碎纸片的拼接复原-数学建模B题

合集下载

数学建模B题论文

数学建模B题论文

碎纸片的拼接复原模型摘要本文主要问题是将附件中的所给的碎纸片按照一定的方法拼接复原。

通过一定的方法把碎纸片进行分组:题目给了四种类型的碎片,有长条形的,即全是竖切的中英文碎片,也有横竖都切的中文碎片,有横竖都切的单面英文碎片和横竖都切的双面英文碎片。

对于中英文长碎纸片分组拼接的问题,我们直接通过观察法,按照文字和字母的结构很容易完成了拼接。

对与中文横竖碎纸片拼接的问题,我们利用Matlab 编程并加入人工干预。

本文的主要拼接过程都是通过Matlab 软件实现的,通过Matlab 软件读取图片的信息,根据图像灰度的原理,图片包含着灰度信息,碎纸片左右的文字在纵切面上的灰度应该是完全对应的。

但把所有图片的灰度拿出来匹配是很不现实的。

于是我们想到可以通过灰度赋值,由于碎片中间文字的信息对于拼接是没有太大用途的,我们更关心左右切面的文字信息,即灰度信息。

因此将纵切面上的灰度矩阵的第一列和最后一列单独抽出,形成矩阵,然后设定一定的算法,通过Matlab 进行编程,相邻的两张碎纸片左右边缘信息匹配度非常高,其差值接近于0。

,,|p(i)p(j)|m n m n ρ=-编写的程序完全可以对所分的各组碎纸片进行拼接,而且效果非常明显。

对于英文碎纸片问题,我们采用了同样方法的分组,只是按照上下切掉的英文部分所占四线格的比例进行分组,此分组方法分组快且相对准确。

我们第二问中所编程序对英文碎纸片的拼接也完全适用。

对于双面英文的情况,也是按照上述思想方法进行分组,只是工作量稍微大些。

分组后我们也通过所编程序实现了双面英文的拼接复原。

关键词:碎纸片;拼接;图像灰度;灰度矩阵;分组1、问题重述论题给出了5个附件——反应了几种不同纸片破碎的情况,要求我们构建相应的碎纸片复原模型,以解决实际生活中出现的需要我们进行碎纸片复原的问题。

首先进行简单情况的碎纸片复原,即附件1中和附件2中的仅纵切的中英文19个碎纸片。

构建一个可以操作的拼接模型,将附件中的纵切纸片拼接。

2013 数模国赛 B题 碎纸片的拼接复原

2013 数模国赛 B题  碎纸片的拼接复原

2013高教社杯全国大学生数学建模竞赛B题碎纸片的拼接复原首先分析问题:对于第一问分析如下对于给定的来自同一页印刷文字文件的碎纸机破碎纸片(仅纵切),建立碎纸片拼接复原模型和算法,并针对附件1、附件2给出的中、英文各一页文件的碎片数据进行拼接复原。

如果复原过程需要人工干预,请写出干预方式及干预的时间节点。

求matlab图像拼接程序clear;I=imread('xingshi32.bmp');if(isgray(I)==0)disp('请输入灰度图像,本程序用来处理128 *128的灰度图像!');elseif (size(I)~=[128,128])disp('图像的大小不合程序要求!');elseH.color=[1 1 1]; %设置白的画布figure(H);imshow(I);title('原图像');zeroImage=repmat(uint8(0),[128 128]);figure(H); %为分裂合并后显示的图设置画布meansImageHandle=imshow(zeroImage);title('块均值图像');%%%%%设置分裂后图像的大小由于本图采用了128像素的图blockSize=[128 64 32 16 8 4 2];%%设置一个S稀疏矩阵用于四叉树分解后存诸数据S=uint8(128);S(128,128)=0;threshold=input('请输入分裂的阈值(0--1):');%阈值threshold=round(255*threshold);M=128;dim=128;%%%%%%%%%%%%%%%%% 分裂主程序%%%%%%%%%%%while (dim>1)[M,N] = size(I);Sind = find(S == dim);numBlocks = length(Sind);if (numBlocks == 0)%已完成break;endrows = (0:dim-1)';cols = 0:M:(dim-1)*M;rows = rows(:,ones(1,dim));cols = cols(ones(dim,1),:);ind = rows + cols;ind = ind(:);tmp = repmat(Sind', length(ind), 1);ind = ind(:, ones(1,numBlocks));ind = ind + tmp;blockValues= I(ind);blockValues = reshape(blockValues, [dim dim numBlocks]);if(isempty(Sind))%已完成break;end[i,j]=find(S);set(meansImageHandle,'CData',ComputeMeans(I,S));maxValues=max(max(blockValues,[],1),[],2);minValues=min(min(blockValues,[],1),[],2);doSplit=(double(maxValues)-double(minValues))>threshold;dim=dim/2;Sind=Sind(doSplit);Sind=[Sind;Sind+dim;(Sind+M*dim);(Sind+(M+1)*dim)];S(Sind)=dim;end对于第二问于碎纸机既纵切又横切的情形,请设计碎纸片拼接复原模型和算法,并针对附件3、附件4给出的中、英文各一页文件的碎片数据进行拼接复原。

2013国赛 碎纸片的拼接复原数学建模B解题思路分析

2013国赛 碎纸片的拼接复原数学建模B解题思路分析

2, 图片为文字,所以可以确认文字的形状,但大多为残字,故 可以补全剩余部分。 #根据残字,进行文字预算,找到字体可能是的字,补全字体,找图 片能补全的部分。 3, 图片文字都为从左到右书写,有固定的行。 #文字又从左到右书写,故可以对字的上下画线,从而将文字的拼接, 改为图形线性的匹配。 4,图片可能正反双面,也就是说可以双向确定但是,由于不知道什 么是正面,什么是反面,所以无法确定,故可以将其当做一副。 #广范围查询。 ¥还可以计算他的下一个或上一个字的位置。
பைடு நூலகம்
故可以对字的上下画线从而将文字的拼接4图片可能正反双面也就是说可以双向确定但是由于不知道什么是正面什么是反面所以无法确定故可以将其当做一副
残纸碎片平拼接
图片信息:
1, 图片边缘完整,语言不是普通话,故无法用语法辨别。 2, 图片为文字,所以可以确认文字的形状,但大多为残 字,故可以补全剩余部分。 3, 图片文字都为从左到右书写,有固定的行。 4,图片可能正反双面,也就是说可以双向确定但是,由 于不知道什么是正面,什么是反面,所以无法确定,故可 以将其当做一副。

(完整word版)2013年数学建模b题

(完整word版)2013年数学建模b题

精心整理碎纸片的拼接复原【摘要】:碎纸片拼接技术是数字图像处理领域的一个重要研究方向,把计算机视觉和程序识别应用于碎纸片的复原,在考古、司法、古生物学等方面具有广泛的应用,具有重要的现实意义。

本文主要结合各种实际应用背景,针对碎纸机绞碎的碎纸片,基于计算机辅助对碎纸片进行自动拼接复原研究。

针对问题1,依据图像预处理理论,通过matlab程序处理图像,将图像转化成适合于计算机处理的数字图像,进行灰度分析,提取灰度矩阵。

对于仅纵切的碎纸片,根据矩阵的行提取理论,将。

建中的任一列与矩阵值,序列号。

将程序进行循环操作,得到最终的碎片自动拼接结果。

、;分别作为新生成的矩阵、。

,将矩阵中的任一列分别与矩阵中每一列代入模型,所得p值对应的值即为横排序;将矩阵中的任一行分别于矩阵中的任一行代入模型,所得q值对应的值即为列排序。

循环进行此程序,得计算机的最终运行结果。

所得结果有少许误差,需人工调制,更正排列顺序,得最终拼接结果。

针对问题3,基于碎纸片的文字行列特征,采用遗传算法,将所有的可能性拼接进行比较,进行择优性选择。

反面的排序结果用于对正面排序的检验,发现结果有误差,此时,进行人工干预,调换碎纸片的排序。

【关键词】:灰度矩阵欧式距离图像匹配自动拼接人工干预一、问题重述破碎文件的拼接在司法物证复原、历史文献修复以及军事情报获取等领域都有着重要的应用。

传统上,大量的纸质物证复原工作都是以人工的方式完成的,准确率较高,但效率很低。

特别是当碎片数量巨大,人工拼接不但耗费大量的人力、物力,而且还可能对物证造成一定的损坏。

随着计算机技术的发展,人们试图把计算机视觉和模式识别应用于碎纸片复原,开展对碎纸片自动拼接技术的研究,以提高拼接复原效率。

试讨论一下问题,并根据题目要求建立相应的模型和算法:、附件4(1)(2)(3)(4)纸片的自动拼接。

问题1:根据图像预处理理论,通过程序语言将图像导入matlab程序,对图像进行预处理,将碎纸片转换成适合于计算机处理的数字图像形式,并对数字图像进行灰度分析,提取灰度矩阵。

2013年数学建模b题纸片拼接

2013年数学建模b题纸片拼接

2013年数学建模b题纸片拼接
(最新版)
目录
一、2013 年数学建模 b 题背景
二、纸片拼接问题的基本概念
三、纸片拼接问题的解决方法
四、纸片拼接问题的实际应用
正文
一、2013 年数学建模 b 题背景
数学建模是一种重要的数学方法,它将实际问题抽象为数学问题,再通过数学方法求解,以解决实际问题。

2013 年数学建模 b 题就是一道典型的数学建模题目,它涉及到的问题是纸片拼接。

二、纸片拼接问题的基本概念
纸片拼接问题是指,给定一些形状、大小和颜色不同的纸片,要求将它们拼接在一起,使得拼接后的图形满足一定的要求,比如面积最大、周长最小等。

纸片拼接问题实际上是一个组合优化问题,它需要寻找一种最优的拼接方案。

三、纸片拼接问题的解决方法
解决纸片拼接问题的方法主要有两种,一种是基于启发式的方法,另一种是基于精确算法的方法。

基于启发式的方法,如模拟退火算法、遗传算法等,它们通过模拟自然界的进化过程,逐步寻找到最优的拼接方案。

这类方法的优点是计算速度快,缺点是可能无法得到全局最优解。

基于精确算法的方法,如整数线性规划、混合整数线性规划等,它们
通过建立数学模型,精确求解拼接问题。

这类方法的优点是能得到全局最优解,缺点是计算过程复杂,需要大量的计算资源。

四、纸片拼接问题的实际应用
纸片拼接问题在实际生活中有着广泛的应用,比如在制造业中,它可以用于优化材料的切割方案,提高材料的利用率;在图像处理中,它可以用于图像的拼接,提高图像的分辨率等。

2021全国大学生数学建模比赛B题 答案

2021全国大学生数学建模比赛B题 答案
图1中左边矩阵第一列与右边矩阵第二列匹配的原那么与上述一样,不再重述。
如图2,当图片出现倒置情况时,正常情况下应是左边矩阵的第二列元素与右边矩阵的第一列元素进展两两匹配,假设倒置后,那么应该是左边矩阵的第二列元素与右边矩阵的第二列元素倒置顺序进展比拟,同样记录一样元素的个数并计算匹配度。
图2中左边矩阵第一列元素与右边矩阵第一列元素的匹配原那么与上述一样,不再重述。
日期:2021年9月13日
赛区评阅编号〔由赛区组委会评阅前进展编号〕:
2021高教社杯全国大学生数学建模竞赛
编号专用页
赛区评阅编号〔由赛区组委会评阅前进展编号〕:
赛区评阅记录〔可供赛区评阅时使用〕:







全国统一编号〔由赛区组委会送交全国前编号〕:
全国评阅编号〔由全国组委会评阅前进展编号〕:
针对问题三考虑到双面问题以及问题二中英文碎纸片的情况,我们把碎纸片两面匹配度之和作为判断碎纸片是否连接的评价标准,在问题一方法的根底上,在计算机每一步的匹配结果加以人工选择与判断,这样再次处理得到的结果,可以得到同问题二中一样的横行碎纸片,在根据新的横行碎纸片的两面边缘匹配度之和进展同样的操作处理可以将原纸张拼接复原。
两张图片匹配的原那么可以根据下面的图1、图2来表示。
如图1,当图片未出现倒置情况时,即题目中的图片均是正常摆放,将左边矩阵的第二列元素与右边矩阵的第一列元素进展两两匹配。记录元素一样的个数,个数除以1980为左边矩阵第二列对右边矩阵第一列的边缘匹配度,记为:
将所有碎纸片的二值化矩阵做如上匹配可依次选取与其匹配的碎纸片。
观察下面的图3可以发现,通过查阅资料分析[2]基于文字特征的文档碎纸片半自动拼接,每一行的绝大多数中文文字均可认为拥有同一上界、同一下界〔图3最右端出现了“一〞字,但是同行还存在其他文字,可以认为同一行文字有同一上界与同一下的碎纸片归类为一组。方法为:搜索每一张碎纸片转化后二值化矩阵 的每一行,假设矩阵该行中存在数值1,那么将该行全部赋值为1,假设这一行元素全为0,那么将该行全部赋值为0,其中1表示本行存在灰度小于255的像素,0表示不存在灰度小于255的像素,这样将209张碎纸片做出[4]新的二值化矩阵 ,之后同4.1的分析取边缘做边缘匹配得修改后的[6]边缘匹配度矩阵 ,匹配度高那么说明碎纸片的文字信息处于同一程度位置,见下列图图4,之后再人工干预,得到较优的结果。

2013全国大学生数学建模竞赛B题

2013全国大学生数学建模竞赛B题

将008代表的矩阵C8的第二列元素与其它矩 阵的第一列元素进行两两匹配。记录元素相 同的个数,个数除以1980为C8矩阵第二列对 其它矩阵第一列的边缘匹配度,记为:
比较这18个数据,最大的即为与008匹配的 碎纸片。然后以所找到的碎纸片的第二列开 始,求出它与其它矩阵第一列的边缘匹配度, 找出最大的,以此类推把19张碎纸片拼接完 成。
三.问题2的分析
英文碎纸片的分析 通过观察可以发现英文字母的主要的 部分拥有同一上界和同一下界,例如:
将图片中每一行中黑色像素数少于13的及 字母的次要部分转变为二值化矩阵中的0, 将每一行中黑色像素大于等于13的及字母 的主要部分转化为二值化矩阵中的1,这样 得到的新的二值化矩阵 。例如图像转变为 如下图的方式:
二.问题1的分析
步骤一:使用matlab中的imread函数 可以做出图片的灰度矩阵 ,读取每 张图片文件的数据,其目的是将附件 中给的 bmp 格式的碎纸片图以灰度 值矩阵的形式存储。再将灰度值矩阵 转化为 0-1 矩阵,来得到模型的数 据基础;
由于该像素图片转换后为
的矩阵,ቤተ መጻሕፍቲ ባይዱ
论文中无法放置,所以仅简单举例说明:
以纸片000与001为例,匹配方式可能为:
将①②的边缘匹配度相加得到边缘匹配度 之和,将③④的边缘匹配度相加得边缘匹 配度之和,两者的和做出比较。若仅有一 个大于等于1.9,则计算机输出该匹配度, 人工判断是否碎纸片是否匹配;若两者均 大于等于1.9,计算机把两个匹配度之和输 出,人工选择判断碎纸片应是否匹配与如 何匹配;若两者均小于1.9,则计算输出最 大者,人工判断碎纸片是否匹配。这样可 以得到一些在同一横行的碎纸片的拼接。
总体思路
三步走:分行,行内排序,行间排序

2013年数学建模b题纸片拼接

2013年数学建模b题纸片拼接

2013年数学建模b题纸片拼接2013年数学建模B题是关于纸片拼接的问题。

以下是该题的问题描述和解题方法的一个简要说明。

问题描述:问题要求将一张长为L1、宽为W1的纸片与另一张长为L2、宽为W2的纸片进行拼接,形成一个平面图案。

拼接的要求是两张纸片不能重叠,且只能通过边缘进行拼接。

问是否存在一种拼接方式满足要求,并给出拼接的方法。

解题方法:1. 首先,我们需要明确问题的约束条件。

根据题目的描述,可以得到以下约束条件:- 拼接后的平面图案的长为L1+L2或W1+W2- 拼接后的平面图案的宽为W1或W2- 拼接的方式有两种情况:将L1与L2拼接,或将W1与W2拼接2. 根据约束条件,我们可以列出两种情况的拼接方式,并通过计算判断是否满足要求。

具体步骤如下:- 情况一:将L1与L2拼接。

这种情况下,需要比较W1和W2的大小。

若W1>=W2,则满足要求,可以得到拼接的方法;若W1<W2,则需要继续考虑情况二。

- 情况二:将W1与W2拼接。

这种情况下,需要比较L1和L2的大小。

若L1>=L2,则满足要求,可以得到拼接的方法;若L1<L2,则无法满足要求。

3. 根据以上步骤,可以得出结论:若情况一满足,将L1与L2拼接;若情况二满足,将W1与W2拼接;若两种情况都不满足,则无法完成纸片的拼接。

注意事项:- 在计算过程中需要注意单位一致性。

- 在判断拼接条件时,需要考虑等号情况。

以上是对2013年数学建模B题纸片拼接问题的简要说明。

具体的计算步骤和具体数值计算需要根据实际题目给出的数值进行具体分析和计算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013高教社杯全国大学生数学建模竞赛承诺书我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。

我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。

如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。

我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。

我们参赛选择的题号是(从A/B/C/D中选择一项填写): B我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):长春工业大学参赛队员(打印并签名) :1.指导教师或指导教师组负责人(打印并签名):郭明浩日期: 2013 年 9 月 15 日2013高教社杯全国大学生数学建模竞赛编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):摘要传统上,拼接复原工作需由人工完成,准确率较高,但效率很低。

特别是当碎片数量巨大,人工拼接很难在短时间内完成任务。

BMP图像越来越多地被各种应用程序所支持,这种文件格式就是每一个像素用8bit表示,显示出来的图像是黑白效果,最黑的像素的扶度值为“0”,最白的像素的灰度值为“255”,整个图像各个像素的灰度值随机地分布在“0”到“255”的区间中,越黑的像素,其灰度值越接近于“0”,越白(即越亮)的像素,其扶度值越接近于“255”。

所以图像由一个矩阵描述出来,该矩阵的结构由图像的高度、宽及每点bit数决定。

图像的数字化拼接的实质就是根据每幅图片接口像素的相似性来对每个图片进行拼接。

首先我们对多个碎片同时扫描或拍照,得到256级的灰度BMP图像,然后通过MATLAB的图像处理工具箱中的ImMatrix函数对BMP文件进行矩阵数字化,得到每幅图片的像素矩阵图,但是由于数码相机自身和拍照时光线阴暗程度的影响,所得到的数据本身或多或少会存在一定的误差,测得的数据往往会存在误差,所以需要进行数据预处理[7][8],而“高斯滤波数据预处理”往往可以使数据变得平滑、排除噪声数据和异常数据、压缩和归并冗余数据、遗失点补齐、数据分块保持原数据的形貌等,然后将处理完的数据运用c语言编程的算法来进行图片的拼接,如果多个图片的断面处刚好处在空白的时候,其接口的像素矩阵会完全相同,这时会出现误配的情况,所以在这种情况下我们必须在拼接的过程中加入人工干预。

这种半自动拼接方法[1][2][3][4]综合利用了计算机高速计算能力以及人的文字图像识别和理解能力,拼接效率比纯人工高,拼接准确性也好于纯计算机拼接法。

我们利用图像的图像矩阵数字化处理思想,根据已有的附件资料,将碎纸片的拼接问题转化成了像素矩阵相似的问题,并给出了矩阵相似度对比依据和算法,并且进行了实验,证明了图像的数字化拼接的合理性和可行性。

关键词:图像的数字化拼接;矩阵的相似度;ImMatrix函数;人工干预;像素矩阵;B题碎纸片的拼接复原一:问题重述破碎文件的拼接在司法物证复原、历史文献修复以及军事情报获取等领域都有着重要的应用。

传统上,拼接复原工作需由人工完成,准确率较高,但效率很低。

特别是当碎片数量巨大,人工拼接很难在短时间内完成任务。

随着计算机技术的发展,人们试图开发碎纸片的自动拼接技术,以提高拼接复原效率。

请讨论以下问题:1. 对于给定的来自同一页印刷文字文件的碎纸机破碎纸片(仅纵切),建立碎纸片拼接复原模型和算法,并针对附件1、附件2给出的中、英文各一页文件的碎片数据进行拼接复原。

如果复原过程需要人工干预,请写出干预方式及干预的时间节点。

复原结果以图片形式及表格形式表达(见【结果表达格式说明】)。

2. 对于碎纸机既纵切又横切的情形,请设计碎纸片拼接复原模型和算法,并针对附件3、附件4给出的中、英文各一页文件的碎片数据进行拼接复原。

如果复原过程需要人工干预,请写出干预方式及干预的时间节点。

复原结果表达要求同上。

3. 上述所给碎片数据均为单面打印文件,从现实情形出发,还可能有双面打印文件的碎纸片拼接复原问题需要解决。

附件5给出的是一页英文印刷文字双面打印文件的碎片数据。

请尝试设计相应的碎纸片拼接复原模型与算法,并就附件5的碎片数据给出拼接复原结果,结果表达要求同上。

二.问题分析对于本题目类边缘相似的碎纸片的拼接,理想的计算机拼接过程应与人工拼接过程类似,即拼接时不但要考虑待拼接碎纸片边缘是否匹配,还要判断碎片内的字迹断线或碎片内的文字内容是否匹配,然而由于理论和技术的限制,让计算机具备类似人那种识别碎片边缘的字迹断线、以及理解碎片内文字图像含义的智能几乎不太可能。

现在利用MATLAB和相应的图像处理工具,完全可以获取碎片文字图像所在接口特征信息转化为图片上的像素矩阵数字特征,拼接碎片时如利用这些信息进行拼接,其拼接效率无疑比单纯利用边界几何特征方法要好些。

由于大多数文字文字行方向和表格线方向平行,如果碎片内的文字碎片边缘断裂,那么与它相邻的碎纸片在边缘处的像素矩阵一定有高度的相似度,凭此特征可以很容易地从形状相似的多碎片中挑选出相邻碎片。

因文字间的像素数字矩阵相似度的识别比字迹断线识别和文字图像的理解实现起来要容易得多,利用碎片内文字像素数字矩阵特征拼接形状相似的碎纸片理论上是可行的。

另一方面由于计算机数字分析图像能力的缺陷,让计算机对碎片进行完全意义上的自动化拼接也几乎不太可能,为保证拼接的准确性,需要在拼接过程中加入人工干扰过程。

一般而言拼接碎片时先利用计算机搜索与目标碎片匹配的未拼接碎片,并根据匹配程度按顺序显示待选碎片,操作员再根据人脑进一步分析结果舍弃或拼接待选碎片。

对于图像的数字化拼接的合理性可通过对题目所给附件的数据处理,并用MATLAB进行算法的编程,对附件来进行图片拼接训练,来验证其合理性。

三.模型假设(1)设图像的像素足够大;(2)碎纸片边缘整齐、平滑;(3)碎纸片的文字的方向是可识别和确定的;(4)附件提供的图片边缘像素与实际碎纸片无差异;(5)碎纸片中的文字高度、大小、间距保持一致;(6)附件中的碎纸片都来源于同一张纸;四.符号说明M:图片数字化处理后得到的左边缘矩阵iM:图片数字化处理后得到的右边缘矩阵jM:图片数字化处理后得到的上边缘矩阵pM:图片数字化处理后得到的下边缘矩阵q其中,(0,1,2,318)i j=q p=,(0,1,2,310)五.模型的建立与求解5.1 问题1的模型建立与求解5.1.1数据的获取通过对问题一的题设和对附件一和附件二的图片进行分析和编号后,可使用MATLAB调用ImMatrix函数或者使用图像工具箱里的Image Tool对各个BMP图片文件进行矩阵数字化,得到19组矩阵图。

如图一就是附件一图片000进行数字化处理后的结果。

图一:图片000数字化处理结果图当对图一局部进行放大我们就会看到如图二的结果:图图二:图一局部放大结果图MATLAB调用的ImMatrix函数和图像工具箱里的Image Tool会将图片数字化,从图中可看出最黑的像素的扶度值为“0”,最白的像素的灰度值为“255”,整个图像各个像素的灰度值随机地分布在“0”到“255”的区间中,越黑的像素,其灰度值越接近于“0”,越白(即越亮)的像素,其扶度值越接近于“255”。

所以附件一和二的图片都可以用矩阵的形式描述了出来。

每个图片的矩阵第一列和最后一列相当于每个图片切口边缘处,所以矩阵的边缘处对碎纸片的拼接起着重要的作用,但是由于外界的各种因素的干扰和测量仪器本身因素影响的存在,边缘的扶度值字样中会存在各种误差,对这些数据进行取样研究之前首先要对数据进行预处理。

5.1.2数据的预处理噪音的处理:由采样点所建立的计算机模型把它叫做数字样件。

对提取的数字样件进行滤波主要有两个目的:(1)去除毛刺和噪音。

由于受各种因素的影响,物理的因素(小的碎片的丢失,磨损、边缘的腐蚀以及表面的不规则),仪器的因素(视觉、阴影、图像的量化),这样在数字样件中会存在各种误差(如数据、噪音数据等),如不消除,这些误差数据将会直接影响重建模型的质量,从而影响匹配,因此在模型重建之前,就要对数字进行滤波等处理。

数据的简化和数据的光顺是数据预处理的两个重要组成部分。

数字化样件中包含各种不理想的数据。

对错误的数据,可用交互处理的方法迸行去除;对于误差数据,大体可分为毛刺数据和噪音两种。

对于毛刺数据,可以①直接删除;②将这点移到一个中值点;⑨在允许的误差范围内,将其沿某一方向移动一段距离。

(2)简化模型。

滤波可以简化模型的复杂程度,减少工作量,提高匹配的运算速度。

现有针对数据点的滤波方法有很多[1][2]本文实现的有序数据的滤波与数据的组织形式无关,其基础是k ,邻近的建立。

滤波后的数据点的新点可用矢量表示为:()new old old P P D P λ=+ (1)其中()D P 为所调整的距离向量,λ为调整的步长参数。

待过滤波的数据点P 作切线,则k -邻近点集{}1,2,,n X P P P =中的数据点i P 到此切线的有向距离为PP n •。

通过对有向距离PP n •的滤波,可实现数据点P 的滤波。

滤波器的阶数据可取不大于k 的整数。

平均滤波:平均滤波也叫均值滤波,是一种简单的的线性滤波。

一次滤波后数据点P 的法矢取为点集X 的数据点法矢的平均值;相应的,式()new old old P P D P λ=+中的有向距离向量()D P 可取为:1()()D P PP n n N =•∑ (2)在实际计算是采用取均值的方法进行化简。

值得注意的是:当k 的取值很大时,均值滤波会使数据趋于平坦,丢失匹配信息,可以通过调整λ的取值,在细节保留与滤波效果之间达到平衡,能较好地消除噪声数据的影响,同时它的滤波阶数也为重新采样提供了统一的步长。

二值化处理:设定一个全局的阈值T ,用T 将图像的数据分成两部分:大于T 的像素群和小于T的像素群。

将大于T的像素群的像素值设定为白色(像素为255),小于T 的像素群的像素值设定为黑色(像素为零)。

5.1.3问题一的求解由于外界环境和测量仪器自身的误差的影响,仅仅取一列边缘的数字矩阵是不够的,数据经过去噪音和二值化处理后,我们取每幅图片相邻的两列边缘矩阵并相互进行对比,根据这两列的边缘矩阵数字的相似性进行匹配和相应的c语言算法(C++程序一)计算,发现附件一的图片004的右边矩阵边缘数字与图片005左边边缘、010右边边缘和002左边和附件二的015右边和003左边的矩阵相识度最大。

相关文档
最新文档