(结果保留根号)

26.4 解直角三角形的应用 - 第1课时仰角、俯角、方位角问题课件(共23张PPT)

26.4 解直角三角形的应用 - 第1课时仰角、俯角、方位角问题课件(共23张PPT)
解:如图,α = 30° , β= 60°,AD=120. ∵ , ∴BD=AD·tanα=120×tan30︒, =120× =40 . CD=AD·tanβ=120×tan60︒, =120× =120 . ∴BC=BD+CD=40 +120 =160 ≈277(m).答:这栋楼高约为277m.
例1 如图,小明在距旗杆4.5 m的点D处,仰视旗杆顶端A,仰角(∠AOC)为50°;俯视旗杆底部B,俯角(∠BOC)为18°.求旗杆的高.(结果精确到0.1 m)
例题示范
知识点2 方向角方位角:由正南或正北方向线与目标方向线构成的锐角叫做方位角.如下图中的目标方向OA,OB,OC,OD的方向角分别表示________60°,________45°(或__________),_________80°及_________30°.
拓展提升
1.热气球的探测器显示,从热气球看一栋楼顶部的仰角为30°,看这栋楼底部的俯角为60°,热气球与楼的水平距离为120 m,这栋楼有多高(结果取整数)?
分析:如图,α=30°,β=60°.在Rt△ABD中,α =30°,AD=120,所以利用解直角三角形的知识求出BD;类似地可以求出CD,进而求出BC.
第二十六章 解直角三角形
26.4 解直角三角形的应用
第1课时 仰角、俯角、方位角问题
学习目标
学习重难点
重点
难点
1.巩固解直角三角形有关知识,了解仰角、俯角、方向角的概念.2.运用解直角三角形知识解决与仰角、俯角和方位角有关的实际问题.
运用解直角三角形知识解决与仰角、俯角和方位角有关的实际问题.
将某些实际问题中的数量关系,归结为直角三角形中元素之间的关系,从而解决问题.
回顾复习

解直角三角形(仰角和俯角)讲义

解直角三角形(仰角和俯角)讲义

解直角三角形(仰角和俯角)一、知识点讲解1、仰角和俯角的定义:在进行测量时,从下向上看,视线与水平线的夹角叫做仰角;从上往下看,视线与水平线的夹角叫做俯角。

二、典例分析利用解直角三角形解决仰角、俯角问题例1 一数学兴趣小组为了测量河对岸树AB的高,在河岸边选择一点C,从C处测得树梢A的仰角为45°,沿BC方向后退10米到点D,再次测得A的仰角为30°,求树高.(结果精确到0.1米,参考数据:≈1.414,≈1.732)变式练习:1、如图,为了测得电视塔的高度AB,在D处用高为1米的测角仪CD,测得电视塔顶端A的仰角为30°,再向电视塔方向前进100米达到F处,又测得电视塔顶端A的仰角为60°,则这个电视塔的高度AB(单位:米)为A、50B、51C、50+1D、101第1题第2题第3题2、如图,从坡顶C处测得地面A、B两点的俯角分别为30°、45°,如果此时C处的高度CD为150米,且点A、D、B在同一直线上,则AB两点间距离是米。

3、如图,在数学活动课中,小敏为了测量校园内旗杆AB的高度.站在教学楼的C处测得旗杆底端B的俯角为45°,测得旗杆顶端A的仰角为30°.若旗杆与教学楼的距离为9m,则旗杆AB的高度是m(结果保留根号)4、如图,平台AB高为12m,在B处测得楼房CD顶部点D的仰角为45°,底部点C的俯角为30°,则楼房CD 的高度m(结果保留根号)反馈练习 基础夯实1、如图,某飞机在空中A 处探测到它的正下方地平面上目标C ,此时飞行高度AC =1200m ,从飞机上看地平面 A 、 1200m B 、 1200m C .、 1200m D 、 2400m第1题 第2题 第3题 第4题2、如图,为测量一棵与地面垂直的树OA 的高度,在距离树的底端30米的B 处,测得树顶A 的仰角∠ABO 为α,、 米B D 的仰角为α,从点A 测得点D 的仰角为β,已知甲、乙两建筑物之间的距离为a ,则甲建筑物的高AB 为 。

九年级数学解直角三角形(仰角与俯角)

九年级数学解直角三角形(仰角与俯角)

六、变式提升、走近中考1学校操场上有一 根旗杆,上面有一根开旗用的绳子(绳子 足够长),王同学拿了一把卷尺,并且向 数学老师借了一把含300的三角板去度量旗 杆的高度。 (2)若王同学分别在点C、点D处将 (1)若王同学将旗杆上绳子拉成仰角 (3)此时他的数学老师来了一看,建 旗杆上绳子分别拉成仰角为600、300, 为600,如图用卷尺量得BC=4米,则 议王同学只准用卷尺去量,你能给王 如图量出CD=8米,你能求出旗杆AB的 旗杆AB的高多少? 同学设计方案完成任务吗? 长吗?
2 (1)
(1)2
八、布置作业 P92习题28.2 第3,4题
.
.
谢谢大家
. .
关适 是 何知 ( 找示 先 系出意 将) 角 当 直 图角 求 来与图 实解 三 的 角 形、 直 角 辅 三 ,边 角 求已, 物决 形 助 角 如时 三 解线 形 果 模 实 知尽 型 来 角可, 际 问 求 , 时 示 转角 、能先形 解画,意化 题 出 添 图画 中 边直 为时 直 加 不出 未 的接 几,
分析:从飞船上能最远直接
看到的地球上的点,应是视 线与地球相切时的切点.
①题中有哪些已知条件,所求结论是什么? ②如何把实际问题抽象成数学问题,建立数学模型的?图形中有 符合解直角三角形的图形吗? ③要求的边与已知的边和已知的角有什么关系?应该选择哪一种 三角函数?
• 1、P87例题
如图,⊙O表示地球,点F是 飞船的位置,FQ是⊙O的切线, 切点Q是从飞船观测地球时的 ⌒ 最远点.PQ的长就是地面上P, Q两点间的距离,为计算PQ 的 ⌒ 长需先求出∠POQ(即a)
45
30
解得 x 100 3 100
所以河宽为 (100 3 100)米.

利用俯角和仰角解直角三角形课件

利用俯角和仰角解直角三角形课件
处,在大桥的两端测得飞机的仰角分别为37°和45 °,求飞机 的高度 .(结果取整数. 参考数据:sin37°≈0.8,cos37 °≈0.6, tan 37°≈0.75)
P
45° 37° B 400米 A
解:作PO⊥AB交AB的延长线于O.
设PO=x米, 在Rt△POB中,∠PBO=45°,P
OB=PO= x米.
A. 800sinα米
B. 800tanα米
α
C.s8in00a 米
D.t8a0n0a 米
解直角三角形及其应用
利用俯角和仰角解直角三角形
(一)俯角、仰角问题 在测量中,我们把在视线与水平线所成的角中,视线在 水平线上方的叫做仰角,视线在水平线下方的叫做俯角.
视线
巧记“上仰下俯”
铅 仰角 直 线 俯角
水平线
视线
(二)一个观测点构造两个直角三角形解答实际问题
例1 热气球的探测器显示,从热气球 看一栋楼顶部的仰角为30°,看这栋楼底 部的俯角为60°,热气球与楼的水平距离
1. 如图,在电线杆上离地面高度5m的C点处引两根拉线固定
电线杆,一根拉线AC和地面成60°角,另一根拉线BC和地
面成45°角.则两根拉线的总长度为
10 3
3
5
2 m(结果用
带根号的数的形式表示).
(三)两个观测点构造两个直角三角形解答实际问题 例2 如图,直升飞机在长400米的跨江大桥AB的上方P点
答案:点B到AD的距离为20m.
E
(2) 求塔高CD(结果用根号表示).
解:在Rt△ABE中, ∵∠A=30°,∴∠ABE=60°, ∵∠DBC=75°,∴∠EBD=180°-60°-75°=45°, ∴DE=EB=20m,

解直角三角形的应用仰角与俯角问题公开课省名师优质课赛课获奖课件市赛课一等奖课件

解直角三角形的应用仰角与俯角问题公开课省名师优质课赛课获奖课件市赛课一等奖课件
A
D xF
30°
C
Ex B
P α β
归纳与提升
P
450
O P
O
45°
B
30°
A C
30°
B
450
45°
O
A
30°60° A
45° 22000米 45°
B
P 45°°
3300°°
202000米
D
O
B
3 450)m.
B
A
4. 两座建筑AB及CD,其地面距离AC为50米,
从AB旳顶点B测得CD旳顶部D旳仰角β=300,
测得其底部C旳俯角a=600, 求两座建筑物AB 及CD旳高.
30° 60°
50米
(第 2 题)
合作与探究
变题2:如图,直升飞机在高为200米旳大楼AB
左侧P点处,测得大楼旳顶部仰角为45°,测得
大楼底部俯角为30°,求飞机与大楼之间旳水
平距离.
A
答案: (300 100 3) 米
P 45°
30°
O
200米 D
B
合作与探究
例2:如图,直升飞机在高为200米旳大楼AB上 方P点处,从大楼旳顶部和底部测得飞机旳仰 角为30°和45°,求飞机旳高度PO .
P
答案: (100 3 300) 米
O
=300 1.20
图3019.4.4
2、建筑物BC上有一旗杆AB,由距BC 40m旳D 处观察旗杆顶部A旳仰角为60°,观察底部B旳仰 角为45°,求旗杆旳高度
A
B
D 40 C
1、在山脚C处测得山顶A旳仰角为45°。问 题如下: 1)沿着水平地面对前300米到达D点,在D点 测得山顶A旳仰角为600 , 求山高AB。

24.4.3 解直角三角形的应用—仰角、俯角(课件)九年级数学上册(华东师大版)

24.4.3 解直角三角形的应用—仰角、俯角(课件)九年级数学上册(华东师大版)

即该建筑物 CD 的高度约为 42 m.
第24章 解直角三角形
知识回顾
仰角、俯角问题: 1.在进行测量时,从下向上看,视线与水平线 的夹角叫做仰角;从上往下看,视线与水平 线的夹角叫做俯角.
2.梯形通常分解成矩形和直角三角形来处理.
3.实际问题转化为几何问题.把四边形问题转化为特殊四边形与三角形来 解决.
DC
tan54o 40 1.3840 55.2m,
∴AB = AC-BC ≈ 55.2-40 = 15.2 (m).
第24章 解直角三角形
第24章 解直角三角形
仰角、俯角问题
| 24.4 解直角三角形 第3课时 |
华师版(2012)九年级上册数学
知识回顾
在解直角三角形的过程中,重要关系式: (1)三边之间的关系 a2 + b2 = c(2 勾股定理) (2)两锐角之间的关系 ∠A+∠B=90° (3)边角之间的关系
第24章 解直角三角形
第24章 解直角三角形
解:如题图,延长 AE 交 CD 于点 G.设 CG=x m.
在 Rt△ECG 中,∠CEG=45°,则 EG=CG=x m.
在 Rt△ACG 中,
∵∠CAG=30°,tan∠CAG=CAGG,
∴AG= tan
C∠GCAG=
3x m.
∵AG-EG=AE,∴ 3x-x=30,
解得 x=15( 3+1).故 CD=15( 3+1)+1.5≈42(m).
2
部分的面积为 2 cm2(根号保留).
图3
图4
第24章 解直角三角形
5.建筑物 BC 上有一旗杆 AB,由距 BC 40 m 的 D 处观察旗杆顶部 A 的仰 角为 54°,观察底部 B 的仰角为 45°,求旗杆的高度(精确到 0.1 m). 解:在等腰 Rt△BCD 中,∠ACD = 90°, BC = DC = 40 m, ∴AC tan ADC DC. 在 Rt△ACD 中 tan ADC AC ,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

在环西文化广场休息,看到濠河对岸的电视塔,他想用手
中的测角仪和卷尺不过河测出电视塔空中塔楼的高度.现已
测出∠ADB=40°,由于不能过河,因此无法知道BD的长
度,于是他向前走50米到达C处测得∠ACB=55°,但他们
在计算中碰到了困难,请大家一起想想办法,求出电视塔
塔楼AB的高. (参考数据:tan4021,tan557)
P
A
B
4、如图,为了测量高速公路的保护石堡坎与地面 的倾斜角∠BDC是否符合建筑标准,用一根长为 10m的铁管AB斜靠在石堡坎B处,在铁管AB上量 得AF长为1.5m,F点离地面的距离为0.9m,又量 出石堡坎顶部B到底部D的距离为 m ,这样能计 算出∠BDC吗?若能,请计算出∠BDC的度数,若 不能,请说明理由。
解:由题意得,在Rt△PAO与Rt△PBO中
P A O 3 0 , P B O 4 5
POtan30,POtan45 P
OA
OB
α β
OA 450 450 3, tan30
450米
OB 450 450 tan45
A B O A O B (4 5 03 4 5 0 )(m )O
图2
当堂反馈
3.如图3,从地面上的C,D两点测得树顶A仰角分别是 45°和30°,已知CD=200m,点C在BD上,则树高
AB等于 100( 3 1)m(根号保留).
图3
图4
4.如图4,将宽为1cm的纸条沿BC折叠,使∠CAB=45°
,则折叠后重叠部分的面积为
2 2
cm
2
(根号保留).
更上一层楼
B Aβ=α6=03°102°0 D
C
建筑物BC上有一旗杆AB,由距BC 40m的D处观 察旗杆顶部A的仰角为50°,观察底部B的仰角 为45°,求旗杆的高度(精确到0.1m)
A
B
D 40 C
思想与方法
1.数形结合思想. 2.方程思想. 3.转化(化归)思想. 方法:把数学问题转化成解直角三角形问题, 如果示意图不是直角三角形,可添加适当的辅 助线,构造出直角三角形.
新人教版九年级数学(下册)第二十八章
§28.2 解直角三角形(2)
1.解直角三角形
在直角三角形中,除直角外,由已知两元素 (必有一边)
求其余未知元素的过程叫解直角三角形.
2.解直角三角形的依据

(1)三边之间的关系: a2+b2=c2(勾股定理); c
(2)两锐角之间的关系: ∠ A+ ∠ B= 90º;
2.实际问题向数学模型的转化 (解直角三角形)
在进行观察或测量时,
仰角和俯角
从下向上看,视线与水平线的夹角叫做仰角; 从上往下看,视线与水平线的夹角叫做俯角.

视线
垂 线 仰角
水平线
俯角
视线
P
C
30° A45°源自200米OB例2:如图,直升飞机在高为200米的大楼AB上 方P点处,从大楼的顶部和底部测得飞机的仰 角为30°和45°,求飞机的高度PO .
P
30° A
45°
200米
O
B
C
变题2:如图,直升飞机在高为200米的大楼AB
左侧P点处,测得大楼的顶部仰角为45°,测得
大楼底部俯角为30°,求飞机与大楼之间的水
B
10m
4 3m
F
1.5m 0.9m
A
E
D
C
利用解直角三角形的知识解决实际问题的 一般过程是:
1.将实际问题抽象为数学问题; (画出平面图形,转化为解直角三角形的问题)
2.根据条件的特点,适当选用锐角三角函数等去解直角三角形; 3.得到数学问题的答案;
4.得到实际问题的答案.
1.在解直角三角形及应用时经常接触到 的一些概念(仰角,俯角)
B
C
(第 2题)
3.国外船只,除特许外,不得进入我国海洋100海里 以内的区域,如图,设A、B是我们的观察站,A和B 之间的距离为157.73海里,海岸线是过A、B的一条 直线,一外国船只在P点,在A点测得∠BAP=450,同 时在B点测得∠ABP=600,问此时是否要向外国船只 发出警告,令其退出我国海域.
a
(3)边角之间的关系:
sinA=
a c
cosA=
b c
tanA=
a b

bC
介绍: 仰角和俯角
在进行测量时, 从下向上看,视线与水平线的夹角叫做仰角; 从上往下看,视线与水平线的夹角叫做俯角.
视线

仰角

线
俯角
水平线
视线
【例1】如图,直升飞机在跨江大桥AB的上方P 点处,此时飞机离地面的高度PO=450米,且A、 B、O三点在一条直线上,测得大桥两端的俯角 分别为α=30°,β=45°,求大桥的长AB .
P
答案: (1003300) 米
O
30° A
45°
200米
B
例2:如图,直升飞机在高为200米的大楼AB上 方P点处,从大楼的顶部和底部测得飞机的仰 角为30°和45°,求飞机的高度PO .
P
C
30° A
45°
200米
O
B
例2:如图,直升飞机在高为200米的大楼AB上 方P点处,从大楼的顶部和底部测得飞机的仰 角为30°和45°,求飞机的高度PO .
当堂反馈
1.如图1,已知楼房AB高为50m,铁塔塔基距楼房地
基间的水平距离BD为100m,塔高CD(为1 0 0 3 5 0 ) m
,则下面结论中正确的是(C )
3
A.由楼顶望塔顶仰角为60°
B.由楼顶望塔基俯角为60°
C.由楼顶望塔顶仰角为30°
D.由楼顶望塔基俯角为30°
图1
2.如图2,在离铁塔BE 120m的A处, 用测角仪测量塔顶的仰角为30°, 已知测角仪高AD=1.5m,则塔高 BE=(_4_0__3__1_._5)_m(根号保留).
B
A
答:大桥的长AB为 (450 3450)m.
变题1:如图,直升飞机在长400米的跨江大桥 AB的上方P点处,且A、B、O三点在一条直线 上,在大桥的两端测得飞机的仰角分别为30° 和45 °,求飞机的高度PO .
P
答案: (2003200) 米
O
45°
30°
B 400米 A
例2:如图,直升飞机在高为200米的大楼AB上 方P点处,从大楼的顶部和底部测得飞机的仰 角为30°和45°,求飞机的高度PO .
选做题:
1.一架直升机从某塔顶A测得地面C、D两点的俯 角分别为30°、 45°,若C、D与塔底B共线,CD
=200米,求塔高AB? 2.有一块三形场地ABC,测得其中AB边长为60米, AC边长50米,∠ABC=30°,试求出这个三角形场 地的面积.
更上一层楼
3.学生小王帮在测绘局工作的爸爸买了一些仪器后与同学
平距离.
A
答案: (3001003) 米
P 45°
30°
O
200米 D
B
P α β
归纳与提高
P
450
O P
O
45°
B
30°
A C
30°
B
450
45°
O
A
30°60° A
45° 22000米 45°
B
P 45°°
30°
202000米
D
O
B
例2:热气球的探测器 显示,从热气球看一栋 高楼顶部的仰角为 30°,看这栋高楼底部 的俯角为60°,热气球 与高楼的水平距离为 120m,这栋高楼有多 高?
25
5
答案:空中塔楼AB高约为105米
A


55° 40°
B
C 50m D
1.如图,某飞机于空中 A处探测到目标C,此 时飞行高度AC=1200米, 从飞机上看地平面控制 点B的俯角α=16031`,求 飞机A到控制点B的距 离.(精确到1米)
A
α
2. 两座建筑AB及CD,其 地面距离AC为50.4米,从 AB 的 顶 点 B 测 得 CD 的 顶 部D的仰角β =250,测得 其 底 部 C 的 俯 角 a = 500, 求两座建筑物AB及CD的 高.(精确到0.1米)
相关文档
最新文档