名高中数学自主招生难题集2
高中自主招生数学试题(另附详细答案)

2015年无为中学高中自主招生数学试题一.选择题(共6小题)1.已知函数,若使y=k成立的x值恰好有三个,则k的值为()A.0B.1C.2D.32.如果|x﹣a|=a﹣|x|(x≠0,x≠a),那么=()A.2a B.2x C.﹣2a D.﹣2x3.a,b,c为有理数,且等式成立,则2a+999b+1001c的值是()A.1999 B.2000 C.2001 D.不能确定4.(2013•莒南县一模)如图,两个反比例函数y=和y=(其中k1>k2>0)在第一象限内的图象依次是C1和C2,设点P在C1上,PC⊥x轴于点C,交C2于点A,PD⊥y轴于点D,交C2于点B,则四边形PAOB的面积为()A.k 1+k2B.k1﹣k2C.k1•k2D.5.如图,在平面直角坐标系xOy中,等腰梯形ABCD的顶点坐标分别为A(1,1),B(2,﹣1),C(﹣2,﹣1),D(﹣1,1).y轴上一点P(0,2)绕点A旋转180°得点P1,点P1绕点B旋转180°得点P2,点P2绕点C旋转180°得点P3,点P3绕点D旋转180°得点P4,…,重复操作依次得到点P1,P2,…,则点P2010的坐标是()A.(2010,2)B.(2010,﹣2)C.(2012,﹣2)D.(0,2)6.如图,在半径为1的⊙O中,∠AOB=45°,则sinC的值为()A.B.C.D.二.填空题(共7小题)7.三个数a、b、c的积为负数,和为正数,且,则ax3+bx2+cx+1的值是_________.8.如图正方形ABCD中,E是BC边的中点,AE与BD相交于F点,△DEF的面积是1,那么正方形ABCD的面积是_________.9.(2013•沐川县二模)如图,点A1,A2,A3,A4,…,A n在射线OA上,点B1,B2,B3,…,B n﹣1在射线OB上,且A1B1∥A2B2∥A3B3∥…∥A n﹣1B n﹣1,A2B1∥A3B2∥A4B3∥…∥A n B n﹣1,△A1A2B1,△A2A3B2,…,△A n﹣1A n B n 为阴影三角形,若△A2B1B2,△A3B2B3的面积分别为1、4,则△A1A2B1的面积为_________;面积小于2011﹣1的阴影三角形共有_________个.10.你见过像,,…这样的根式吗?这一类根式叫做复合二次根式.有一些复合二次根式可以化简,如.请用上述方法化简:=_________.11.不等式组有六个整数解,则a的取值范围为_________.12.小明是一位刻苦学习、勤于思考、勇于创新的同学,一天他在解方程x2=﹣1时,突发奇想:x2=﹣1在实数范围内无解,如果存在一个数i,使i2=﹣1,那么若x2=﹣1,则x=±i,从而x=±i是方程x2=﹣1的两个根.据此可知:①i可以运算,例如:i3=i2•i=﹣1×i=﹣i,则i2011=_________,②方程x2﹣2x+2=0的两根为_________(根用i表示)13.(2013•日照)如右图,直线AB交双曲线于A、B,交x轴于点C,B为线段AC的中点,过点B作BM⊥x 轴于M,连结OA.若OM=2MC,S△OAC=12.则k的值为_________.三.解答题(共7小题)14.在“学科能力”展示活动中,某区教委决定在甲、乙两校举行“学科能力”比赛,为此甲、乙两学校都选派相同人数的选手参加,比赛结束后,发现每名参赛选手的成绩都是70分、80分、90分、l00分这四种成绩中的一种,并且甲、乙两校的选手获得100分的人数也相等.现根据甲、乙两校选手的成绩绘制如下两幅不完整统计图:(1)甲校选手所得分数的中位数是_________,乙校选手所得分数的众数是_________;(2)请补全条形统计图;(3)比赛后,教委决定集中甲、乙两校获得100分的选手进行培训,培训后,从中随机选取两位选手参加市里的决赛,请用列表法或树状图的方法,求所选两位选手来自同一学校的概率.15.(2012•兰州)若x1、x2是关于一元二次方程ax2+bx+c(a≠0)的两个根,则方程的两个根x1、x2和系数a、b、c有如下关系:x1+x2=﹣,x1•x2=.把它称为一元二次方程根与系数关系定理.如果设二次函数y=ax2+bx+c(a≠0)的图象与x轴的两个交点为A(x1,0),B(x2,0).利用根与系数关系定理可以得到A、B两个交点间的距离为:AB=|x1﹣x2|====;参考以上定理和结论,解答下列问题:设二次函数y=ax2+bx+c(a>0)的图象与x轴的两个交点A(x1,0),B(x2,0),抛物线的顶点为C,显然△ABC 为等腰三角形.(1)当△ABC为直角三角形时,求b2﹣4ac的值;(2)当△ABC为等边三角形时,求b2﹣4ac的值.16.(2013•威海)如图,在平面直角坐标系中,直线y=x+与直线y=x交于点A,点B在直线y=x+上,∠BOA=90°.抛物线y=ax2+bx+c过点A,O,B,顶点为点E.(1)求点A,B的坐标;(2)求抛物线的函数表达式及顶点E的坐标;(3)设直线y=x与抛物线的对称轴交于点C,直线BC交抛物线于点D,过点E作FE∥x轴,交直线AB于点F,连接OD,CF,CF交x轴于点M.试判断OD与CF是否平行,并说明理由.17.(2012•内江)如果方程x2+px+q=0的两个根是x1,x2,那么x1+x2=﹣p,x1.x2=q,请根据以上结论,解决下列问题:(1)已知关于x的方程x2+mx+n=0,(n≠0),求出一个一元二次方程,使它的两个根分别是已知方程两根的倒数;(2)已知a、b满足a2﹣15a﹣5=0,b2﹣15b﹣5=0,求的值;(3)已知a、b、c满足a+b+c=0,abc=16,求正数c的最小值.18.(2013•钦州)如图,在Rt△ABC中,∠A=90°,O是BC边上一点,以O为圆心的半圆与AB边相切于点D,与AC、BC边分别交于点E、F、G,连接OD,已知BD=2,AE=3,tan∠BOD=.(1)求⊙O的半径OD;(2)求证:AE是⊙O的切线;(3)求图中两部分阴影面积的和.19.(2013•益阳)如图1,在△ABC中,∠A=36°,AB=AC,∠ABC的平分线BE交AC于E.(1)求证:AE=BC;(2)如图(2),过点E作EF∥BC交AB于F,将△AEF绕点A逆时针旋转角α(0°<α<144°)得到△AE′F′,连结CE′,BF′,求证:CE′=BF′;(3)在(2)的旋转过程中是否存在CE′∥AB?若存在,求出相应的旋转角α;若不存在,请说明理由.20.(2013•昭通)如图1,已知A(3,0)、B(4,4)、原点O(0,0)在抛物线y=ax2+bx+c (a≠0)上.(1)求抛物线的解析式.(2)将直线OB向下平移m个单位长度后,得到的直线与抛物线只有一个交点D,求m的值及点D的坐标.(3)如图2,若点N在抛物线上,且∠NBO=∠ABO,则在(2)的条件下,求出所有满足△POD∽△NOB的点P 的坐标(点P、O、D分别与点N、O、B对应)答案:2015年无为中学高中自主招生数学试题参考答案与试题解析一.选择题(共6小题)1.(2011•随州)已知函数,若使y=k成立的x值恰好有三个,则k的值为()A.0B.1C.2D.3考点:二次函数的图象.专题:压轴题;数形结合.分析:首先在坐标系中画出已知函数的图象,利用数形结合的方法即可找到使y=k成立的x值恰好有三个的k值.解答:解:函数的图象如图:根据图象知道当y=3时,对应成立的x有恰好有三个,∴k=3.故选D.点评:此题主要考查了利用二次函数的图象解决交点问题,解题的关键是把解方程的问题转换为根据函数图象找交点的问题.2.如果|x﹣a|=a﹣|x|(x≠0,x≠a),那么=()A.2a B.2x C.﹣2a D.﹣2x考点:二次根式的性质与化简;绝对值;完全平方公式;含绝对值符号的一元一次方程.专题:计算题.分析:由绝对值的定义可知,一个数的绝对值要么等于它本身,要么等于它的相反数,根据已知条件|x﹣a|=a﹣|x|,得出|x|=x且x≤a.再根据完全平方公式及二次根式的性质=|a|进行化简,最后去括号、合并同类项即可得出结果.解答:解:∵|x﹣a|=a﹣|x|,∴|x|=x且x≤a.∴a﹣x>0,a+x>0.∴=﹣=|a﹣x|﹣|a+x|=a﹣x﹣(a+x)=a﹣x﹣a﹣x=﹣2x.故选D.点评:本题考查了绝对值的定义,完全平方公式,二次根式的性质,二次根式的化简及整式的加减运算,难度中等,其中根据绝对值的定义,结合已知条件得出|x|=x且x≤a是解题的关键.3.a,b,c为有理数,且等式成立,则2a+999b+1001c的值是()A.1999 B.2000 C.2001 D.不能确定考点:二次根式的性质与化简.分析:将已知等式右边化简,两边比较系数可知a、b、c的值,再计算式子的值.解答:解:∵==,∴a+b+c=,∴a=0,b=1,c=1,2a+999b+1001c=2000.故选B.点评:本题考查了二次根式的性质与化简,将复合二次根式化简并比较系数是解题的关键.4.(2013•莒南县一模)如图,两个反比例函数y=和y=(其中k1>k2>0)在第一象限内的图象依次是C1和C2,设点P在C1上,PC⊥x轴于点C,交C2于点A,PD⊥y轴于点D,交C2于点B,则四边形PAOB的面积为()A.k 1+k2B.k1﹣k2C.k1•k2D.考点:反比例函数系数k的几何意义.专题:压轴题;数形结合.分析:四边形PAOB的面积为矩形OCPD的面积减去三角形ODB与三角形OAC的面积,根据反比例函数中k的几何意义,其面积为k1﹣k2.解答:解:根据题意可得四边形PAOB的面积=S﹣S OBD﹣S OAC,矩形OCPD由反比例函数中k的几何意义,可知其面积为k1﹣k2.故选B.点评:主要考查了反比例函数中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点.5.(2012•南开区一模)如图,在平面直角坐标系xOy中,等腰梯形ABCD的顶点坐标分别为A(1,1),B(2,﹣1),C(﹣2,﹣1),D(﹣1,1).y轴上一点P(0,2)绕点A旋转180°得点P1,点P1绕点B旋转180°得点P2,点P2绕点C旋转180°得点P3,点P3绕点D旋转180°得点P4,…,重复操作依次得到点P1,P2,…,则点P2010的坐标是()A.(2010,2)B.(2010,﹣2)C.(2012,﹣2)D.(0,2)考点:坐标与图形变化-旋转;等腰梯形的性质.专题:规律型.分析:由P、A两点坐标可知,点P绕点A旋转180°得点P1,即为直线PA与x轴的交点,依此类推,点P2为直线P1B与y轴的交点,由此发现一般规律.解答:解:由已知可以得到,点P1,P2的坐标分别为(2,0),(2,﹣2).记P2(a2,b2),其中a2=2,b2=﹣2.根据对称关系,依次可以求得:P3(﹣4﹣a2,﹣2﹣b2),P4(2+a2,4+b2),P5(﹣a2,﹣2﹣b2),P6(4+a2,b2).令P6(a6,b2),同样可以求得,点P10的坐标为(4+a6,b2),即P10(4×2+a2,b2),由于2010=4×502+2,所以点P2010的坐标为(2010,﹣2).故选B.点评:本题考查了旋转变换的规律.关键是根据等腰梯形,点的坐标的特殊性,寻找一般规律.6.(2013•荆门)如图,在半径为1的⊙O中,∠AOB=45°,则sinC的值为()A.B.C.D.考点:圆周角定理;勾股定理;锐角三角函数的定义.专题:压轴题.分析:首先过点A作AD⊥OB于点D,由在Rt△AOD中,∠AOB=45°,可求得AD与OD的长,继而可得BD 的长,然后由勾股定理求得AB的长,继而可求得sinC的值.解答:解:过点A作AD⊥OB于点D,∵在Rt△AOD中,∠AOB=45°,∴OD=AD=OA•cos45°=×1=,∴BD=OB﹣OD=1﹣,∴AB==,∵AC是⊙O的直径,∴∠ABC=90°,AC=2,∴sinC=.故选B.点评:此题考查了圆周角定理、三角函数以及勾股定理.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.二.填空题(共7小题)7.三个数a、b、c的积为负数,和为正数,且,则ax3+bx2+cx+1的值是1.考点:代数式求值;绝对值.专题:计算题.分析:由三个数a、b、c的积为负数,可知三数中只有一个是负数,或三个都是负数;又三数的和为正,故a、b、c中只有一个是负数,根据对称轮换式的性质,不妨设a<0,b>0,c>0,求x的值即可.解答:解:∵abc<0,∴a、b、c中只有一个是负数,或三个都是负数;又∵a+b+c>0,∴a、b、c中只有一个是负数.不妨设a<0,b>0,c>0,则ab<0,ac<0,bc>0,x=﹣1+1+1﹣1﹣1+1=0,当x=0时,ax3+bx2+cx+1=0a+0b+0c=0+1=1.故本题答案为1.点评:观察代数式,交换a、b、c的位置,我们发现代数式不改变,这样的代数式成为轮换式,我们不用对a、b、c再讨论.有兴趣的同学可以在课下查阅资料,看看轮换式有哪些重要的性质.8.如图正方形ABCD中,E是BC边的中点,AE与BD相交于F点,△DEF的面积是1,那么正方形ABCD的面积是6.考点:面积及等积变换.分析:先设△BEF的面积是x,由于E是BC中点,那么S△DBE=S△DCE,易求S正方形=4(1+x),又四边形ABCD 是正方形,那么AD∥BC,AD=BC,根据平行线分线段成比例定理的推论可得△BEF∽△DAF,于是S△BEF:S△DAF=()2,E是BC中点可知BE:AD=1:2,于是S△DAF=4x,进而可得S正方形=S△ABF+S△BEF+S△ADF+S△DEF+S△DCE=1+x+4x+1+1+x,等量代换可得4(1+x)=1+x+4x+1+1+x,解可求x,进而可求正方形的面积.解答:解:如右图,设△BEF的面积是x,∵E是BC中点,∴S△DBE=S△DCE,∴S△BCD=2(1+x),∴S正方形=4(1+x),∵四边形ABCD是正方形,∴AD∥BC,AD=BC,∴△BEF∽△DAF,∴S△BEF:S△DAF=()2,∵E是BC中点,∴BE=CE,∴BE:AD=1:2,∴S△DAF=4x,∵S△ABE=S△BED,∴S△ABF=S△DEF=1,∴S正方形=S△ABF+S△BEF+S△ADF+S△DEF+S△DCE=1+x+4x+1+1+x,∴4(1+x)=1+x+4x+1+1+x,解得x=0.5,∴S正方形=4(1+x)=4(1+0.5)=6.点评:本题考查了面积以及等积变换、相似三角形的判定和性质,解题的关键是找出正方形面积的两种表示方式.9.(2013•沐川县二模)如图,点A1,A2,A3,A4,…,A n在射线OA上,点B1,B2,B3,…,B n﹣1在射线OB上,且A1B1∥A2B2∥A3B3∥…∥A n﹣1B n﹣1,A2B1∥A3B2∥A4B3∥…∥A n B n﹣1,△A1A2B1,△A2A3B2,…,△A n﹣1A n B n为阴影三角形,若△A2B1B2,△A3B2B3的面积分别为1、4,则△A1A2B1的面积为;面积小于2011的阴﹣1影三角形共有6个.考点:相似三角形的判定与性质;平行线的性质;三角形的面积.分析:根据面积比等于相似比的平方,可得出=,=,再由平行线的性质可得出==,==,从而可推出相邻两个阴影部分的相似比为1:2,面积比为1:4,先利用等底三角形的面积之比等于高之比可求出第一个及第二个阴影部分的面积,再由相似比为1:2可求出面积小于2011的阴影部分的个数.解答:解:由题意得,△A2B1B2∽△A3B2B3,∴==,==,又∵A1B1∥A2B2∥A3B3,∴===,==,∴OA1=A1A2,B1B2=B2B3继而可得出规律:A1A2=A2A3=A3A4…;B1B2=B2B3=B3B4…又△A2B1B2,△A3B2B3的面积分别为1、4,∴S△A1B1A2=,S△A2B2A3=2,继而可推出S△A3B3A4=8,S△A,4B4A5=32,S△A5B5A6=128,S△A6B6A7=512,S△A7B7A8=2048,故可得小于2011的阴影三角形的有:△A1B1A2,△A2B2A3,△A3B3A4,△A4B4A5,△A5B5A6,△A6B6A7,共6个.故答案是:;6.点评:此题考查了相似三角形的判定与性质及平行线的性质,解答本题的关键是掌握相似比等于面积比的平方,及平行线分线段成比例,难度较大,注意仔细观察图形,得出规律.10.你见过像,,…这样的根式吗?这一类根式叫做复合二次根式.有一些复合二次根式可以化简,如.请用上述方法化简:=.考点:二次根式的性质与化简.分析:因为5=2+3=()2+()2,且2=2××,由此把原式改为完全平方式,进一步因式分解,化简得出答案即可.解答:解:===+.故答案为:+.点评:此题考查活用完全平方公式,把数分解成完全平方式,进一步利用公式因式分解化简,注意在整数分解时参考后面的二次根号里面的数值.11.不等式组有六个整数解,则a的取值范围为<a≤.考点:一元一次不等式组的整数解.分析:先求出不等式组的解集,再根据整数解有六个得到关于a的不等式组,然后解不等式组即可求解.解答:解:解不等式组,得﹣4<x≤5﹣4a.由题意,知此不等式组的六个整数解为﹣3,﹣2,﹣1,0,1,2,则2≤5﹣4a<3,解得<a≤.故答案为<a≤.点评:本题考查了一元一次不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.12.小明是一位刻苦学习、勤于思考、勇于创新的同学,一天他在解方程x2=﹣1时,突发奇想:x2=﹣1在实数范围内无解,如果存在一个数i,使i2=﹣1,那么若x2=﹣1,则x=±i,从而x=±i是方程x2=﹣1的两个根.据此可知:①i可以运算,例如:i3=i2•i=﹣1×i=﹣i,则i2011=﹣i.,②方程x2﹣2x+2=0的两根为1±i.(根用i表示)考点:一元二次方程的应用.专题:新定义.分析:(1)根据题中规律可知i1=1,i2=﹣1,i3=﹣i,i4=1,可以看出4个一次循环,可以此求解.(2)把方程x2﹣2x+2=0变形为(x﹣1)2=﹣1,根据题目规律和平方根的定义可求解.解答:解:(1)i2011=i502×4+3=﹣i.(2)x2﹣2x+2=0(x﹣1)2=﹣1x﹣1=±ix=1+i或x=1﹣i.故答案为:﹣i;1±i.点评:本题考查了用配方法解一元二次方程以及找出题目中的规律,从而求得解.13.(2013•日照)如右图,直线AB交双曲线于A、B,交x轴于点C,B为线段AC的中点,过点B作BM⊥x 轴于M,连结OA.若OM=2MC,S△OAC=12.则k的值为8.考点:反比例函数与一次函数的交点问题.专题:压轴题.分析:过A作AN⊥OC于N,求出ON=MN=CM,设A的坐标是(a,b),得出B(2a,b),根据三角形AOC 的面积求出ab=8,把B的坐标代入即可求出答案.解答:解:过A作AN⊥OC于N,∵BM⊥OC∴AN∥BM,∵,B为AC中点,∴MN=MC,∵OM=2MC,∴ON=MN=CM,设A的坐标是(a,b),则B(2a,b),∵S△OAC=12.∴•3a•b=12,∴ab=8,∵B在y=上,∴k=2a•b=ab=8,故答案为:8.点评:本题考查了一次函数和反比例函数的交点问题和三角形的面积的应用,主要考查学生的计算能力.三.解答题(共7小题)14.在“学科能力”展示活动中,某区教委决定在甲、乙两校举行“学科能力”比赛,为此甲、乙两学校都选派相同人数的选手参加,比赛结束后,发现每名参赛选手的成绩都是70分、80分、90分、l00分这四种成绩中的一种,并且甲、乙两校的选手获得100分的人数也相等.现根据甲、乙两校选手的成绩绘制如下两幅不完整统计图:(1)甲校选手所得分数的中位数是90分,乙校选手所得分数的众数是80分;(2)请补全条形统计图;(3)比赛后,教委决定集中甲、乙两校获得100分的选手进行培训,培训后,从中随机选取两位选手参加市里的决赛,请用列表法或树状图的方法,求所选两位选手来自同一学校的概率.考点:条形统计图;扇形统计图;中位数;众数;列表法与树状图法.分析:(1)先设甲学校学生获得100分的人数为x,根据甲、乙两学校参加数学竞赛的学生人数相等,可得出方程,解出x的值,继而可得出甲校选手所得分数的中位数,及乙校选手所得分数的众数;(2)列出树状图后,求解即可得出所选两位选手来自同一学校的概率.解答:解:(1)先设甲学校学生获得100分的人数为x,由题意得,x=(x+2+3+5)×,解得:x=2,即获得100分的人数有2人.故可得甲校选手所得分数的中位数是90分;乙校选手所得分数的众数80分.(2)则两位选手来自同一学校的概率==.点评:本题考查了条形统计图及扇形统计图的知识,要求同学们有一定的读图能力,能在条形统计图及扇形统计图中得到解题需要用到的信息,有一定难度.15.(2012•兰州)若x1、x2是关于一元二次方程ax2+bx+c(a≠0)的两个根,则方程的两个根x1、x2和系数a、b、c有如下关系:x1+x2=﹣,x1•x2=.把它称为一元二次方程根与系数关系定理.如果设二次函数y=ax2+bx+c(a≠0)的图象与x轴的两个交点为A(x1,0),B(x2,0).利用根与系数关系定理可以得到A、B两个交点间的距离为:AB=|x1﹣x2|====;参考以上定理和结论,解答下列问题:设二次函数y=ax2+bx+c(a>0)的图象与x轴的两个交点A(x1,0),B(x2,0),抛物线的顶点为C,显然△ABC 为等腰三角形.(1)当△ABC为直角三角形时,求b2﹣4ac的值;(2)当△ABC为等边三角形时,求b2﹣4ac的值.考点:抛物线与x轴的交点;根与系数的关系;等腰三角形的性质;等边三角形的性质.专题:压轴题.分析:(1)当△ABC为直角三角形时,由于AC=BC,所以△ABC为等腰直角三角形,过C作CE⊥AB于E,则AB=2CE.根据本题定理和结论,得到AB=,根据顶点坐标公式,得到CE=||=,列出方程,解方程即可求出b2﹣4ac的值;(2)当△ABC为等边三角形时,解直角△ACE,得CE=AE=,据此列出方程,解方程即可求出b2﹣4ac的值.解答:解:(1)当△ABC为直角三角形时,过C作CE⊥AB于E,则AB=2CE.∵抛物线与x轴有两个交点,∴△=b2﹣4ac>0,则|b2﹣4ac|=b2﹣4ac.∵a>0,∴AB=,又∵CE=||=,∴,∴,∴,∵b2﹣4ac>0,∴b2﹣4ac=4;(2)当△ABC为等边三角形时,由(1)可知CE=,∴,∵b2﹣4ac>0,∴b2﹣4ac=12.点评:本题考查了等腰直角三角形、等边三角形的性质,抛物线与x轴的交点及根与系数的关系定理,综合性较强,难度中等.16.(2013•威海)如图,在平面直角坐标系中,直线y=x+与直线y=x交于点A,点B在直线y=x+上,∠BOA=90°.抛物线y=ax2+bx+c过点A,O,B,顶点为点E.(1)求点A,B的坐标;(2)求抛物线的函数表达式及顶点E的坐标;(3)设直线y=x与抛物线的对称轴交于点C,直线BC交抛物线于点D,过点E作FE∥x轴,交直线AB于点F,连接OD,CF,CF交x轴于点M.试判断OD与CF是否平行,并说明理由.考点:二次函数综合题.专题:压轴题.分析:(1)由直线y=x+与直线y=x交于点A,列出方程组,通过解该方程组即可求得点A的坐标;根据∠BOA=90°得到直线OB的解析式为y=﹣x,则,通过解该方程组来求点B的坐标即可;(2)把点A、B、O的坐标分别代入已知二次函数解析式,列出关于系数a、b、c的方程组,通过解方程组即可求得该抛物线的解析式;(3)如图,作DN⊥x轴于点N.欲证明OD与CF平行,只需证明同位角∠CMN与∠DON相等即可.解答:解:(1)由直线y=x+与直线y=x交于点A,得,解得,,∴点A的坐标是(3,3).∵∠BOA=90°,∴OB⊥OA,∴直线OB的解析式为y=﹣x.又∵点B在直线y=x+上,∴,解得,,∴点B的坐标是(﹣1,1).综上所述,点A、B的坐标分别为(3,3),(﹣1,1).(2)由(1)知,点A、B的坐标分别为(3,3),(﹣1,1).∵抛物线y=ax2+bx+c过点A,O,B,∴,解得,,∴该抛物线的解析式为y=x2﹣x,或y=(x﹣)2﹣.∴顶点E的坐标是(,﹣);(3)OD与CF平行.理由如下:由(2)知,抛物线的对称轴是x=.∵直线y=x与抛物线的对称轴交于点C,∴C(,).设直线BC的表达式为y=kx+b(k≠0),把B(﹣1,1),C(,)代入,得,解得,,∴直线BC的解析式为y=﹣x+.∵直线BC与抛物线交于点B、D,∴﹣x+=x2﹣x,解得,x1=,x2=﹣1.把x1=代入y=﹣x+,得y1=,∴点D的坐标是(,).如图,作DN⊥x轴于点N.则tan∠DON==.∵FE∥x轴,点E的坐标为(,﹣).∴点F的纵坐标是﹣.把y=﹣代入y=x+,得x=﹣,∴点F的坐标是(﹣,﹣),∴EF=+=.∵CE=+=,∴tan∠CFE==,∴∠CFE=∠DON.又∵FE∥x轴,∴∠CMN=∠CFE,∴∠CMN=∠DON,∴OD∥CF,即OD与CF平行.点评:本题考查了二次函数综合题.其中涉及到的知识点有:待定系数法求二次函数解析式,一次函数与二次函数交点问题,平行线的判定以及锐角三角函数的定义等知识点.此题难度较大.17.(2012•内江)如果方程x2+px+q=0的两个根是x1,x2,那么x1+x2=﹣p,x1.x2=q,请根据以上结论,解决下列问题:(1)已知关于x的方程x2+mx+n=0,(n≠0),求出一个一元二次方程,使它的两个根分别是已知方程两根的倒数;(2)已知a、b满足a2﹣15a﹣5=0,b2﹣15b﹣5=0,求的值;(3)已知a、b、c满足a+b+c=0,abc=16,求正数c的最小值.考点:根与系数的关系;根的判别式.专题:压轴题.分析:(1)先设方程x2+mx+n=0,(n≠0)的两个根分别是x1,x2,得出+=﹣,•=,再根据这个一元二次方程的两个根分别是已知方程两根的倒数,即可求出答案.(2)根据a、b满足a2﹣15a﹣5=0,b2﹣15b﹣5=0,得出a,b是x2﹣15x﹣5=0的解,求出a+b和ab的值,即可求出的值.(3)根据a+b+c=0,abc=16,得出a+b=﹣c,ab=,a、b是方程x2+cx+=0的解,再根据c2﹣4•≥0,即可求出c的最小值.解答:解:(1)设方程x2+mx+n=0,(n≠0)的两个根分别是x1,x2,则:+==﹣,•==,若一个一元二次方程的两个根分别是已知方程两根的倒数,则这个一元二次方程是:x2+x+=0;(2)∵a、b满足a2﹣15a﹣5=0,b2﹣15b﹣5=0,∴a,b是x2﹣15x﹣5=0的解,当a≠b时,a+b=15,ab=﹣5,====﹣47.当A=B时,原式=2;(3)∵a+b+c=0,abc=16,∴a+b=﹣c,ab=,∴a、b是方程x2+cx+=0的解,∴c2﹣4•≥0,c2﹣≥0,∵c是正数,∴c3﹣43≥0,c3≥43,c≥4,∴正数c的最小值是4.点评:本题考查了根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.18.(2013•钦州)如图,在Rt△ABC中,∠A=90°,O是BC边上一点,以O为圆心的半圆与AB边相切于点D,与AC、BC边分别交于点E、F、G,连接OD,已知BD=2,AE=3,tan∠BOD=.(1)求⊙O的半径OD;(2)求证:AE是⊙O的切线;(3)求图中两部分阴影面积的和.考点:切线的判定与性质;扇形面积的计算.专题:计算题;压轴题.分析:(1)由AB为圆O的切线,利用切线的性质得到OD垂直于AB,在直角三角形BDO中,利用锐角三角函数定义,根据tan∠BOD及BD的值,求出OD的值即可;(2)连接OE,由AE=OD=3,且OD与AE平行,利用一组对边平行且相等的四边形为平行四边形,根据平行四边形的对边平行得到OE与AD平行,再由DA与AE垂直得到OE与AC垂直,即可得证;(3)阴影部分的面积由三角形BOD的面积+三角形ECO的面积﹣扇形DOF的面积﹣扇形EOG的面积,求出即可.解答:解:(1)∵AB与圆O相切,∴OD⊥AB,在Rt△BDO中,BD=2,tan∠BOD==,∴OD=3;(2)连接OE,∵AE=OD=3,AE∥OD,∴四边形AEOD为平行四边形,∴AD∥EO,∵DA⊥AE,∴OE⊥AC,又∵OE为圆的半径,∴AE为圆O的切线;(3)∵OD∥AC,∴=,即=,∴AC=7.5,∴EC=AC﹣AE=7.5﹣3=4.5,∴S阴影=S△BDO+S△OEC﹣S扇形FOD﹣S扇形EOG=×2×3+×3×4.5﹣=3+﹣=.点评:此题考查了切线的判定与性质,扇形的面积,锐角三角函数定义,平行四边形的判定与性质,以及平行线的性质,熟练掌握切线的判定与性质是解本题的关键.19.(2013•益阳)如图1,在△ABC中,∠A=36°,AB=AC,∠ABC的平分线BE交AC于E.(1)求证:AE=BC;(2)如图(2),过点E作EF∥BC交AB于F,将△AEF绕点A逆时针旋转角α(0°<α<144°)得到△AE′F′,连结CE′,BF′,求证:CE′=BF′;(3)在(2)的旋转过程中是否存在CE′∥AB?若存在,求出相应的旋转角α;若不存在,请说明理由.考点:旋转的性质;等腰三角形的性质;等腰梯形的判定.专题:压轴题.分析:(1)根据等腰三角形的性质以及角平分线的性质得出对应角之间的关系进而得出答案;(2)由旋转的性质可知:∠E′AC=∠F′AB,AE′=AF′,根据全等三角形证明方法得出即可;(3)分别根据①当点E的像E′与点M重合时,则四边形ABCM为等腰梯形,②当点E的像E′与点N重合时,求出α即可.解答:(1)证明:∵AB=BC,∠A=36°,∴∠ABC=∠C=72°,又∵BE平分∠ABC,∴∠ABE=∠CBE=36°,∴∠BEC=180°﹣∠C﹣∠CBE=72°,∴∠ABE=∠A,∠BEC=∠C,∴AE=BE,BE=BC,∴AE=BC.(2)证明:∵AC=AB且EF∥BC,∴AE=AF;由旋转的性质可知:∠E′AC=∠F′AB,AE′=AF′,∵在△CAE′和△BAF′中,∴△CAE′≌△BAF′,∴CE′=BF′.(3)存在CE′∥AB,理由:由(1)可知AE=BC,所以,在△AEF绕点A逆时针旋转过程中,E点经过的路径(圆弧)与过点C且与AB平行的直线l交于M、N两点,如图:①当点E的像E′与点M重合时,则四边形ABCM为等腰梯形,∴∠BAM=∠ABC=72°,又∠BAC=36°,∴α=∠CAM=36°.②当点E的像E′与点N重合时,由AB∥l得,∠AMN=∠BAM=72°,∵AM=AN,∴∠ANM=∠AMN=72°,∴∠MAN=180°﹣2×72°=36°,∴α=∠CAN=∠CAM+∠MAN=72°.所以,当旋转角为36°或72°时,CE′∥AB.点评:此题主要考查了旋转的性质以及等腰三角形的性质和等腰梯形的性质等知识,根据数形结合熟练掌握相关定理是解题关键.20.(2013•昭通)如图1,已知A(3,0)、B(4,4)、原点O(0,0)在抛物线y=ax2+bx+c (a≠0)上.(1)求抛物线的解析式.(2)将直线OB向下平移m个单位长度后,得到的直线与抛物线只有一个交点D,求m的值及点D的坐标.(3)如图2,若点N在抛物线上,且∠NBO=∠ABO,则在(2)的条件下,求出所有满足△POD∽△NOB的点P 的坐标(点P、O、D分别与点N、O、B对应)考点:二次函数综合题.专题:压轴题.分析:(1)利用待定系数法求二次函数解析式进而得出答案即可;(2)首先求出直线OB的解析式为y=x,进而将二次函数以一次函数联立求出交点即可;(3)首先求出直线A′B的解析式,进而由△P1OD∽△NOB,得出△P1OD∽△N1OB1,进而求出点P1的坐标,再利用翻折变换的性质得出另一点的坐标.解答:解:(1)∵A(3,0)、B(4,4)、O(0,0)在抛物线y=ax2+bx+c (a≠0)上.∴,解得:,故抛物线的解析式为:y=x2﹣3x;(2)设直线OB的解析式为y=k1x(k1≠0),由点B(4,4)得4=4 k1,解得k1=1.∴直线OB的解析式为y=x,∠AOB=45°.∵B(4,4),∴点B向下平移m个单位长度的点B′的坐标为(4,0),故m=4.∴平移m个单位长度的直线为y=x﹣4.解方程组解得:,∴点D的坐标为(2,﹣2).(3)∵直线OB的解析式y=x,且A(3,0).∵点A关于直线OB的对称点A′的坐标为(0,3).设直线A′B的解析式为y=k2x+3,此直线过点B(4,4).∴4k2+3=4,解得k2=.∴直线A′B的解析式为y=x+3.∵∠NBO=∠ABO,∴点N在直线A′B上,设点N(n,n+3),又点N在抛物线y=x2﹣3x上,∴n+3=n2﹣3n.解得n1=﹣,n2=4(不合题意,舍去),∴点N的坐标为(﹣,).如图,将△NOB沿x轴翻折,得到△N1OB1,则N1(﹣,﹣),B1(4,﹣4).∴O、D、B1都在直线y=﹣x上.过D点做DP1∥N1B1,∵△P1OD∽△NOB,∴△P1OD∽△N1OB1,∴P1为O N1的中点.∴==,∴点P1的坐标为(﹣,﹣).将△P1OD沿直线y=﹣x翻折,可得另一个满足条件的点到x轴距离等于P1到y轴距离,点到y轴距离等于P1到x轴距离,∴此点坐标为:(,).综上所述,点P的坐标为(﹣,﹣)和(,).点评:此题主要考查了翻折变换的性质以及待定系数法求一次函数和二次函数解析式以及相似三角形的判定与性质等知识,利用翻折变换的性质得出对应点关系是解题关键.。
重点中学高中部自主招生数学考试试题(含答案)

2016年高中部自主招生考试试题数学(试题卷)一.选择题(共6小题,每小题6分,共36分)1.一列数a1,a2,a3,…,其中a1=,a n =(n为不小于2的整数),则a100=()A.B.2C.﹣1 D.﹣22.已知,则的值为()A.B.C.D.或13.已知AD∥BC,AB⊥AD,点E,点F分别在射线AD,射线BC上.若点E与点B关于AC对称,点E与点F 关于BD对称,AC与BD相交于点G,则()A.1+tan∠ADB=B.2BC=5CFC.∠AEB+22°=∠DEF D.4cos∠AGB=4.如图,若将左图正方形剪成四块,恰能拼成右图的矩形,设a=1,则b=()A.B.C.D.5.如图所示,在直角坐标系中,A点坐标为(﹣3,﹣2),⊙A的半径为1,P为x轴上一动点,PQ切⊙A于点Q,则当PQ最小时,P点的坐标为()A.(﹣4,0)B.(﹣2,0) C.(﹣4,0)或(﹣2,0)D.(﹣3,0)6.已知抛物线y=﹣x2+1的顶点为P,点A是第一象限内该二次函数图象上一点,过点A作x轴的平行线交二次函数图象于点B,分别过点B、A作x轴的垂线,垂足分别为C、D,连结PA、PD,PD交AB于点E,△PAD与△PEA()A.始终不相似B.始终相似C.只有AB=AD时相似D.无法确定二.填空题(共4小题,每小题6分,共24分)7.如果函数y=b的图象与函数y=x2﹣3|x﹣1|﹣4x﹣3的图象恰有三个交点,则b的可能值是.8.如图,已知直线交x轴、y轴于点A、B,⊙P的圆心从原点出发以每秒1个单位的速度向x轴正方向移动,移动时间为t(s),半径为,则t=s时⊙P与直线AB相切.9.一般地,我们把研究对象统称为元素,把一些元素组成的总体称为集合.一个给定集合中的元素是互不相同的,也就是说,集合中的元素是不重复出现的.如一组数1,1,2,3,4就可以构成一个集合,记为A={1,2,3,4}.类比实数有加法运算,集合也可以“相加”.定义:集合A与集合B中的所有元素组成的集合称为集合A与集合B的和,记为A+B.若A={﹣2,0,1,5,7},B={﹣3,0,1,3,5},则A+B=.10.对于X,Y定义一种新运算“*”:X*Y=aX+bY,其中a,b为常数,等式右边是通常的加法和乘法的运算.若成立,那么2*3=.三.解答题(共5题,每题12分,共60分)11.如图,二次函数与x轴交于A、B两点,与y轴交于C点,点P从A点出发,以1个单位每秒的速度向点B运动,点Q同时从C点出发,以相同的速度向y轴正方向运动,运动时间为t秒,点P到达B点时,点Q同时停止运动.设PQ交直线AC于点G.(1)求直线AC的解析式;(2)设△PQC的面积为S,求S关于t的函数解析式;(3)在y轴上找一点M,使△MAC和△MBC都是等腰三角形.直接写出所有满足条件的M点的坐标;(4)过点P作PE⊥AC,垂足为E,当P点运动时,线段EG的长度是否发生改变,请说明理由.试题图备用图12.已知直线y=﹣x+4与x轴和y轴分别交与B、A两点,另一直线经过点B和点D(11,6).(1)求AB、BD的长度,并证明△ABD是直角三角形;(2)在x轴上找点C,使△ACD是以AD为底边的等腰三角形,求出C点坐标;(3)一动点P速度为1个单位/秒,沿A﹣B﹣D运动到D点停止,另有一动点Q从D点出发,以相同的速度沿D ﹣B﹣A运动到A点停止,两点同时出发,PQ的长度为y(单位长),运动时间为t(秒),求y关于t的函数关系式.13.在边长为1的正方形ABCD中,以点A为圆心,AB为半径作圆,E是BC边上的一个动点(不运动至B,C),过点E作弧BD的切线EF,交CD于F,H是切点,过点E作EG⊥EF,交AB于点G,连接AE.(1)求证:△AGE是等腰三角形;(2)设BE=x,△BGE与△CEF的面积比,求y关于x的函数关系式,并写出自变量x的取值范围;(3)在BC边上(点B、C除外)是否存在一点E,使得GE=EF,若存在,求出此时BE的长,若不存在,请说明理由.14.如图,AE切⊙O于点E,AT交⊙O于点M,N,线段OE交AT于点C,OB⊥AT于点B,已知∠EAT=30°,AE=3,MN=2.(1)求∠COB的度数;(2)求⊙O的半径R;(3)点F在⊙O上(是劣弧),且EF=5,把△OBC经过平移、旋转和相似变换后,使它的两个顶点分别与点E,F重合.在EF的同一侧,这样的三角形共有多少个?你能在其中找出另一个顶点在⊙O上的三角形吗?请在图中画出这个三角形,并求出这个三角形与△OBC的周长之比.15.如图,直角梯形ABCO的两边OA,OC在坐标轴的正半轴上,BC∥x轴,OA=OC=4,以直线x=1为对称轴的抛物线过A,B,C三点.(1)求该抛物线的函数解析式;(2)已知直线l的解析式为y=x+m,它与x轴交于点G,在梯形ABCO的一边上取点P.①当m=0时,如图1,点P是抛物线对称轴与BC的交点,过点P作PH⊥直线l于点H,连结OP,试求△OPH 的面积;②当m=﹣3时,过点P分别作x轴、直线l的垂线,垂足为点E,F.是否存在这样的点P,使以P,E,F为顶点的三角形是等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.2016年高中部自主招生考试数学参考答案选择题1-6.ABABDB填空题7.﹣6、﹣8.或249.{﹣3,﹣2,0,1,3,5,7}10.1解答题11.(1)y=﹣x2+2,x=0时,y=2,y=0时,x=±2,∴A(﹣2,0),B(2,0),C(0,2),设直线AC的解析式是y=kx+b,代入得:,解得:k=1,b=2,即直线AC的解析式是y=x+2;(2)当0<t<2时,OP=(2﹣t),QC=t,∴△PQC的面积为:S=(2﹣t)t=﹣t2+t,当2<t≤4时,OP=(t﹣2),QC=t,∴△PQC的面积为:S=(t﹣2)t=t2﹣t,∴;(3)当AC=CM=BC时,M的坐标是:(0,),(0,﹣2);当AM=BM=CM时,M的坐标是:(0,0),(0,);一共四个点,(0,),(0,0),(0,),(0,﹣2);(4)当0<t<2时,过G作GH⊥y轴,垂足为H.由AP=t,可得AE=.∵GH∥OP∴即=,解得GH=,所以GC=GH=.于是,GE=AC﹣AE﹣GC==.即GE的长度不变.当2<t≤4时,过G作GH⊥y轴,垂足为H.由AP=t,可得AE=.由即=,∴GH(2+t)=t(t﹣2)﹣(t﹣2)GH,∴GH(2+t)+(t﹣2)GH=t(t﹣2),∴2tGH=t(t﹣2),解得GH=,所以GC=GH=.于是,GE=AC﹣AE+GC=2﹣t+=,即GE的长度不变.综合得:当P点运动时,线段EG的长度不发生改变,为定值.12.(1)令x=0,y=4,令y=0,则﹣x+4=0,解得x=3,所以,A(0,4),B(3,0),由勾股定理得,AB==5,BD==10,过点D作DH⊥y轴于H,DH=11,AH=2,由勾股定理得,AD===,∵AB2=25,BD2=100,∴AB2+BD2=AD2,∴△ABD是直角三角形;(2)设OC长为x,由等腰三角形以及勾股定理得到x2+42=(11﹣x)2+62,解得x=,所以,C(,0);(3)设t秒时相遇,由题意得,t+t=5+10,解得t=7.5,点P在AB上时,0≤t≤5,PB=5﹣t,BQ=10﹣t,PQ===,点P、Q都在BD上重合前,5<t≤7.5,PQ=5+10﹣t﹣t=15﹣2t,重合后,7.5<t≤10,PQ=t+t﹣5﹣10=2t﹣15,点Q在AB上时,10<t≤15,PB=t﹣5,BQ=t﹣10,PQ===.13.(1)连AH,∵AH⊥EF,GE⊥EF,∴GE∥AH,∴∠GEA=∠EAH,∵AH=AB,AE=AE,∠ABE=∠AHB,∴△AHE≌△ABE,∴∠BAE=∠EAH,∴∠BAE=∠GEA,∴AG=EG,即△AGE是等腰三角形.(2)∵EH=EB=x,∴EC=1﹣x,CF=1﹣FD,∵FD=FH,∴EF=EH+HF=x+FD,在Rt△ECF中,EF2=EC2+CF2,∴(1﹣x)2+(1﹣FD)2=(x+FD)2,整理得,(1+x)FD=1﹣x,∴,∵∠B=∠C,又GE⊥EF,∴∠GEB=∠FEC,∴△GEB∽△EFC,∴,∴,∴(0<x<1).(3)假设BC上存在一点E,能使GE=EF,则,∴,解得x=0或x=1,经检验x=0或x=1是原方程的解但动点E不能与B,C点重合,故x≠0且x≠1,∴BC边上符合条件的E点不存在.14.(1)∵AE切⊙O于点E,∴AE⊥CE,又OB⊥AT,∴∠AEC=∠CBO=90°,又∠BCO=∠ACE,∴△AEC∽△OBC,又∠A=30°,∴∠COB=∠A=30°;(2)∵AE=3,∠A=30°,∴在Rt△AEC中,tanA=tan30°=,即EC=AEtan30°=3,∵OB⊥MN,∴B为MN的中点,又MN=2,∴MB=MN=,连接OM,在△MOB中,OM=R,MB=,∴OB==,在△COB中,∠BOC=30°,∵cos∠BOC=cos30°==,∴BO=OC,∴OC=OB=,又OC+EC=OM=R,∴R=+3,整理得:R2+18R﹣115=0,即(R+23)(R﹣5)=0,解得:R=﹣23(舍去)或R=5,则R=5;(3)以EF为斜边,有两种情况,以EF为直角边,有四种情况,所以六种,画直径FG,连接EG,延长EO与圆交于点D,连接DF,如图所示:∵EF=5,直径ED=10,可得出∠FDE=30°,∴FD=5,则C△EFD=5+10+5=15+5,由(2)可得C△COB=3+,∴C△EFD:C△COB=(15+5):(3+)=5:1.∵EF=5,直径FG=10,可得出∠FGE=30°,∴EG=5,则C△EFG=5+10+5=15+5,∴C△EFG:C△COB=(15+5):(3+)=5:1.15.(1)由题意得:A(4,0),C(0,4),对称轴为x=1.设抛物线的解析式为y=ax2+bx+c,则有:,解得.∴抛物线的函数解析式为:y=﹣x2+x+4.(2)①当m=0时,直线l:y=x.∵抛物线对称轴为x=1,∴CP=1.如答图1,延长HP交y轴于点M,则△OMH、△CMP均为等腰直角三角形.∴CM=CP=1,∴OM=OC+CM=5.S△OPH=S△OMH﹣S△OMP=(OM)2﹣OM•CP=×(×5)2﹣×5×1=﹣=,∴S△OPH=.②当m=﹣3时,直线l:y=x﹣3.设直线l与x轴、y轴交于点G、点D,则G(3,0),D(0,﹣3).假设存在满足条件的点P.a)当点P在OC边上时,如答图2﹣1所示,此时点E与点O重合.设PE=a(0<a≤4),则PD=3+a,PF=PD=(3+a).过点F作FN⊥y轴于点N,则FN=PN=PF,∴EN=|PN﹣PE|=|PF﹣PE|.在Rt△EFN中,由勾股定理得:EF==.若PE=PF,则:a=(3+a),解得a=3(+1)>4,故此种情形不存在;若PF=EF,则:PF=,整理得PE=PF,即a=3+a,不成立,故此种情形不存在;若PE=EF,则:PE=,整理得PF=PE,即(3+a)=a,解得a=3.∴P1(0,3).b)当点P在BC边上时,如答图2﹣2所示,此时PE=4.若PE=PF,则点P为∠OGD的角平分线与BC的交点,有GE=GF,过点F分别作FH⊥PE于点H,FK⊥x轴于点K,∵∠OGD=135°,∴∠EPF=45°,即△PHF为等腰直角三角形,设GE=GF=t,则GK=FK=EH=t,∴PH=HF=EK=EG+GK=t+t,∴PE=PH+EH=t+t+t=4,解得t=4﹣4,则OE=3﹣t=7﹣4,∴P2(7﹣4,4)c)∵A(4,0),B(2,4),∴可求得直线AB解析式为:y=﹣2x+8;联立y=﹣2x+8与y=x﹣3,解得x=,y=.设直线BA与直线l交于点K,则K(,).当点P在线段BK上时,如答图2﹣3所示.设P(a,8﹣2a)(2≤a≤),则Q(a,a﹣3),∴PE=8﹣2a,PQ=11﹣3a,∴PF=(11﹣3a).与a)同理,可求得:EF=.若PE=PF,则8﹣2a=(11﹣3a),解得a=1﹣2<0,故此种情形不存在;若PF=EF,则PF=,整理得PE=PF,即8﹣2a=•(11﹣3a),解得a=3,符合条件,此时P3(3,2);若PE=EF,则PE=,整理得PF=PE,即(11﹣3a)=(8﹣2a),解得a=5>,故此种情形不存在.d)当点P在线段KA上时,如答图2﹣4所示.∵PE、PF夹角为135°,∴只可能是PE=PF成立.∴点P在∠KGA的平分线上.设此角平分线与y轴交于点M,过点M作MN⊥直线l于点N,则OM=MN,MD=MN,由OD=OM+MD=3,可求得M(0,3﹣3).又因为G(3,0),可求得直线MG的解析式为:y=(﹣1)x+3﹣3.联立直线MG:y=(﹣1)x+3﹣3与直线AB:y=﹣2x+8,可求得:P4(1+2,6﹣4).e)当点P在OA边上时,此时PE=0,等腰三角形不存在.综上所述,存在满足条件的点P,点P坐标为:(0,3)、(3,2)、(7﹣4,4)、(1+2,6﹣4).。
省级重点高中自主招生数学真题8套(含答案)

省重点高中自主招生数学真题8套(含答案)第1套一、选择题(每小题5分,满分30分。
以下每小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的。
请将正确选项的代号填入题后的括号里,不填、多填或错填得0分。
)1、已知实数a 、b 、c 满足0254=-+-+++a b c b a ,那么bc ab +的值为( ) A 、0B 、16C 、-16D 、-32 2、设βα、是方程02322=--x x 的两个实数根,则βααβ+的值是( )A 、-1B 、1C 、32-D 、32 3、a 、b 、c 均不为0,若0<=-=-=-abc cxz b z y a y x ,则),(bc ab p 不可能在( ) A 、第一象限 B 、第二象限 C 、第三象限 D 、第四象限4、在ABC ∆中,C B ∠=∠2,下列结论成立的是( ) A 、AB AC 2= B 、AB AC 2< C 、AB AC 2> D 、AC 与AB 2大小关系不确定5、已知关于x 的不等式7<a x 的解也是不等式12572->-aa x 的解,则a 的取值范围 是( )A 、910-≥aB 、910->a C 、0910<≤-a D 、0910<<-a 6、如图,□ DEFG 内接于ABC ∆,已知ADE ∆、EFC ∆、DBG ∆的面积为1、3、1,那么□ DEFG 的面积为( ) A 、32B 、2C 、3D 、4 第6题图二、填空题(每小题5分,共30分)1、已知质数x 、y 、z 满足5719=-yz x ,则z y x ++= 。
2、已知点A (1,3),B (4,-1),在x 轴上找一点P ,使得AP -BP 最大,那么P 点的坐标是 。
3、已知AB 是⊙O 上一点,过点C 作⊙O 的切线交直线AB 于点D ,则当△ACD 为等腰三解形时,∠ACD 的度数为 。
高中自主招生数学试题及答案

高中自主招生数学试题及答案一、选择题(每题3分,共15分)1. 下列哪个数是无理数?A. πB. √2C. 0.33333(无限循环)D. 1/32. 已知函数f(x) = 2x^2 + 3x - 5,求f(-2)的值。
A. -15B. -9C. -3D. 13. 一个圆的半径为5,求其面积。
A. 25πB. 50πC. 75πD. 100π4. 已知等差数列的前三项分别为1,4,7,求第10项的值。
A. 26B. 27C. 28D. 295. 一个三角形的内角和为多少度?A. 180°B. 360°C. 540°D. 720°二、填空题(每题2分,共10分)6. 若a,b,c是三角形的三边长,且满足a^2 + b^2 = c^2,那么这个三角形是_________三角形。
7. 一个函数的导数f'(x) = 3x^2 - 2x,当x=1时,其导数的值为_________。
8. 已知等比数列的首项为2,公比为3,求其第5项的值是_________。
9. 一个正方体的体积为27,它的边长是_________。
10. 圆的周长公式为C = 2πr,若半径r=4,则周长为_________。
三、解答题(共75分)11. 解一元二次方程:x^2 - 5x + 6 = 0。
(10分)12. 证明:若a,b,c是实数,且a + b + c = 0,则(1/a) + (1/b) + (1/c) ≥ 9。
(15分)13. 已知函数f(x) = x^3 - 3x^2 + 2,求其导数并讨论其在x=1处的单调性。
(20分)14. 解不等式:|x - 2| + |x + 3| ≥ 5。
(15分)15. 已知一个圆的圆心在原点,半径为1,求圆上任意一点到直线y = x的距离。
(15分)四、结束语本试题旨在考察学生对高中数学基础知识的掌握情况和解题能力。
希望同学们在解答过程中能够认真思考,仔细作答,展现出自己的数学素养。
数学自主招生试题答案

数学自主招生试题答案一、选择题1. 已知函数f(x) = ax^2 + bx + c在点x=1取得极小值,且该点为函数的唯一极值点。
若a>0,求b与c的关系。
答案:根据题意,函数f(x)在x=1处取得极小值,因此一阶导数f'(x)在x=1处为0。
首先求导数f'(x) = 2ax + b。
将x=1代入得f'(1) =2a + b = 0。
又因为x=1是唯一极值点,根据二次函数的性质,其判别式Δ = b^2 - 4ac必须小于0。
将f'(1) = 0代入得Δ = (2a)^2- 4a*c = 4a^2 - 4ac < 0。
由于a>0,可以化简得ac < 0,即b与c的关系为c < 0。
2. 已知一个等差数列的前三项分别为a-2,a,a+2,求该数列的前n项和公式。
答案:设等差数列的首项为a1,公差为d。
根据题意,有a1 = a - 2,a2 = a,a3 = a + 2。
由于是等差数列,有a2 = a1 + d,a3 = a2 + d。
将已知条件代入得a = a1 + d,a + 2 = a1 + 2d。
解这个方程组得a1 = a - d,d = 2。
所以首项a1 = a - 2,公差d = 2。
根据等差数列前n项和公式Sn = n/2 * (2a1 + (n-1)d),代入a1和d的值,得到Sn = n/2 * (2(a - 2) + (n-1)*2) = n/2 * (2a - 4 + 2n - 2) = n/2 * (2a + 2n - 6)。
二、填空题1. 一个圆的半径为r,求该圆的面积与周长。
答案:圆的面积公式为A = πr^2,周长公式为C = 2πr。
所以该圆的面积为πr^2,周长为2πr。
2. 已知一个三角形的三边长分别为a, b, c,且满足a^2 + b^2 =c^2,请判断该三角形的形状。
答案:根据勾股定理,如果一个三角形的三边长满足a^2 + b^2 = c^2,那么这个三角形是一个直角三角形。
重点高中自主招生数学试题

重点高中自主招生数学试题一、选择题1.若函数$f(x)=\frac{2x-1}{x+3}$, 当$x$趋近于无穷大时,$f(x)$的值趋近于A. 2B. -2C. 1D. -12.已知函数$f(x)$的定义域为$x \in (-\infty, 2)$, 那么函数$g(x)=f(e^{2x})$的定义域是A. $x \in (-\infty, \ln4)$B. $x \in (-\infty, 2)$C. $x \in (-\infty, \ln2)$D. $x \in (-\infty, \ln\frac{1}{4})$3.已知函数$f(x)=\frac{x-1}{x+1}$,则$f(x+1)$等于A. $f(x)$B. $f(x)+1$C. $f(x-1)$D. $\frac{1}{f(x)}$二、填空题1.设$a$为正整数,若$a^3-4a^2+5a-2=0$有一个正整数解,则$a$的值是\anst{2}。
2.设等差数列$\{a_n\}$满足$a_1=5$,$a_9=29$,则$a_{15}$的值是\anst{47}。
3.已知$\frac{3^x+3^{-x}}{3^x-3^{-x}}=7$,则$x$的值是\anst{1}。
三、解答题1.解方程:$\log_3(x^2+2x)-2\log_3(x+1)=\log_3(x+2)-2$解答:首先,我们可以利用对数的性质进行简化。
将题目中的等式两边都取对数底为3,得到:$\log_3(x^2+2x)-\log_3(x+1)^2=\log_3(x+2)-1$然后,利用对数的运算相关规律合并右侧表达式:$\log_3\left(\frac{x^2+2x}{(x+1)^2}\right)=\log_3(x+2)-1$进一步简化为:$\log_3\left(\frac{x^2+2x}{x^2+2x+1}\right)=\log_3(x+2)-1$由于等式两边底数相同,因此可以去掉对数符号:$\frac{x^2+2x}{x^2+2x+1}=x+2$接下来,我们将方程进行整理化简为二次方程:$x^2+2x=(x^2+2x+1)(x+2)$展开并合并同类项:$x^2+2x=x^3+4x^2+5x+2$整理得到:$x^3+3x^2+3x+2=0$通过观察,我们可以发现当$x=-1$时,方程成立。
重点高中自主招生数学(含答案)
重点高中自主招生数学试题答案及评分标准一、选择题(本题满分30分,每小题5分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1、已知实数a 满足,则等于 (B )|2|2a a -+=a (A )0 (B )1(C )2(D )32、名同学参加夏令营活动,需要同时搭建可容纳人和人的两种帐篷,则有效搭建方案5032共有A )(A )8种 (B )9种 (C )种3、反比例函数与一次函数 1k y x -=y =B ).是的平分线,∆70,=︒120,BPC ∠=︒BD ABP ∠CE( C )BFC =( (D ) 95︒100︒5、如图,边长为1的正方形绕点逆时针旋转到正方形,图中阴影部ABCD A 30︒AB C D '''分的面积为 ( A )(A )(B1(C )(D )112D C (A)(B)(C)(D)(A)(B)(C)(D)6、四条直线围成正方形。
现掷一个均匀且各面上6,6,6,6+=-=+-=--=x y x y x y x y ABCD 标有1、2、3、4、5、6的立方体,每个面朝上的机会是均等的。
连掷两次,以面朝上的数为点P 的坐标(第一次得到的数为横坐标,第二次得到的数为纵坐标),则点落在正方形面上(含边界)P 的概率是( D )(A ) (B ) (C )(D )214397125二、填空题(本大题满分30分,每小题5分)7、若,则的值为 0 .1,x =-43221x x x ++- 10、如图,双曲线与矩形OABC 的边CB ,BA 分别交于点E ,F 且AF =BF ,连2(0)y x x=>接EF ,则△OEF 的面积为 .2311、如图矩形纸片ABCD ,AB =5cm ,BC =10cm ,CD 上有一点E ,ED =2cm ,AD 上有一点 P ,PD =3cm ,过P 作PF ⊥AD 交BC 于F ,将纸片折叠,使P 点与E 点重合,折痕与PF 交于Q 点,则PQ 的长是_____14/3_______cm .12、对于正数x ,规定,例如。
重点高中自主招生考试数学试卷精选全文
可编辑修改精选全文完整版重点高中自主招生考试数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分.).1.(3分)若不等式组的解集是x>3,则m的取值范围是()A.m>3 B.m≥3 C.m≤3 D.m<3解答:解:由x+7<4x﹣2移项整理得:﹣3x<﹣9,∴x>3,∵x>m,又∵不等式组的解集是x>3,∴m≤3.故选C.2.(3分)如图,在△ABC中.∠ACB=90°,∠ABC=15°,BC=1,则AC=()A.B.C.0.3 D.分析:本题中直角三角形的角不是特殊角,故过A作AD交BC于D,使∠BAD=15°,根据三角形内角和定理可求出∠DAC及∠ADC的度数,再由特殊角的三角函数值及勾股定理求解即可.解答:解:过A作AD交BC于D,使∠BAD=15°,∵△ABC中.∠ACB=90°,∠ABC=15°,∴∠BAC=75°,∴∠DAC=∠BAC﹣∠BAD=75°﹣15°=60°,∴∠ADC=90°﹣∠DAC=90°﹣60°=30°,∴AC=AD,又∵∠ABC=∠BAD=15°∴BD=AD,∵BC=1,∴AD+DC=1,设CD=x,则AD=1﹣x,AC=(1﹣x),∴AD2=AC2+CD2,即(1﹣x)2=(1﹣x)2+x2,解得:x=﹣3+2,∴AC=(4﹣2)=2﹣故选B.3.(3分)(2011•南漳县模拟)如图,AB为⊙O的一固定直径,它把⊙O分成上,下两个半圆,自上半圆上一点C作弦CD⊥AB,∠OCD的平分线交⊙O于点P,当点C在上半圆(不包括A,B两点)上移动时,点P()A.到CD的距离保持不变B.位置不变C.D.随C点移动而移动等分分析:连OP,由CP平分∠OCD,得到∠1=∠2,而∠1=∠3,所以有OP∥CD,则OP⊥AB,即可得到OP平分半圆APB.解答:解:连OP,如图,∵CP平分∠OCD,∴∠1=∠2,而OC=OP,有∠1=∠3∴∠2=∠3,∴OP∥CD,又∵弦CD⊥AB,∴OP⊥AB,∴OP平分半圆APB,即点P是半圆的中点.故选B.4.(3分)已知y=+(x,y均为实数),则y的最大值与最小值的差为()A.2﹣1 B.4﹣2C.3﹣2D.2﹣2分析:首先把y=+两边平方,求出定义域,然后利用函数的单调性求出函数的最大值和最小值,最后求差.解答:解:∵y=+,∴y2=4+2=4+2×,∵1≤x≤5,当x=3时,y的最大值为2,当x=1或5时,y的最小值为2,故当x=1或5时,y 取得最小值2,当x取1与5中间值3时,y取得最大值,故y的最大值与最小值的差为2﹣2,故选D.5.(3分)(2010•泸州)已知O为圆锥的顶点,M为圆锥底面上一点,点P在OM上.一只蜗牛从P点出发,绕圆锥侧面爬行,回到P点时所爬过的最短路线的痕迹如图所示.若沿OM将圆锥侧面剪开并展开,所得侧面展开图是()A.B.C.D.考点:线段的性质:两点之间线段最短;几何体的展开图.分析:此题运用圆锥的性质,同时此题为数学知识的应用,由题意蜗牛从P点出发,绕圆锥侧面爬行,回到P点时所爬过的最短,就用到两点间线段最短定理.解答:解:蜗牛绕圆锥侧面爬行的最短路线应该是一条线段,因此选项A和B错误,又因为蜗牛从p点出发,绕圆锥侧面爬行后,又回到起始点P处,那么如果将选项C、D 的圆锥侧面展开图还原成圆锥后,位于母线OM上的点P应该能够与母线OM′上的点(P′)重合,而选项C还原后两个点不能够重合.故选D.点评:本题考核立意相对较新,考核了学生的空间想象能力.6.(3分)已知一正三角形的边长是和它相切的圆的周长的两倍,当这个圆按箭头方向从某一位置沿正三角形的三边做无滑动的旋转,直至回到原出发位置时,则这个圆共转了()A.6圈B.6.5圈C.7圈D.8圈分析:根据直线与圆相切的性质得到圆从一边转到另一边时,圆心要绕其三角形的顶点旋转120°,则圆绕三个顶点共旋转了360°,即它转了一圈,再加上在三边作无滑动滚动时要转6圈,这样得到它回到原出发位置时共转了7圈.解解:圆按箭头方向从某一位置沿正三角形的三边做无滑动的旋转,∵等边三角形的边长是和它相切的圆的周长的两倍,∴圆转了6圈,而圆从一边转到另一边时,圆心绕三角形的一个顶点旋转了三角形的一个外角的度数,圆心要绕其三角形的顶点旋转120°,∴圆绕三个顶点共旋转了360°,即它转了一圈,∴圆回到原出发位置时,共转了6+1=7圈.故选C.点评:本题考查了直线与圆的位置关系,弧长公式:l=(n为圆心角,R为半径);也考查了旋转的性质.7.(3分)二次函数y=ax2+bx+c的图象如下图,则以下结论正确的有:①abc>0;②b <a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(m≠1,m为实数)()A.2个B.3个C.4个D.5个解答:解:①由图象可知:a<0,b>0,c>0,abc<0,错误;②当x=﹣1时,y=a﹣b+c <0,即b>a+c,错误;③由对称知,当x=2时,函数值大于0,即y=4a+2b+c>0,正确;④当x=3时函数值小于0,y=9a+3b+c<0,且x=﹣=1,即a=﹣,代入得9(﹣)+3b+c<0,得2c<3b,正确;⑤当x=1时,y的值最大.此时,y=a+b+c,而当x=m 时,y=am2+bm+c,所以a+b+c>am2+bm+c,故a+b >am 2+bm ,即a+b >m (am+b ),正确.③④⑤正确.故选B . 8.(3分)如图,正△ABC 中,P 为正三角形内任意一点,过P 作PD ⊥BC ,PE ⊥AB ,PF ⊥AC 连结AP 、BP 、CP ,如果,那么△ABC 的内切圆半径为( )A . 1B .C . 2D .解答: 解:如图,过P 点作正△ABC 的三边的平行线,则△MPN ,△OPQ ,△RSP 都是正三角形,四边形ASPM ,四边形NCOP ,四边形PQBR 是平行四边形,故可知黑色部分的面积=白色部分的面积,又知S △AFP +S △PCD +S △BPE =,故知S △ABC =3,S △ABC =AB 2sin60°=3,故AB=2,三角形ABC 的高h=3,△ABC 的内切圆半径r=h=1.故选A .二、填空题(本大题共8小题,每小题3分,共24分) 9.(3分)与是相反数,计算=.解答:解:∵与|3﹣a ﹣|互为相反数,∴+|3﹣a ﹣|=0,∴3﹣a ﹣=0,解得a+=3,∴a+2+=3+2,根据题意,a >0,∴(+)2=5,∴+=.答案为:.10.(3分)若[x ]表示不超过x 的最大整数,,则[A ]=﹣2 .分析: 先根据零指数幂和分母有理化得到A=﹣,而≈1.732,然后根据[x ]表示不超过x的最大整数得到,[A ]=﹣2. 解答:解:∵A=++1=++1=+1=+1=﹣1﹣+1=﹣,∴[A ]=[﹣]=﹣2.故答案为﹣2.点本题考查了取整计算:[x ]表示不超过x 的最大整数.也考查了分母有理化和零指数幂.评:11.(3分)如图,M、N分别为△ABC两边AC、BC的中点,AN与BM交于点O,则=.分析:连接MN,设△MON的面积是s,由于M、N分别为△ABC两边AC、BC的中点,易知MN是△ABC的中位线,那么MN∥AB,MN=AB,根据平行线分线段成比例定理可得△MON∽△BOA,于是OM:OB=MN:AB=1:2,易求△BON的面积是2s,进而可知△BMN的面积是3s,再根据中点性质,可求△BCM的面积等于6s,同理可求△ABC的面积是12s,从而可求S△BON:S△ABC.解答:解:连接MN,设△MON的面积是s,∵M、N分别为△ABC两边AC、BC的中点,∴MN是△ABC的中位线,∴MN∥AB,MN=AB,∴△MON∽△BOA,∴OM:OB=MN:AB=1:2,∴△BON的面积=2s,∴△BMN的面积=3s,∵N是BC的中点,∴△BCM的面积=6s,同理可知△ABC的面积=12s,∴S△BON:S△ABC=2s:12s=1:6,故答案是.点评:本题考查了相似三角形的判定和性质、三角形中位线定理,解题的关键是连接MN,构造相似三角形.12.(3分)如图,已知圆O的面积为3π,AB为直径,弧AC的度数为80°,弧BD的度数为20°,点P为直径AB上任一点,则PC+PD的最小值为3.考点:轴对称-最短路线问题;勾股定理;垂径定理;圆心角、弧、弦的关系.专题:探究型.分析:先设圆O的半径为r,由圆O的面积为3π求出R的值,再作点C关于AB的对称点C′,连接OD,OC′,DC′,则DC′的长即为PC+PD的最小值,由圆心角、弧、弦的关系可知==80°,故BC′=100°,由=20°可知=120°,由OC′=OD可求出∠ODC′的度数,进而可得出结论.解答:解:设圆O的半径为r,∵⊙O的面积为3π,∴3π=πR2,即R=.作点C关于AB的对称点C′,连接OD,OC′,DC′,则DC′的长即为PC+PD的最小值,∵的度数为80°,∴==80°,∴=100°,∵=20°,∴=+=100°+20°=120°,∵OC′=OD,∴∠ODC′=30°∴DC′=2OD•cos30°=2×=3,即PC+PD的最小值为3.故答案为:3.13.(3分)从1,2,3,5,7,8中任取两数相加,在不同的和数中,是2的倍数的个数为a,是3的倍数的个数为b,则样本6、a、b、9的中位数是 5.5.分析:首先列举出所有数据的和,进而利用已知求出a,b的值,再利用中位数是一组数据重新排序后之间的一个数或之间两个数的平均数,由此即可求解.解答:解:根据从1,2,3,5,7,8中任取两数相加,可以得出所有可能:1+2=3,1+3=4,1+5=6,1+7=8,1+8=9,2+3=5,2+5=7,2+7=9,2+8=10,3+5=8,3+7=10,3+8=11,5+7=12,5+8=13,7+8=15,它们和中所有不同数据为:3,4,5,6,7,8,9,10,11,12,13,15,故是2的倍数的个数为a=5,是3的倍数的个数为b=5,则样本6、5、5、9按大小排列为:5,5,6,9,则这组数据的中位数是:=5.5,故答案为:5.5.14.(3分)由直线y=kx+2k﹣1和直线y=(k+1)x+2k+1(k是正整数)与x轴及y轴所围成的图形面积为S,则S的最小值是.分析:首先用k表示出两条直线与坐标轴的交点坐标,然后表示出围成的面积S,根据得到的函数的取值范围确定其最值即可.解答:解:y=kx+2k﹣1恒过(﹣2,﹣1),y=(k+1)x+2k+1也恒过(﹣2,﹣1),k为正整数,那么,k≥1,且k∈Z如图,直线y=kx+2k﹣1与X轴的交点是A(,0),与y轴的交点是B (0,2k﹣1)直线y=(k+1)x+2k+1与X轴的交点是C(,0),与y轴的交点是D (0,2k+1),那么,S四边形ABDC=S△COD﹣S△AOB,=(OC•OD﹣OA•OB),=[﹣],=(4﹣),=2﹣又,k≥1,且k∈Z,那么,2﹣在定义域k≥1上是增函数,因此,当k=1时,四边形ABDC的面积最小,最小值S=2﹣=.点评:本题考查了两条指向相交或平行问题,解题的关键是用k表示出直线与坐标轴的交点坐标并用k表示出围成的三角形的面积,从而得到函数关系式,利用函数的知识其最值问题.15.(3分)(2010•随州)如图,在矩形纸片ABCD中,AB=5cm,BC=10cm,CD上有一点E,ED=2cm,AD上有一点P,PD=3cm,过P作PF⊥AD交BC于F,将纸片折叠,使P点与E点重合,折痕与PF交于Q点,则PQ的长是cm.分析:过Q点作QG⊥CD,垂足为G点,连接QE,设PQ=x,根据折叠及矩形的性质,用含x的式子表示Rt△EGQ的三边,再用勾股定理列方程求x即可.解答:解:过Q点作QG⊥CD,垂足为G点,连接QE,设PQ=x,由折叠及矩形的性质可知,EQ=PQ=x,QG=PD=3,EG=x﹣2,在Rt△EGQ中,由勾股定理得EG2+GQ2=EQ2,即:(x﹣2)2+32=x2,解得:x=,即PQ=.16.(3分)(2010•随州)将半径为4cm的半圆围成一个圆锥,在圆锥内接一个圆柱(如图示),当圆柱的侧面的面积最大时,圆柱的底面半径是1cm.分析:易得扇形的弧长,除以2π也就得到了圆锥的底面半径,再加上母线长,利用勾股定理即可求得圆锥的高,利用相似可求得圆柱的高与母线的关系,表示出侧面积,根据二次函数求出相应的最值时自变量的取值即可.解答:解:扇形的弧长=4πcm,∴圆锥的底面半径=4π÷2π=2cm,∴圆锥的高为=2cm,设圆柱的底面半径为rcm,高为Rcm.=,解得:R=2﹣r,∴圆柱的侧面积=2π×r×(2﹣r)=﹣2πr2+4πr(cm2),∴当r==1cm时,圆柱的侧面积有最大值.三、解答题(72)17.(14分)已知抛物线y=﹣x2+bx+c(c>0)过点C(﹣1,0),且与直线y=7﹣2x只有一个交点.(1)求抛物线的解析式;(2)若直线y=﹣x+3与抛物线相交于两点A、B,则在抛物线的对称轴上是否存在点Q,使△ABQ是等腰三角形?若存在,求出Q点坐标;若不存在,说明理由.分析:(1)将C点坐标代入y=﹣x2+bx+c得c=b+1,联立抛物线y=﹣x2+bx+b+1与直线y=7﹣2x,转化为关于x的二元一次方程,令△=0求b的值即可;(2)直线y=﹣x+3与(1)中抛物线求A、B两点坐标,根据抛物线解析式求对称轴,根据线段AB为等腰三角形的腰或底,分别求Q点的坐标.解答:解:(1)把点C(﹣1,0)代入y=﹣x2+bx+c中,得﹣1﹣b+c=0,解得c=b+1,联立,得x2﹣(b+2)x+6﹣b=0,∵抛物线与直线只有一个交点,∴△=(b+2)2﹣4(6﹣b)=0,解得b=﹣10或2,∵c=b+1>0,∴b=2,∴抛物线解析式为y=﹣x2+2x+3;(2)存在满足题意的点Q.联立,解得或,则A(0,3),B(3,0),由抛物线y=﹣x2+2x+3,可知抛物线对称轴为x=1,由勾股定理,得AB=3,当AB为腰,∠A为顶角时,Q(1,3+)或(1,3﹣);当AB为腰,∠B为顶角时,Q(1,)或(1,﹣);当AB为底时,Q(1,1).故满足题意的Q点坐标为:(1,3+)或(1,3﹣)或(1,)或(1,﹣)或(1,1).18.(14分)有一河堤坝BCDF为梯形,斜坡BC坡度,坝高为5m,坝顶CD=6m,现有一工程车需从距B点50m的A处前方取土,然后经过B﹣C﹣D放土,为了安全起见,工程车轮只能停在离A、D处1m的地方即M、N处工作,已知车轮半经为1m,求车轮从取土处到放土处圆心从M到N所经过的路径长.分析:作出圆与BA,BC相切时圆心的位置G,与CD相切时圆心的位置P,与CD相切时圆心的位置I,分别求得各段的路径的长,然后求和即可.解答:解:当圆心移动到G的位置时,作GR⊥AB,GL⊥BC分别于点R,L.∵,∴∠CBF=30°,∴∠RGB=15°,∵直角△RGB中,tan∠RGB=,∴BR=GR•tan∠RGB=2﹣,则BL=BR=2﹣,则从M移动到G的路长是:AB﹣BR﹣1=50﹣(2﹣)﹣1=47+m,BC=2×5=10m,则从G移动到P的位置(P是圆心在C,且与BC相切时圆心的位置),GP=10﹣BL=10﹣(2﹣)=8+m;圆心从P到I(I是圆心在C,且与CD相切时圆心的位置),移动的路径是弧,弧长是:=m;圆心从I到N移动的距离是:6﹣1=5m,则圆心移动的距离是:(47+)+(8+)+5+=60+2+(m).19.(14分)如图,过正方形ABCD的顶点C在形外引一条直线分别交AB、AD延长线于点M、N,DM与BN交于点H,DM与BC交于点E,BN△AEF与DC交于点F.(1)猜想:CE与DF的大小关系?并证明你的猜想.(2)猜想:H是△AEF的什么心?并证明你的猜想.分析:(1)利用正方形的性质得到AD∥BC,DC∥AB,利用平行线分线段成比例定理得到,,从而得到,然后再利用AB=BC即可得到CE=DF;(2)首先证得△ADF≌△DCE,从而得到∠DAF=∠FDE,再根据∠DAF+∠ADE=90°得到AF⊥DE,同理可得FB⊥AE,进而得到H为△AEF的垂心.解答:解:(1)CE=DF;证明:∵正方形ABCD∴AD∥BC,DC∥AB∴,(∴∴又AB=BC∴CE=DF;(2)垂心.在△ADF与△DCE中,,∴△ADF≌△DCE(SAS),∴∠DAF=∠FDE,∵∠DAF+∠ADE=90°,∴AF⊥DE,同理FB⊥AE.H为△AEF的垂心.20.(15分)如图,已知菱形ABCD边长为,∠ABC=120°,点P在线段BC延长线上,半径为r1的圆O1与DC、CP、DP分别相切于点H、F、N,半径为r2的圆O2与PD延长线、CB延长线和BD分别相切于点M、E、G.(1)求菱形的面积;(2)求证:EF=MN;(3)求r1+r2的值.解答:(1)解:∵菱形ABCD边长为,∠ABC=120°,∴△ADC和△DBC都是等边三角形,∴菱形的面积=2S△DBC=2××(6)2=54;(2)证明:∵PM与PE都是⊙O2的切线,∴PM=PE,又∵PN与PF都是⊙O1的切线,∴PN=PF,∴PM﹣PN=PE﹣PB,即EF=MN;(3)解:∵BE与BG都是⊙O2的切线,∴BE=BG,∠O2BE=∠O2BG,O2E⊥BE,而∠EBG=180°﹣∠DBC=180°﹣60°=120°,∴∠O2BE=60°,∠EO2B=30°,∴BE=O2E=r2,∴BG=r2,∴DM=DG=6﹣r2,同理可得CF=r1,DN=DH=6﹣r1,∴MN=DM+DN=12﹣(r1+r2),∵EF=EB+BC+CF=r2+6+r1=6+(r1+r2),而EF=MN,∴6+(r1+r2)=12﹣(r1+r2),∴r1+r2=9.21.(15分)(2012•黄冈)如图,已知抛物线的方程C1:y=﹣(x+2)(x﹣m)(m>0)与x轴相交于点B、C,与y轴相交于点E,且点B在点C的左侧.(1)若抛物线C1过点M(2,2),求实数m的值;(2)在(1)的条件下,求△BCE的面积;(3)在(1)条件下,在抛物线的对称轴上找一点H,使BH+EH最小,并求出点H的坐标;(4)在第四象限内,抛物线C1上是否存在点F,使得以点B、C、F为顶点的三角形与△BCE 相似?若存在,求m的值;若不存在,请说明理由.解答:解:(1)依题意,将M(2,2)代入抛物线解析式得:2=﹣(2+2)(2﹣m),解得m=4.(2)令y=0,即(x+2)(x﹣4)=0,解得x1=﹣2,x2=4,∴B(﹣2,0),C(4,0)在C1中,令x=0,得y=2,∴E(0,2).∴S△BCE=BC•OE=6.(3)当m=4时,易得对称轴为x=1,又点B、C关于x=1对称.如解答图1,连接EC,交x=1于H点,此时BH+EH最小(最小值为线段CE的长度).设直线EC:y=kx+b,将E(0,2)、C(4,0)代入得:y=x+2,当x=1时,y=,∴H(1,).(4)分两种情形讨论:①当△BEC∽△BCF时,如解答图2所示.则,∴BC2=BE•BF.由函数解析式可得:B(﹣2,0),E(0,2),即OB=OE,∴∠EBC=45°,∴∠CBF=45°,作FT⊥x 轴于点T,则∠BFT=∠TBF=45°,∴BT=TF.∴可令F(x,﹣x﹣2)(x>0),又点F在抛物线上,∴﹣x﹣2=﹣(x+2)(x﹣m),∵x+2>0,∵x>0,∴x=2m,F(2m,﹣2m﹣2).此时BF==2(m+1),BE=,BC=m+2,又∵BC2=BE•BF,∴(m+2)2=•(m+1),∴m=2±,∵m>0,∴m=+2.②当△BEC∽△FCB时,如解答图3所示.则,∴BC2=EC•BF.∵△BEC∽△FCB∴∠CBF=∠ECO,∵∠EOC=∠FTB=90°,∴△BTF∽△COE,∴,∴可令F(x,(x+2))(x>0)又∵点F在抛物线上,∴(x+2)=﹣(x+2)(x ﹣m),∵x>0,∴x+2>0,∴x=m+2,∴F(m+2,(m+4)),EC=,BC=m+2,又BC2=EC•BF,∴(m+2)2=•整理得:0=16,显然不成立.综合①②得,在第四象限内,抛物线上存在点F,使得以点B、C、F为顶点的三角形与△BCE相似,m=+2.。
2021年高中自主招生数学卷1 、2
2021高中自主招生数学题一1、计算:333329532453++ ⋅⋅⋅+++++333332、化简:24066312305941--+++3、已知347-=m ,求15482223+-+-m m mm m 的值4、已知a 为正整数,3382++a a 为一自然数,求a 的值5、若x 、y 、z 为自然数,z y x <<,且238=++z y x ,5486=xyz 求x 、y 、z6、已知 012=++x x ,求 x x +17的值7、若x 不为零且满足0989796=++x x x ,求99x8、已知实数x 、y 满足12-3--=-+y x y x ,求x y 的值9、已知m 、n 为不同的正整数,且11211=+n m ,求n m +的值10、已知非零实数t 满足012=--t t ,求487-+t t11、设m b a ==53,且211=+b a ,求m 的值12、已知z y x z y x ++=-+-+84444,求z y x ++的值13、若正整数x 、y 满足200922=+y x ,求y x +的值14、已知83112-+-=-m m m ,求m 的取值范围15、已知实数x 、y 满足0122=-+xy x ,求22y x +的最小值16、非负实数x 、y 满足12=+y x ,求22y x x ++的最小值17、若实数x 、y 满足x y x 85622=+,求22y x +的最值18、因式分解:abc c b a 3333-++19、因式分解 2222)1(8)1(x x x x +-++20、分解因式:3542322+++++y x y xy x21、求9)4(25)3(22+-++-x x 的最小值22、解方程:136327+++=+++x x x x23、解方程:6)1)(43()762=+++x x x (高中自主招生数学题二24、解方程:0673624336127361222=-----+--x x x x x x25、解方程:x x x x x 71357139722=+-+++26、解方程:2282833=--+x x27、解方程:23455=+--y y x28、解方程644=x x29、已知正数a 、b 、c 满足c b a 643==,求证:b ac 122+=30、已知正数a 、b 、c 满足1=++c b a ,求证:9111≥++cb a31、一列“动车组”高速列车和一列普通列车的车身长分别为80米与100米,它们相向行驶在平行的轨道上,若坐在高速列车上的旅客看见普通列车驶过窗口的时间是5秒,则坐在普通列车上的旅客看见高速列车驶过窗口的时间是( )A .7.5秒B .6秒C .5秒D .4秒322,结果是( ) A .66x - B .66x -+ C .4- D .433、若p 和q 为质数,且5391p q +=,则p = ,q = .34、在2016的中间嵌入一个数字得到五位数2016,若此五位数能被7整除,则嵌入的数字为 .35、有一个五边形CD AB E ,若把顶点A ,B ,C ,D ,E 涂上红、黄、绿三种颜色中的一种,使得相邻的顶点所涂的颜色不同,则共有 种不同的涂色方法.36、设整数a 使得关于x 的一元二次方程255261430x ax a -+-=的两个根都是整数,则a 的值是 .37、在平行四边形CD AB 的边AB 和D A 上分别取点E 和F ,使13AE =AB ,1F D 4A =A ,连接F E 交对角线C A 于G ,则G CA A 的值是 .38、如图,将C ∆AB 沿着它的中位线D E 折叠后,点A 落到点'A ,若C 120∠=,26∠A =,则D '∠A B 的度数是 .39、(本小题16分)如图,直线OB 是一次函数2y x =的图象,点A 的坐标为()0,2,在直线OB 上找点C ,使得C ∆AO 为等腰三角形,求点C 的坐标.40、如果自然数x 、y 、z 满足366313029=++z y x ,求z y x ++的值41、正整数a 、b 满足3111=+b a ,求b a +42、已知实数x 、y 满足1)1)(1(22=++++y y x x ,求y x +43、解方程:579922+=-++x x44、在实数范围内解方程组623222=++=++y x y xy x45、若31=+x x ,求1146102810++++++x x x x x x 的值。
高中阶段自主招生考试数学试卷及参考答案
第2题乐清中学自主招生考试数学试题卷亲爱的同学:欢迎你参加考试!考试中请注意以下几点:1.全卷共三大题,满分120分,考试时间为100分钟。
2.全卷由试题卷和答题卷两部分组成。
试题的答案必须做在答题卷的相应位置上。
做在试题卷上无效。
3.请用钢笔或圆珠笔在答题卷密封区上填写学校、姓名、试场号和准考证号,请勿遗漏。
4.答题过程不准使用计算器。
祝你成功! 一、选择题(本题共6小题,每小题5分,共30分.在每小题的四个选项中,只有一个符合题目要求) 1.如果一直角三角形的三边为a 、b 、c ,∠B=90°,那么关于x 的方程a(x 2-1)-2cx+b(x 2+1)=0的根的情况为A 有两个相等的实数根B 有两个不相等的实数根C 没有实数根D 无法确定根的情况2.如图,P P P 123、、是双曲线上的三点,过这三点分别作y 轴的垂线,得三个三角形P A O P A O P A O 112233、、,设它们的面积分别是,则A S S S 123<<B S S S 213<<C S S S 132<<D S S S 123==3.如图,以BC 为直径,在半径为2圆心角为900的扇形内作半圆,交弦AB 于点D ,连接CD ,则阴影部分的面积是 A π-1 B π-2 C D4.由得a>-3,则m 的取值范围是A m>-3B m ≥-3C m ≤-3D m<-3 5.如图,矩形ABCG (AB <BC )与矩形CDEF 全等,点B 、C 、D 在同一条直线上,APE ∠的顶点P 在线段BD 上移动,使APE ∠ 为直角的点P 的个数是S S S 123、、121-π221-π第3题A 0B 1C 2D 36.已知抛物线y=ax 2+2ax+4(0<a<3),A (x 1,y 1)B(x 2,y 2)是抛物线上两点,若x 1<x 2, 且x 1+x 2=1-a,则A y 1< y 2B y 1= y 2C y 1> y 2D y 1与y 2的大小不能确定二、填空题(本题共6小题,每小题5分,共30分.把答案填写在题中横线上)7. 二次函数y =a x 2+(a -b )x —b 的图象如图所示, 那么化简的结果是______▲________.8. 如图所示,在正方形 ABCD 中,AO ⊥BD 、OE 、FG 、HI 都垂 直于 AD ,EF 、GH 、IJ 都垂直于AO ,若已知 S ΔA JI =1, 则S正方形ABCD =▲9.将一个棱长为8、各个面上均涂有颜色的正方体,锯成64个同样大小的小正方体,其中所有恰有2面涂有颜色的小正方体表面积之和为 ▲ 10.用黑白两种颜色正方形的纸片按黑色纸片数逐渐加l 的规律拼成一列图案: (1)第4个图案中有白色纸片 ▲ 张 (2)第n 个图案中有白色纸片 ▲ 张(3)从第1个图案到第100个图案,总共有白色纸片 ▲ 张11.如图所示,线段AB 与CD 都是⊙O 中的弦,其中108,,36,O O AB AB a CD CD b ====,则⊙O 的半径R= ▲12.阅读下列证明过程: 已知,如图四边形ABCD 中,AB =DC ,AC =BD ,AD ≠BC ,求证:四边形ABCD 是等腰梯形.第10题第11题第7题第8题第12题读后完成下列各小题.(1)证明过程是否有错误?如有,错在第几步上,答:▲.(2)作DE∥AB的目的是:▲.(3) 判断四边形ABED为平行四边形的依据是:▲.(4)判断四边形ABCD是等腰梯形的依据是▲.(5)若题设中没有AD≠BC,那么四边形ABCD一定是等腰梯形吗?为什么?答▲.乐清中学自主招生考试数学标准答案题号 1 2 3 4 5 6答案 A D A C C A二、填空题(本题共6小题,每小题5分,共30分.把答案填写在题中横线上)7. ______-1__________ 8.256 9.576或10.(1)13 (2)3n+1 (3)15250 11. a b ab12.(1)没有错误(2)为了证明AD∥BC(3) 一组对边平行且相等的四边形是平行四边形(4)梯形及等腰梯形的定义(5)不一定,因为当AD=BC时,四边形ABCD是矩形三、解答题(本题共5小题,共60分.解答应写出必要的计算过程、推演步骤或文字说明)13.(本小题10分)某公园门票每张10元,只供一次使用,考虑到人们的不同需求,也为了吸引更多游客,该公园除保留原有的售票方法外,还推出一种“购个人年票”的售票方法(个人年票从购买之日起,可供持票者使用一年)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
自主招生难题集2 20160419一.选择题(共16小题)1.(2013•顺庆区校级自主招生)设P是高为h的正三角形内的一点,P到三边的距离分别为x,y,z(x≤y≤z).若以x,y,z为边可以组成三角形,则z应满足的条件为()A.h≤z h B.h≤z h C.h≤z h D.2.(2013•顺庆区校级自主招生)等腰梯形底角为α,以腰长为直径作圆与另一腰切于M,交较长底边AB于E,则的值为()A.2sinαcosα B.sinαC.cosαD.cos2α3.(2015•永春县自主招生)Rt△ABC的三个顶点A,B,C均在抛物线y=x2上,并且斜边AB平行于x轴.若斜边上的高为h,则()A.h<1 B.h=1 C.1<h<2 D.h>24.(2013•顺庆区校级自主招生)方程的实根的个数为()A.1 B.2 C.3 D.45.已知x+=7(0<x<1),则的值为()A.﹣B.﹣C.D.6.(2012•南充自主招生)当式子|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣1999|取得最小值时,实数x的值是()A.1 B.999 C.1000 D.19997.(2014•丰南区二模)如图1,直径AC、BD将圆O四等分,动点P从圆心O出发,沿O→C→D→O路线作匀速运动,若圆O的半径为1,设运动x时间为x(s),∠APB=y°,y 与x之间的函数关系如图2所示,则点M的横坐标应为()A.2 B.C.+1 D.﹣18.(2011•房山区一模)如图,P是边长为1的正方形ABCD对角线AC上一动点(P与A、C不重合),点E在射线BC上,且PE=PB.设AP=x,△PBE的面积为y.则能够正确反映y与x之间的函数关系的图象是()C.D.9.(2012•虎丘区校级二模)如图,在直角坐标系中,直线分别与x轴、y轴交于点M、N,点A、B分别在y轴、x轴上,且∠ABO=30°,AB=4,将△ABO绕原点O顺时针旋转180°,在旋转过程中,当AB与直线MN平行时点A的坐标为()A.(1,)B.(,1)C.(,﹣1)D.(1,)10.如果关于x的不等式组的整数解仅为1,2,3,那么适合这个不等式组的整数对(m,n)共有()A.49对B.42对C.36对D.13对11.(2015•安徽)如图,一次函数y1=x与二次函数y2=ax2+bx+c图象相交于P、Q两点,则函数y=ax2+(b﹣1)x+c的图象可能是()A.B.C.D.12.(2014•济南)二次函数y=x2+bx的图象如图,对称轴为直线x=1,若关于x的一元二次方程x2+bx﹣t=0(t为实数)在﹣1<x<4的范围内有解,则t的取值范围是()A.t≥﹣1B.﹣1≤t<3 C.﹣1≤t<8 D.3<t<813.(2012•杭州模拟)一个容器内盛满纯酒精50kg,第一次倒出若干千克纯酒精后加入同千克的水;第二次又倒出相同千克的酒精溶液,这时容器内酒精溶液含纯酒精ykg,设每次倒出的xkg,则y与x之间的函数关系式为()A.y=50(50﹣x)B.C.y=(50﹣x)2D.14.(2014•舟山)当﹣2≤x≤1时,二次函数y=﹣(x﹣m)2+m2+1有最大值4,则实数m的值为()A.﹣B.或C.2或D.2或或15.(2014•拱墅区一模)如图,已知点A(4,0),O为坐标原点,P是线段OA上任意一点(不含端点O,A),过P、O两点的二次函数y1和过P、A两点的二次函数y2的图象开口均向下,它们的顶点分别为B、C,射线OB与射线AC相交于点D.当△ODA是等边三角形时,这两个二次函数的最大值之和等于()A.B. C.2D.16.(2014•绵阳三模)若二次函数y=x2+ax+5图象关于直线x=﹣2对称,已知当m≤x≤0时,y有最大值5,最小值1,则m的取值范围应是()A.﹣4≤m≤﹣2 B.m≤﹣2 C.﹣4≤m<0 D.﹣2≤m<0二.填空题(共11小题)17.(2015•永春县自主招生)如图,∠MON两边上分别有A,C,E及D,F,B六个点,且S△OAB=S△ABC=S△BCD=S△CDE=S△DEF=1,则S△CDF=.18.(2013•顺庆区校级自主招生)已知函数y=﹣x2+在0<a≤x≤b时,有2a≤y≤2b,则(a,b)=.19.某次数学测验共有20题,每题答对得5分,不答得0分,答错得﹣2分.若小丽这次测验得分是质数,则小丽这次最多答对题.20.(2014•余姚市校级自主招生)设抛物线y=x2+(2a+1)x+2a+的图象与x轴只有一个交点,则a18+323a﹣6的值为.21.(2013秋•北碚区期末)如图,⊙A与x轴交于B(2,0)、C(4,0)两点,OA=3,点P是y轴上的一个动点,PD切⊙O于点D,则PD的最小值是.22.(2015•恩施州)如图,半径为5的半圆的初始状态是直径平行于桌面上的直线b,然后把半圆沿直线b进行无滑动滚动,使半圆的直径与直线b重合为止,则圆心O运动路径的长度等于.23.(2014•武清区一模)如图Rt△ABC中,∠BAC=90°,AB=3,AC=4,点P为BC上任意一点,连接PA,以PA,PC为邻边作平行四边形PAQC,连接PQ,则PQ的最小值为.24.(2011•监利县模拟)如图,在直角坐标系中有四个点A(﹣6,3),B(﹣2,5),C(0,m),D (n,0),当四边形ABCD周长最短时,则m=,n=.25.设正三角形ABC的边长为2,M是AB边上的中点,P是边BC上的任意一点,PA+PM 的最大值和最小值分别记为s和t,则s2﹣t2=.26.关于x的不等式(2a﹣b)x>a﹣2b的解是,则关于x的不等式ax+b<0的解为.27.α,β是关于x的方程x2+kx﹣1=0的两个实根,若(|α|﹣β)(|β|﹣α)≥1,则实数k的取值范围是.三.解答题(共3小题)28.(2015•温州模拟)如图,在平面直角坐标系中,四边形OABC为矩形,点A、B的坐标分别为(12,0)、(12,6),直线y=﹣x+b与y轴交于点P,与边OA交于点D,与边BC交于点E.(1)若直线y=﹣x+b平分矩形OABC的面积,求b的值;(2)在(1)的条件下,当直线y=﹣x+b绕点P顺时针旋转时,与直线BC和x轴分别交于点N、M,问:是否存在ON平分∠CNM的情况?若存在,求线段DM的长;若不存在,请说明理由;(3)在(1)的条件下,将矩形OABC沿DE折叠,若点O落在边BC上,求出该点坐标;若不在边BC上,求将(1)中的直线沿y轴怎样平移,使矩形OABC沿平移后的直线折叠,点O恰好落在边BC上.29.(2014•厦门)已知A,B,C,D是⊙O上的四个点.(1)如图1,若∠ADC=∠BCD=90°,AD=CD,求证:AC⊥BD;(2)如图2,若AC⊥BD,垂足为E,AB=2,DC=4,求⊙O的半径.30.设x、y为实数,且x2+xy+y2=3,求x2﹣xy+y2的最大值和最小值.自主招生难题集2 参考答案与试题解析一.选择题(共16小题)1.【解答】解:如图,PE=x,PF=y,Pq=Q=z,连接AP,BP,CP,∵S△ABC=S△APC+S△BPC+S△APB,∴BC•h=AC•x+BC•y+AB•z,∵△ABC为等边三角形,∴AB=BC=AC,∴BC•h=BC(x+y+z),即x+y+z=h,∵以x,y,z为边可以组成三角形,∴x+y>z,∴2z<h,即z<h,又∵x≤y≤z,∴z≥(x+y+z),即z≥h,∴h≤z h.故选:B.2.【解答】解:作EH⊥AD于H,连结OM、CE、OE,如图,设⊙O的半径为R,∵BC为直径,∴∠CEB=90°,∵AD为⊙O的切线,∴OM⊥AD,∵AB∥CD,AD=BC,∴∠ABC=∠A=α,∵OB=OE,∴∠OEB=∠B=α,∴∠OEB=∠A,∴OE∥AD,∴四边形OMHE为矩形,而OM=OE,∴四边形OMHE为正方形,∴HE=OE=R,在Rt△AEH中,∵sinA=,∴AE=,在Rt△BCE中,∵cosB=,∴BE=2Rcosα,∴==2sinαcosα.故选A.3.【解答】解:由题A,B,C均在抛物线y=x2上,并且斜边AB平行于x轴,知A、B两点关于y轴对称,记斜边AB交y轴于点D,可设A(﹣,b),B(,b),C(a,a2),D(0,b)则因斜边上的高为h,故:h=b﹣a2,∵△ABC是直角三角形,由其性质直角三角形斜边中线等于斜边一半,∴得CD=∴=方程两边平方得:(b﹣a2)=(a2﹣b)2即h=(﹣h)2因h>0,得h=1,是个定值.故选B.4.【解答】解:①x≥0,∵,∴x﹣=,∴x2﹣3x﹣4=0,解得x1=﹣1(不合题意,舍去),x2=4,②x<0,∵,∴﹣x﹣=﹣3,∴x2﹣3x+4=0,∵△=b2﹣4ac=﹣7<0,∴此方程无实数解.故只有一解,故选A.5.【解答】解:(﹣)2=x+﹣2=7﹣2=5,∵0<x<1,∴<,∴﹣<0.∴﹣=﹣.故选B.6.【解答】解:由已知条件可知,|x﹣a|表示x到a的距离,只有当x到1的距离等于x到1999的距离时,式子取得最小值.所以当x==1000时,式子取得最小值.故选C.7.A.2 B.C.+1 D.﹣1【解答】解:根据题意,可知点P从圆心O出发,运动到点C时,∠APB的度数由90°减小到45°,∵在C点时所对的横坐标为1,∴OC=1,由弧长公式可以求出弧CD的长度为π,由图象2可得:M的横坐标是∠APB由稳定在45°保持不变到增大的转折点;故可得M的横坐标所对应的点是D点,表示这时P点运动到了D点.从而可得M横=OC+弧CD的长=π+1.故选C.8.【解答】解:过点P作PF⊥BC于F,∵PE=PB,∴BF=EF,∵正方形ABCD的边长是1,∴AC==,∵AP=x,∴PC=﹣x,∴PF=FC=(﹣x)=1﹣x,∴BF=FE=1﹣FC=x,∴S△PBE=BE•PF=x(1﹣x)=﹣x2+x,即y=﹣x2+x(0<x<),∴y是x的二次函数(0<x<),故选A.9.【解答】解:如图,设BA的延长线交x轴于点D,过点A作AC⊥OD于点C,∵AB=4,∠ABO=30°,∴OA=AB=2,∠BAO=90°﹣∠ABO=60°,∴∠OAD=120°,∵直线MN的解析式为y=﹣x+4,∴tan∠NMO=,∴∠NMO=30°,∵AB∥MN,∴∠ADO=∠NMD=30°,∴∠AOC=30°,∴AC=OA=1,∴OC==,∴点A的坐标为(,1).故选B.10.∵不等式组的整数解仅为1,2,3,∴0<≤1,3<≤4,解得0<m≤7,18<n≤24,∴m可取1,2,3,4,5,6,7,共7个,n可取19,20,21,22,23,24,共6个.整数对(m,n)共有7×6=42对,故选B.11.【解答】解:∵一次函数y1=x与二次函数y2=ax2+bx+c图象相交于P、Q两点,∴方程ax2+(b﹣1)x+c=0有两个不相等的根,∴函数y=ax2+(b﹣1)x+c与x轴有两个交点,又∵﹣>0,a>0∴﹣=﹣+>0∴函数y=ax2+(b﹣1)x+c的对称轴x=﹣>0,∴A符合条件,故选A.12.【解答】解:对称轴为直线x=﹣=1,解得b=﹣2,所以,二次函数解析式为y=x2﹣2x,y=(x﹣1)2﹣1,x=﹣1时,y=1+2=3,x=4时,y=16﹣2×4=8,∵x2+bx﹣t=0相当于y=x2+bx与直线y=t的交点的横坐标,∴当﹣1≤t<8时,在﹣1<x<4的范围内有解.故选:C.13.【解答】解:加水后酒精浓度=,第二次倒出后容器内剩余的质量为:(50﹣x)kg,故剩余的酒精=(50﹣x)×=50(1﹣)2,故选D.14.【解答】解:二次函数的对称轴为直线x=m,①m<﹣2时,x=﹣2时二次函数有最大值,此时﹣(﹣2﹣m)2+m2+1=4,解得m=﹣,与m<﹣2矛盾,故m值不存在;②当﹣2≤m≤1时,x=m时,二次函数有最大值,此时,m2+1=4,解得m=﹣,m=(舍去);③当m>1时,x=1时二次函数有最大值,此时,﹣(1﹣m)2+m2+1=4,解得m=2,综上所述,m的值为2或﹣.故选:C.15.【解答】解:如图,连接PB、PC,由二次函数的性质,OB=PB,PC=AC,∵△ODA是等边三角形,∴∠AOD=∠OAD=60°,∴△POB和△ACP是等边三角形,∵A(4,0),∴OA=4,∴点B、C的纵坐标之和为4×=2,即两个二次函数的最大值之和等于2.故选C.16.(2014•绵阳三模)若二次函数y=x2+ax+5图象关于直线x=﹣2对称,已知当m≤x≤0时,y有最大值5,最小值1,则m的取值范围应是()A.﹣4≤m≤﹣2 B.m≤﹣2 C.﹣4≤m<0 D.﹣2≤m<0【解答】解:∵二次函数图象关于直线x=﹣2对称,∴﹣=﹣2,解得a=4,∴y=x2+4x+5=(x+2)2+1,∵当m≤x≤0时,y有最大值5,最小值1,∴﹣4≤m≤﹣2.故选A.二.填空题(共11小题)17.【解答】解:如图,设OB=a,∵S△OAB=S△ABC=S△BCD,∴BD=a,∵S△DEF=S△OED,∴DF=OD=(a+0.5a)=a,∵S△BCD=×BD•h=×a•h=1,∴a•h=4,∴S△CDF=DF•h=×a•h=.故答案为:.18.【解答】解:若0<a≤x≤b,则有,解得,即(a,b)=(1,3);故本题答案为:(1,3).19.【解答】解:最多答对17道.原因如下:如果答对19道,若另一道不答,是95分,不符合题意;若另一道答错,得93分,也不符合题意.如果答对17道,若另三道不答,是85分,不符合题意;若另两道不答,一道答错,得83分,符合题意.故答案为:17.20.【解答】解:∵抛物线y=x2+(2a+1)x+2a+的图象与x轴只有一个交点,∴∴△=(2a+1)2﹣4×1×(2a+)=0,即a2﹣a﹣1=0,∵a≠0,∴a﹣=1,a2+=(a﹣)2+2=3,a4+=(a2+)2﹣2=7,a8+=(a4+)2﹣2=47,a12+=(a4+)(a8+﹣1)=7×(47﹣1)=322,a18+323a﹣6=(a18+)+=a6(a12+)+=322a6+=322(a6+),a6+=(a2+)(a4+﹣1)=3×(7﹣1)=18.∴322(a6+)=322×18=5796.即a18+323a﹣6的值为5796.故答案是:5796.21.【解答】解:连接AP,如图所示:∵B(2,0)、C(4,0),∴OB=2,OC=4,∴BC=OC﹣OB=4﹣2=2,即圆A的直径为2,∴AD=1,OA=OB+AB=2+1=3,又∵DP为圆A的切线,∴AD⊥DP,∴∠ADP=90°,设P(0,y),在Rt△AOP中,OA=3,OP=|y|,根据勾股定理得:AP2=OA2+OP2=9+y2,在Rt△APD中,AD=1,根据勾股定理得:PD2=AP2﹣AD2=9+y2﹣1=y2+8,则PD=,则当y=0时,PD达到最小值,最小值为=2.故答案为:222.【解答】解:由图形可知,圆心先向前走OO1的长度,从O到O1的运动轨迹是一条直线,长度为圆的周长,然后沿着弧O1O2旋转圆的周长,则圆心O运动路径的长度为:×2π×5+×2π×5=5π,故答案为:5π.23.【解答】解:∵∠BAC=90°,AB=3,AC=4,∴BC==5,∵四边形APCQ是平行四边形,∴PO=QO,CO=AO,∵PQ最短也就是PO最短,∴过O作BC的垂线OP′,∵∠ACB=∠P′CO,∠CP′O=∠CAB=90°,∴△CAB∽△CP′O,∴,∴,∴OP′=,∴则PQ的最小值为2OP′=,故答案为:.24.【解答】解:∵四边形ABCD周长最短,AB长度一定,∴必须使AD+CD+BC最短,即A、D、C、B′共线,作A点关于x轴的对称点为A′,B点关于y轴的对称点是B′,设直线A′B′为y=kx+b,则A′(﹣6,﹣3),B′(2,5),将其代入直线中得:k=1,b=3,∴y=x+3,∵C(0,m),D(n,0),代入直线方程中,得:m=3,n=﹣3,故答案为:3,﹣3.25.【解答】解:如图,作M关于BC的对称点M′与A的连线AM′与BC交点时PA+PM取最小值t,当P与C重合时为最大值s=2+,过A作AD⊥M′M交其延长线于D,易知M′D=3MH=,又因为AD=,所以PM+PA=PM′+PA=AM′=(勾股定理),故s﹣t=2+﹣,s2﹣t2=4.故答案为:4.26.【解答】解:由题意得:2a﹣b<0,=,∴可得:8a=b,由2a﹣b<0,得2a﹣8a<0,解得a>0,∴不等式ax+b<0的解为x<﹣=﹣8.故填:x<﹣8.27.【解答】解:∵α,β是关于x的方程x2+kx﹣1=0的两个实根,∴α+β=﹣k,αβ=﹣1,∴方程必有2个异号根,不妨设α为正β为负,∵(|α|﹣β)(|β|﹣α)≥1,∴﹣(α+β)(α﹣β)≥1 …(1),又∵α﹣β为正,∴(α﹣β)2=(α+β)2﹣4αβ=k2+4,把它们代入(1)式:k≥1 (2)由β2﹣α2≥1>0 及α为正β为负知:﹣β>α>0,所以α+β=﹣k<0 即k>0 (3)由(2),(3)解得:k≥,故答案为:k≥.三.解答题(共3小题)28.【解答】解:(1)∵直线y=﹣x+b平分矩形OABC的面积,∴其必过矩形的中心由题意得矩形的中心坐标为(6,3),∴3=﹣×6+b解得b=12;(2)如图1假设存在ON平分∠CNM的情况①当直线PM与边BC和边OA相交时,过O作OH⊥PM于H∵ON平分∠CNM,OC⊥BC,∴OH=OC=6由(1)知OP=12,∴∠OPM=30°∴OM=OP•tan30°=当y=0时,由﹣x+12=0解得x=8,∴OD=8∴DM=8﹣;②当直线PM与直线BC和x轴相交时同上可得DM=8+(或由OM=MN解得);(3)如图2假设沿DE将矩形OABC折叠,点O落在边BC上O′处连接PO′、OO′,则有PO′=OP由(1)得BC垂直平分OP,∴PO′=OO′∴△OPO′为等边三角形,∴∠OPD=30°而由(2)知∠OPD>30°所以沿DE将矩形OABC折叠,点O不可能落在边BC上;如图3设沿直线y=﹣x+a将矩形OABC折叠,点O恰好落在边BC上O′处连接P′O′、OO′,则有P′O′=OP′=a由题意得:CP′=a﹣6,∠OPD=∠CO′O在Rt△OPD中,tan∠OPD=在Rt△OAO′中,tan∠AO′O=∴=,即=,AO′=9在Rt△CP′O′中,由勾股定理得:(a﹣6)2+92=a2解得a=,12﹣=所以将直线y=﹣x+12沿y轴向下平移个单位得直线y=﹣x+,将矩形OABC沿直线y=﹣x+折叠,点O恰好落在边BC上.29.【解答】解:(1)∵∠ADC=∠BCD=90°,∴AC、BD是⊙O的直径,∴∠DAB=∠ABC=90°,∴四边形ABCD是矩形,∵AD=CD,∴四边形ABCD是正方形,∴AC⊥BD;(2)连结DO,延长交圆O于F,连结CF、BF.∵DF是直径,∴∠DCF=∠DBF=90°,∴FB⊥DB,又∵AC⊥BD,∴BF∥AC,∠BDC+∠ACD=90°,∵∠FCA+∠ACD=90°∴∠BDC=∠FCA=∠BAC∴等腰梯形ACFB∴CF=AB.根据勾股定理,得CF2+DC2=AB2+DC2=DF2=20,∴DF=,∴OD=,即⊙O的半径为.30.【解答】解:设x2﹣xy+y2=M①,x2+xy+y2=3②,由①、②可得:xy=,x+y=,所以x、y是方程t2t+=0的两个实数根,因此△≥0,且≥0,即()2﹣4•≥0且9﹣M≥0,解得1≤M≤9;即x2﹣xy+y2的最大值为9,最小值为1.。