2014-2015年新浙教版七年级下数学期末试卷附答案
浙教版数学七年级下册期末模拟卷(一)(含答案)

浙教版数学七年级下册期末模拟卷(一)(满分:100分)一、选择题(每小题3分,共30分)1.如图所示为一张笑脸,该笑脸通过平移可得到的图形为(C)2.下列计算中,正确的是(D)A.a6÷a2=a3B.(a4)2=a6C.3a2-a2=2 D.a2·a3=a53.下列调查中,适合采用全面调查方式的是(D)A.了解电视台“教育在线”栏目的收视率B.了解青海湖斑头雁种群数量C.了解全国快递包裹产生垃圾的数量D.了解某班同学“跳绳”的成绩4.已知某种新型感冒病毒的直径为0.000 000 823 m,0.000 000 823用科学记数法表示应为(B)A.8.23×10-6B.8.23×10-7C.8.23×106D.8.23×1075.把3x3-6x2y+3xy2分解因式,结果正确的是(D)A.x(3x+y)(x-3y) B.3x(x2-2xy+y2)C.x(3x-y)2D.3x(x-y)26.下列等式中,一定成立的是(D)A.-a-ba-b=-1 B.x-y(x+y)(x-y)=x+yC.x-yx2-y2=1x-yD.0.03-2y0.1y=3-200y10y7.若a2-ab=0(b≠0),则aa+b=(C)A.0 B.12C.0或12D.1或2【解析】∵a2-ab=0(b≠0),∴a (a -b )=0,∴a =0或a -b =0,即a =0或a =b , ∴a a +b =0或a a +b=12. 8.如图,从图1到图2的变化过程可以发现的代数结论是( A )第8题图A .(a +b )(a -b )=a 2-b 2B .a 2-b 2=(a +b )(a -b )C .(a +b )2=a 2+2ab +b 2D .a 2+2ab +b 2=(a +b )29.某校举行“停课不停学,名师陪你在家学”活动,计划投资8 000元建设几间直播教室,为了保证教学质量,实际每间建设费用增加了20%,并比原计划多建设了一间直播教室,总投资追加了4 000元.则原计划每间直播教室的建设费用是( C ) A .1 600元 B .1 800元 C .2 000元D .2 400元【解析】 设原计划每间直播教室的建设费用是x 元,则实际每间直播教室的建设费用是(1+20%)x 元.由题意,得8 000x +1=8 000+4 000(1+20%)x ,解得x =2 000.经检验,x =2 000是所列方程的解,且符合题意,∴原计划每间直播教室的建设费用是2 000元.10.已知关于x ,y 的二元一次方程组⎩⎨⎧x +2y =1-a ,x -ky =2a -5,给出下列结论:①当k =2时,此方程组无解;②若k =1,则代数式22x ·4y =14;③当a =0时,此方程组一定有8组整数解(k 为整数).其中正确的是( C ) A .①②B .①③C .②③D .①②③【解析】 当k =2时,原方程组可化为⎩⎨⎧x +2y =1-a ,x -2y =2a -5,解得⎩⎪⎨⎪⎧x =12a -2,y =-34a +32,故①错误;当k =1时,原方程组可化为⎩⎨⎧x +2y =1-a ,x -y =2a -5,解得⎩⎨⎧x =a -3,y =2-a ,∴x +y =a -3+2-a =-1,∴22x ·4y =4x ·4y =4x +y =4-1=14,故②正确; 当a =0时,原方程组可化为⎩⎨⎧x +2y =1,x -ky =-5,可得x =1-2y ,y =62+k .∵x ,y ,k 均为整数,∴k =-8或-5或-4或-3或-1或0或1或4, ∴对应方程组有8组整数解,故③正确. 故选C.二、填空题(每小题3分,共18分)11.分解因式:xy 2-4x =__x (y +2)(y -2)__. 12.计算:⎝ ⎛⎭⎪⎫ 1-1x -1÷x -2x 2-1=__x +1__.【解析】 原式=x -2x -1·(x +1)(x -1)x -2=x +1. 13.如图,m ∥n ,∠1=110°,∠2=100°,则∠3=__150__°.第13题图14.请阅读下面的诗句:“栖树一群鸦,鸦树不知数.三只栖一树,五只没去处.五只栖一树,闲了一棵树.请你仔细数,鸦树各几何.”诗句中谈到的鸦有__20__只,树有__5__棵. 13.已知方程组⎩⎨⎧x -2y =3,3x +5y =2,则代数式2x -4y -72+9x +15y -63的值为__-12__.【解析】 ∵x -2y =3,∴2x -4y =6. ∵3x +5y =2,∴9x +15y =6, ∴原式=6-72+6-63=-12.14.如图,l 1∥l 2,点A ,E ,D 在直线l 1上,点B ,C 在直线l 2上,满足BD 平分∠ABC ,BD⊥CD ,CE 平分∠DCB .若∠BAD =136°,则∠AEC =__146__°.15.16.第16题图【解析】 ∵l 1∥l 2,∴∠BAD +∠ABC =180°. 又∵∠BAD =136°,∴∠ABC =44°. ∵BD 平分∠ABC ,∴∠DBC =22°.∵BD ⊥CD ,∴∠BDC =90°,∴∠BCD =68°. ∵CE 平分∠DCB ,∴∠ECB =34°. ∵l 1∥l 2,∴∠AEC +∠ECB =180°, ∴∠AEC =146°. 三、解答题(共52分) 17.(6分)计算: (1)π0-⎝ ⎛⎭⎪⎫-12-2+(-3)2.解:原式=1-4+9=6. (2)2a 4-a ·a 3-(2a 3)2÷a 2.解:原式=2a 4-a 4-4a 6÷a 2=2a 4-a 4-4a 4=-3a 4. (3)⎝ ⎛⎭⎪⎫x -12y 2-⎝ ⎛⎭⎪⎫x -12y ⎝ ⎛⎭⎪⎫x +12y . 解:原式=x 2-xy +14y 2-x 2+14y 2=-xy +12y 2. 18.(6分)解方程(组):(1)⎩⎪⎨⎪⎧4(x -y -1)=3(1-y )-2,x 2+y 3=2.解:方程组整理,得⎩⎨⎧4x -y =5,①3x +2y =12,②①×2+②,得11x =22,解得x =2. 把x =2代入①,得y =3.∴原方程组的解为⎩⎨⎧x =2,y =3.(2)3x -1+4x 1-x 2=1x +1.解:去分母,得3x+3-4x=x-1,解得x=2.经检验,x=2是原分式方程的解.∴原分式方程的解为x=2.19.(6分)如图,已知DE∥BC,∠1=60°,∠2=120°.判断FH与DC是否平行,并说明理由.第19题图解:FH∥DC.理由如下:∵DE∥BC,∠1=60°,∴∠DCB=∠1=60°.又∵∠2=120°,∴∠2+∠DCB=180°,∴FH∥DC.20.(8分)为了提高学生的综合素养,某校开设了五门手工活动课,按照类别分为:A:剪纸、B:沙画、C:葫芦雕刻、D:泥塑、E:插花.为了了解学生对每种活动课的喜爱情况,随机抽取了部分同学进行调查,将调查结果绘制成如图所示的两幅不完整的统计图.根据以上信息,回答下列问题:(1)本次调查的样本容量为__120__,统计图中的a=__12__,b=__36__.(2)通过计算补全条形统计图.(3)若该校共有2 500名学生,请你估计全校喜爱“葫芦雕刻”的学生人数.第20题图第20题答图解:(2)E类别的人数为120-18-12-30-36=24(人).补全条形统计图如答图中斜纹所示.(3)30120×2 500=625(人).答:估计全校喜爱“葫芦雕刻”的学生人数为625人.21.(8分)(1)当a为何值时,方程xx-3=2+ax-3会产生增根?解:去分母,得x=2(x-3)+a,化简,得a=6-x.∵x=3是分式方程的增根,∴把x=3代入a=6-x,得a=3,∴当a=3时,原分式方程会产生增根.(2)已知1m+1n=5,求2m-3mn+2nm+2mn+n的值.解:∵1m+1n=5,∴m+nmn=5,∴m+n=5mn,∴2m-3mn+2nm+2mn+n=2×5mn-3mn5mn+2mn=7mn7mn=1.22.(8分)【阅读材料】某市地铁公司规定:普通成人持储值卡乘坐地铁出行,每个自然月内,达到规定消费累计金额后的乘次,享受相应的折扣优惠(如图).地铁出行消费累计金额月底清零,次月重新累计.每个自然月内,普通成人持储值卡乘坐地铁:消费累积金额≤150元,9.5折;150元<消费累积金额≤200元,9折; 200元<消费累积金额≤300元,8折; 消费累积金额>300元,7,5折.第22题图例如:李老师2月无储值卡消费260元,若采用新规持储值卡消费,则需付费150×0.95+50×0.9+60×0.8=235.5元.【解决问题】甲、乙两个成人2月无储值卡乘坐地铁消费金额合计300元(甲消费金额超过150元,但不超过200元).若两人采用新规持储值卡消费,则共需付费283.5元.求甲、乙2月乘坐地铁的消费金额各是多少元?解:设甲2月乘坐地铁的消费金额是x 元,乙2月乘坐地铁的消费金额是y 元.由题意,得 ⎩⎨⎧x +y =300,150×0.95+0.9(x -150)+0.95y =283.5,解得⎩⎨⎧x =180,y =120.答:甲2月乘坐地铁的消费金额是180元,乙2月乘坐地铁的消费金额是120元. 23.(10分)已知∠MON =56°,OE 平分∠MON ,点A 在射线OM 上,B ,C 分别是射线OE ,ON 上的动点(点B ,C 不与点O 重合),连结AC 交射线OE 于点D .设∠OAC =x . (1)如图1,若AB ∥ON ,则: ①∠ABO =__28__°.②当∠BAD =∠BDA 时,x =__48__°.(2)如图2,若AB ⊥OM ,垂足为A ,是否存在这样的x 的值,使得△ADB 中有两个相等的角?若存在,求出x 的值.若不存在,请说明理由.第23题图解:(1)①∵∠MON =56°,OE 平分∠MON , ∴∠BON =12∠MON =28°.∵AB ∥ON ,∴∠ABO =∠BON =28°. ②∵∠BAD =∠ADB , ∴∠BAD =12(180°-28°)=76°.∵AB∥ON,∴∠MAB=∠MON=56°,∴∠OAC=180°-∠MAB-∠BAD=180°-56°-76°=48°,即x=48°.图1图2第23题答图(2)存在这样的x的值.当点D在线段OB上时,如答图1.∵AB⊥OM,∴∠OAB=90°.∵∠AOB=12∠MON=28°,∴∠ABD=62°.当∠BAD=∠ABD=62°时,x=∠OAC=90°-62°=28°;当∠BAD=∠ADB时,∠BAD=∠ADB=180°-62°2=59°,x=90°-59°=31°;当∠ADB=∠ABD=62°时,∠BAD=180°-2×62°=56°,x=90°-56°=34°.当点D在OB的延长线上时,如答图2.易知∠ABD=180°-62°=118°,∴只有∠ADB=∠BAD=180°-118°2=31°,此时x=90°+31°=121°.综上所述,满足条件的x的值为28°,31°,34°或121°.。
浙教版数学七年级下学期期末训练题(含答案)

浙教版数学七年级下学期期末训练题(含答案)一、单选题1.计算:3﹣1=( )A.3B.﹣3C.13D.﹣132.若分式31+x在实数范围内有意义,则实数x的取值范围是( )A.x≠1B.x≠﹣l C.x≥l D.x>﹣1 3.使(x2+3x+p)(x2﹣qx+4)乘积中不含x2与x3项,则p+q的值为( )A.8B.﹣8C.﹣2D.﹣34.下列计算正确的是( )A.(a5)2=a10B.x16÷x4=x4C.2a2+3a2=6a4D.b3⋅b3=2b3 5.下列运算结果正确的是( )A.a3+a3=a6B.a2⋅a3=a6C.(ab4)3=a3b12D.a3÷a=a36.已知方程组a+b=4ab=2,下列说法正确的是( )①a2+b2=12;②(a﹣b)2=8;③1a+1b=2;④b a+ab=6.A.1B.2C.3D.47.某商店根据今年6-10月份的销售额情况,制作了如下统计图。
根据图中信息,可以判断相邻两个月销售额变化最大的是( )A.6月到7月B.7月到8月C.8月到9月D.9月到10月8.如果多项式x2+mx+16能分解为一个二项式的平方的形式,那么m的值为( )A.4B.8C.―8D.±89.下列运算正确的是( )A.x8÷x2=x4B.4+9=4+9C.(―2a2)3=―8a6D.(―1)0―(12)―1=―310.一个长方形的长为(2x+y),宽为(y―2x),则这个长方形的面积为( ).A.2x2―y2B.y2―2x2C.4x2―y2D.y2―4x211.若关于x,y的方程组a1(x+y)―b1(x―y)=c1a2(x+y)―b2(x―y)=c2,解为x=2022y=2023.则关于x,y的方程组a1x+b1y=15c1a2x+b2y=15c2的解是( )A.x=809y=15B.x=4045y=1C.x=2022y=2023D.x=20225y=―2023512.如图1的8张宽为a,长为b(a<b)的小长方形纸片,按如图2的方式不重叠地放在长方形ABCD 内,未被覆盖的部分(两个长方形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S,当BC 的长度变化时,按照同样的放置方式,S始终保持不变,则a,b满足( )A.b=5a B.b=4a C.b=3a D.b=a二、填空题13.为了解某校1000名师生对“新型冠状病毒”的了解情况,从中随机抽取了50名师生进行问卷调查,这项调查中的样本是 .14.若a2―b2=16,a―b=13,则a+b的值为 .15.关于x的方程x+ax―1=2的解为正数,则a的取值范围为 .16.若x+y=5,x-y=1,则x2-y2= .17.分式(a―1)+a(1a―1)的值为 .18.幻方的历史很悠久,传说最早出现在夏禹时代的“洛书”.把洛书用今天的数学符号翻译出来,就是一个三阶幻方(如图1),将9个数填在3×3(三行三列)的方格中,如果满足每个横行、每个竖列、每条对角线上的三个数字之和都相等,就得到一个广义的三阶幻方.图2的方格中填写了一些数字和字母,若能构成一个广义的三阶幻方,则mn= .19.已知关于x,y的二元一次方程组3x+y=2k,x―2y=k+6有下列说法:①当x与y相等时,解得k=-4;②当x与y互为相反数时,解得k=3;③若4x·8y=32,则k=11;④无论k为何值,x与y的值一定满足关系式x+5y+12=0,其中正确的序号是 20.如图,把五个长为b,宽为a(b>a)的小长方形,按图一和图二两种方式放在一个长比宽大(6―a)的大长方形上,设图一中两块阴影部分的周长和为C1,图2中阴影部分的周长和为C2,则C2―C1的值为 .三、计算题21.解方程组:x―2y=03x―y=522.解方程组:(1)x+4y=7 2x+11y=20(2)2x+(y―x)=1 5x+2(y―x)=523.利用分数指数幂计算:36÷32×63.(结果用根式的形式表示)四、解答题24.如图,已知∠1=∠2,∠A=29°,求∠C的度数.25.化简求值:(a―2a+2+8aa2―4)÷a2+2aa―2,其中a=2022;26.先化简,再求值:[(x+2y)2―(x+y)(x―y)―5y2]÷y;其中|x-12|+(y+2)2=0.答案1.C 2.B 3.A 4.A 5.C 6.D 7.C 8.D 9.C 10.D 11.A 12.A 13.50名师生“新型冠状病毒”的了解情况14.1215.a>﹣2且a≠﹣1 16.5 17.0 18.1 19.①②③④20.1221.解:x―2y=0①3x―y=5②将②×2―①得:5x=10,∴x=2,将x=2代入②得:6―y=5,∴y=1,∴该方程组的解为x=2 y=1.22.(1)解:x+4y=7①2x+11y=20②由①×2得:2x+8y=14③由②-③得:3y=6解之:y=2;把y=2代入①得x+8=7 解之:x=-1 ∴原方程组的解为:x=―1y=2.(2)解:将原方程组转化为:x+y=1①3x+2y=5②由①×2得:2x+2y=2③,由②-③得:x=3,把x=3代入①得3+y=1 解之:y=-2,∴原方程组的解为:x=3y=―2. 23.解:36÷32×63=613÷213×316=313×316=312=3 24.解:如图,∵∠1=∠2又∵∠2=∠3∴∠1=∠3 ∴AB∥CD∴∠A+∠C=180°,又∵∠A=29° ∴∠C=151°答:∠C的度数是151°.25.解:原式=(a―2)2+8a(a+2)(a―2)⋅a―2a(a+2)=(a+2)2(a+2)(a―2)⋅a―2a(a+2)=1a当a=2022时,原式=1202226.解:[(x+2y)2―(x+y)(x―y)―5y2]÷y=(x2+4xy+4y2-x2+y2-5y2)÷y =4xy÷y=4x,|+(y+2)2=0,∵|x-12,y=-2,∴x=12当x=1时,2=2.原式=4×12。
浙教版数学七年级下册期末考试试卷及答案

浙教版数学七年级下册期末考试试题一、选择题(每小题只有一个正确答案,每小题3分,共30分)1.下列实数中,为无理数的是()A.B.C.5 D.π2.下列采用的调查方式中,不合适的是()A.了解永安溪的水质,采用抽样调查B.检测神州十二号飞船的零部件质量,采用抽样调查C.了解我县中学生视力情况,采用抽样调查D.了解某班同学的数学成绩,采用全面调查3.﹣1介于下列哪两个整数之间()A.﹣1与0 B.0与1 C.1与2 D.2与34.已知二元一次方程4x+5y=5,用含x的代数式表示y,则可表示为()A.y=﹣x+1 B.y=﹣x﹣1 C.y=x+1 D.y=x﹣1 5.已知a>b,则下列不等式成立的是()A.a+3>b+4 B.2a<2b C.a﹣1>b﹣1 D.﹣4a>﹣4b 6.如图,直线AB,CD相交于点O,OA平分∠EOC.若∠BOD=42°,则∠EOD的度数为()A.96°B.94°C.104°D.106°7.已知x,y满足方程组,则x+3y的值为()A.3 B.C.5 D.68.小敏妈妈为小敏爸爸购买了一双运动鞋.小敏、哥哥和爸爸都想知道这双鞋的价格,妈妈让他们猜.爸爸说“至少300元.”哥哥说:“至多260元.”小敏说:“至多200元.”妈妈说:“你们三个人都说错了.”则这双鞋的价格x(元)所在的范围是()A.200<x<260 B.260<x<300 C.200≤x≤260D.260≤x≤300 9.在螳螂的示意图中,AB∥DE,∠ABC=126°,∠CDE=70°,则∠BCD=()A.14°B.16°C.18°D.20°10.计算机的某种运算程序如图:已知输入3时输出的运算结果是5,输入4时输出的运算结果是7.若输入的数是x(x≠0)时输出的运算结果为P,输入的数是3x时输出的运算结果为Q,则()A.P:Q=3 B.Q:P=3C.(Q﹣1):(P﹣1)=3 D.(Q+1):(P+1)=3二、填空题(本大题有6小题,每小题3分,共18分)11.9的平方根是.12.如图,三角形ABC中,AC⊥BC,则边AC与边AB的大小关系是,依据是.13.在平面直角坐标系中,若点A(m﹣2,m+3)在第三象限,则m的取值范围是.14.某班用700元钱购买足球和篮球共11个,其中篮球单价为50元/个,足球单价为80元/个,若设购买篮球x个,足球y个,则可列方程组为.15.关于x的不等式组的解集为﹣1<x<2,则a+b的值为.16.如图,在平面直角坐标系中,将正方形①依次平移后得到正方形②,③,④…;相应地,顶点A依次平移得到A1,A2,A3,…,其中A点坐标为(1,0),A1坐标为(0,1),则A20的坐标为.三、解答题(本大题有8小题,17题4分,18~21题每题6分,22~24题每题8分,共52分)17.计算:|﹣|﹣+.18.解不等式<,并把它的解集在数轴上表示出来.19.小明同学解方程组的过程如下:解:①×2,得2x﹣6y=2③③﹣②,得﹣6y﹣y=2﹣7﹣7y=﹣5,y=;把y=代入①,得x﹣3×=1,x=所以这个方程组的解是你认为他的解法是否正确?若正确,请写出每一步的依据;若错误,请写出正确的解题过程.20.如图,在方格纸中,三角形ABC的三个顶点均为格点,当三角形ABC平移后,得到三角形A1B1C1,其中点A与A1(2,﹣2),点B与B1,点C与C1对应.(1)画出三角形A1B1C1,并写出点B1,C1的坐标;(2)F(a,b)是边BC上一点,请写出点F的对应点F1的坐标.21.已知:如图,三角形ABC中,AC⊥BC.F是边AC上的点,连接BF,作EF∥BC且交AB于点E.过点E作DE⊥EF,交BF于点D.求证:∠1+∠2=180°.下面是证明过程,请在横线上填上适当的推理结论或推理依据.证明:∵AC⊥BC(已知),∴∠ACB=90°(垂直的定义).∵EF∥BC(已知),∴∠AFE==90°().∵DE⊥EF(已知),∴∠DEF=90°(垂直的定义).∴∠AFE=∠DEF(等量代换),∴∥().∴∠2=∠EDF().又∵∠EDF+∠1=180°(邻补角互补),∴∠1+∠2=180°(等量代换).22.近年来,随着人们健康睡眠的意识不断提高,社会各界对于初中生的睡眠时间是否充足越发关注,近日某学校从全校1600人中随机抽取了部分同学,调查他们平均每日睡眠时间,将得到的数据整理后绘制了如图所示的不完整的扇形统计图和频数分布直方图:(1)本次接受调查的人数为;(2)补全直方图;(3)教育部《关于进一步加强中小学生睡眠管理工作的通知》文件指出,初中生睡眠时间应达到9小时,试估计该校学生睡眠时间达标人数,并评价该校初中生睡眠时间情况.23.已知:在三角形ABC和三角形DEF中,AB∥DE.(1)如图1,若三角形DEF的顶点F在三角形ABC的边AB上,且DF∥AC.求证:∠A=∠D;(2)如图2,若三角形DEF的顶点F在三角形ABC的内部,∠A=∠D,则DF与AC 有怎样的位置关系?请说明理由.24.某杨梅经销商以每千克40元的价格分三批向果农购进杨梅,均分拣成“特优”和“普通”两类销售,分拣和包装费用为每千克6元.每批杨梅中最差的10%不能销售,为损耗,其余杨梅均能售完.“特优”杨梅售价是每千克110元,“普通”杨梅售价为每千克30元.(1)该经销商购进的第一批杨梅为500千克,分拣出“特优”杨梅150千克,则他获得的利润是元;(2)该经销商购进的第二批杨梅为800千克,获利4800元,求其中售出“特优”和“普通”杨梅各多少千克?(3)该经销商希望自己第三批杨梅的销售的利润率不少于35%,他收购杨梅时要确保能分拣出“特优”杨梅占收购总量的百分比至少要达到多少(精确到1%)?(利润=销售收入﹣总成本,利润率=×100%)参考答案一、选择题(本大题有10小题,每小题3分,共30分,请选出各题中一个符合题意的正确选项)1.下列实数中,为无理数的是()A.B.C.5 D.π解:A.是有理数,不是无理数,故本选项不符合题意;B.=3,是有理数,不是无理数,故本选项不符合题意;C.5是有理数,不是无理数,故本选项不符合题意;D.π是无理数,故本选项符合题意;故选:D.2.下列采用的调查方式中,不合适的是()A.了解永安溪的水质,采用抽样调查B.检测神州十二号飞船的零部件质量,采用抽样调查C.了解我县中学生视力情况,采用抽样调查D.了解某班同学的数学成绩,采用全面调查解:A.了解永安溪的水质,无法普查,适合采用抽样调查,此选项不符合题意;B.检测神州十二号飞船的零部件质量,事关安全,需要普查,此选项符合题意;C.了解我县中学生视力情况,工作量大,适合采用抽样调查,此选项不符合题意;D.了解某班同学的数学成绩,工作量不大,而且普查能得到准确数据,适合采用全面调查,此选项不符合题意;故选:B.3.﹣1介于下列哪两个整数之间()A.﹣1与0 B.0与1 C.1与2 D.2与3解:∵4<5<9,∴,∴2<<3,∴1<﹣1<2,故选:C.4.已知二元一次方程4x+5y=5,用含x的代数式表示y,则可表示为()A.y=﹣x+1 B.y=﹣x﹣1 C.y=x+1 D.y=x﹣1 解:∵4x+5y=5,∴5y=5﹣4x.∴y=.∴y=1﹣.即y=.故选:A.5.已知a>b,则下列不等式成立的是()A.a+3>b+4 B.2a<2b C.a﹣1>b﹣1 D.﹣4a>﹣4b 解:A、根据不等式的两边都加上(或减去)同一个数或整式,不等号的方向不变,故本选项不成立;B、∵a>b,∴2a>2b,故本选项不成立;C、∵a>b,∴a﹣1>b﹣1,故本选项成立;D、∵a>b,∴﹣4a<﹣4b,故本选项不成立.故选:C.6.如图,直线AB,CD相交于点O,OA平分∠EOC.若∠BOD=42°,则∠EOD的度数为()A.96°B.94°C.104°D.106°解:∵∠AOC=∠BOD,∠BOD=42°,∴∠AOC=42°,∵OA平分∠EOC,∴∠AOE=∠AOC=42°,∴∠EOD=180°﹣(∠AOE+∠BOD)=180°﹣(42°+42°)=96°.故选:A.7.已知x,y满足方程组,则x+3y的值为()A.3 B.C.5 D.6解:,①﹣②,得x+3y=3.故选:A.8.小敏妈妈为小敏爸爸购买了一双运动鞋.小敏、哥哥和爸爸都想知道这双鞋的价格,妈妈让他们猜.爸爸说“至少300元.”哥哥说:“至多260元.”小敏说:“至多200元.”妈妈说:“你们三个人都说错了.”则这双鞋的价格x(元)所在的范围是()A.200<x<260 B.260<x<300 C.200≤x≤260D.260≤x≤300解:依题意得:,∴260<x<300.故选:B.9.在螳螂的示意图中,AB∥DE,∠ABC=126°,∠CDE=70°,则∠BCD=()A.14°B.16°C.18°D.20°解:如图,延长CD交AB于点M.∵∠CDE+∠EDM=180°,∠CDE=70°,∴∠EDM=180°﹣∠CDE=110°.∵AB∥DE,∴∠AMD=∠EDM=110°.又∵∠ABC=∠BMC+∠BCD,∴∠BCD=∠ABC﹣∠BMC=126°﹣110°=16°.故选:B.10.计算机的某种运算程序如图:已知输入3时输出的运算结果是5,输入4时输出的运算结果是7.若输入的数是x(x≠0)时输出的运算结果为P,输入的数是3x时输出的运算结果为Q,则()A.P:Q=3 B.Q:P=3C.(Q﹣1):(P﹣1)=3 D.(Q+1):(P+1)=3解:∵输入3时输出的运算结果是5,输入4时输出的运算结果是7.∴3a+b=5,4a+b=7,∴a=2,b=﹣1,∴P=2x﹣1,Q=6x﹣1,∴(Q+1):(P+1)=(6x):(2x)=3,故选:D.二、填空题(本大题有6小题,每小题3分,共18分)11.9的平方根是±3.解:∵±3的平方是9,∴9的平方根是±3.故答案为:±3.12.如图,三角形ABC中,AC⊥BC,则边AC与边AB的大小关系是AC<AB,依据是垂线段最短.解:∵AC⊥BC,∴边AC与边AB的大小关系是AC<AB,依据为垂线段最短.故答案为:AC<AB,垂线段最短.13.在平面直角坐标系中,若点A(m﹣2,m+3)在第三象限,则m的取值范围是m<﹣3.解:∵A(m﹣2,m+3)在第三象限,∴,解得m<﹣3.故答案为:m<﹣3.14.某班用700元钱购买足球和篮球共11个,其中篮球单价为50元/个,足球单价为80元/个,若设购买篮球x个,足球y个,则可列方程组为.解:设购买篮球x个,购买足球y个,根据题意可列方程组:,故答案为:.15.关于x的不等式组的解集为﹣1<x<2,则a+b的值为5.解:解不等式3x﹣a<2,得:x<,解不等式x+2b>1,得:x>1﹣2b,∵不等式组的解集为﹣1<x<2,∴1﹣2b=﹣1,=2,解得a=4,b=1,∴a+b=5,故答案为:5.16.如图,在平面直角坐标系中,将正方形①依次平移后得到正方形②,③,④…;相应地,顶点A依次平移得到A1,A2,A3,…,其中A点坐标为(1,0),A1坐标为(0,1),则A20的坐标为(﹣19,8).解:观察图形可知:A3(﹣2,1),A6(﹣5.2),A9(﹣8,3),•••,∵﹣5=﹣2﹣3,﹣8=﹣2+2×(﹣3),∴﹣2+6×(﹣3)=﹣19,∴A18(﹣17,6),把A18向左平移2个单位,再向上平移2个单位得到A20,∴A20(﹣19,8).故答案为:(﹣19,8)三、解答题(本大题有8小题,17题4分,18~21题每题6分,22~24题每题8分,共52分)17.计算:|﹣|﹣+.解:原式=﹣3+2=﹣1.18.解不等式<,并把它的解集在数轴上表示出来.解:去分母得:2(x﹣1)<3x+1,去括号得:2x﹣2<3x+1,移项得:2x﹣3x<1+2,合并得:﹣x<3,解得:x>﹣3.19.小明同学解方程组的过程如下:③﹣②,得﹣6y﹣y=2﹣7﹣7y=﹣5,y=;把y=代入①,得x﹣3×=1,x=所以这个方程组的解是你认为他的解法是否正确?若正确,请写出每一步的依据;若错误,请写出正确的解题过程.解:错误;理由如下:①×2,得2x﹣6y=2③,③﹣②,得﹣6y+y=2﹣7,∴﹣5y=﹣5,∴y=1,把y=1代入①得x﹣3×1=1,x=4,∴这个方程组的解为.20.如图,在方格纸中,三角形ABC的三个顶点均为格点,当三角形ABC平移后,得到三角形A1B1C1,其中点A与A1(2,﹣2),点B与B1,点C与C1对应.(1)画出三角形A1B1C1,并写出点B1,C1的坐标;(2)F(a,b)是边BC上一点,请写出点F的对应点F1的坐标.解:(1)如图所示,三角形A1B1C1即为所求;点B1、C1的坐标分别为(3,1),(1,﹣1).(2)点F的对应点F1的坐标为(a+6,b﹣3).21.已知:如图,三角形ABC中,AC⊥BC.F是边AC上的点,连接BF,作EF∥BC且交AB于点E.过点E作DE⊥EF,交BF于点D.求证:∠1+∠2=180°.下面是证明过程,请在横线上填上适当的推理结论或推理依据.证明:∵AC⊥BC(已知),∴∠ACB=90°(垂直的定义).∵EF∥BC(已知),∴∠AFE=∠ACB=90°(两直线平行,同位角相等).∵DE⊥EF(已知),∴∠DEF=90°(垂直的定义).∴∠AFE=∠DEF(等量代换),∴DE∥AC(内错角相等,两直线平行).∴∠2=∠EDF(两直线平行,内错角相等).又∵∠EDF+∠1=180°(邻补角互补),∴∠1+∠2=180°(等量代换).【解答】证明:∵AC⊥BC(已知),∴∠ACB=90°(垂线的定义).∵EF∥BC(已知),∴∠AFE=∠ACB=90°(两直线平行,同位角相等).∵DE⊥EF(已知),∴∠DEF=90°(垂线的定义).∴∠AFE=∠DEF(等量代换).∴DE∥AC(内错角相等,两直线平行).∴∠2=∠EDF(两直线平行,内错角相等).∵∠EDF+∠1=180°(邻补角互补),∴∠1+∠2=180°(等量代换).故答案为:∠ACB;两直线平行,同位角相等;DE;AC;内错角相等,两直线平行;两直线平行,内错角相等,22.近年来,随着人们健康睡眠的意识不断提高,社会各界对于初中生的睡眠时间是否充足越发关注,近日某学校从全校1600人中随机抽取了部分同学,调查他们平均每日睡眠时间,将得到的数据整理后绘制了如图所示的不完整的扇形统计图和频数分布直方图:(1)本次接受调查的人数为100;(2)补全直方图;(3)教育部《关于进一步加强中小学生睡眠管理工作的通知》文件指出,初中生睡眠时间应达到9小时,试估计该校学生睡眠时间达标人数,并评价该校初中生睡眠时间情况.解:(1)27÷27%=100(人);故答案为:100;(2)100﹣27﹣8﹣30=35(人),补全频数分布直方图如下:(3)1600×=480(人),答:估计该校1600名学生中睡眠时间达标人数约为480人,睡眠达标人数占总人数的30%,该校学生睡眠时间不足.23.已知:在三角形ABC和三角形DEF中,AB∥DE.(1)如图1,若三角形DEF的顶点F在三角形ABC的边AB上,且DF∥AC.求证:∠A=∠D;(2)如图2,若三角形DEF的顶点F在三角形ABC的内部,∠A=∠D,则DF与AC 有怎样的位置关系?请说明理由.【解答】证明:(1)如图1,∵AB∥DE,∴∠D=∠BFO.∵DF∥AC,∴∠FOB=∠ACB.又∵∠A+∠B+∠ACB=180°,∠BFO+∠B+∠FOB=180°,∴∠BFO=∠A.∴∠A=∠D.(2)DF∥AC,理由如下:如图2,延长AC交DE于点M.∵AB∥DE,∴∠A=∠AMD.又∵∠A=∠D,∴∠AMD=∠D.∴AM∥DF,即AC∥DF.24.某杨梅经销商以每千克40元的价格分三批向果农购进杨梅,均分拣成“特优”和“普通”两类销售,分拣和包装费用为每千克6元.每批杨梅中最差的10%不能销售,为损耗,其余杨梅均能售完.“特优”杨梅售价是每千克110元,“普通”杨梅售价为每千克30元.(1)该经销商购进的第一批杨梅为500千克,分拣出“特优”杨梅150千克,则他获得的利润是2500元;(2)该经销商购进的第二批杨梅为800千克,获利4800元,求其中售出“特优”和“普通”杨梅各多少千克?(3)该经销商希望自己第三批杨梅的销售的利润率不少于35%,他收购杨梅时要确保能分拣出“特优”杨梅占收购总量的百分比至少要达到多少(精确到1%)?(利润=销售收入﹣总成本,利润率=×100%)解:(1)110×150+(500﹣150﹣500×10%)×30﹣6×500﹣40×500=2500;(2)设售出“特优”杨梅x千克,“普通”杨梅y千克,则解得;答:售出“特优”杨梅250千克,“普通”杨梅470千克.(3)设收购总量为m千克,“特优”杨梅占收购总量的百分比为a,则≥35%,解得a≥43.875%,即a≥44%.答:他收购杨梅时要确保能分拣出“特优”杨梅占收购总量的百分比至少要达到44%.。
2014-2015学年浙江省嘉兴市七年级(下)期末数学模拟试卷

2014-2015学年浙江省嘉兴市七年级(下)期末数学模拟试卷一.选择题(共10小题,每题3分,共30分)1.(3分)若分式有意义,则x应满足的条件是()A.x≠4 B.x≠0 C.x>4 D.x=42.(3分)要反映嘉兴市一天内气温的变化情况宜采用()A.条形统计图B.扇形统计图C.折线统计图D.频数分布直方图3.(3分)如图中,是同旁内角的是()A.∠1与∠2 B.∠3与∠2 C.∠3与∠4 D.∠1与∠44.(3分)在①a4•a2②(﹣a2)3③a12÷a2④a2•a3⑤a3+a3中,计算结果为a6的个数是()A.1个 B.2个 C.3个 D.4个5.(3分)芝麻作为食品和药物,均广泛使用,经测算,一粒芝麻重量约有0.00000201kg,用科学记数法表示10粒芝麻的重量为()A.2.01×10﹣6kg B.2.01×10﹣5kg C.20.1×10﹣7kg D.20.1×10﹣6kg 6.(3分)下列多项式能分解因式的是()A.x2+y2B.﹣x2﹣y2 C.2xy﹣x2﹣y2D.x2﹣xy+y27.(3分)化简分式的结果为()A. B.C.D.8.(3分)如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()A.30°B.25°C.20°D.15°9.(3分)如图,将△ABC沿水平向右的方向平移,得到△EAF,若AB=5,BC=3,AC=4,则平移的距离是()A.3 B.4 C.5 D.1010.(3分)若|3x+y+5|+|2x﹣2y﹣2|=0,则2x2﹣3xy的值是()A.14 B.﹣4 C.﹣12 D.12二.填空题(共10小题,每题3分,共30分)11.(3分)因式分解mn﹣mn3=.12.(3分)某校九年级一班数学单元测试全班所有学生成绩的频数分布直方图如图所示(满分100分,学生成绩取整数),则成绩在90.5~95.5这一分数段的频率是.13.(3分)已知方程2x﹣y=1,用含x的代数式表示y,得.14.(3分)已知,则x+y=.15.(3分)将梯形面积公式变形成已知S,a,b,求h的形式,则h=.16.(3分)若x﹣3y=0,则分式的值为.17.(3分)如右图所示,点E在AC的延长线上,如果添一个条件可以使BD∥AC(只要添一种条件即可)18.(3分)若关于x的方程+1=0有增根,则m的值为.19.(3分)杭州到北京的铁路长1487千米.火车的原平均速度为x千米/时,提速后平均速度增加了70千米/时,由杭州到北京的行驶时间缩短了3小时,则可列方程为.20.(3分)有两个正方形A,B,现将B放在A的内部得图甲,将A,B并列放置后构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为1和12,则正方形A,B的面积之和为.三.解答题(共6小题,21、22、23、24每题6分,25、26每题8分,共40分)21.(6分)计算:(1)|﹣3|﹣(﹣1)0+()﹣2(2)(2a﹣b)2﹣(2a﹣b)(2a+b)22.(6分)解方程(组)(1)(2)+=1.23.(6分)先化简:(+)•,再从2,﹣2,0,1中选一个合适的数代入求值.24.(6分)在读书月活动中,学校准备购买一批课外读物,为使课外读物满足同学们的需求,学校就“我最喜爱的课外读物”从文学、艺术、科普和其他四个类别进行了抽样调查(每位同学只选一类),如图是根据调查结果绘制的两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次调查中,一共调查了名同学;(2)条形统计图中,m=,n=;(3)扇形统计图中,艺术类读物所在扇形的圆心角是度;(4)学校计划购买课外读物5000册,请根据样本数据,估计学校购买其他类读物多少册比较合理?25.(8分)将一副三角板中的两块直角三角尺的直角顶点C按如图方式叠放在一起(其中,∠A=60°,∠D=30°;∠E=∠B=45°:(1)①若∠DCE=45°,则∠ACB的度数为;②若∠ACB=140°,求∠DCE的度数;(2)由(1)猜想∠ACB与∠DCE的数量关系,并说明理由.(3)当∠ACE<180°且点E在直线AC的上方时,这两块三角尺是否存在一组边互相平行?若存在,请直接写出∠ACE角度所有可能的值(不必说明理由),若不存在,请说明理由.26.(8分)我县某包装生产企业承接了一批上海世博会的礼品盒制作业务,为了确保质量,该企业进行试生产.他们购得规格是170cm×40cm的标准板材作为原材料,每张标准板材再按照裁法一或裁法二裁下A型与B型两种板材.如图1所示,(单位:cm)(1)列出方程(组),求出图甲中a与b的值.(2)在试生产阶段,若将30张标准板材用裁法一裁剪,4张标准板材用裁法二裁剪,再将得到的A型与B型板材做侧面和底面,做成图2的竖式与横式两种无盖礼品盒.①两种裁法共产生A型板材张,B型板材张;②设做成的竖式无盖礼品盒x个,横式无盖礼品盒的y个,根据题意完成表格:③做成的竖式和横式两种无盖礼品盒总数最多是个;此时,横式无盖礼品盒可以做个.(在横线上直接写出答案,无需书写过程)2014-2015学年浙江省嘉兴市七年级(下)期末数学模拟试卷参考答案与试题解析一.选择题(共10小题,每题3分,共30分)1.(3分)若分式有意义,则x应满足的条件是()A.x≠4 B.x≠0 C.x>4 D.x=4【解答】解:∵分式有意义,∴x﹣4≠0,解得x≠4.故选A.2.(3分)要反映嘉兴市一天内气温的变化情况宜采用()A.条形统计图B.扇形统计图C.折线统计图D.频数分布直方图【解答】解:要反映嘉兴市一天内气温的变化情况宜采用折线统计图,故选:C.3.(3分)如图中,是同旁内角的是()A.∠1与∠2 B.∠3与∠2 C.∠3与∠4 D.∠1与∠4【解答】解:观察图形可知:A、∠1与∠2是同位角,故选项错误;B、∠3与∠2是内错角,故选项错误;C、∠3与∠4是同旁内角,故选项正确;D、∠1与∠4不在同位角、内错角、同旁内角之列,故选项错误.故选:C.4.(3分)在①a4•a2②(﹣a2)3③a12÷a2④a2•a3⑤a3+a3中,计算结果为a6的个数是()A.1个 B.2个 C.3个 D.4个【解答】解:①a4•a2=a4+2=a6,故①符合条件;②(﹣a2)3=(﹣1)3a2×3=﹣a6,故②不符合条件;③a12÷a2=a12﹣2=a10,故③不符合条件;④a2•a3=a2+3=a5,故④不符合条件;⑤a3+a3=2a3,故⑤不符合条件;故选:A.5.(3分)芝麻作为食品和药物,均广泛使用,经测算,一粒芝麻重量约有0.00000201kg,用科学记数法表示10粒芝麻的重量为()A.2.01×10﹣6kg B.2.01×10﹣5kg C.20.1×10﹣7kg D.20.1×10﹣6kg 【解答】解:0.00000201kg=2.01×10﹣5kg故选:B.6.(3分)下列多项式能分解因式的是()A.x2+y2B.﹣x2﹣y2 C.2xy﹣x2﹣y2D.x2﹣xy+y2【解答】解:A、x2+y2,无法因式分解,故此选项错误;B、﹣x2﹣y2,无法因式分解,故此选项错误;C、2xy﹣x2﹣y2=﹣(x﹣y)2,故此选项正确;D、x2﹣xy+y2,无法因式分解,故此选项错误.故选:C.7.(3分)化简分式的结果为()A. B.C.D.【解答】解:原式=.故选:A.8.(3分)如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()A.30°B.25°C.20°D.15°【解答】解:根据题意可知,两直线平行,内错角相等,∴∠1=∠3,∵∠3+∠2=45°,∴∠1+∠2=45°∵∠1=20°,∴∠2=25°.故选:B.9.(3分)如图,将△ABC沿水平向右的方向平移,得到△EAF,若AB=5,BC=3,AC=4,则平移的距离是()A.3 B.4 C.5 D.10【解答】解:∵AB=5,BC=3,AC=4,∴AB2=BC2+AC2,∴△ABC是Rt△,∵将△ABC沿水平向右的方向平移,得到△EAF,∴AC=4,AF=3,∠CAF=90°,∴FC==5.故选:C.10.(3分)若|3x+y+5|+|2x﹣2y﹣2|=0,则2x2﹣3xy的值是()A.14 B.﹣4 C.﹣12 D.12【解答】解:∵|3x+y+5|+|2x﹣2y﹣2|=0,∴,解得,∴原式=2﹣6=﹣4.故选:B.二.填空题(共10小题,每题3分,共30分)11.(3分)因式分解mn﹣mn3=mn(1+n)(1﹣n).【解答】解:mn﹣mn3=mn(1﹣n2)=mn(1+n)(1﹣n),故答案为:mn(1+n)(1﹣n).12.(3分)某校九年级一班数学单元测试全班所有学生成绩的频数分布直方图如图所示(满分100分,学生成绩取整数),则成绩在90.5~95.5这一分数段的频率是0.4.【解答】解:读图可知:共有(1+4+10+15+20)=50人,其中在90.5~95.5这一分数段有20人,则成绩在90.5~95.5这一分数段的频率是=0.4.故本题答案为:0.4.13.(3分)已知方程2x﹣y=1,用含x的代数式表示y,得y=2x﹣1.【解答】解:移项,得﹣y=1﹣2x,系数化1,得y=2x﹣1.故填y=2x﹣1.14.(3分)已知,则x+y=3.【解答】解:,①+②得,3x+3y=9,解得x+y=3.故答案为:3.15.(3分)将梯形面积公式变形成已知S,a,b,求h的形式,则h=.【解答】解:公式S=(a+b)h,解得:h=.故答案为:16.(3分)若x﹣3y=0,则分式的值为.【解答】解:∵x﹣3y=0,∴x=3y,∴===;故答案为:.17.(3分)如右图所示,点E在AC的延长线上,如果添一个条件∠3=∠4可以使BD∥AC(只要添一种条件即可)【解答】解:要使BD∥AC,则只要∠3=∠4(同旁内角互补两直线平行).故答案为∠3=∠4(答案不唯一).18.(3分)若关于x的方程+1=0有增根,则m的值为﹣1.【解答】解:去分母得:m+1+x﹣1=0,由分式方程有增根,得到x﹣1=0,即x=1,把x=1代入整式方程得:m=﹣1,故答案为:﹣119.(3分)杭州到北京的铁路长1487千米.火车的原平均速度为x千米/时,提速后平均速度增加了70千米/时,由杭州到北京的行驶时间缩短了3小时,则可列方程为﹣=3.【解答】解:根据题意得:﹣=3;故答案为:﹣=3.20.(3分)有两个正方形A,B,现将B放在A的内部得图甲,将A,B并列放置后构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为1和12,则正方形A,B的面积之和为13.【解答】解:设正方形A的边长为a,正方形B的边长为b,由图甲得a2﹣b2﹣2(a﹣b)b=1即a2+b2﹣2ab=1,由图乙得(a+b)2﹣a2﹣b2=12,2ab=12,所以a2+b2=13,故答案为:13.三.解答题(共6小题,21、22、23、24每题6分,25、26每题8分,共40分)21.(6分)计算:(1)|﹣3|﹣(﹣1)0+()﹣2(2)(2a﹣b)2﹣(2a﹣b)(2a+b)【解答】解:(1)原式=3﹣1+4=6;(2)原式=4a2﹣4ab+b2﹣(4a2﹣b2)=4a2﹣4ab+b2﹣4a2+b2=﹣4ab+2b2.22.(6分)解方程(组)(1)(2)+=1.【解答】解:(1),①×2+②得:7x=7,即x=1,把x=1代入①得:y=﹣2,则方程组的解为;(2)去分母得:2﹣x﹣1=x﹣3,解得:x=2,经检验x=2是分式方程的解.23.(6分)先化简:(+)•,再从2,﹣2,0,1中选一个合适的数代入求值.【解答】解:原式=•=•=2x,当x=1时,原式=2.24.(6分)在读书月活动中,学校准备购买一批课外读物,为使课外读物满足同学们的需求,学校就“我最喜爱的课外读物”从文学、艺术、科普和其他四个类别进行了抽样调查(每位同学只选一类),如图是根据调查结果绘制的两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次调查中,一共调查了200名同学;(2)条形统计图中,m=40,n=60;(3)扇形统计图中,艺术类读物所在扇形的圆心角是72度;(4)学校计划购买课外读物5000册,请根据样本数据,估计学校购买其他类读物多少册比较合理?【解答】解:(1)根据条形图得出文学类人数为:70,利用扇形图得出文学类所占百分比为:35%,故本次调查中,一共调查了:70÷35%=200人,故答案为:200;(2)根据科普类所占百分比为:30%,则科普类人数为:n=200×30%=60人,m=200﹣70﹣30﹣60=40人,故m=40,n=60;故答案为:40,60;(3)艺术类读物所在扇形的圆心角是:×360°=72°,故答案为:72;(4)由题意,得5000×=750(册).答:学校购买其他类读物750册比较合理.25.(8分)将一副三角板中的两块直角三角尺的直角顶点C按如图方式叠放在一起(其中,∠A=60°,∠D=30°;∠E=∠B=45°:(1)①若∠DCE=45°,则∠ACB的度数为135°;②若∠ACB=140°,求∠DCE的度数;(2)由(1)猜想∠ACB与∠DCE的数量关系,并说明理由.(3)当∠ACE<180°且点E在直线AC的上方时,这两块三角尺是否存在一组边互相平行?若存在,请直接写出∠ACE角度所有可能的值(不必说明理由),若不存在,请说明理由.【解答】(1)①∵∠DCE=45°,∠ACD=90°∴∠ACE=45°∵∠BCE=90°∴∠ACB=90°+45°=135°故答案为:135°;②∵∠ACB=140°,∠ECB=90°∴∠ACE=140°﹣90°=50°∴∠DCE=90°﹣∠ACE=90°﹣50°=40°;(2)猜想:∠ACB+∠DCE=180°理由如下:∵∠ACE=90°﹣∠DCE又∵∠ACB=∠ACE+90°∴∠ACB=90°﹣∠DCE+90°=180°﹣∠DCE即∠ACB+∠DCE=180°;(3)30°、45°、120°、135°、165°.理由:当CB∥AD时,∠ACE=30°;当EB∥AC时,∠ACE=45°;当CE∥AD时,∠ACE=120°;当EB∥CD时,∠ACE=135°;当BE∥AD时,∠ACE=165°.26.(8分)我县某包装生产企业承接了一批上海世博会的礼品盒制作业务,为了确保质量,该企业进行试生产.他们购得规格是170cm×40cm的标准板材作为原材料,每张标准板材再按照裁法一或裁法二裁下A型与B型两种板材.如图1所示,(单位:cm)(1)列出方程(组),求出图甲中a与b的值.(2)在试生产阶段,若将30张标准板材用裁法一裁剪,4张标准板材用裁法二裁剪,再将得到的A型与B型板材做侧面和底面,做成图2的竖式与横式两种无盖礼品盒.①两种裁法共产生A型板材64张,B型板材38张;②设做成的竖式无盖礼品盒x个,横式无盖礼品盒的y个,根据题意完成表格:③做成的竖式和横式两种无盖礼品盒总数最多是20个;此时,横式无盖礼品盒可以做16或17或18个.(在横线上直接写出答案,无需书写过程)【解答】解:(1)由题意得:,解得:,答:图甲中a与b的值分别为:60、40.(2)①由图示裁法一产生A型板材为:2×30=60,裁法二产生A型板材为:1×4=4,所以两种裁法共产生A型板材为60+4=64(张),由图示裁法一产生B型板材为:1×30=30,裁法二产生A型板材为,2×4=8,所以两种裁法共产生B型板材为30+8=38(张),故答案为:64,38.②由已知和图示得:横式无盖礼品盒的y个,每个礼品盒用2张B型板材,所以用B型板材2y张.③20,16或17或18.。
【浙教版】七年级数学下期末试卷及答案

一、选择题1.已知关于x 的不等式组5210x x a -≥-⎧⎨->⎩无解,则a 的取值范围是( )A .a <3B .a ≥3C .a >3D .a ≤32.某商品进价为800元,出售时标价为1200元,后来由于该商品积压,准备打折销售,若要保证利润率不低于5%,则最多可打几折( ) A .6B .7C .8D .93.已知方程组512x y ax by +=⎧⎨+=⎩和521613x y bx ay +=⎧⎨+=⎩的解相同,则a 、b 的值分别是( )A .2,3B .3,2C .2,4D .3,4 4.下列四组值中,不是二元一次方程21x y -=的解的是( ) A .11x y =-⎧⎨=-⎩B .00.5x y =⎧⎨=-⎩C .10=⎧⎨=⎩x yD .11x y =⎧⎨=⎩5.若方程组21322x y kx y +=-⎧⎨+=⎩的解满足0x y +=,则k 的值为( )A .1-B .1C .0D .不能确定6.已知21x y =-⎧⎨=⎩是方程25mx y +=的解,则m 的值是( )A .32- B .32C .2-D .27.已知点M (9,﹣5)、N (﹣3,﹣5),则直线MN 与x 轴、y 轴的位置关系分别为( ) A .相交、相交 B .平行、平行 C .垂直相交、平行D .平行、垂直相交8.如图,在平面直角坐标系中,若干个半径为3个单位长度,圆心角为60°的扇形组成一条连续的曲线,点P 从原点O 出发,沿这条曲线向右上下起伏运动,点在直线上的速度为每秒3个单位长度,点在弧线上的速度为每秒π个单位长度,则2020秒时,点P 的坐标是( )A .(2020,0)B .(3030,0)C .( 30303D .(303039.30.31,3π,27-912-38 1.212212221…(每两个1之间依次多一个2)中,无理数的个数为( )A .1B .2C .3D .410.如图,若180A ABC ∠+∠=︒,则下列结论正确的是( )A .12∠=∠B .24∠∠=C .13∠=∠D .23∠∠=11.小圆想用7天的时间背诵若干首诗词,背诵计划如下: ①将诗词分为4组,第n 组有n x 首,1,2,3,4n =;②对于第n 组诗词,第n 天背诵第一遍,第(1)n +天背诵第二遍,第(3)n +天背诵第三遍,三遍后完成背诵,其它天无需背诵,1,2,3,4n =; ③每天最多背诵8首,最少背诵2首,第1天 第2天 第3天 第4天 第5天 第6天 第7天第1组 1x 1x1x第2组 2x2x2x第3组 3x3x3x第4组4x4x4xA .10首B .11首C .12首D .13首 12.若x (x +a )=x 2﹣x ,则不等式ax +3>0的解集是( )A .x >3B .x <3C .x >﹣3D .x <﹣3二、填空题13.一辆货车、一辆客车、一辆小轿车在一条笔直的公路上朝同一方向匀速行驶,在某一时刻,货车在前,小轿车在后,客车在货车与小轿车的正中间,过了20min ,小轿车追上了客车;又过了10min ;小轿车追上了货车;再过了________min 客车追上了货车. 14.设()554325432031x a x a x a x a x a -=++++,则035a a a ++的值为______________ 15.如图,正方形ABCD 的各边分别平行于x 轴或y 轴,蚂蚁甲和蚂蚁乙都由点E (3,0)出发,同时沿正方形ABCD 的边逆时针匀速运动,蚂蚁甲的速度为3个单位长度/秒,蚂蚁乙的速度为1个单位长度/秒,则两只蚂蚁出发后,蚂蚁甲第3次追上蚂蚁乙的坐标是_____.16.下图是利用平面直角坐标系画出的老北京一些地点的示意图,这个坐标系分别以正东和正北方向为x 轴和y 轴的正方向,如果表示右安门的点的坐标为(-2,-3),表示朝阳门的点的坐标为(3,2),那么表示西便门的点的坐标为___________________.17.如图,一只蚂蚁从点A 沿数轴向右爬了2个单位长度到达点B ,点A 表示2-,设点B 所表示的数为m .(1)实数m 的值是___________; (2)求|1||1|m m ++-的值;(3)在数轴上还有C 、D 两点分别表示实数c 和d ,且有|2|c d +与4d +互为相反数,求23c d -的平方根.18.下列说法中:(1)不相交的两条直线叫做平行线;(2)经过一点,有且只有一条直线与已知直线平行; (3)垂直于同一条直线的两直线平行; (4)直线//a b ,//b c ,则//a c ;(5)两条直线被第三条直线所截,同位角相等. 其中正确的是________.19.关于x 的不等式组3112x x a+⎧-<⎪⎨⎪<⎩有3个整数解,则a 的取值范围是_____. 20.若关于x 的一元一次不等式组21122x a x x ->⎧⎨->-⎩的解集是21x -<<,则a 的取值是__________.三、解答题21.受疫情影响,口罩价格不断走高.3月20日当天口罩的价格是年初的1.5倍;3月20日当天,王老师购买4盒口罩比年初多花了48元. (1)那么3月20日当天口罩的价格为每盒多少元?(2)3月20日,按照(1)中的口罩价格,某售卖点共卖出1000盒口罩.3月21日,政府决定投入储备口罩并规定其销售价在3月20日的基础上下调0.7%a 出售.该售卖点按规定价出售一批储备口罩和非储备口罩,该售卖点的非储备口罩仍按3月20日的价格出售,3月21日当天的两种口罩总销量比3月20日增加了20%,且储备口罩的销量占总销量的56,两种口罩销售的总金额比3月20日至少提高了1%10a ,求a 的最大值. 22.(1)解不等式()311x x -≥+,并将其解集在数轴上表示出来.(2)若不等式325123x x --<+的最小整数解是关于x 的方程24x ax -=的解,求a 的值.23.元旦期间,甲、乙两个商场开展促销活动,甲商场实行“全场52折”的优惠;乙商场实行“满200元减100元”的优惠(如:某顾客购物320元,他需付款220元,购物420元,他也只需付款220元).(1)张丽想买商场标价都是850元的同一套衣服,她应该选择哪家商场?(2)李明发现在甲、乙商场购买一样标价六百多元的某商品,最后付款额是一样的,请问此商品的标价是多少元?(3)丙商场推出“先打折”,再“满200元减100元”的活动.李明发现在丙商场购买(2)中的商品,虽然标价一样但比在乙商场要多付25元钱,问丙商场先打了多少折后再参加活动?24.如图所示,在平面直角坐标系中,点O 为原点,点()1,2A -,()3,1B -,将AOB 向右平移2个单位,再向上平移3个单位得到111AO B ,点A 的对应点是1A ,点B 的对应点是1B(1)直接写出1O ,1A ,1B 的坐标; (2)在图中画出111AO B ; (3)AOB 的面积=______.25.把下列各数的序号填入相应的括号内①-3,②π,③327-,④-3.14,⑤2,⑥0,⑦227,⑧-1,⑨1.3,⑩1.8080080008…(两个“8”之间依次多一个“0”).整数集合{ …},负分数集合{ …},正有理数集合{ …},无理数集合{ …}.26.如图,已知,AB//CD,EF交AB,CD于G、H,GM、HN分别平分∠AGF,∠EHD.试说明GM//HN.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】首先解不等式,然后根据不等式组无解确定a的范围.【详解】解:521xx a-≥-⎧⎨->⎩①②解不等式①,得3x≤;解不等式②,得x a >; ∵不等式组无解, ∴3a ≥; 故选:B . 【点睛】本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.2.B解析:B 【分析】利润率不低于5%,即利润要大于或等于800×5%元,设打x 折,则售价是1200x 元.根据利润率不低于5%就可以列出不等式即可. 【详解】 设至多打x 折 则12008008005%10x⨯-≥⨯, 解得7x ≥, 即最多可打7折. 故选:B . 【点睛】本题考查了一元一次不等式的应用,正确理解利润率的含义,理解利润=进价×利润率,是解题的关键.3.B解析:B 【分析】由于这两个方程组的解相同,所以可以把这两个方程组中的第一个方程联立再组成一个新的方程组,然后求出x 、y 的解,把求出的解代入另外两个方程,得到关于a ,b 的方程组,即可求出a 、b 的值. 【详解】根据题意,得:55216x y x y +=⎧⎨+=⎩,解得:23x y =⎧⎨=⎩,将2x =、3y =代入1213ax by bx ay +=⎧⎨+=⎩,得:23122313a b b a +=⎧⎨+=⎩,解得:32 ab=⎧⎨=⎩,∴a、b的值分别是3、2.故选:B.【点睛】本题主要考查了二元一次方程组的解,理解方程组的解即为能使方程组中两方程都成立的未知数的值是解题的关键.4.D解析:D【分析】将各项中x与y的值代入方程检验即可.【详解】解:x-2y=1,解得:x=2y+1,当y=-1时,x=-1,所以11xy=-⎧⎨=-⎩是方程21x y-=的解,选项A不合题意,当y=-0.5时,x=-1+1=0,所以0.5xy=⎧⎨=-⎩是方程21x y-=的解,选项B不合题意;当y=0时,x=1,所以1xy=⎧⎨=⎩是方程21x y-=的解,选项C不合题意;当y=1时,x=2+1=3,所以11xy=⎧⎨=⎩不是方程21x y-=的解,选项D符合题意;故选:D.【点睛】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.5.B解析:B【分析】方程组中两方程相加得到以k为未知数的方程,解方程即可得答案.【详解】解:①+②,得3(x+y)=3-3k,由x+y=0,得3-3k=0,解得k=1,故选:B.【点睛】本题考查了二元一次方程组的解,利用等式的性质是解题关键.6.A解析:A 【分析】先根据二元一次方程的解的定义可得一个关于m 的一元一次方程,再解方程即可得. 【详解】由题意得:2215m -+⨯=, 解得32m =-, 故选:A . 【点睛】本题考查了二元一次方程的解,掌握理解方程的解的概念是解题关键.7.D解析:D 【分析】根据点M 、N 的坐标可得直线MN 的解析式,由此即可得. 【详解】(9,5),(3,5)M N ---, ∴直线MN 的解析式为5y =-,则直线MN 与x 轴平行,与y 轴垂直相交, 故选:D . 【点睛】本题考查了直线与坐标轴的位置关系,正确求出直线的解析式是解题关键.8.B解析:B 【分析】根据扇形弧长公式求出弧长,分别求出第4秒、第8秒时点P 的坐标,总结规律,根据规律解答. 【详解】 解:扇形的弧长=603180π⨯=π, 由题意得,点P 在每一个扇形半径上运动时间为1秒,在每一条弧上运动时间为1秒, 则第4秒时,点P 的坐标是(6,0), 第8秒时,点P 的坐标是(12,0), ……第4n 秒时,点P 的坐标是(6n ,0), 2020÷4=505,∴2020秒时,点P 的坐标是(3030,0), 故选:B . 【点睛】本题考查规律型-点的坐标,解此类题的关键是找到循环组规律.9.C解析:C 【分析】无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,据此逐一判断即可得. 【详解】解∵3=2=,∴在所列的83π,1.212 212 221…(每两个1之间依次多一个2)这3个, 故选:C . 【点睛】本题主要考查的是无理数的概念,熟练掌握无理数的三种类型是解题的关键.10.C解析:C 【分析】由∠A+∠ABC=180°可得到AD ∥BC ,再根据平行线的性质判断即可得答案. 【详解】∵180A ABC ∠+∠=︒,∴//AD BC (同旁内角互补,两直线平行), ∴13∠=∠(两直线平行,内错角相等). 故选:C . 【点睛】本题考查的是平行线的判定与性质,同旁内角互补,两直线平行;两直线平行内错角相等;熟知平行线的判定定理是解答此题的关键.11.D解析:D 【分析】根据表格及题意可得第2天、第3天、第4天、第5天的背诵最多的诗词,然后根据不等式的关系可进行求解. 【详解】解:由表格及题可得:∵每天最多背诵8首,最少背诵2首, ∴由第2天、第3天、第4天、第5天可得:128x x +≤①,238x x +≤②,1348x x x ++≤③,248x x +≤④,①+②+④-③得:2316x ≤,∴2163x ≤, ∴123416181333x x x x +++≤+=, ∴7天后,小圆背诵的诗词最多为13首; 故选D . 【点睛】本题主要考查一元一次不等式的应用,熟练掌握不等式的性质与求法是解题的关键.12.B解析:B 【分析】直接利用单项式乘多项式得出a 的值,进而解不等式得出答案. 【详解】解:∵x (x +a )=x 2﹣x , ∴x 2+ax =x 2﹣x , ∴a =﹣1,则不等式ax +3>0即为﹣x +3>0的解集是:x <3. 故选:B . 【点睛】此题主要考查了单项式乘多项式以及解不等式,正确得出a 的值是解题关键.二、填空题13.【分析】由于在某一时刻货车在前小轿车在后客车在货车与小轿车的中间所以设在某一时刻客车与货车小轿车的距离均为S 千米小轿车货车客车的速度分别为abc (千米/分)由过了分钟小轿车追上了客车可以列出方程由又 解析:30【分析】由于在某一时刻,货车在前,小轿车在后,客车在货车与小轿车的中间,所以设在某一时刻,客车与货车、小轿车的距离均为S 千米,小轿车、货车、客车的速度分别为a 、b 、c (千米/分),由过了20分钟,小轿车追上了客车可以列出方程()20a c s -=,由又过了10分钟,小轿车追上了货车列出方程()302a b s -=,由再过t 分钟,客车追上了货车列出方程()()30t c b s +-=,联立所有方程求解即可求出t 的值. 【详解】解:设在某一时刻,客车与货车、小轿车的距离均为S 千米,再过t 分钟,客车追上了货车,小轿车、货车、客车的速度分别为a 、b 、c (千米/分),由题意可得:()()()()2030230a c s a b s t c b s -=⎧⎪-=⎨⎪+-=⎩①②③由②×2-①×3 得:60s c b -=④, ④代入③中得:3060t +=, ∴30t =(分).故答案为:30.【点睛】此题主要考查了三元一次方程组的应用,解题的关键是正确理解题意,准确变为题目的数量关系,然后列出方程组解决问题.14.528【分析】分别将x=1和x=-1代入得到两个等式再用①-②整理即可得出的值【详解】解:当x=1时①当x=-1时②①-2得:即故答案为:528【点睛】本题主要考查了代数式求值和加减消元法的应用取x解析:528【分析】分别将x=1和x=-1代入得到两个等式,再用①-②整理即可得出035a a a ++的值.【详解】解: 当x=1时,5432032a a a a a =++++ ①,当x=-1时,543201024a a a a a -=-+-+- ②,①-2得:5301056222a a a =++,即035++=528a a a .故答案为:528.【点睛】本题主要考查了代数式求值和加减消元法的应用.取x 的特殊值代入是解答此题的关键. 15.(﹣10)【分析】由图可知正方形的边长为4故正方形的周长为16因为蚂蚁甲和蚂蚁乙的速度分别为3个和1个单位所以用正方形的周长除以(3−1)可得蚂蚁甲第1次追上蚂蚁乙时间从而算出蚂蚁乙所走过的路程则第解析:(﹣1,0).【分析】由图可知,正方形的边长为4,故正方形的周长为16,因为蚂蚁甲和蚂蚁乙的速度分别为3个和1个单位,所以用正方形的周长除以(3−1),可得蚂蚁甲第1次追上蚂蚁乙时间,从而算出蚂蚁乙所走过的路程,则第二次和第三次相遇过程中蚂蚁乙所走过的路程和第一次是相同的,从而结合图形可求得蚂蚁甲第3次追上蚂蚁乙的坐标.【详解】解:由图可知,正方形的边长为4,故正方形的周长为16∴蚂蚁甲第1次追上蚂蚁乙时间:16÷(3﹣1)=8(秒)蚂蚁乙走的路程为:1×8=8,∴此时相遇点的坐标为:(﹣1,0),因为蚂蚁甲和蚂蚁乙的速度比为3:1,∴再经过16秒蚂蚁甲和蚂蚁乙第三次相遇,相遇点坐标为:(﹣1,0),故答案为:(﹣1,0).【点睛】本题考查了物体在平面直角坐标系中运动的规律问题,明确相遇问题的计算公式及多次相遇中物体所走路程的规律是解题的关键.16.(-31)【分析】根据右安门的点的坐标可以确定直角坐标系中原点在正阳门建立直角坐标系即可求解【详解】根据右安门的点的坐标为(−2−3)可以确定直角坐标系中原点在正阳门∴西便门的坐标为(−31)故答案解析:(-3,1)【分析】根据右安门的点的坐标可以确定直角坐标系中原点在正阳门,建立直角坐标系即可求解.【详解】根据右安门的点的坐标为(−2,−3),可以确定直角坐标系中原点在正阳门,∴西便门的坐标为(−3,1),故答案为(−3,1);【点睛】此题考查坐标确定位置,解题关键在于建立直角坐标系.17.(1);(2);(3)【分析】(1)根据两点间的距离公式可得答案;(2)由(1)可知再利用绝对值的性质化简绝对值号继而求得答案;(3)根据非负数的性质求出的值再代入进而求其平方根【详解】解:(1)∵解析:(1)2+2;(2)2;(3)4±【分析】(1)根据两点间的距离公式可得答案;(2)由(1)可知10m +>、10m -<,再利用绝对值的性质化简绝对值号,继而求得答案;(3)根据非负数的性质求出c 、d 的值,再代入23c d -,进而求其平方根.【详解】解:(1)∵蚂蚁从点A 沿数轴向右爬了2个单位长度到达点B ,点A 表示∴点B 表示∴m =.(2)∵m = ∴12130m +=+=>,12110m -=-=< ∴11m m ++-()11m m =+--11m m =+-+2=.(3)∵2c d +∴20c d +=∴2040c d d +=⎧⎨+=⎩∴24c d =⎧⎨=-⎩∴()23223416c d -=⨯-⨯-= ∴4==±,即23c d -的平方根是4±.【点睛】本题考查了实数与数轴、绝对值的性质、相反数的性质、非负数的性质、求一个数的平方根等,熟练掌握相关知识点是解题的关键.18.(4)【分析】根据平行线的定义平行线的性质平行公理的推论解答【详解】(1)在同一平面内不相交的两条直线叫做平行线故该项错误;(2)过直线外一点有且只有一条直线与已知直线平行故该项错误;(3)在同一平 解析:(4)【分析】根据平行线的定义,平行线的性质,平行公理的推论解答.【详解】(1)在同一平面内不相交的两条直线叫做平行线,故该项错误;(2)过直线外一点,有且只有一条直线与已知直线平行,故该项错误;(3)在同一平面内,垂直于同一条直线的两直线平行,故该项错误;(4)直线//a b ,//b c ,则//a c ,故该项正确;(5)两条平行线被第三条直线所截,同位角相等,故该项错误.故选:(4).【点睛】此题考查判断语句,熟记平行线的定义,平行线的性质,平行公理的推论是解题的关键. 19.2﹤a≤3【分析】先解出第一个不等式的解集进而得到不等式组的解集再根据不等式组有3个整数解确定a 的取值范围即可【详解】解:解不等式得:x ﹥﹣1∴原不等式组的解集为:﹣1﹤x ﹤a ∵不等式组有3个整数解解析:2﹤a ≤3【分析】先解出第一个不等式的解集,进而得到不等式组的解集,再根据不等式组有3个整数解确定a 的取值范围即可.【详解】 解:解不等式3112x +-<得:x ﹥﹣1, ∴原不等式组的解集为:﹣1﹤x ﹤a ,∵不等式组有3个整数解,∴2﹤a≤3,故答案为:2﹤a≤3.【点睛】 本题考查了不等式组的整数解,能根据已知不等式组的整数解确定参数a 的取值范围是解答的关键,必要时可借助数轴更直观.20.【分析】表示出不等式组中两不等式的解集根据x 的范围确定出a 的值即可【详解】解不等式得解不等式得∵不等式组的解集为解得:故答案为:【点睛】本题考查了解一元一次不等式组能根据不等式的解集和已知得出关于的 解析:5a =-【分析】表示出不等式组中两不等式的解集,根据x 的范围确定出a 的值即可.【详解】解不等式21x a ->得12a x +>, 解不等式122x x ->-得1x <,∵不等式组的解集为21x -<<,122a +=-, 解得:5a =-.故答案为:5a =-.【点睛】本题考查了解一元一次不等式组,能根据不等式的解集和已知得出关于a 的方程是解此题的关键.三、解答题21.(1)3月20日当天口罩的价格为每盒36元.(2)a 的最大值为25.【分析】(1)可设年初口罩的价格为每盒x 元,则3月20日当天口罩的价格为每盒1.5x 元,根据3月20日当天,王老师购买4盒口罩比年初多花了48元列出方程即可求解; (2)根据两种口罩销售的总金额比3月20日至少提高了1%10a ,列出不等式即可求解. 【详解】解:(1)设年初口罩的价格为每盒x 元,则3月20日当天口罩的价格为每盒1.5x 元,依题意有4 1.5448x x ⨯-=,解得24x = ,1.5 1.52436x =⨯=.∴3月20日当天口罩的价格为每盒36元.(2)1000×(1+20%)=1200(盒), 5120010006⨯==1000(盒), 1200-1000=200(盒),依题意有()13620010003610.7%1000361%10a a ⎛⎫⨯+⨯-≥⨯+⎪⎝⎭, 解得a≤25.故a 的最大值为25.【点睛】本题考查了一元一次方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)根据各数量之间的关系,正确列出一元一次不等式.22.(1)2x ≥,数轴见解析;(2)3【分析】(1)解不等式,然后根据数轴与解集的关系画出数轴即可; (2)首先解出不等式325123x x --<+的解集,从中找到最小整数解,然后代入方程24x ax -=中,得到一个关于a 的方程,解方程即可.【详解】(1)()311x x -≥+ 331x x -≥+313x x -≥+24x ≥2x ≥数轴如下:(2)325123x x --<+ ()()332256x x -<-+394106x x -<-+341069x x -<-++5x -<5x >-∴不等式的最小整数解为-4.∵不等式325123x x --<+的最小整数解是关于x 的方程24x ax -=的解, ∴()2444a ⨯-+=解得3a =.【点睛】本题主要考查不等式与方程的结合,掌握解一元一次不等式的方法是解题的关键. 23.(1)甲;(2)625;(3)丙商场先打了8.8折后再参加活动.【分析】(1)分别计算在甲,乙商场的费用,比较后可得答案;(2)设商品的标价为x 元,判断:600<x <800,再根据最后付款额是一样的列方程,解方程可得答案;(3)先求解同种商品在丙商场付款350元,设丙商场先打y 折,再“满200元减100元”,且设减了n 个100,可得方程625100350,10y n ⨯-= 由n 为正整数,进行讨论并检验,从而得到答案.【详解】解:(1)张丽在甲商场购买所花:85052%442⨯=(元),在乙商场购买所花:8504100450-⨯=(元),由442<450,张丽应该选择甲商场购买.(2)设商品的标价为x 元,由题意可得:600<x <800,则 52%3100,x x =-⨯0.48300,x ∴=625x ∴=答:此商品的标价是625元.(3)由(2)得:625元的商品在乙商场付款6253100325-⨯=元,所以同种商品在丙商场付款325+25=350元,设丙商场先打y 折,再“满200元减100元”,且设减了n 个100,则 625100350,10y n ⨯-= 整理得:5828,y n -=8528,n y ∴=-5288y n -∴= , 又n 为正整数,当5288y -=时,7.2,1,y n ==经检验:7.2625=45010⨯元,此时2n =,不合题意,舍去, 当52816y -=时,8.8,2,y n == 经检验:8.862555010⨯=元,此时2n =,符合题意, 当52824y -=时,10.4,y = 此时不符合题意,故舍去, 综上:丙商场先打了8.8折后再参加活动.【点睛】本题考查的是一元一次方程的应用,二元一次方程的正整数解的应用,分类讨论的数学思想,掌握以上知识是解题的关键.24.(1)()12,3O ;()11,5A ;()15,2B;(2)见解析;(3)2.5. 【分析】(1)直接根据平移的坐标变化规律即可求解;(2)先描点,再连线即可;(3)利用网格图中,根据割补法即可求解.【详解】(1)()12,3O ;()11,5A ;()15,2B; (2)(3)111433141 2.5222AOB S =⨯⨯-⨯⨯-⨯⨯=【点睛】此题主要考查图形的平移、再网格图中求三角形的面积,熟练掌握平移的性质和割补法是解题关键.25.见解析.【分析】先求出立方根,再根据整数、负分数、正有理数、无理数的定义即可得.【详解】3=-,26.证明见解析.【分析】首先根据平行线的性质可得∠BGF=∠DHE,再根据角平分线的性质可证明∠1=∠2,然后根据内错角相等,两直线平行可得HN∥GM.【详解】证明:∵AB∥CD,∴∠AGF=∠DHE,∵GM、HN分别平分∠AGF,∠EHD,∴∠1=12∠AGF,∠2=12∠DHE,∴∠1=∠2,∴GM∥HN.【点睛】此题主要考查了平行线的判定与性质,关键是掌握平行线的判定定理与性质定理.。
初一下册数学期末考试卷浙教版

初一下册数学期末考试卷浙教版一、精心选一选:(本大题共8小题,每题2分,共16分)1.下列运算中,正确的是……………………………………………………………()A.a2+a2=2a4 B.a2 a3=a6 C.(-3x)3÷(-3x)=9x2 D.(-ab2)2=-a2b4 2. 下列多项式中,能运用公式法因式分解的是……………………………………()A.x2-xy B.x2+xy C.x2+y2 D.x2-y23.如图,直线AB与直线CD相交于点O,OE⊥AB,垂足为O,∠EOD=12∠AOC,则∠BOC=…………………………………………………………………………() A.120° B.130° C.140° D.150°4.下列不等式变形中,一定正确的是()A、若 ac>bc,则a>bB、若a>b,则ac >bcC、若ac >bc ,则a>bD、若a>0 ,b>0,且,则a>b5.等腰三角形的两边长分别为5和11,则它的周长为()A、21B、21或27C、27D、256.已知方程组的解满足x + y = 2 ,则k 的值为()A、4B、- 4C、2D、- 27.如图,直角△ADB中,∠D=90°, C为AD上一点,且∠ACB的度数为(5x-10)°,则x的值可能是()A、10B、20C、30D、408. 如图,周长为34cm的长方形ABCD被分成7个形状大小完全相同的小长方形,则长方形ABCD的面积为……………………………………………… ………………………………() A.49cm2 B.68cm2 C.70cm2 D.74cm2二、细心填一填:(本大题共9小题,每空2分,共18分)9. 某种生物细胞的直径约为0.00056米,用科学记数法表示为米.10.已知一个多边形的内角和比它的外角和的3倍少180 ,则此多边形的边数为 .11.内角和与外角和之比是5∶1的多边形是______边形。
浙教版七年级(下)期末数学试卷带答案
最新浙教版初中数学七年级下册期末试卷及答案一、选择题(本大题共有10小题,每小题3分,共30分,请选出一个符合题意的正确选项填涂在答题卷内,不选、多选、错选均不给分)1.(3分)要使分式有意义,x的取值范围满足()A.x=0B.x≠0C.x>0D.x<02.(3分)如图,直线l∥m,将含有45°角的三角板ABC的直角顶点C放在直线m上,若∠1=25°,则∠2的度数为()A.20°B.25°C.30°D.35°3.(3分)计算3a•(2b)的结果是()A.3ab B.6a C.6ab D.5ab4.(3分)下面的多项式中,能因式分解的是()A.m2+n B.m2﹣m+1C.m2﹣n D.m2﹣2m+15.(3分)长度单位1纳米=10﹣9米,目前发现一种新型禽流感病毒(H7N9)的直径约为101纳米,用科学记数法表示该病毒直径是()A.10.1×10﹣8米B.1.01×10﹣7米C.1.01×10﹣6米D.0.101×10﹣6米6.(3分)已知一组数据10,8,6,10,9,13,11,11,10,10,下列各组中频率为0.2的是()A.5.5﹣7.5B.7.5﹣9.5C.9.5﹣11.5D.11.5﹣13.57.(3分)能使x2+18x+m是完全平方式的m值为()A.9B.18C.81D.3248.(3分)若a x=3,a y=2,则a2x﹣y等于()A.18B.11C.D.79.(3分)设“,,”分别表示三种不同的物体,如图所示,前两架天平保持平衡,如果要使第三架天平也平衡,那么在右盘处应放“■”的个数为()A.2个B.3个C.4个D.5个10.(3分)在数学中,为了书写简便,我们通常记k=1+2+3+…+(n﹣1)+n,如(x+k)=(x+1)+(x+2)+(x+3)+(x+4),则化简[(x﹣k)(x﹣k﹣1)]的结果是()A.3x2﹣15x+20B.3x2﹣9x+8C.3x2﹣6x﹣20D.3x2﹣12x﹣9二、填空题(本大题共有6小题,每小题4分,共24分)11.(4分)当a=2时,代数式3a﹣1的值是.12.(4分)如图,AB∥CD,DB⊥BC,∠1=40°,则∠2的度数是.13.(4分)分解因式(x﹣1)2﹣2(x﹣1)+1的结果是.14.(4分)计算:=.15.(4分)已知m+n=2,mn=﹣2,则(1﹣m)(1﹣n)=.16.(4分)若(a+2)a﹣3=1,则a=.三、解答题(本大题共有8小题,共66分)17.(6分)计算:(1)3b3×b2(2)(14a3﹣7a2)÷7a18.(6分)为了改进银行的服务质量,随机抽查了30名顾客在窗口办理业务所用的时间(单位:分钟).下图是这次调查得到的统计图.请你根据图中的信息回答下列问题:(1)办理业务所用的时间为11分钟的人数是;(2)补全条形统计图;(3)这30名顾客办理业务所用时间的平均数是分钟.19.(6分)分解因式(1)16a2﹣1(2)x2+14x+4920.(8分)解方程组(1)(2)21.(8分)解分式方程(1)=﹣2(2)+1=22.(10分)为响应金华市政府发出的创文明城市号召,学校总务处刘老师用M元钱购买花卉发给各班美化卫生保洁区.若以2棵树和3株花为一份,则可买60份;若以2棵树和6株花为一份,则可以买40份,设树的单价为x元/棵,花的单价为y元/株(1)当M=2160时,求树和花的单价.(2)若用这M元钱全部购买花,总共可以买几株花?23.(10分)先阅读下面的材料,然后回答问题方程x+=2+的解为x1=2,x2=;方程x+=3+的解为x1=3,x2=;方程x+=4+的解为x1=4,x2=;……(1)观察上述方程的解,猜想关于x的方程x+=2019+的解是.(2)猜想关于关于x的方程x﹣=﹣+3的解并验证你的结论.(3)请仿照上述方程的解法,对方程y+=进行变形,并求出方程的解.24.(12分)如图1,AB∥CD,定点E,F分别在定直线AB,CD上,点A在点B左侧,点C在点D左侧,动点P不在直线AB,CD,EF上.(1)【初步探究】试问当动点P位于两平行线AB,CD之间时,如图2,图3,∠AEP,∠EPF,∠PFC满足怎样的数量关系?并说明相应理由(2)【深入探究】当点P在不同的位置时,请画出∠AEP,∠EPF,∠PC三个角中其中个角度数等于另两个角的度数之和时的所有示意图,并直接写出相应关系式,第(1)小题的关系式除外.参考答案一、选择题(本大题共有10小题,每小题3分,共30分,请选出一个符合题意的正确选项填涂在答题卷内,不选、多选、错选均不给分)1.B 2.A 3.C 4.D 5.B 6.C 7.C 8.C 9.D 10.A二、填空题(本大题共有6小题,每小题4分,共24分)11.5 12.50°13.(x﹣2)2 14.x+5 15.﹣3 16.3或﹣1或﹣3.三、解答题(本大题共有8小题,共66分)17.解:(1)3b3×b2=b5;(2)(14a3﹣7a2)÷7a=2a2﹣a.18.解:(1)办理业务所用的时间为11分钟的人数=30﹣3﹣10﹣7﹣4﹣1=5(人),(2)如图:(3)这30名顾客办理业务所用时间的平均数=(8×3+9×10+10×7+11×5+12×4+13×1)÷30=10(分钟).19.解:(1)原式=(4a+1)(4a﹣1);(2)原式=(x+7)2.20.解:(1),把②代入①得:﹣3(y﹣1)+2y=1,y=2,∴x=2﹣1=1,∴方程组的解为:;(2),①﹣②得:9t=3,t=,把t=代入①得:2s+1=2,s=,∴方程组的解为:.21.解:(1)去分母得:2﹣x=﹣1﹣2x+6,解得:x=3,经检验x=3是增根,分式方程无解;(2)去分母得:2+2x+1﹣x2=x﹣x2,解得:x=﹣3,经检验x=﹣3是分式方程的解.22.解:(1)由题意得:,解得:;答:树的单价为9元/棵,花的单价为6元/株;(2)∵树和花的单价比为3:2,以2棵树和3株花为一份,则可买60份,∴用这笔钱全部购买花:60×3+60×3=360(株),答:若用这M元钱全部购买花,总共可以买360株花.23.解:(1)猜想方程x+=2019+的解是x1=2019,x2=,故答案为:x1=2019,x2=;(2)猜想关于x的方程x﹣=﹣+3的解为x1=3,x2=﹣,理由为:方程变形得:x+(﹣)=3+(﹣),依此类推得到解为x1=3,x2=﹣;(3)y+=,方程变形得:y+=,y+2+=5+,可得y+2=5或y+2=,解得:y1=3,y2=﹣.24.解:(1)①如图2中,结论:∠EPF=∠AEP+∠CFP.理由:∵AB∥CD.∴∠AEF+∠CFE=180°,∴∠AEP+∠CFP+∠PEF+∠PFE=180°,∵∠EPF+∠PEF+∠PFE=180°,∴∠EPF=∠AEP+∠CFP.②如图3中,结论:∠AEP+∠EPF+∠CFP=360°.理由:∵AB∥CD,∴∠AEF+∠CFE=180°,∵∠PEF+∠EPF+∠PFE=180°,∴∠AEF+∠PEF+∠EPF+∠CFE+∠PFE=360°,∴∠AEP+∠EPF+∠CFP=360°.(2)如图2﹣1中,结论:∠CFP=∠EPF+∠AEP.如图2﹣2中,结论:∠AEP=∠EPF+∠CFP.如图2﹣3中,结论:∠CFP=∠EPF+∠AEP.如图2﹣4中,结论:∠AEP=∠EPF+∠CFP.。
浙教版七年级下册数学期末试题附答案
2021年七年级下册期末考试数学试题一.选择题(共10小题,满分30分,每小题3分)1.下列图案中,可由如图图案平移得到的是()A.B.C.D.2.下列调查中不适合抽样调查的是()A.调查某景区一年内的客流量B.了解全国食盐加碘情况C.调查某小麦新品种的发芽率D.调查某班学生骑自行车上学情况3.新冠病毒(2019﹣nCoV)是一种新的Sarbecovirus亚属的β冠状病毒,它是一类具有囊膜的正链单股RNA病毒,其遗传物质是所有RNA病毒中最大的,也是自然界广泛存在的一大类病毒.其粒子形状并不规则,直径约60﹣220nm,平均直径为100nm(纳米).1米=109纳米,100nm可以表示为()米.A.0.1×10﹣6B.10×10﹣8C.1×10﹣7D.1×10114.下列运算结果为a6的是()A.a3•a2B.a9﹣a3C.(a2)3D.a18÷a35.若,是方程ax+by=6的两组解,则a、b的值为()A.4,2 B.2,4 C.﹣4,﹣2 D.﹣2,﹣46.据不完全统计,2020年1~4月份我国某型号新能源客车的月销量情况如图所示,下列说法错误的是()A.1月份销量为2万辆B.从2月到3月的月销量增长最快C.4月份销量比3月份增加了0.9万辆D.1~4月新能源客车销量逐月增加7.将分式中的x,y的值同时扩大到原来的3倍,则分式的值()A.扩大到原来的3倍B.缩小到原来的C.保持不变D.无法确定8.明代大数学家程大位著《算法统宗》一书中,记载了这样一道数学题:“八万三千短竹竿,将来要把笔头安,管三套五为期定,问君多少能完成?”用现代的话说就是:有83000根短竹,每根短竹可制成毛笔的笔管3个或笔套5个,怎样安排笔管和笔套的短竹的数量,使制成的1个笔管与1个笔套正好配套?设用于制作笔管的短竹数为x根,用于制作笔套的短竹数为y根,则可列方程为()A.B.C.D.9.若关于x的方程=0有增根,则m的值是()A.B.﹣C.3 D.﹣310.如图,点E在正方形ABCD的对角线AC上,且EC=2AE,直角三角形FEG的两直角边EF、EG,分别交BC、DC于点M、N,若正方形的边长为a,则重叠部分四边形的面积为()A.B.C.D.二.填空题(共6小题,满分24分,每小题4分)11.计算:(﹣7)0=,8﹣1=.12.计算:(12a3+6a2﹣3a)÷3a=13.已知:如图,∠1=∠2=∠3=54°,则∠4的度数是.14.对某班最近一次数学测试成绩(得分取整数)进行统计分析,全班共50人,将50分以上(不含50分)的成绩由低到高分成五组,并绘制成如图所示的频数分布直方图,根据直方图提供的信息,在这次测试中,成绩为及格(60分以上,不含60分)的在全班学生成绩中所占百分比为.15.如果a2﹣a﹣1=0,那么代数式(1﹣)÷的值是.16.对x,y定义一种新运算“※”,规定:x※y=mx+ny(其中m,n均为非零常数),若1※1=4,1※2=3.则2※1的值是.三.解答题(共8小题,满分66分)17.(6分)化简:(1)(a+b)2+(a﹣b)(a+b)﹣2ab;(2)(a2b﹣2ab2﹣b3)÷b﹣(a﹣b)2.18.(6分)因式分解:(1)4xy2﹣4x2y﹣y3;(2)9a2(x﹣y)+4b2(y﹣x).19.(8分)先化简:(﹣)÷,再从﹣3、﹣2、﹣1、0、1中选一个合适的数作为a的值代入求值.20.(8分)解方程组21.(8分)学生社团是指学生在自愿基础上结成的各种群众性文化、艺术、学术团体,不分年级、由兴趣爱好相近的同学组成,在保证学生完成学习任务和不影响学校正常教学秩序的前提下开展各种活动.某校就学生对“篮球社团、动漫社团、文学社团和摄影社团”四个社团选择意向进行了抽样调查(每人选报一类),绘制了如图所示的两幅统计图(不完整).请根据图中信息,解答下列问题:(1)求扇形统计图中m的值,并补全条形统计图;(2)已知该校有1200名学生,请估计“文学社团”共有多少人?22.(8分)如图,点O在直线AB上,OC⊥OD,∠D与∠1互余,F是DE上一点,连接OF.(1)求证:ED∥AB.(2)若OF平分∠COD,∠OFD=70°,求∠1的度数.23.(10分)端午节前夕,肉粽的单价比蜜枣粽的单价多4元,用200元购买肉粽与用100元购买蜜枣粽的只数相同.(1)肉粽和蜜枣粽的单价分别是多少元?(2)某商铺端午节前夕用800元购买了肉粽和蜜枣粽;端午节后由于肉棕单价打了6折,蜜枣粽的单价打了5折,该商铺又买了与节前同样数量的肉粽和蜜枣粽,只花了420元.求该商铺每次购买肉粽和蜜枣粽的只数.24.(12分)如图(1),有A、B、C三种不同型号的卡片若干张,其中A型是边长为a(a>b)的正方形,B型是长为a、宽为b的长方形,C型是边长为b的正方形.(1)若用A型卡片1张,B型卡片2张,C型卡片1张拼成了一个正方形(如图(2)),此正方形的边长为,根据该图形请写出一条属于因式分解的等式:.(2)若要拼一个长为2a+b,宽为a+2b的长方形,设需要A类卡片x张,B类卡片y张,C类卡片z 张,则x+y+z=.(3)现有A型卡片1张,B型卡片6张,C型卡片11张,从这18张卡片中拿掉两张卡片,余下的卡片全用上,你能拼出一个长方形或正方形吗?有几种拼法?请你通过运算说明理由.参考答案一.选择题(共10小题,满分30分,每小题3分)1.解:观察各选项图形可知,D选项的图案可以通过平移得到.故选:D.2.解:A、调查某景区一年内的客流量,所费人力、物力和时间较多,适合抽样调查,故本选项不合题意;B、了解全国食盐加碘情况,所费人力、物力和时间较多,适合抽样调查,故本选项不合题意;C、调查某小麦新品种的发芽率,适合抽样调查,故本选项不合题意;D、调查某班学生骑自行车上学情况,适合全面调查,故本选项符合题意.故选:D.3.解:100nm=100×10﹣9m=1×10﹣7m.故选:C.4.解:A.a3•a2=a5,故本选项不合题意;B.a9与﹣a3不是同类项,所以不能合并,故本选项不合题意;C.(a2)3=a6,故本选项符合题意;D.a18÷a3=a15,故本选项不合题意.故选:C.5.解:把,代入方程得:,①+②得:3a=12,解得:a=4,把a=4代入①得:4+b=6,解得:b=2.故选:A.6.解:由折线图可以看出:1月份新能源车的销量是2万辆,故选项A正确;从二月到三月新能源车的销量增长了3.5﹣1.8=1.7(万辆),从三月到四月,新能源车的销量增长了4.4﹣3.5=0.9(万辆);所以从2月到3月的月新能源车销量增长最快,4月份销量比3月份增加了0.9万辆,故选项B、C正确;由于二月份销量比一月份减少了,故选项D错误.故选:D.7.解:由题意得:=,无法确定,故选:D.8.解:依题意,得:.故选:B.9.解:由=0得6﹣x﹣2m=0,∵关于x的方程=0有增根,∴x=3,当x=3时,6﹣3﹣2m=0,解得m=,故选:A.10.解:过E作EP⊥BC于点P,EQ⊥CD于点Q,∵四边形ABCD是正方形,∴∠BCD=90°,又∵∠EPM=∠EQN=90°,∴∠PEQ=90°,∴∠PEM+∠MEQ=90°,∵三角形FEG是直角三角形,∴∠NEF=∠NEQ+∠MEQ=90°,∴∠PEM=∠NEQ,∵AC是∠BCD的角平分线,∠EPC=∠EQC=90°,∴EP=EQ,四边形PCQE是正方形,在△EPM和△EQN中,,∴△EPM≌△EQN(ASA)∴S△EQN=S△EPM,∴四边形EMCN的面积等于正方形PCQE的面积,∵正方形ABCD的边长为a,∴AC=a,∵EC=2AE,∴EC=a,∴EP=PC=a,∴正方形PCQE的面积=a×a=a2,∴四边形EMCN的面积=a2,故选:C.二.填空题(共6小题,满分24分,每小题4分)11.解:(﹣7)0=1,8﹣1=.故答案为:1,.12.解:原式=4a2+2a﹣1.13.解:∵∠1=∠2=∠3=54°,∵∠1=∠5,∴∠5=∠2,∴l1∥l2,∴∠6=∠3,∴∠4=180°﹣∠6=180°﹣54°=126°,故答案为:126°.14.解:在这次测试中,成绩为及格(60分以上,不含60分)的在全班学生成绩中所占百分比为×100%=82%,故答案为:82%.15.解:原式=(﹣)•,=•,=a(a﹣1),=a2﹣a,∵a2﹣a﹣1=0,∴a2﹣a=1,∴原式=1,故答案为:1.16.解:∵1※1=4,1※2=3,∴,解得:,则x※y=5x﹣y∴2※1=2×5﹣1=9,故答案为:9.三.解答题(共8小题,满分66分)17.解:(1)原式=(a2+2ab+b2)+(a2﹣b2)﹣2ab=a2+2ab+b2+a2﹣b2﹣2ab=2a2;(2)原式=a2﹣2ab﹣b2﹣(a2﹣2ab+b2)=a2﹣2ab﹣b2﹣a2+2ab﹣b2=﹣2b2.18.解:(1)原式=﹣y(4x2﹣4xy+y2)=﹣y(2x﹣y)2;(2)原式=9a2(x﹣y)﹣4b2(x﹣y)=(x﹣y)(9a2﹣4b2)=(x﹣y)(3a+2b)(3a﹣2b).19.解:原式=•===,当a=﹣3,﹣1,0,1时,原式没有意义,舍去,当a=﹣2时,原式=﹣.20.解:整理方程组得:②×2得:10y+8x=102xy③①+③得:11y=110xy解得:x=把x=代入①得:y﹣=y解得:y=4经检验,原方程组的解为21.解:(1)本次调查的总人数为15÷25%=60(人),∴A类别人数为:60﹣(24+15+9)=12(人),则m%=×100%=20%,∴m=20,补全条形统计图如下:(2)1200×25%=300(人).答:估计“文学社团”共有300人.22.(1)证明:∵∠D与∠1互余,∴∠D+∠1=90°,∵OC⊥OD,∴∠COD=90°,∴∠D+∠1+∠COD=180°,∴∠D+∠AOD=180°,∴ED∥AB;(2)解:∵ED∥AB,∴∠AOF=∠OFD=70°,∵OF平分∠COD,∴∠COF=∠COD=45°,∴∠1=∠AOF﹣∠COF=25°.23.解:(1)设蜜枣粽的单价是x元,则肉粽的单价是(x+4)元,根据题意得:=.解得:x=4,经检验x=4是原方程的根.所以x+4=8.答:蜜枣粽的单价是4元,肉粽的单价是8元;(2)设每次购买肉粽a只,购买蜜枣粽b只,由题意得:.解得:.答:每次购买肉粽25只,购买蜜枣粽150只.24.解:(1)由图(1)和图(2)可得正方形的边长为a+b,由图(2)可得因式分解的等式a2+2ab+b2=(a+b)2.故答案为a+b,a2+2ab+b2=(a+b)2;(2)∵(2a+b)(a+2b)=2a2+5ab+2b2,∴需要用A类卡片2张,B类卡片5张,C类卡片2张,∴x+y+z=2+5+2=9;故答案为9;(3)三种拼法:第一种:A型卡片拿掉1张,B型卡片拿掉1张,则能拼出一个长方形,即长方形的长为5a+11b,宽为b,∴b(5a+11b)=5ab+11b2;第二种:A型卡片拿掉1张,C型卡片拿掉1张,则能拼出一个长方形,即长方形的长为3a+5b,宽为2b,∴2b(3a+5b)=6ab+10b2;或者长为6a+10b,宽为b,∴(6a+10b)b=6ab+10b2;此种情况共2种拼法;第三种:C型卡片拿掉2张,则能拼出一个正方形方形,即正方形边长为a+3b,∴(a+3b)2=a2+6ab+9b2.。
最新浙教版七年级下数学期末综合复习试卷含答案
最新浙教版七年级下数学期末综合复习试卷含答案1.下列现象不属于平移的是()A.XXX坐电梯从一楼到二楼B.吊车将地面上的货物吊起C.小朋友坐滑梯下滑D.电风扇扇叶的转动2.计算(-2x^2)^3+(3-π)的结果正确的是()A。
-2x^5+1B。
-8x^6+1C。
-2x^6+1D。
-8x^6+3-π3.下列多项式中,能用公式法分解因式的是()A。
x^2-xyB。
2x^2+4xyC。
x^2-14xy+49y^2D。
x^2+y^24.一种新型病毒的直径约为0.毫米,用科学记数法表示为()A。
0.43×10^-4B。
0.43×10^-5C。
4.3×10^-5D。
4.3×10^-85.计算:(1-a/a^2)/(1-1/a),结果正确的是()A。
-1B。
1C。
2D。
-6.现将一组数据:25,21,23,25,27,29,25,28,30,29,26,24,25,27,26,22,24,25,26,28分成五组,其中第五组28.5~30.5的频数和频率分别是()A。
2,0.1B。
3,0.15C。
6,0.2D。
8,0.47.下列所给的三个分式:15x+1/2x,4/(x-3),的最简公分母是()A。
4x^2(x-3)B。
2x^2(x-3)C。
4x(x-3)D。
1/4x^2(x-3)8.方程3x+2y=4与下列方程构成的方程组的解为的是()y=-12x-3y=-72x-3y=73x-2y=109.如图,直线a∥b,点C、D分别在直线b、a上,AC⊥BC,CD平分∠ACB,若∠1=70°,则∠2的度数为()A。
60°B。
65°C。
70°D。
85°10.某校举行书法比赛,为奖励优胜学生,购买了一些钢笔和毛笔,毛笔单价是钢笔单价的1.5倍,购买钢笔用了1500元,购买毛笔用1800元,购买的钢笔支数比毛笔多30支,钢笔、毛笔的单价分别是多少元?如果设钢笔的单价为x元/支,那么下面所列方程正确的是()A。
浙教版七年级数学下册试题期末数学试卷(解析版).docx
七年级(下)期末数学试卷参考答案与试题解析一、精心选一选(本题有10小题,每小题3分,共30分)【请将精心选一选的选项选入下列方框中,错选,不选,多选,皆不得分】1.(3分)比﹣1小1的数是()A.﹣1 B.1C.﹣2 D.2考点:有理数的减法.分析:认真阅读列出正确的算式,比﹣1小1的数,就是在﹣1的基础上减1.解答:解:根据题意列算式:﹣1﹣1=﹣2.故选C.点评:考查了有理数的减法,有理数运算的实际应用题是中考的常见题,其解答关键是依据题意正确地列出算式.2.(3分)(2013•昆都仑区一模)的平方根是()A.4B.±4 C.2D.±2考点:平方根;算术平方根.分析:先化简=4,然后求4的平方根.解答:解:=4,4的平方根是±2.故选D.点评:本题考查平方根的求法,关键是知道先化简.3.(3分)在﹣(﹣2),﹣|﹣2|,(﹣2)2,﹣22这4个数中,属于负数的个数是()A.1B.2C.3D.4考点:正数和负数;相反数;绝对值;有理数的乘方.专题:计算题.分析:根据小于0的数是负数,把题中各数据化简后即可判断.解答:解:﹣(﹣2)=2,﹣|﹣2|=﹣2,(﹣2)2=4,﹣22=﹣4,∴是负数的有﹣|﹣2|,﹣22共2个.故选B.点评:本题主要考查了负数的定义,把各数正确进行计算化简是解题的关键.4.(3分)数6,﹣1,15,﹣3中,任取三个不同的数相加,其中和最小的是()A.﹣3 B.﹣1 C.3D.2考点:有理数的加法;有理数大小比较.专题:计算题.分析:由题意可知,要任取三个不同的数相加,使其中的和最小,则取其中三个较小的数相加即可.解答:解:∵三个不同的数相加,使其中和最小,∴三个较小的数相加即可,因此取﹣1+(﹣3)+6=2.故选D.点评:要使和最小,则每一个加数尽量取最小.5.(3分)下列关于单项式的说法正确的是()A.次数是2,系数是﹣2πB.次数是5,系数是C.次数是4,系数是D.次数是4,系数是考点:单项式.专题:应用题.分析:根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.解答:解:根据单项式定义得:单项式的次数是4,系数是.故选C.点评:本题考查了单项式系数、次数的定义.确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.6.(3分)哥哥今年的年龄是弟弟的2倍,弟弟说:“六年前,我们俩的年龄和为15岁”,若用x表示哥哥今年的年龄,则可列方程()A.B.C.D.考点:一元一次方程的应用.专题:应用题.分析:由于用x表示哥哥今年的年龄,那么根据题意得到弟弟的年龄是,又六年前,他们俩的年龄和为15岁,由此可以列出方程解决问题.解答:解:∵用x表示哥哥今年的年龄,∴弟弟的年龄是,又六年前,他们俩的年龄和为15岁,∴x﹣6+﹣6=15.故选B.点评:此题主要考查了由于由此在实际问题中的应用,解题关键是利用x表示弟弟今年的年龄,同时也应该知道六年前哥哥和弟弟的年龄都要减去6.7.(3分)若|3x+y+5|+|2x﹣2y﹣2|=0,则2x2﹣3xy的值是()A.14 B.﹣4 C.﹣12 D.12考点:解二元一次方程组;非负数的性质:绝对值.分析:先根据非负数的性质列出关于x、y的方程组,求出x、y的值代入进行计算即可.解答:解:∵|3x+y+5|+|2x﹣2y﹣2|=0,∴,解得,∴原式=2﹣6=﹣4.故选B.点评:本题考查的是解二元一次方程组,熟知解二元一次方程组的代入消元法和加减消元法是解答此题的关键.8.(3分)如(x+m)与(x+3)的乘积中不含x的一次项,则m的值为()A.﹣3 B.3C.0D.1考点:多项式乘多项式.分析:先用多项式乘以多项式的运算法则展开求它们的积,并且把m看作常数合并关于x的同类项,令x 的系数为0,得出关于m的方程,求出m的值.解答:解:∵(x+m)(x+3)=x2+3x+mx+3m=x2+(3+m)x+3m,又∵乘积中不含x的一次项,∴3+m=0,解得m=﹣3.故选A.点评:本题主要考查了多项式乘多项式的运算,根据乘积中不含哪一项,则哪一项的系数等于0列式是解题的关键.9.(3分)不等式组的解集是3<x<a+2,则a的取值范围是()A.a>1 B.a≤3C.a<1或a>3 D.1<a≤3考点:解一元一次不等式组.专题:计算题.分析:根据题中所给条件,结合口诀,可得a﹣1与3之间、5和a+2之间都存在一定的不等关系,解这两个不等式即可.解答:解:根据题意可知a﹣1≤3即a+2≤5所以a≤3又因为3<x<a+2即a+2>3所以a>1所以1<a≤3故选D.点评:主要考查了已知一元一次不等式解集求不等式中的字母的值,同样也是利用口诀求解,注意:当符号方向不同,数字相同时(如:x>a,x<a),没有交集也是无解但是要注意当两数相等时,在解题过程中不要漏掉相等这个关系.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).10.(3分)(2010•泰州)已知(m为任意实数),则P、Q的大小关系为()A.P>Q B.P=Q C.P<Q D.不能确定考点:配方法的应用.专题:压轴题.分析:可令Q﹣P,将所得代数式配成完全平方式,再根据非负数的性质来判断所得代数式的符号,进而得出P、Q的大小关系.解答:解:由题意,知:Q﹣P=m2﹣m﹣m+1=m2﹣m+1=m2﹣m++=(m﹣)2+;由于(m﹣)2≥0,所以(m﹣)2+>0;因此Q﹣P>0,即Q>P.故选C.点评:熟练掌握完全平方公式,并能正确的对代数式进行配方是解答此类题的关键.二、耐心填一填(每小题4分,共24分)11.(4分)在,﹣π,0,3.14,,0.3,,中,是无理数的有﹣π,﹣.考点:无理数.专题:存在型.分析:根据无理数及有理数的定义进行解答即可.解答:解:是分数,故是有理数;﹣π是无限不循环小数,故是无理数;0是整数,故是有理数;3.14是小数,故是有理数;是开方开不尽的数,故是无理数;0.3是小数,故是有理数;=﹣7,﹣7是整数,故是有理数;是分数,故是有理数.故答案为:﹣π,﹣.点评:本题考查的是无理数的定义,即无限不循环小数叫做无理数.12.(4分)若a,b互为倒数,c,d互为相反数,则ab+c+d=1.考点:代数式求值;相反数;倒数.专题:计算题.分析:根据倒数和相反数的意义得到ab=1,c+d=0,然后利用整体思想进行计算.解答:解:∵a,b互为倒数,c,d互为相反数,∴ab=1,c+d=0,∴ab+c+d=1+0=1.故答案为1.点评:本题考查了代数式求值:先把所求的代数式根据已知条件进行变形,然后利用整体的思想进行计算.也考查了倒数和相反数.13.(4分)观察下列各式:31=3,32=9,33=27,34=81,35=243,36=729…你能从中发现底数为3的幂的个位数有什么规律吗?根据你发现的规律回答:32011的个位数字是7.考点:尾数特征.分析:规律是:每四个就重复一次,用2011除以4余数是几就和第几个一样,2011÷4=502…3.解答:解:规律是:每四个就重复一次,用2011除以4余数是几就和第几个一样.2011÷4=502…3,即32011的个位数字是7,故答案为:7.点评:本题考查了尾数特征的应用,关键是能根据题意找出规律.14.(4分)已知a﹣3b=2a+b﹣15=1,则代数式a2﹣4ab+b2+3的值为0.考点:解二元一次方程组.分析:先根据题意列出关于a、b的方程组,求出a、b的值,代入所求代数式进行计算即可.解答:解:由题意可得,解得,故原式=72﹣4×7×2+22+3=0.故答案为:0.点评:本题考查的是解二元一次方程组,先根据题意列出关于ab的方程组是解答此题的关键.15.(4分)已知方程组有无数多解,则a=3,m=﹣4.考点:二元一次方程组的解.专题:计算题.分析:根据方程组有无数对解,得到两方程化简后相同,即可求出a与m的值.解答:解:根据题意得:a=3,=3,解得:a=3,m=﹣4.故答案为:3;﹣4点评:此题考查了二元一次方程组的解,弄清题意是解本题的关键.16.(4分)若不等式组2<x<a的整数解有3个,则a的取值范围是5<a≤6..考点:一元一次不等式组的整数解.分析:首先根据不等式组确定不等式组的整数解,即可确定a的取值范围.解答:解:不等式组2<x<a的整数解有3个,则3个整数解是:3,4,5,则a的范围是:5<a≤6.故答案是:5<a≤6.点评:此题考查的是一元一次不等式组的整数解,根据x的整数解,得出a的取值范围.三、细心做一做(66分)17.(6分)(1)(2)考点:实数的运算.专题:计算题.分析:(1)先算乘除,后算加减,有乘方的先算乘方;(2)根据立方根、二次根式化简等考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:(1)=(2分)=﹣12(1分)(2)原式=(2分)=(1分)点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握二次根式、立方根、乘方等考点的运算.18.(6分)解方程(组)(1)(2).考点:解二元一次方程组;含绝对值符号的一元一次方程.分析:(1)先去分母,再求出|x|的值,根据绝对值的性质即可得出结论;(2)先把方程组中的方程化为不含分母及括号的方程,再求出x、y的值即可.解答:解:(1)∵方程两边同时乘以2得:3|x|﹣1=8,即3|x|=9,解得,|x|=3,∴x1=3,x2=﹣3;(2)原方程组可化为,①×2+②得,11x=22,解得x=2,把x=2代入①得,8﹣y=5,解得y=3,故此方程组的解为.点评:本题考查的是解二元一次方程组,熟知解二元一次方程组的加减消元法与代入消元法是解答此题的关键.19.(6分)化简求值:﹣(2a2﹣ab+3b2)+[3a2﹣2(a2+3ab)﹣b2],其中a=﹣2,b=﹣1考点:整式的加减—化简求值.专题:计算题.分析:去括号,合并同类项,再代入求值即可.解答:解:﹣(2a2﹣ab+3b2)+[3a2﹣2(a2+3ab)﹣b2]=﹣2a2+ab﹣3b2+3a2﹣2a2﹣6ab﹣b2=﹣a2﹣5ab﹣4b2,当a=﹣2,b=﹣1时,原式=﹣(﹣2)2﹣5×(﹣2)×(﹣1)﹣4×(﹣1)2=﹣18.点评:本题考查了整式的加减及求值问题,在解答此题时,需要先化简,再代入求值,如果直接代入求值,可能会使运算麻烦,容易出错.20.(8分)如图:已知AB∥DE∥CF,若∠ABC=70°,∠CDE=130°,求∠BCD的度数.考点:平行线的性质.专题:计算题.分析:由AB∥CF,∠ABC=70°,易求∠BCF,又DE∥CF,∠CDE=130°,那么易求∠DCF,于是∠BCD=∠BCF ﹣∠DCF可求.解答:解:∵AB∥CF,∠ABC=70°,∴∠BCF=∠ABC=70°,又∵DE∥CF,∠CDE=130°,∴∠DCF+∠CDE=180°,∴∠DCF=50°,∴∠BCD=∠BCF﹣∠DCF=70°﹣50°=20°.点评:本题利用了平行线的性质:两直线平行,内错角相等;两直线平行,同旁内角互补.21.(6分)如图甲,把一个边长为2的大正方形分成四个同样大小的小正方形,再连接大正方形的四边中点,得到了一个新的正方形(图中阴影部分),求:(1)图甲中阴影部分的面积是多少?(2)图甲中阴影部分正方形的边长是多少?(3)如图乙,在数轴上以1个单位长度的线段为边作一个正方形,以表示数1的点为圆心,以正方形对角线长为半径画弧,交数轴负半轴于点A,求点A所表示的数是多少?考点:正方形的性质;实数与数轴;勾股定理.专题:计算题.分析:(1)由大正方形分成四个同样大小的小正方形,阴影部分为大正方形的四边中点的连线形成,所以阴影部分为大正方形面积的一半,根据正方形面积公式计算即可;(2)由(1)的结论和正方形的面积公式易得到阴影部分正方形的边长;(3)先利用勾股定理得到边长为1的正方形的对角线的长度为,则OA=﹣1,而A点在原点左侧,利用数轴上数的表示方法即可得到点A表示的数.解答:解:(1)S=×22=2;(2)设图甲中阴影部分正方形的边长是a,阴影则a2=2,∴a=,即图甲中阴影部分正方形的边长是;(3)∵以1个单位长度的线段为边作一个正方形,其对角线长为=,∴OA=﹣1,∴点A表示的数为﹣(﹣1)=1﹣.点评:本题考查了正方形的性质:正方形的四边相等,四个角都等于90°,其面积等于边长的平分.也考查了勾股定理以及实数与数轴的关系.22.(8分)如图所示,长方形ABCD是“阳光小区”内一块空地,已知AB=2a,BC=3b,且E为AB边的中点,CF=BC,现打算在阴影部分种植一片草坪,求这片草坪的面积.考点:整式的混合运算.专题:计算题.分析:阴影部分的面积=矩形的面积﹣三角形BEF的面积﹣三角形ACD面积,化简即可得到结果.解答:解:根据题意得:S=6ab﹣×6ab﹣a×2b=6ab﹣3ab﹣ab=2ab.阴影点评:此题考查了整式的混合运算,弄清题意是解本题的关键.23.(8分)有甲乙两个水桶,甲水桶里有1千克水,乙桶是空的,第一次将甲桶水里的二分之一倒入乙桶,第二次将乙桶里的三分之一倒入甲桶,第三次将甲桶的四分之一倒入乙桶,第四次又将乙桶的五分之一倒入甲桶.照这样来回倒下去,一直倒了2000次后,乙桶里有水多少千克?考点:有理数的混合运算.专题:应用题.分析:首先计算前边的几次得到的乙桶里水的数量,根据结果得到规律,然后根据规律求解.解答:解:第一次倒出后,乙桶有:1×=;第二次倒出后,乙桶有:(1﹣)=(千克);第三次倒出后,乙桶有:+(+×)×=(千克);第四次桶倒出后,乙桶有×(1﹣)=(千克);据此发现:奇数次乙桶里剩下的水是千克,则1999次时剩下千克,则甲有千克,则第2000次应该将乙桶的2001分之一倒入甲桶,剩下:×(1﹣)=(千克).答:一直倒了2000次后,乙桶里有水千克.点评:本题考查了有理数的混合运算,正确得到规律是关键.24.(8分)某中学将组织七年级学生春游一天,由王老师和甲、乙两同学到客车租赁公司洽谈租车事宜.(1)两同学向公司经理了解租车的价格,公司经理对他们说:“公司有45座和60座两种型号的客车可供租用,60座的客车每辆每天的租金比45座的贵100元.”王老师说:“我们学校八年级昨天在这个公司租了5辆45座和2辆60座的客车,一天的租金为1600元,你们能知道45座和60座的客车每辆每天的租金各是多少元吗”甲、乙两同学想了一下,都说知道了价格.聪明的你知道45座和60座的客车每辆每天的租金各是多少元吗?(2)公司经理问:“你们准备怎样租车”,甲同学说:“我的方案是只租用45座的客车,可是会有一辆客车空出30个座位”;乙同学说“我的方案只租用60座客车,正好坐满且比甲同学的方案少用两辆客车”,王老师在﹣旁听了他们的谈话说:“从经济角度考虑,还有别的方案吗”?如果是你,你该如何设计租车方案,并说明理由.考点:二元一次方程组的应用.专题:阅读型;方案型.分析:根据题意可知,本题中的相等关系是“60座的客车每辆每天的租金比45座的贵100元”和“5辆45座和2辆60座的客车,一天的租金为1600元”,列方程组求解即可.解答:解:(1)设45座客车每天租金x元,60座客车每天租金y元,则解得故45座客车每天租金200元,60座客车每天租金300元;(2)设学生的总数是a人,则=+2解得:a=240所以租45座客车4辆、60座客车1辆,费用1100元,比较经济.点评:解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程.本题还需注意“60座的客车每辆每天的租金比45座的贵100元”和“5辆45座和2辆60座的客车,一天的租金为1600元”的关系.25.(10分)如图,正方形ABCD的边CD在正方形ECGF的边CE上,B、C、G三点在一条直线上,且边长分别为2和3,在BG上截取GP=2,连接AP、PF.(1)观察猜想AP与PF之间的大小关系,并说明理由;(2)图中是否存在通过旋转、平移、反射等变换能够互相重合的两个三角形?若存在,请说明变换过程;若不存在,请说明理由;(3)若把这个图形沿着P A、PF剪成三块,请你把它们拼成一个大正方形,在原图上画出示意图,并请求出这个大正方形的面积.考点:正方形的性质;全等三角形的判定与性质;平移的性质;旋转的性质.专题:探究型.分析:(1)证AP与PF所在的三角形全等即可;(2)将(1)中的△ABP先平移后旋转得到△PGF;(3)大正方形的面积是由原来的正方形的面积分割而成的,所以等于S正方形ABCD+S正方形ECGF.解答:解:(1)猜想P A=PF;理由:∵正方形ABCD、正方形ECGF,∴AB=BC=2,CG=FG=3,∠B=∠G=90°,∵PG=2,∴BP=2+3﹣2=3=FG,AB=PG,∴△ABP≌△PGF,∴P A=PF.(2)存在,是△ABP和△PGF,变换过程:把△ABP先向右平移5个单位,使AB在GF边上,B与G重合,再绕G点逆时针旋转90度,就可与△PGF重合.(答案不唯一)(3)如图:S大正方形=S正方形ABCD+S正方形ECGF=4+9=13.点评:线段相等通常是证明线段所在的三角形全等,图形的变换要根据全等三角形来判定.初中数学试卷鼎尚图文**整理制作。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
浙教版七年级下数学测试题
一 填空
1.
代数式27ba的最大值是 。
2.如图,AB∥CD,DB⊥BC,∠1=40°,则∠2的度数是_____________.
3.计算121422xxxx的结果是_____________.
4. 已知3tx,ty3,那么用x表示y的式子为 .
5.已知3×9m×27m=321,则m的值 .
6. 如图,AE∥BD,C是BD上的点,且∠CAB=∠BCA,∠ACD=110°,则∠EAB= 度.
7. 如果x+4y-3=0,那么2x·16y=
8.如果.232,12yxyx那么3962242yxyx_______.
9.某课外小组的同学们在社会实践活动中调查了20户家庭某月的用电量,如下表所示:
用电量(度) 120 140 160 180 200
户数 2 3 6 7 2
则这20户家庭该月用电量的众数和中位数分别是_______和_______
10.甲、乙两人练习跑步,如果让乙先跑10米,甲5秒追上乙;如果让乙先跑2秒,那么甲
4秒追上乙.甲、乙每秒分别跑 x、y米,由题意得方程组____________.
二 选择
1下列代数式中:3ab+1a,12a,-1x,0,x2+2x-3,其中整式的个数有( )
A.1个 B.2个 C.3个 D.4个
2.下列运算正确的是 ( )
A.a5·a2=a10 B.(a2)4=a8 C.a6÷a2=a3 D.a3+a5=a8
2
3. 已知两个分式:244Ax,1122Bxx,其中2x,则A与B 的关系是( )
A、相等 B、互为倒数 C、互为相反数 D、A大于B
4.下列说法正确的是( )
A、二元一次方程只有一个解 B、二元一次方程组有无数个解
C、二元一次方程组的解必是它所含的二元一次方程的解
D、三元一次方程组一定由三个三元一次方程组成
5.若311yx,则分式yxyxyxyx2232的值为( )A、53 B、53 C、1 D、532
6.方程组35661516xyxy的解也是方程103kyx的解,则k是( )
A、k=6 B、k=10 C、k=9 D、k=110
7. 把4224yxyx分解因式,其结果为( )
A 、2222xyyxxyyxz B、2222yxyx
C、yxyxyx22 D 、22xyyxyxxy
8.如图,直线a⊥直线c,直线b⊥直线c,若∠1=70°,则∠2=( )
A.70° B.90° C.110° D.80°
9有下列各运算:
①bababa22232222 ②242242422bababa
③cbacba2323212 ④1255512232babccba
其中计算正确的是 ( )(A)①② (B)②③ (C)①④ (D)②④
10.、为保护生态环境,陕西省某县响应国家“退耕还林”号召,将某一部分耕地改为林地,
改变后,林地面积和耕地面积共有180平方千米,耕地面积是林地面积的25%,为求改变
后林地面积和耕地面积各多少平方千米。设改变后耕地面积x平方千米,林地地面积y
3
平方千米,根据题意,列出如下四个方程组,其中正确的是( )
A.%25180xyyx B.%25180yxyx C.%25180yxyx D.%25180xyyx
三 解方程和方程组
(1)、359236xyxy (2)2133112133119xxxxx
四 化简和解答
1.
解关于x、y的方程组239cyxbyax时,甲正确地解出42yx,乙因为把c抄错了,
误解为14yx,求a,b,c的值.
2.化简求值:422122aaaaa,其中21a.
4
3.已知3x-4y-z=0,2x+y-8z=0,求2222xyzxyyzzx++++ 的值
4. 如图:AB∥CD,直线EF分别交AB、CD于E、F,EG平分∠BEF,若∠1=72°,则∠2等
于多少度?
五 应用题
1
. 2013年上虞市体卫站对实验中学九年级学生体育测试情况进行调研,从该校360名九
年级学生中抽取了部分学生的成绩(成绩分为A、B、C三个层次)进行分析,绘制了频数分布
表与频数分布直方图(如图),请根据图表信息解答下列问题:
5
分组 频数 频率
C 10 0.10
B 0.50
A 40
合计
1.00
⑴ 补全频数分布表与频数分布直方图;
⑵ 如果成绩为A等级的同学属于优秀,请你估计该校九年级约有多少人达到优秀水平?
2.甲加工180个零件所用的时间,乙可以加工240个零件,已知甲每小时比乙少加工5个
零件,求两人每小时各加工的零件个数.
人数
C B A 成绩
50
40
30
20
10
6
一 填空
1. 7 2 .50 3 . x/(2x-1) 4. 8 5 . 4 6 . 40 7. y=-x
8. 2 9. 180 160 10. 5x-5y=10 4x=6y
二 选择
1 C 2 B 3 B 4 C 5 A 6 B 7 C 8 A 9 C 10 B
三 解方程和方程组 (1)x=3,y=0 (2)x=1
四 化简和解答
1.a=5/2 b=1 c=2 2. 2(a-1)/a -2 3. 1 4 . 54°
五 应用题
1
2 15 20