2022年高考数学(理)一轮复习文档 第八章 平面解析几何 第8讲 曲线与方程 Word版含答案
高考数学一轮复习第8章平面解析几何8.8曲线与方程课件

方法技巧 定义法求轨迹方程的适用条件及关键点 1.求轨迹方程时,若动点与定点、定线间的等量关 系满足圆、椭圆、双曲线、抛物线的定义,则可直接根据 定义先确定轨迹类型,再写出其方程.见典例. 2.理解解析几何中有关曲线的定义是解题关键. 3.利用定义法求轨迹方程时,还要看所求轨迹是否 是完整的圆、椭圆、双曲线、抛物线,如果不是完整的曲 线,则应对其中的变量x或y进行限制.见典例.
2.教材衍化 (1)(选修A2-1P36例3)到点F(0,4)的距离比到直线y=- 5的距离小1的动点M的轨迹方程为( A.y=16x2 C.x2=16y B.y=-16x2 D.x2=-16y )
解析 由题意可知动点M到点F(0,4)的距离与到直线y =-4的距离相等,则点M的轨迹为抛物线,故选C.
题型2 直接法求轨迹方程 典例 x2 y2 (2014· 广东高考)已知椭圆C: a2 + b2 =
5 1(a>b>0)的一个焦点为( 5,0),离心率为 3 . (1)求椭圆C的标准方程; (2)若动点P(x0,y0)为椭圆C外一点,且点P到椭圆C的 两条切线相互垂直,求点P的轨迹方程.
解
c 5 (1)由题意知c= 5 , a = 3 ,所以a=3,b2=a2-
用定义法.
解析 如图所示,设动圆M与圆C1及圆C2分别外切于 点A和点B,则有|MC1|-|AC1|=|MA|,|MC2|-|BC2|=|MB|. 又|MA|=|MB|,所以|MC2|-|MC1|=|BC2|-|AC1|=3-1 =2,即动点M到两定点C2,C1的距离的差是常数2,且 2<|C1C2|=6,|MC2|>|MC1|,故动圆圆心M的轨迹为以定点 C2,C1为焦点的双曲线的左支,则2a=2,所以a=1.
高考一轮复习第8章解析几何第8讲曲线与方程

第八讲曲线与方程知识梳理·双基自测知识梳理知识点一曲线与方程的定义一般地,在直角坐标系中,如果某曲线C上的点与一个二元方程f(x,y)=0的实数解建立如下的对应关系:那么,这个方程叫做__曲线__的方程;这条曲线叫做__方程__的曲线.知识点二求动点的轨迹方程的基本步骤重要结论1.“曲线C是方程f(x,y)=0的曲线”是“曲线C上的点的坐标都是方程f(x,y)=0的解”的充分不必要条件.2.求轨迹问题常用的数学思想(1)函数与方程思想:求平面曲线的轨迹方程就是将几何条件(性质)表示为动点坐标x,y的方程及函数关系.(2)数形结合思想:由曲线的几何性质求曲线方程是“数”与“形”的有机结合.(3)等价转化思想:通过坐标系使“数”与“形”相互结合,在解决问题时又需要相互转化.双基自测题组一走出误区1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)方程x 2+xy =x 的曲线是一个点和一条直线.( × )(2)到两条互相垂直的直线距离相等的点的轨迹方程是x 2=y 2.( × ) (3)y =kx 与x =1ky 表示同一直线.( × )(4)动点的轨迹方程和动点的轨迹是一样的.( × ) 题组二 走进教材2.(必修2P 37T3)已知点F ⎝ ⎛⎭⎪⎫14,0,直线l :x =-14,点B 是l 上的动点,若过点B 垂直于y 轴的直线与线段BF 的垂直平分线交于点M ,则点M 的轨迹是( D )A .双曲线B .椭圆C .圆D .抛物线[解析] 由已知|MF|=|MB|,根据抛物线的定义知,点M 的轨迹是以点F 为焦点,直线l 为准线的抛物线.3.(选修2-1P 37T1改编)已知A(-2,0),B(1,0)两点,动点P 不在x 轴上,且满足∠APO =∠BPO ,其中O 为原点,则点P 的轨迹方程是__x 2+y 2-4x =0(y≠0)__.[解析] 设P(x ,y),∵∠APO =∠BPO , ∴|PA||PB|=|OA||OB|=2, 即|PA|=2|PB|,∴(x +2)2+y 2=4[(x -1)2+y 2],(y≠0)化简整理得P 的轨迹方程为x 2+y 2-4x =0(y≠0). 题组三 走向高考4.(多选题)(2020·山东)已知曲线C :mx 2+ny 2=1.( ACD ) A .若m >n >0,则C 是椭圆,其焦点在y 轴上 B .若m =n >0,则C 是圆,其半径为nC .若mn <0,则C 是双曲线,其渐近线方程为y =±-m nx D .若m =0,n >0,则C 是两条直线[解析] A .若m >n >0,则1m <1n ,则根据椭圆定义,知x 21m +y21n =1表示焦点在y 轴上的椭圆,故A 正确;B .若m =n >0,则方程为x 2+y 2=1n ,表示半径为1n的圆,故B 错误;C .若m <0,n >0,则方程为x21m+y21n =1,表示焦点在y 轴的双曲线,故此时渐近线方程为y =±-m n x ,若m >0,n <0,则方程为x 21m +y 21n=1,表示焦点在x 轴的双曲线,故此时渐近线方程为y =±-mnx ,故C 正确;D .当m =0,n >0时,则方程为y =±1n表示两条直线,故D 正确;故选ACD . 5.(2019·北京卷)数学中有许多形状优美、寓意美好的曲线,曲线C :x 2+y 2=1+|x|y 就是其中之一(如图).给出下列三个结论:①曲线C 恰好经过6个整点(即横、纵坐标均为整数的点); ②曲线C 上任意一点到原点的距离都不超过2; ③曲线C 所围成的“心形”区域的面积小于3. 其中,所有正确结论的序号是( C ) A .① B .② C .①②D .①②③[解析] 将x 换成-x 方程不变,所以图形关于y 轴对称, 当x =0时,代入得y 2=1,∴y =±1,即曲线经过(0,1),(0,-1); 当x >0时,方程变为y 2-xy +x 2-1=0,所以Δ=x 2-4(x 2-1)≥0,解得x ∈⎝⎛⎦⎥⎤0,233,所以x 只能取整数1,当x =1时,y 2-y =0, 解得y =0或y =1,即曲线经过(1,0),(1,1), 根据对称性可得曲线还经过(-1,0),(-1,1), 故曲线一共经过6个整点,故①正确. 当x >0时,由x 2+y 2=1+xy 得x 2+y 2-1=xy≤x 2+y22,(当x =y 时取等),∴x 2+y 2≤2,∴x 2+y 2≤2,即曲线C 上y 轴右边的点到原点的距离不超过2,根据对称性可得:曲线C 上任意一点到原点的距离都不超过2;故②正确.在x 轴上图形面积大于矩形面积=1×2=2,x 轴下方的面积大于等腰直角三角形的面积=12×2×1=1,因此曲线C 所围成的“心形”区域的面积大于2+1=3,故③错误.故选C .考点突破·互动探究考点一 曲线与方程——自主练透例1 (多选题)关于x ,y 的方程x 2m 2+2+y 23m 2-2=1,⎝⎛⎭⎪⎫其中m 2≠23对应的曲线可能是( ABCD ) A .焦点在x 轴上的椭圆 B .焦点在y 轴上的椭圆 C .焦点在x 轴上的双曲线 D .圆[解析] 由题,若m 2+2>3m 2-2,解得-2<m <2,3m 2-2>0,解得m <-63或m >63,则当x ∈⎝ ⎛⎭⎪⎫-2,-63∪⎝ ⎛⎭⎪⎫63,2时,曲线是焦点在x 轴上的椭圆,A 正确;若3m 2-2>m 2+2,解得m <-2或m >2,此时曲线是焦点在y 轴上的椭圆,B 正确;若3m 2-2<0,解得-63<m <63,此时曲线是焦点在x 轴上的双曲线,C 正确;当m 2=2时,方程为x 2+y 2=4,所以D 正确.故选ABCD .〔变式训练1〕(多选题)(2021·山东青岛一中期末)已知点F(1,0)为曲线C 的焦点,则曲线C 的方程可能为( AD )A .y 2=4x B .x 2=4yC .x 2cos 2θ+y 2sin 2θ=1⎝ ⎛⎭⎪⎫0<θ<π2 D .x 2cos 2θ-y 2sin 2θ=1⎝⎛⎭⎪⎫0<θ<π2 [解析] y 2=4x 的焦点坐标为(1,0);x 2=4y 的焦点坐标为(0,1);当θ=π4时,sin 2θ=cos 2θ=12,x 2cos 2θ+y 2sin 2θ=1表示圆;双曲线x 2cos 2θ-y 2sin 2θ=1⎝⎛⎭⎪⎫0<θ<π2的焦点在x 轴上,且c =cos 2θ+sin 2θ=1,其焦点坐标为(1,0),(-1,0),故选AD .考点二 定义法求轨迹方程——自主练透例2 (1)(2021·长春模拟)如图所示,A 是圆O 内一定点,B 是圆周上一个动点,AB 的中垂线CD 与OB 交于点E ,则点E 的轨迹是( B )A .圆B .椭圆C .双曲线D .抛物线(2)(2021·福州模拟)已知圆M :(x +5)2+y 2=36,定点N(5,0),点P 为圆M 上的动点,点Q 在NP 上,点G 在线段MP 上,且满足NP →=2NQ →,GQ →·NP →=0,则点G 的轨迹方程是( A )A .x 29+y24=1B .x 236+y231=1 C .x 29-y24=1D .x 236-y231=1 (3)(2021·江苏南京二十九中调研)已知两圆C 1:(x +3)2+y 2=1,C 2:(x -3)2+y 2=9,动圆M 同时与圆C 1和圆C 2外切,则动圆圆心M 的轨迹方程为( D )A .x 2-y28=1B .x 28-y 2=1C .x 2-y28=1(x≥1)D .x 2-y28=1(x≤-1)[解析] (1)由题意知,|EA|+|EO|=|EB|+|EO|=r(r 为圆的半径)且r >|OA|,故E 的轨迹为以O ,A 为焦点的椭圆,故选B .(2)由NP →=2NQ →,GQ →·NP →=0知GQ 所在直线是线段NP 的垂直平分线,连接GN ,∴|GN|=|GP|,∴|GM|+|GN|=|MP|=6>25,∴点G 的轨迹是以M ,N 为焦点的椭圆,其中2a =6,2c =25,∴b 2=4,∴点G 的轨迹方程为x 29+y24=1,故选A .(3)设动圆M 的半径为r ,则|C 1M|=r +1,|C 2M|=3+r ,∴|C 2M|-|C 1M|=2<6=|C 1C 2|.∴动圆圆心M 的轨迹是以C 1、C 2为焦点的双曲线左支,且c =3,a =1,∴b 2=c 2-a 2=8,∴其轨迹方程为x 2-y28=1(x≤-1).故选D .[引申1]本例(3)中,若动圆M 与圆C 1内切,与圆C 2外切,则动圆圆心M 的轨迹方程为__x 24-y25=1(x≤-2)__.[引申2]本例(3)中,若动圆M 与圆C 1外切,与圆C 2内切,则动圆圆心M 的轨迹方程为__x 24-y25=1(x≥2)__.[引申3]本例(3)中,若动圆M 与圆C 1、圆C 2都内切,则动圆圆心M 的轨迹方程为__x 2-y28=1(x≥1)__.[引申4]本例3中,若动圆M 与圆C 1、圆C 2中一个内切一个外切,则动圆圆心M 的轨迹方程为__x 24-y25=1__.名师点拨定义法求轨迹方程及其注意点(1)在利用圆锥曲线的定义法求轨迹方程时,若所求的轨迹符合某种圆锥曲线的定义,则根据曲线的方程,写出所求的轨迹方程.(2)利用定义法求轨迹方程时,还要看轨迹是否是完整的圆、椭圆、双曲线、抛物线,如果不是完整的曲线,则应对其中的变量x 或y 进行限制.〔变式训练2〕(1)动圆M 经过双曲线x 2-y23=1的左焦点且与直线x =2相切,则圆心M 的轨迹方程是( B )A .y 2=8x B .y 2=-8x C .y 2=4xD .y 2=-4x(2)(多选题)(2021·湖南娄底质检)在水平地面上的不同两点处竖有两根笔直的电线杆,假设它们都垂直于地面,则在水平地面上视它们上端仰角相等的点P 的轨迹可能是( AB )A .直线B .圆C .椭圆D .抛物线[解析] (1)双曲线x 2-y23=1的左焦点为F(-2,0),由题意可知点M 的轨迹是以F 为焦点、原点为顶点、对称轴为x 轴的抛物线,故其方程为y 2=-8x .故选B .(2)如图两根电杆AB ,CD ,①当|AB|=|CD|时,∵∠BPA =∠DPC ,∴|PA|=|PC|, ∴P 的轨迹是AC 的中垂线,②当|AB|=λ|CD|(λ≠1,λ>0)时, 由∠BPA =∠DPC 知Rt △ABP ∽Rt △CDP , ∴|AP||CP|=|AB||CD|=λ, 以AC 所在直线为x 轴,线段AC 的中垂线为y 轴建立平面直角坐标系, 记A(-1,0),C(1,0),P(x ,y), 则x +12+y 2x -12+y2=λ,即⎝ ⎛⎭⎪⎫x -λ2+1λ2-12+y 2=⎝ ⎛⎭⎪⎫2λλ2-12, 轨迹为圆,故选AB .考点三 直接法求轨迹方程——师生共研例3 (1)(2021·四川、云南、贵州、西藏四省四校联考)已知圆C 过点A(0,2)且与直线y =-2相切,则圆心C 的轨迹方程为( B )A .x 2=4y B .x 2=8y C .x 2=-4yD .x 2=-8y(2)(2021·山东菏泽模拟)已知动圆过定点A(4,0),且在y 轴上截得的弦MN 的长为8. ①求动圆圆心的轨迹C 的方程;②已知点B(-1,0),设不垂直于x 轴的直线l 与轨迹C 交于不同的两点P ,Q ,若x 轴是∠PBQ 的角平分线,证明:直线l 过定点.[解析] (1)设圆心C(x ,y), 由题意知x 2+y -22=|y +2|,化简得x 2=8y ,故选B .(2)①设动圆圆心P(x ,y),线段MN 的中点为E , 则|PA|2=|PE|2+42,即(x -4)2+y 2=x 2+16,化简得y 2=8x , ∴动圆圆心的轨迹C 的方程为y 2=8x . ②设直线l 的方程为y =kx +b ,联立⎩⎪⎨⎪⎧y 2=8x ,y =kx +b ,得k 2x 2+2kbx +b 2=8x ,k 2x 2-(8-2kb)x +b 2=0(其中Δ>0), 设P(x 1,kx 1+b),Q(x 2,kx 2+b), 则x 1+x 2=8-2kb k 2,x 1x 2=b 2k 2, 若x 轴是∠PBQ 的角平分线, 则k PB +k QB =kx 1+b x 1+1+kx 2+bx 2+1=kx 1+b x 2+1+kx 2+b x 1+1x 1+1x 2+1=2kx 1x 2+k +b x 1+x 2+2bx 1+1x 2+1=8k +bk2x 1+1x 2+1=0,即k =-b .故直线l 的方程为y =k(x -1),直线l 过定点(1,0).名师点拨直接法求曲线方程的一般步骤(1)建立合适的直角坐标系.(2)设出所求曲线上点的坐标,把几何条件或等量关系用坐标表示为代数方程.(3)化简整理这个方程,检验并说明所求方程就是曲线的方程.直接法求曲线方程时最关键的就是把几何条件或等量关系“翻译”为代数方程,要注意“翻译”的等价性.(4)运用直接法应注意的问题①在用直接法求轨迹方程时,在化简的过程中,有时破坏了方程的同解性,此时就要补上遗漏的点或删除多余的点,这是不能忽视的.②若方程的化简过程是恒等变形,则最后的验证可以省略. 〔变式训练3〕(1)已知两定点A(-2,0),B(1,0),如果动点P 满足|PA|=2|PB|,则动点P 的轨迹是( B ) A .直线 B .圆 C .椭圆D .双曲线(2)(2021·湖南湘潭模拟)在平面直角坐标系xOy 中,已知点Q(1,0),直线l :x =2.若动点P 在直线l 上的射影为R ,且|PR →|=2|PQ →|,设点P 的轨迹为C .①求C 的轨迹方程;②设直线y =x +n 与曲线C 相交于A 、B 两点,试探究曲线C 上是否存在点M ,使得四边形MAOB 为平行四边形,若存在,求出点M 的坐标;若不存在,请说明理由.[解析] (1)设P(x ,y), 则x +22+y 2=2x -12+y 2,化简得x 2+y 2-4x =0,即(x -2)2+y 2=4, 其表示以(2,0)为圆心,4为半径的圆,故选B . (2)①设P(x ,y),由|PR →|=2|PQ →|, 得|2-x|=2·x -12+y 2,平方化简得C 的轨迹方程为x 22+y 2=1.②设A(x 1,y 1),B(x 2,y 2),M(x 3,y 3), 联立⎩⎪⎨⎪⎧y =x +n x 22+y 2=1,得x 2+2(x +n)2-2=0,即3x 2+4nx +2n 2-2=0,所以x 1+x 2=-4n 3,y 1+y 2=x 1+x 2+2n =2n3.假设存在点M 使得四边形MAOB 为平行四边形, 则OM →=OA →+OB →,所以(x 3,y 3)=(x 1,y 1)+(x 2,y 2), 所以x 3=x 1+x 2=-4n 3,y 3=y 1+y 2=2n3.由点M 在曲线C 上得x 232+y 23=1,代入得8n 29+4n29=1,解得n 2=34,n =±32.所以当n =±32时,曲线C 上存在点M 使得四边形MAOB 为平行四边形, 此时点M 的坐标为⎝ ⎛⎭⎪⎫-233,33或者M ⎝ ⎛⎭⎪⎫233,-33,当n≠±32,曲线C 上不存在点M 使得四边形MAOB 为平行四边形. 考点四 代入法(相关点法)求轨迹方程——师生共研例4 (2021·河南新乡模拟)在直角坐标系xOy 中,点M(-2,0),N 是曲线x =14y 2+2上的任意一点,动点C 满足MC →+NC →=0.(1)求点C 的轨迹方程;(2)经过点P(1,0)的动直线l 与点C 的轨迹交于A ,B 两点,在x 轴上是否存在定点D(异于点P),使得∠ADP =∠BDP ?若存在,求出D 的坐标;若不存在,请说明理由.[解析] (1)设C(x ,y),N(x 0,y 0), 则MC →=(x +2,y),NC →=(x -x 0,y -y 0), MC →+NC →=(2x -x 0+2,2y -y 0).又MC →+NC →=0,则⎩⎪⎨⎪⎧2x -x 0+2=0,2y -y 0=0,即⎩⎪⎨⎪⎧x 0=2x +2,y 0=2y.因为点N 为曲线x =14y 2+2上的任意一点,所以x 0=14y 20+2,所以2x +2=14(2y)2+2,整理得y 2=2x ,故点C 的轨迹方程为y 2=2x . (2)设存在点D(t,0),使得∠ADP =∠BDP , 所以k DA +k DB =0.由题易知,直线l 的倾斜角不可能为0°, 故设直线l 的方程为x =my +1,将x =my +1代入y 2=2x ,得y 2-2my -2=0. 设A(x 1,y 1),B(x 2,y 2),则y 1+y 2=2m ,y 1y 2=-2. 因为k DA +k DB =y 1x 1-t +y 2x 2-t =y 1my 1+1-t +y 2my 2+1-t =0,所以2my 1y 2+(1-t)(y 1+y 2)=0, 即-4m +2m·(1-t)=0,所以t =-1. 故存在点D(-1,0),使得∠ADP =∠BDP .名师点拨代入法(相关点法)求轨迹方程(1)当题目中的条件同时具有以下特征时,一般可以用相关点法求其轨迹方程: ①某个动点P 在已知方程的曲线上移动; ②另一个动点M 随P 的变化而变化;③在变化过程中P 和M 满足一定的规律.(2)代入法(相关点法)的基本步骤①设点:设被动点坐标为(x ,y),主动点坐标为(x 1,y 1);②求关系式:求出两个动点坐标之间的关系式⎩⎪⎨⎪⎧ x 1=f x ,y ,y 1=g x ,y ;③代换:将上述关系式代入已知曲线方程,便可得到所求动点的轨迹方程;④检验:注意检验所求方程是否符合题意.〔变式训练4〕(2021·河北石家庄模拟)已知点Q 在椭圆C :x 216+y 210=1上,点P 满足OQ →=12(OF 1→+OP →)(其中O 为坐标原点,F 1为椭圆C 的左焦点),则点P 的轨迹为( D )A .圆B .抛物线C .双曲线D .椭圆 [解析] 设P(x ,y),Q(x 0,y 0),椭圆C 的左焦点F 1(-2,0),由题意知⎩⎪⎨⎪⎧ x 0=x -22,y 0=y 2 又x 2016+y 2010=1,∴x -2264+y 240=1,故选D . 考点五,参数法求轨迹方程——师生共研例5 (2021·河北衡水中学调研)已知圆C 1:x 2+y 2=2,圆C 2:x 2+y 2=4,如图,C 1,C 2分别交x 轴正半轴于点E ,A .射线OD 分别交C 1,C 2于点B ,D ,动点P 满足直线BP 与y 轴垂直,直线DP 与x 轴垂直.(1)求动点P 的轨迹C 的方程;(2)过点E 作直线l 交曲线C 与点M ,N ,射线OH ⊥l 于点H ,且交曲线C 于点Q .问:1|MN|+1|OQ|2的值是否是定值?如果是定值,请求出该定值;如果不是定值,请说明理由.[分析] 显然点P(x ,y)的变动由∠AOD 的大小α(或k OD )决定,故可通过α(或k OD )建立x ,y 间的关系,即点P 的轨迹方程.[解析] (1)解法一:如图设∠BOE =α,则B(2cos α,2sin α),D(2cos α,2sin α),所以x P =2cos α,y P =2sin α.所以动点P 的轨迹C 的方程为x 24+y 22=1. 解法二:当射线OD 的斜率存在时,设斜率为k ,OD 方程为y =kx ,由⎩⎪⎨⎪⎧ y =kx x 2+y 2=2得y 2P =2k 21+k 2, 同理得x 2P =41+k 2, 所以x 2P +2y 2P=4即有动点P 的轨迹C 的方程为x 24+y 22=1. 当射线OD 的斜率不存在时,点(0,±2)也满足.(2)由(1)可知E 为C 的焦点,设直线l 的方程为x =my +2(斜率不为0时)且设点M(x 1,y 1),N(x 2,y 2),由⎩⎨⎧x =my +2x 2+2y 2=4,得(m 2+2)y 2+22my -2=0, 所以⎩⎪⎨⎪⎧y 1+y 2=-22m m 2+2y 1y 2=-2m 2+2, 所以1|MN|=11+m 2|y 1-y 2|=m 2+24m 2+1, 又射线OQ 方程为y =-mx , 代入椭圆C 的方程得x 2+2(mx)2=4, 即x 2Q =41+2m 2,y 2Q =4m 21+2m 2,1|OQ|2=1+2m 24m 2+1, 所以1|MN|+1|OQ|2=m 2+24m 2+1+1+2m 24m 2+1=34, 又当直线l 的斜率为0时,也符合条件.综上,1|MN|+1|OQ|2为定值,且为34.名师点拨(1)在选择参数时,参数可以具有某种物理或几何意义,如时间、速度、距离、角度、直线的斜率、点的横(纵)坐标等,也可以没有具体的意义,但要特别注意它的取值范围对动点坐标取值范围的影响.(2)参数法求轨迹方程的适用条件动点所满足的条件不易得出或不易转化为等式,也没有明显的相关点,但却较易发现(或经过分析可发现)这个动点的运动与某一个量或某两个变量(角、斜率、比值、截距等)有关.〔变式训练5〕若过点P(1,1)且互相垂直的两条直线l 1,l 2分别与x 轴、y 轴交于A 、B 两点,则AB 中点M 的轨迹方程为__x +y -1=0__.[解析] 当直线l 1的斜率存在时,l 2的斜率也存在,设直线l 1的方程是y -1=k(x -1),则直线l 2的方程是y -1=-1k (x -1),所以直线l 1与x 轴的交点为A ⎝ ⎛⎭⎪⎫1-1k ,0,l 2与y 轴的交点为B ⎝⎛⎭⎪⎫0,1+1k ,设AB 的中点M 的坐标为(x ,y),则有⎩⎪⎨⎪⎧ x =12⎝ ⎛⎭⎪⎫1-1k ,y =12⎝ ⎛⎭⎪⎫1+1k ,两式相加消去k ,得x +y =1⎝ ⎛⎭⎪⎫x ≠12,即x +y -1=0(x≠12),所以AB 中点M 的轨迹方程为x +y -1=0⎝ ⎛⎭⎪⎫x ≠12. 当直线l 1(或l 2)的斜率不存在时,点M 的坐标为⎝ ⎛⎭⎪⎫12,12,此点在直线x +y -1=0上. 综上,AB 中点M 的轨迹方程为x +y -1=0.另解:由题意易知|MP|=|MO|,∴M 的轨迹为线段OP 的中垂线,其方程为y -12=-⎝ ⎛⎭⎪⎫x -12, 即x +y -1=0.名师讲坛·素养提升高考中的轨迹问题例6 (2019·课标Ⅱ)已知点A(-2,0),B(2,0),动点M(x ,y)满足直线AM 与BM 的斜率之积为-12.记M 的轨迹为曲线C . (1)求C 的方程,并说明C 是什么曲线;(2)过坐标原点的直线交C 于P ,Q 两点,点P 在第一象限,PE ⊥x 轴,垂足为E ,连接QE 并延长交C 于点G .①证明:△PQG 是直角三角形;②求△PQG 面积的最大值.[解题思路] (1)由题直译得关系→化简,观察方程形式得结论(2)①设直线PQ :y =kx →与C 的方程联立得P ,Q 两点坐标→得直线QG 的方程→与C 的方程联立得G 的坐标→求PG 的斜率→得结论 ②利用公式求面积→得关于k 的函数→判断单调性求最值→得结论 [解析] (1)由题设得y x +2·y x -2=-12, 化简得x 24+y 22=1(|x|≠2), 所以C 为中心在坐标原点,焦点在x 轴上的椭圆,不含左右顶点.(2)①证明:设直线PQ 的斜率为k ,则其方程为y =kx(k >0),由⎩⎪⎨⎪⎧ y =kx ,x 24+y 22=1得x =±21+2k 2. 记u =21+2k 2,则P(u ,uk),Q(-u ,-uk),E(u,0).于是直线QG 的斜率为k 2,方程为y =k 2(x -u). 由⎩⎪⎨⎪⎧ y =k 2x -u x 24+y 22=1, 得(2+k 2)x 2-2uk 2x +k 2u 2-8=0.①设G(x G ,y G ),则-u 和x G 是方程①的解,故x G =u 3k 2+22+k 2,由此得y G =uk 32+k 2.从而直线PG 的斜率为uk 32+k 2-uk u 3k 2+22+k 2-u =-1k . 所以PQ ⊥PG ,即△PQG 是直角三角形.②由①得|PQ|=2u 1+k 2,|PG|=2uk k 2+12+k 2, 所以△PQG 的面积S =12|PQ||PG|= 8k 1+k21+2k 22+k 2=8⎝ ⎛⎭⎪⎫1k +k 1+2⎝ ⎛⎭⎪⎫1k +k 2. 设t =k +1k,则由k >0得t≥2,当且仅当k =1时取等号, 因为S =8t 1+2t2在[2,+∞)单调递减,所以当t =2, 即k =1时,S 取得最大值,最大值为169. 因此,△PQG 面积的最大值为169. [解题关键] ①利用方程思想得出点P 、Q 的坐标,进而利用换元法及整体代换法简化运算过程是顺利解决本题的关键;②正确利用基本不等式及函数单调性是求解△PQG 面积最值的关键.〔变式训练6〕(2020·新课标Ⅲ)在平面内,A ,B 是两个定点C 是动点,若OC →·BC →=1,则点C 的轨迹为( A )A .圆B .椭圆C .抛物线D .直线[解析] 不妨以AB 所在直线为x 轴,AB 的中点为原点,建立平面直角坐标系,设C(x ,y),A(-c,0),B(c,0),c >0,则AC →=(x +c ,y),BC →=(x -c ,y),由AC →·BC →=1,得(x +c)(x -c)+y·y=1,即x 2+y 2=c 2+1>0,∴点C 的轨迹为圆.故选A .。
2022届高考数学一轮复习(新高考版) 第8章 两条直线的位置关系

√A.6x-4y-3=0
C.2x+3y-2=0
B.3x-2y-3=0 D.2x+3y-1=0
解析 因为抛物线 y2=2x 的焦点坐标为12,0, 直线 3x-2y+5=0 的斜率为32, 所以所求直线 l 的方程为 y=32x-21,
化为一般式,得6x-4y-3=0.
4.已知三条直线2x-3y+1=0,4x+3y+5=0,mx-y-1=0不能构成三 角形,则实数m的取值集合为
解析 由题意得,点 P 到直线的距离为|4×4-35×a-1|=|15-5 3a|. 又|15-5 3a|≤3,即|15-3a|≤15,解得 0≤a≤10,
所以a的取值范围是[0,10].
4.若P,Q分别为直线3x+4y-12=0与6x+8y+5=0上任意一点,则
29
|PQ|的最小值为__1_0___.
题型二 两直线的交点与距离问题
自主演练
1.已知直线y=kx+2k+1与直线y=-
1 2
x+2的交点位于第一象限,则实
数k的取值范围是__-__16,__12__.
解析
y=kx+2k+1, 由方程组y=-12x+2,
x=22-k+41k, 解得y=62kk++11.
(若 2k+1=0,即 k=-12,则两直线平行)
知识梳理
一、两条直线的平行与垂直 1.两条直线平行 (1)对于两条不重合的直线l1,l2,若其斜率分别为k1,k2,则有l1∥l2⇔ k1=k2 . (2)当直线l1,l2不重合且斜率都不存在时,l1∥l2. 2.两条直线垂直 (1)如果两条直线l1,l2的斜率存在,设为k1,k2,则有l1⊥l2⇔ k1·k2=-1 . (2)当其中一条直线的斜率不存在,而另一条的斜率为0时,l1⊥l2.
高考数学(理)一轮复习课件:第8章 平面解析几何8-8

第十二章
选考部分
小题快做 1.思考辨析 (1)f(x0,y0)=0是点P(x0,y0)在曲线f(x,y)=0上的充要条件.( √ ) (2)方程x2+xy=x的曲线是一个点和一条直线.( × ) (3)到两条互相垂直的直线距离相等的点的轨迹方程是x2=y2.( × ) (4)方程y= x与x=y2表示同一曲线.( × )
栏目 导引
第十二章
选考部分
16 2 9 2 x + y =1 5 2 2 25 25 . 3.[教材改编]已知方程ax +by =2的曲线经过点A0,3和B(1,1),则曲线方程为____________
52 · b= 2 5 解析 代入A0,3,B(1,1)两点坐标得3 a+b=2
2 x 故点F的轨迹方程为y2- =1(y≤-1). 48
栏目 导引
第十二章
选考部分
求点的轨迹方程是高考考查的重要内容.该部分内容大多以解答题的形式出现,考查求轨迹方程的方 法、曲线与方程的定义、运算等且主要有以下几个命题角度. 命题角度1 直接法求轨迹方程 典例1 轨迹C的方程. [2013· 陕西高考选编]已知动圆过定点A(4,0),且在y轴上截得弦MN的长为8.试求动圆圆心的
栏目 导引
第十二章
选考部分
考点多维探究
栏目 导引
第十二章
选考部分
考点 轨迹方程
回扣教材 1.曲线与方程 一般地,在平面直角坐标系中,如果某曲线 C(看作点的集合或适合某种条件的点的轨迹)上点的坐标与 一个二元方程 f(x,y)=0 的实数解满足如下关系: 这个方程的解. (1)曲线上点的坐标都是__________________
第十二章
选考部分
2022届高考数学一轮复习第八章平面解析几何第八节曲线与方程课时规范练理含解析新人教版2021061

第八节 曲线与方程[A 组 根底对点练]1.到两坐标轴的距离相等的动点的轨迹方程是( )A .y =xB .y =|x |C .x 2+y 2=0D .y 2=x 2解析:设动点的坐标为(x ,y ).因为动点到两坐标轴的距离相等,所以|x |=|y |,即y 2=x 2,动点的轨迹方程是y 2=x 2.答案:D2.(2021·某某某某模拟)点F ⎝ ⎛⎭⎪⎫14,0,直线l :x =-14,点B 是l 上的动点.假如过B 垂直于y 轴的直线与线段BF 的垂直平分线交于点M ,如此点M 的轨迹是( )A .双曲线B .椭圆C .圆D .抛物线解析:由得|MF |=|MB |.由抛物线定义知,点M 的轨迹是以F 为焦点,l 为准线的抛物线. 答案:D3.△ABC 中, A ,B 的坐标分别为(0,2)和(0,-2),假如三角形的周长为10,如此顶点C 的轨迹方程是( )A .x 29+y 25=1(y ≠0)B .x 236+y 220=1(y ≠0) C .x 25+y 29=1(x ≠0) D .x 232+y 236=1(x ≠0) 解析:由题知|AB |=4,|CA |+|CB |=6,且6>|AB |,所以C 点轨迹是以A ,B 为焦点,6为长轴长,4为焦距的椭圆,去掉长轴端点.答案:C4.点A (-1,0),B (2,4),△ABC 的面积为10,如此动点C 的轨迹方程是( )A .4x -3y -16=0或4x -3y +16=0B .4x -3y -16=0或4x -3y +24=0C .4x -3y +16=0或4x -3y +24=0D .4x -3y +16=0或4x -3y -24=0解析:可知AB 的方程为4x -3y +4=0,又|AB |=5,设动点C (x ,y ).由题意可知12×5×|4x -3y +4|5=10,所以4x -3y -16=0或4x -3y +24=0. 答案:B5.动圆M 经过双曲线x 2-y 23=1的左焦点且与直线x =2相切,如此圆心M 的轨迹方程是( )A .y 2=8xB .y 2=-8xC .y 2=4xD .y 2=-4x解析:双曲线x 2-y 23=1的左焦点F (-2,0),如此圆心M 经过F 且与直线x =2相切,如此圆心M 到点F 的距离和到直线x =2的距离相等,由抛物线的定义知轨迹是抛物线,其方程为y 2=-8x .答案:B6.A (0,7),B (0,-7),C (12,2),以C 为一个焦点作过A ,B 的椭圆,椭圆的另一个焦点F 的轨迹方程是( )A .y 2-x 248=1(y ≤-1)B .y 2-x 248=1C .y 2-x 248=-1D .x 2-y 248=1 解析:由题意,得|AC |=13,|BC |=15,|AB |=14,又|AF |+|AC |=|BF |+|BC |,∴|AF |-|BF |=|BC |-|ACF 的轨迹是以A ,B 为焦点,实轴长为2的双曲线下支.∵双曲线中c =7,a =1,∴b 2=48,∴轨迹方程为y 2-x 248=1(y ≤-1). 答案:A 7.(2020·某某模拟)平面直角坐标系中,两点A (3,1),B (-1,3),假如点C 满足OC →=λ1OA →+λ2OB →(O 为原点),其中λ1,λ2∈R ,且λ1+λ2=1,如此点C 的轨迹是( )A.直线 B .椭圆C .圆D .双曲线解析:设C (x ,y ),因为OC →=λ1OA →+λ2OB →,所以(x ,y )=λ1(3,1)+λ2(-1,3), 即⎩⎪⎨⎪⎧x =3λ1-λ2,y =λ1+3λ2,解得⎩⎪⎨⎪⎧λ1=y +3x 10,λ2=3y -x 10,又λ1+λ2=1,所以y +3x 10+3y -x 10=1,即x +2y =5,所以点C 的轨迹为直线.答案:A8.(2020·某某某某模拟)动点A 在圆x 2+y 2=1上移动时,它与定点B (3,0)连线的中点的轨迹方程是________.解析:设中点M (x ,y ),由中点坐标公式,可得A (2x -3,2y ),因为点A 在圆上,将点A 的坐标代入圆的方程,所以轨迹方程为(2x -3)2+4y 2=1.答案:(2x -3)2+4y 2=19.设F (1,0),M 点在x 轴上,P 点在y 轴上,且MN →=2MP →,PM →⊥PF →,当点P 在y轴上运动时,点N 的轨迹方程为________________.解析:设M (x 0,0),P (0,y 0),N (x ,y ),因为PM →⊥PF →,PM →=(x 0,-y 0),PF →=(1,-y 0),所以(x 0,-y 0)·(1,-y 0)=0,所以x 0+y 20=0.由MN →=2MP →得(x -x 0,y )=2(-x 0,y 0),所以⎩⎪⎨⎪⎧x -x 0=-2x 0,y =2y 0,即⎩⎪⎨⎪⎧x 0=-x ,y 0=12y , 所以-x +y 24=0,即y 2=4x . 故所求的点N 的轨迹方程是y 2=4x .答案:y 2=4x10.圆x 2+y 2=4上一定点A (2,0),B (1,1)为圆内一点,P ,Q 为圆上的动点.(1)求线段AP 中点的轨迹方程;(2)假如∠PBQ =90°,求线段PQ 中点的轨迹方程.解析:(1)设AP 的中点为M (x ,y ),由中点坐标公式可知, P 点坐标为(2x -2,2y ).因为P 点在圆x 2+y 2=4上,所以(2x -2)2+(2y )2=4.化简得(x -1)2+y 2=1,故线段AP 中点的轨迹方程为(x -1)2+y 2=1.(2)设PQ 的中点为N (x ,y ),在Rt△PBQ中,|PN|=|BN|.设O为坐标原点,连接ON(图略),如此ON⊥PQ,所以|OP|2=|ON|2+|PN|2=|ON|2+|BN|2,∴4=x2+y2+(x-1)2+(y-1)2,即x2+y2-x-y-1=0.11.(2021·某某某某第一次质量预测)坐标平面上动点M(x,y)与两个定点P(26,1),Q(2,1),且|MP|=5|MQ|.(1)求点M的轨迹方程,并说明轨迹是什么图形;(2)记(1)中轨迹为C,过点N(-2,3)的直线l被C所截得的线段长度为8,求直线l的方程.解析:(1)设点M(x,y),由题意,得|MP||MQ|=5,即〔x-26〕2+〔y-1〕2〔x-2〕2+〔y-1〕2=5,化简,得x2+y2-2x-2y-23=0,所以点M的轨迹方程是(x-1)2+(y-1)2=25.轨迹是以(1,1)为圆心,以5为半径的圆.(2)当直线l的斜率不存在时,l:x=-2,此时所截得的线段长度为252-32=8,所以l:x=-2符合题意.当直线l的斜率存在时,设l的方程为y-3=k(x+2),即kx-y+2k+3=0,圆心(1,1)到直线l的距离d=|3k+2| k2+1,由题意,得⎝ ⎛⎭⎪⎪⎫|3k +2|k 2+12+42=52,解得k =512. 所以直线l 的方程为512x -y +236=0, 即5x -12y +46=0.综上,直线l 的方程为x +2=0或5x -12y +46=0.[B 组 素养提升练]1.一条线段的长等于6,两端点A ,B 分别在x 轴和y 轴的正半轴上滑动,P 在线段AB 上且AP →=2PB →,如此点P 的轨迹方程是________________.解析:设P (x ,y ),A (a ,0),B (0,b ),如此a 2+b 2AP →=2PB →,所以(x -a ,y )=2(-x ,b -y ), 所以⎩⎪⎨⎪⎧x =a3,y =2b 3,即⎩⎪⎨⎪⎧a =3x ,b =32y ,代入a 2+b 2=36, 得9x 2+94y 2=36,即x 24+y 216=1. 答案:x 24+y 216=1 2.圆的方程为x 2+y 2=4,假如抛物线过点A (-1,0),B (1,0)且以圆的切线为准线,如此抛物线的焦点轨迹方程是________________.解析:设抛物线焦点为F ,过A ,B ,O 作准线的垂线AA 1,BB 1,OO 1,如此|AA 1|+|BB 1|=2|OO 1|=4,由抛物线定义得|AA 1|+|BB 1|=|FA |+|FB |,所以|FA |+|FB |=4,故F 点的轨迹是以A ,B 为焦点,长轴长为4的椭圆(去掉长轴两端点).所以抛物线的焦点轨迹方程为x 24+y 23=1(y ≠0).答案:x 24+y 23=1(y ≠0) 3.过点A (-2,0)的直线与x =2相交于点C ,过点B (2,0)的直线与x =-2相交于点D ,假如直线CD 与圆x 2+y 2=4相切,求直线AC 与BD 的交点M 的轨迹方程.解析:设直线AC ,BD 的斜率分别为k 1,k 2,如此直线AC ,BD 的方程分别为y =k 1(x +2),y =k 2(x -2),据此可得C (2,4k 1),D (-2,-4k 2),如此k CD =4k 1+4k 22-〔-2〕=k 1+k 2, 直线CD 的方程为y -4k 1=(k 1+k 2)(x -2),整理可得(k 1+k 2)x -y +2(k 1-k 2)=0,又直线与圆相切,如此|2〔k 1-k 2〕|〔k 1+k 2〕2+1=2, 据此可得k 1k 2=-14, 由于y =k 1(x +2),y =k 2(x -2),两式相乘可得y 2=k 1k 2(x 2-4)=-14x 2+1,即直线AC 与BD 的交点M 的轨迹方程为x 24+y 2=1(y ≠0).4.如下列图,圆A :(x +2)2+y 2=1与点B (2,0),分别求出满足如下条件的动点P 的轨迹方程.(1)△PAB 的周长为10;(2)圆P 与圆A 外切,且过B 点(P 为动圆圆心);(3)圆P 与圆A 外切,且与直线x =1相切(P 为动圆圆心).解析:(1)根据题意,知|PA |+|PB |+|AB |=10,即|PA |+|PB |=6>4=|AB |,故P 点轨迹是椭圆,且2a =6,2c =4,即a =3,c =2,b =5. 因此其轨迹方程为x 29+y 25=1(y ≠0). (2)设圆P 的半径为r ,如此|PA |=r +1,|PB |=r ,因此|PA |-|PB |=1.由双曲线的定义知,P 点的轨迹为双曲线的右支,且2a =1,2c =4,即a =12,c =2,b =152,因此其轨迹方程为4x 2-y 2=1⎝ ⎛⎭⎪⎫x ≥12. (3)依题意,知动点P 到定点A 的距离等于到定直线x =2的距离,故其轨迹为抛物线,且开口向左,p =4.因此其轨迹方程为y 2=-8x .。
推荐-高三数学(理)一轮总复习课件第八章 平面解析几何 8-9

用相关点法求方程轨迹时,一般所求动点设为(x,y),辅助 点设为(x0,y0),用 x,y 表示 x0,y0.
曲线方程的规范答题 [典例] (本题满分 12 分)已知抛物线 y2=2px 经过点 M(2,- 2 2),椭圆ax22+by22=1 的右焦点恰为抛物线的焦点,且椭圆的离心 率为12.
把脉理清考情 考点研析题组冲关 素能提升学科培优
课时规范训练
第 9 课时 曲线与方程
1.以曲线和方程的关系为背景,考查曲线间的关系和求参 考纲
数问题. 点击
2.以常见的曲线为背景,求动点的轨迹和方程.
(2016·高考全国乙卷)设圆 x2+y2+2x-15=0 的圆心为 A,直 线 l 过点 B(1,0)且与 x 轴不重合,l 交圆 A 于 C,D 两点,过 B 作 AC 的平行线交 AD 于点 E.
设 l1 的斜率为 k,则 k≠0,则 l2 的斜率为-1k, 故 l1 的方程为 y-y0=k(x-x0),联立x92+y42=1, 得(9k2+4)x2+18(y0-kx0)kx+9(y0-kx0)2-36=0. 因为直线 l1 与椭圆 C 相切,所以 Δ=0, 得 9(y0-kx0)2k2-(9k2+4)[(y0-kx0)2-4]=0, 所以-36k2+4[(y0-kx0)2-4]=0, 所以(x20-9)k2-2x0y0k+y20-4=0,
实轴在 y 轴上的双曲线满足 x∈[-2,2]的部分;
11 分
x2
当 λ2>14,即 λ>12时,得到
3 1
+
y2 3
高考数学一轮复习 第八章 平面解析几何 88 曲线与方程课件 理

综上,直线 l 的方程为 x=-2 或 5x-12y+46=0。
2021/12/11
第十九页,共三十页。
考点二 定义法求轨迹方程
【例 2】 已知圆 C 与两圆 x2+(y+4)2=1,x2+(y-2)2=1 外切,圆 C
的圆心轨迹为 L,设 L 上的点与点 M(x,y)的距离的最小值为 m,点 F(0,1)
2021/12/11
第十八页,共三十页。
当直线 l 的斜率存在时,设 l 的方程为 y-3=k(x+2),
即 kx-y+2k+3=0,
圆心到 l 的距离 d=|3kk2++21|,
由题意,得
|3kk2++21| 2+42=52,解得
k=152,
所以直线 l 的方程为152x-y+263=0,
即 5x-12y+46=0。
与点 M(x,y)的距离为 n。
(1)求圆 C 的圆心轨迹 L 的方程;
(2)求满足条件 m=n 的点 M 的轨迹 Q 的方程。 解 (1)两圆半径都为 1,两圆圆心分别为 C1(0,-4),C2(0,2),由题意 得|CC1|=|CC2|,可知圆心 C 的轨迹是线段 C1C2 的垂直平分线,C1C2 的中点 为(0,-1),直线 C1C2 的斜率不存在,故圆 C 的圆心轨迹 L 的方程为 y=- 1。
2021/12/11
第七页,共三十页。
人教A版高中数学 高三一轮 第八章 平面解析几何 8-8

高三一轮第八章平面解析几何8.8 曲线与方程学案【考纲传真】1.了解方程的曲线与曲线的方程的对应关系.2.了解解析几何的基本思想和利用坐标法研究几何问题的基本方法.3.能够根据所给条件选择适当的方法求曲线的轨迹方程.【知识扫描】知识点1曲线与方程的定义一般地,在直角坐标系中,如果某曲线C上的点与一个二元方程f(x,y)=0的实数解建立如下的对应关系:那么,这个方程叫做曲线的方程,这条曲线叫做方程的曲线.知识点2求动点的轨迹方程的基本步骤1.必会结论(1)“曲线C是方程f(x,y)=0的曲线”是“曲线C上的点的坐标都是方程f(x,y)=0的解”的充分不必要条件.(2)曲线的交点与方程组的关系:①两条曲线交点的坐标是两个曲线方程的公共解,即两个曲线方程组成的方程组的实数解;②方程组有几组解,两条曲线就有几个交点;方程组无解,两条曲线就没有交点. 2.必清误区(1)求轨迹方程时,要注意曲线上的点与方程的解是一一对应关系.检验可从以下两个方面进行:一是方程的化简是否是同解变形;二是是否符合题目的实际意义. (2)求点的轨迹与轨迹方程是不同的要求,求轨迹时,应先求轨迹方程,然后根据方程说明轨迹的形状、位置、大小等. 【学情自测】1.判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)f (x 0,y 0)=0是点P (x 0,y 0)在曲线f (x ,y )=0上的充要条件.( ) (2)方程x 2+xy =x 的曲线是一个点和一条直线.( )(3)到两条互相垂直的直线距离相等的点的轨迹方程是x 2=y 2.( ) (4)方程y =x 与x =y 2表示同一曲线.( )2.已知点F ⎝⎛⎭⎫14,0,直线l :x =-14,点B 是l 上的动点.若过点B 垂直于y 轴的直线与线段BF 的垂直平分线交于点M ,则点M 的轨迹是( ) A .双曲线 B .椭圆 C .圆D .抛物线3.已知A (-2,0),B (1,0)两点,动点P 不在x 轴上,且满足∠APO =∠BPO ,其中O 为原点,则P 点的轨迹方程是( )A .(x +2)2+y 2=4(y ≠0)B .(x +1)2+y 2=1(y ≠0)C .(x -2)2+y 2=4(y ≠0)D .(x -1)2+y 2=1(y ≠0)4.过椭圆x 2a 2+y 2b 2=1(a >b >0)上任意一点M 作x 轴的垂线,垂足为N ,则线段MN 中点的轨迹方程是________.5.若点P 到直线y =-1的距离比它到点(0,3)的距离小2,则点P 的轨迹方程是________.参考答案1.【解析】 由曲线与方程的定义,知(2)、(3)、(4)不正确,只有(1)正确.【答案】 (1)√ (2)× (3)× (4)×2.【解析】 由已知|MF |=|MB |,根据抛物线的定义知,点M 的轨迹是以点F 为焦点,直线l 为准线的抛物线. 【答案】 D3.【解析】 由角的平分线性质定理得|P A |=2|PB |,设P (x ,y ),则x +2+y 2=2x -2+y 2,整理得(x -2)2+y 2=4(y ≠0),故选C. 【答案】 C4.【解析】设MN的中点P(x,y),则点M(x,2y)在椭圆上,∴x2a2+y2b2=1,即x2a2+4y2b2=1.【答案】x2a2+4y2b2=15.【解析】由题意可知点P到直线y=-3的距离等于它到点(0,3)的距离,故点P的轨迹是以点(0,3)为焦点,以y=-3为准线的抛物线,且p=6,所以其标准方程为x2=12y.【答案】x2=12y。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第8讲 曲线与方程1.曲线与方程在平面直角坐标系中,假如某曲线C (看作满足某种条件的点的集合或轨迹)上的点与一个二元方程的实数解建立了如下的关系:(1)曲线上点的坐标都是这个方程的解; (2)以这个方程的解为坐标的点都在曲线上.那么,这个方程叫做曲线的方程;这条曲线叫做方程的曲线. 2.曲线的交点设曲线C 1的方程为F 1(x ,y )=0,曲线C 2的方程为F 2(x ,y )=0,则C 1,C 2的交点坐标即为方程组⎩⎪⎨⎪⎧F 1(x ,y )=0,F 2(x ,y )=0的实数解,若此方程组无解,则两曲线无交点.1.辨明两个易误点(1)轨迹与轨迹方程是两个不同的概念,前者指曲线的外形、位置、大小等特征,后者指方程(包括范围). (2)求轨迹方程时易忽视轨迹上特殊点对轨迹的“完备性与纯粹性”的影响. 2.求动点的轨迹方程的一般步骤 (1)建系——建立适当的坐标系; (2)设点——设轨迹上的任一点P (x ,y ); (3)列式——列出动点P 所满足的关系式;(4)代换——依条件式的特点,选用距离公式、斜率公式等将其转化为关于x ,y 的方程式,并化简; (5)证明——证明所求方程即为符合条件的动点轨迹方程.1.已知曲线C 的方程为x 2-xy +y -5=0,则下列各点中,在曲线C 上的点是( )A .(-1,2)B .(1,-2)C .(2,-3)D .(3,6)A2.方程x =1-4y 2所表示的曲线是( ) A .双曲线的一部分 B .椭圆的一部分 C .圆的一部分D .直线的一部分B x =1-4y 2两边平方,可变为x 2+4y 2=1(x ≥0),表示的曲线为椭圆的一部分.3.已知点P 是直线2x -y +3=0上的一个动点,定点M (-1,2),Q 是线段PM 延长线上的一点,且|PM |=|MQ |,则Q 点的轨迹方程是( )A .2x +y +1=0B .2x -y -5=0C .2x -y -1=0D .2x -y +5=0D 由题意知,M 为PQ 中点,设Q (x ,y ),则P 为(-2-x ,4-y ),代入2x -y +3=0得2x -y +5=0.4.教材习题改编 已知方程ax 2+by 2=2的曲线经过点A ⎝ ⎛⎭⎪⎫0,53和B (1,1),则曲线方程为________.由题意得⎩⎪⎨⎪⎧259b =2,a +b =2,解得⎩⎪⎨⎪⎧a =3225,b =1825.所以曲线方程为3225x 2+1825y 2=2,即1625x 2+925y 2=1.1625x 2+925y 2=1 5.平面上有三个不同点A (-2,y ),B ⎝ ⎛⎭⎪⎫0,y 2,C (x ,y ),若AB →⊥BC →,则动点C 的轨迹方程为________.AB →=⎝ ⎛⎭⎪⎫2,-y 2,BC →=⎝ ⎛⎭⎪⎫x ,y 2,由AB →⊥BC →,得AB →·BC →=0, 即2x +⎝ ⎛⎭⎪⎫-y 2·y2=0,所以动点C 的轨迹方程为y 2=8x (x ≠0). y 2=8x (x ≠0)直接法求轨迹方程(高频考点)直接法求点的轨迹方程是求轨迹方程的一种重要方法,也是高考考查的重要内容. 直接法求点的轨迹方程,在高考中有以下两个命题角度:(1)已知动点满足的关系式求轨迹方程(或推断轨迹); (2)无明确等量关系求轨迹方程.已知点P (2,2),圆C :x 2+y 2-8y =0,过点P 的动直线l 与圆C 交于A ,B 两点,线段AB 的中点为M ,O 为坐标原点.(1)求M 的轨迹方程;(2)当|OP |=|OM |时,求l 的方程及△POM 的面积. 【解】 (1)圆C 的方程可化为x 2+(y -4)2=16, 所以圆心为C (0,4),半径为4.设M (x ,y ),则CM →=(x ,y -4),MP →=(2-x ,2-y ). 由题设知CM →·MP →=0,故x (2-x )+(y -4)(2-y )=0, 即(x -1)2+(y -3)2=2. 由于点P 在圆C 的内部,所以M 的轨迹方程是(x -1)2+(y -3)2=2.(2)由(1)可知M 的轨迹是以点N (1,3)为圆心,2为半径的圆. 由于|OP |=|OM |,故O 在线段PM 的垂直平分线上. 又P 在圆N 上,从而ON ⊥PM .由于ON 的斜率为3,所以l 的斜率为-13,故l 的方程为y =-13x +83.又|OM |=|OP |=22,O 到l 的距离为4105,|PM |=4105,所以△POM 的面积为165.直接法求曲线方程的一般步骤 (1)建立合理的直角坐标系;(2)设出所求曲线上点的坐标,把几何条件或等量关系用坐标表示为代数方程; (3)化简整理这个方程,检验并说明所求的方程就是曲线的方程.直接法求曲线方程时最关键的就是把几何条件或等量关系“翻译”为代数方程,要留意“翻译”的等价性.角度一 已知动点满足的关系式求轨迹方程(或 推断轨迹)1.已知点F (0,1),直线l :y =-1,P 为平面上的动点,过点P 作直线l 的垂线,垂足为Q ,且QP →·QF →=FP →·FQ →,则动点P 的轨迹C 的方程为( )A .x 2=4y B .y 2=3x C .x 2=2yD .y 2=4xA 设点P (x ,y ),则Q (x ,-1). 由于QP →·QF →=FP →·FQ →,所以(0,y +1)·(-x ,2)=(x ,y -1)·(x ,-2), 即2(y +1)=x 2-2(y -1), 整理得x 2=4y ,所以动点P 的轨迹C 的方程为x 2=4y . 角度二 无明确等量关系求轨迹方程2.设点A 为圆(x -1)2+y 2=1上的动点,PA 是圆的切线,且|PA |=1,则P 点的轨迹方程为( ) A .y 2=2x B .(x -1)2+y 2=4 C .y 2=-2xD .(x -1)2+y 2=2D 如图,设P (x ,y ),圆心为M (1,0).连接MA ,PM , 则MA ⊥PA ,且|MA |=1, 又由于|PA |=1,所以|PM |=|MA |2+|PA |2=2, 即|PM |2=2,所以(x -1)2+y 2=2.定义法求轨迹方程已知A (-5,0),B (5,0),动点P 满足|PB →|,12|PA →|,8成等差数列,则点P 的轨迹方程为________.【解析】 由已知得|PA →|-|PB →|=8,所以点P 的轨迹是以A ,B 为焦点的双曲线的右支, 且a =4,b =3,c =5,所以点P 的轨迹方程为x 216-y 29=1(x ≥4).【答案】x216-y29=1(x ≥4)若将本例中的条件“|PB →|,12|PA →|,8”改为“|PA →|,12|PB →|,8”,求点P 的轨迹方程.由已知得|PB →|-|PA →|=8,所以点P 的轨迹是以A ,B 为焦点的双曲线的左支,且a =4,b =3,c =5, 所以点P 的轨迹方程为x 216-y 29=1(x ≤-4).定义法求轨迹方程(1)在利用圆锥曲线的定义求轨迹方程时,若所求的轨迹符合某种圆锥曲线的定义,则依据曲线的方程,写出所求的轨迹方程;(2)利用定义法求轨迹方程时,还要看轨迹是否是完整的圆、椭圆、双曲线、抛物线,假如不是完整的曲线,则应对其中的变量x 或y 进行限制.(2021·江西红色七校二模)已知动圆C 过点A (-2,0),且与圆M :(x -2)2+y 2=64相内切.求动圆C 的圆心的轨迹方程.圆M :(x -2)2+y 2=64,圆心M 的坐标为(2,0),半径R =8.由于|AM |=4<R ,所以点A (-2,0)在圆M 内.设动圆C 的半径为r ,依题意得r =|CA |,且|CM |=R -r ,即|CM |+|CA |=8>|AM |.所以圆心C 的轨迹是中心在原点,焦点为A ,M ,长轴长为8的椭圆,设其方程为x 2a 2+y 2b2=1(a >b >0),则a=4,c =2.所以b 2=a 2-c 2=12.所以动圆C 的圆心的轨迹方程为x 216+y 212=1.利用相关点法(代入法)求轨迹方程(2021·石家庄一模)已知点Q 在椭圆C :x 216+y 210=1上,点P 满足OQ →=12(OF 1→+OP →)(其中O 为坐标原点,F 1为椭圆C 的左焦点),则点P 的轨迹为( )A .圆B .抛物线C .双曲线D .椭圆 【解析】 由于点P 满足OQ →=12(OF 1→+OP →),所以Q 是线段PF 1的中点.设P (x 1,y 1), 由于F 1为椭圆C :x 216+y 210=1的左焦点,则F 1(-6,0),故Q ⎝⎛⎭⎪⎫x 1-62,y 12, 由点Q 在椭圆C :x 216+y 210=1上,则点P 的轨迹方程为(x 1-6)264+y 2140=1,故点P 的轨迹为椭圆. 【答案】 D(2021·中原名校联考)已知双曲线x 22-y 2=1的左、右顶点分别为A 1,A 2,点P (x 1,y 1),Q (x 1,-y 1)是双曲线上不同于A 1、A 2的两个不同的动点,则直线A 1P 与A 2Q 交点的轨迹方程为________.由题设知|x 1|>2,A 1(-2,0),A 2(2,0),则有 直线A 1P 的方程为y =y 1x 1+2(x +2),①直线A 2Q 的方程为y =-y 1x 1-2(x -2),②联立①②,解得⎩⎪⎨⎪⎧x =2x 1,y =2y 1x 1,所以⎩⎪⎨⎪⎧x 1=2x,y 1=2y x ,③所以x ≠0,且|x |<2,由于点P (x 1,y 1)在双曲线x 22-y 2=1上,所以x 212-y 21=1.将③代入上式,整理得所求轨迹的方程为x 22+y 2=1(x ≠0,且x ≠±2).x 22+y 2=1(x ≠0,且x ≠±2)1.方程(x -y )2+(xy -1)2=0表示的曲线是( ) A .一条直线和一条双曲线 B .两条双曲线 C .两个点 D .以上答案都不对 C (x -y )2+(xy -1)2=0⇔⎩⎪⎨⎪⎧x -y =0,xy -1=0. 故⎩⎪⎨⎪⎧x =1,y =1或⎩⎪⎨⎪⎧x =-1,y =-1. 2.若曲线C 上存在点M ,使M 到平面内两点A (-5,0),B (5,0),距离之差的确定值为8,则称曲线C 为“好曲线”.以下曲线不是“好曲线”的是( )A .x +y =5B .x 2+y 2=9 C.x 225+y 29=1 D .x 2=16yB 由于M 到平面内两点A (-5,0),B (5,0)距离之差的确定值为8,所以M 的轨迹是以A (-5,0),B (5,0)为焦点的双曲线,方程为x 216-y29=1.A 项,直线x +y =5过点(5,0),满足题意,为“好曲线”;B 项,x 2+y 2=9的圆心为(0,0),半径为3,与M 的轨迹没有交点,不满足题意;C 项,x225+y29=1的右顶点为(5,0),满足题意,为“好曲线”;D 项,方程代入x 216-y 29=1,可得y -y 29=1,即y 2-9y +9=0,所以Δ>0,满足题意,为“好曲线”.3.(2021·珠海模拟)已知点A (1,0),直线l :y =2x -4,点R 是直线l 上的一点,若RA →=AP →,则点P 的轨迹方程为( )A .y =-2xB .y =2xC .y =2x -8D .y =2x +4B 设P (x ,y ),R (x 1,y 1),由RA →=AP →知,点A 是线段RP 的中点,所以⎩⎪⎨⎪⎧x +x 12=1,y +y 12=0,即⎩⎪⎨⎪⎧x 1=2-x ,y 1=-y .由于点R (x 1,y 1)在直线y =2x -4上, 所以y 1=2x 1-4,所以-y =2(2-x )-4,即y =2x .4.已知动圆Q 过定点A (2,0)且与y 轴截得的弦MN 的长为4,则动圆圆心Q 的轨迹C 的方程为( ) A .y 2=2x B .y 2=4x C .x 2=2yD .x 2=4yB 设Q (x ,y ),由于动圆Q 过定点A (2,0)且与y 轴截得的弦MN 的长为4,所以⎝ ⎛⎭⎪⎫MN 22+|x |2=|AQ |2,所以|x |2+22=(x -2)2+y 2,整理得y 2=4x , 所以动圆圆心Q 的轨迹C 的方程是y 2=4x ,故选B .5.(2021·湖南东部六校联考)已知两定点A (0,-2),B (0,2),点P 在椭圆x 212+y 216=1上,且满足|AP →|-|BP →|=2,则AP →·BP →为( )A .-12B .12C .-9D .9D 由|AP →|-|BP →|=2,可得点P (x ,y )的轨迹是以两定点A 、B 为焦点的双曲线的上支,且2a =2,c =2,所以b = 3.所以点P 的轨迹方程为y 2-x 23=1(y ≥1).由⎩⎪⎨⎪⎧x 212+y 216=1,y 2-x 23=1解得⎩⎪⎨⎪⎧x 2=9,y 2=4,所以AP →·BP →=(x ,y +2)·(x ,y -2)=x 2+y 2-4=9+4-4=9,故选D .6.(2021·长春模拟)设圆(x +1)2+y 2=25的圆心为C ,A (1,0)是圆内肯定点,Q 为圆周上任一点.线段AQ 的垂直平分线与CQ 的连线交于点M ,则M 的轨迹方程为( )A.4x 221-4y225=1 B .4x 221+4y225=1C.4x 225-4y221=1 D .4x 225+4y221=1D 由于M 为AQ 垂直平分线上一点,则|AM |=|MQ |,所以|MC |+|MA |=|MC |+|MQ |=|CQ |=5,故M 的轨迹为椭圆.所以a =52,c =1,则b 2=a 2-c 2=214, 所以椭圆的方程为4x 225+4y221=1.7.在平面直角坐标系xOy 中,若定点A (1,2)与动点P (x ,y )满足向量OP →在向量OA →上的投影为-5,则点P 的轨迹方程是________.由OP →·OA →|OA →|=-5,知x +2y =-5,即x +2y +5=0.x +2y +5=08.在平面直角坐标系中,O 为坐标原点,A (1,0),B (2,2),若点C 满足OC →=OA →+t (OB →-OA →),其中t ∈R ,则点C 的轨迹方程是________.设C (x ,y ),则OC →=(x ,y ),OA →+t (OB →-OA →)=(1+t ,2t ),所以⎩⎪⎨⎪⎧x =t +1,y =2t ,消去参数t 得点C 的轨迹方程为y =2x -2.y =2x -29.已知M (-2,0),N (2,0),则以MN 为斜边的直角三角形的直角顶点P 的轨迹方程是________. 设P (x ,y ),由于△MPN 为直角三角形, 所以|MP |2+|NP |2=|MN |2,所以(x +2)2+y 2+(x -2)2+y 2=16, 整理得,x 2+y 2=4.由于M ,N ,P 不共线,所以x ≠±2, 所以轨迹方程为x 2+y 2=4(x ≠±2). x 2+y 2=4(x ≠±2)10.已知点P 是圆C :(x +2)2+y 2=4上的动点,定点F (2,0),线段PF 的垂直平分线与直线CP 的交点为Q ,则点Q (x ,y )的轨迹方程是________.依题意有|QP |=|QF |,则||QC |-|QF ||=|CP |=2,又|CF |=4>2,故点Q 的轨迹是以C 、F 为焦点的双曲线,a =1,c =2,得b 2=3,所求轨迹方程为x 2-y 23=1.x 2-y 23=111.设F (1,0),M 点在x 轴上,P 点在y 轴上,且MN →=2MP →,PM →⊥PF →,当点P 在y 轴上运动时,求点N 的轨迹方程.设M (x 0,0),P (0,y 0),N (x ,y ), 由于PM →⊥PF →,PM →=(x 0,-y 0), PF →=(1,-y 0),所以(x 0,-y 0)·(1,-y 0)=0, 所以x 0+y 20=0.由MN →=2MP →得(x -x 0,y )=2(-x 0,y 0),所以⎩⎪⎨⎪⎧x -x 0=-2x 0,y =2y 0,即⎩⎪⎨⎪⎧x 0=-x ,y 0=12y ,所以-x +y 24=0,即y 2=4x . 故所求的点N 的轨迹方程是y 2=4x .12.(2021·唐山模拟)已知P 为圆A :(x +1)2+y 2=8上的动点,点B (1,0).线段PB 的垂直平分线与半径PA 相交于点M ,记点M 的轨迹为Γ.(1)求曲线Γ的方程;(2)当点P 在第一象限,且cos ∠BAP =223时,求点M 的坐标.(1)圆A 的圆心为A (-1,0),半径等于2 2. 由已知|MB |=|MP |,于是|MA |+|MB |=|MA |+|MP |=22>2=|AB |, 故曲线Γ是以A ,B 为焦点,以22为长轴长的椭圆, 即a =2,c =1,b =1, 所以曲线Γ的方程为x 22+y 2=1.(2)由cos ∠BAP =223,|AP |=22,得P ⎝ ⎛⎭⎪⎫53,223.于是直线AP 的方程为y =24(x +1).由⎩⎪⎨⎪⎧x 22+y 2=1,y =24(x +1),整理得5x 2+2x -7=0,解得x 1=1,x 2=-75.由于点M 在线段AP 上, 所以点M 坐标为⎝⎛⎭⎪⎫1,22.13.已知正方体ABCD A 1B 1C 1D 1的棱长为1,点M 在AB 上,且AM =13,点P 在平面ABCD 内,且动点P 到直线A 1D 1的距离与动点P 到点M 的距离的平方差为1,则动点P 的轨迹是( )A .直线B .圆C .双曲线D .抛物线D 过点P 在平面ABCD 内作PF ⊥AD ,垂足为F ,过点F 在平面AA 1D 1D 内作FE ⊥A 1D 1,垂足为E ,连接PE ,则有PE ⊥A 1D 1,即PE 为点P 到A 1D 1的距离.由题意知|PE |2-|PM |2=1,又由于|PE |2=|PF |2+|EF |2,所以|PF |2+|EF |2-|PM |2=1, 即|PF |2=|PM |2,即|PF |=|PM |,所以点P 满足到点M 的距离等于点P 到直线AD 的距离.由抛物线的定义知点P 的轨迹是以点M 为焦点,AD 为准线的抛物线, 所以点P 的轨迹为抛物线.14.已知点A ,B 分别是射线l 1:y =x (x ≥0),l 2:y =-x (x ≥0)上的动点,O 为坐标原点,且△OAB 的面积为定值2,则线段AB 中点M 的轨迹方程为________.由题意可设A (x 1,x 1),B (x 2,-x 2),M (x ,y ),其中x 1>0,x 2>0,则⎩⎪⎨⎪⎧x =x 1+x 22,①y =x 1-x 22.②由于△OAB 的面积为定值2,所以S △OAB =12OA ·OB =12(2x 1)(2x 2)=x 1x 2=2.①2-②2得x 2-y 2=x 1x 2,而x 1x 2=2,所以x 2-y 2=2.由于x 1>0,x 2>0,所以x >0,即所求点M 的轨迹方程为x 2-y 2=2(x >0). x 2-y 2=2(x >0)15.已知实数m >1,定点A (-m ,0),B (m ,0),S 为一动点,点S 与A ,B 两点连线的斜率之积为-1m2.(1)求动点S 的轨迹C 的方程,并指出它是哪一种曲线;(2)若m =2,问t 取何值时,直线l :2x -y +t =0(t >0)与曲线C 有且只有一个交点. (1)设点S (x ,y ),则k SA =y -0x +m ,k SB =y -0x -m. 由题意,得y 2x 2-m2=-1m2,即x 2m2+y 2=1(x ≠±m ). 由于m >1,所以轨迹C 是中心在坐标原点,焦点在x 轴上的椭圆(除去x 轴上的两顶点),其中长轴长为2m ,短轴长为2.(2)若m =2,则曲线C 的方程为x 22+y 2=1(x ≠±2).由⎩⎪⎨⎪⎧2x -y +t =0,x 22+y 2=1,消去y ,得9x 2+8tx +2t 2-2=0. 令Δ=64t 2-36×2(t 2-1)=0,得t =±3. 由于t >0,所以t =3.此时直线l 与曲线C 有且只有一个交点.16.(2021·郑州质检)已知动点P 到定点F (1,0)和到直线x =2的距离之比为22,设动点P 的轨迹为曲线E ,过点F 作垂直于x 轴的直线与曲线E 相交于A 、B 两点,直线l :y =mx +n 与曲线E 交于C 、D 两点,与线段AB 相交于一点(与A 、B 不重合).(1)求曲线E 的方程;(2)当直线l 与圆x 2+y 2=1相切时,四边形ACBD 的面积是否有最大值?若有,求出其最大值及对应的直线l 的方程;若没有,请说明理由.(1)设点P (x ,y ),由题意可得,(x -1)2+y 2|x -2|=22,整理可得x 22+y 2=1.所以曲线E 的方程是x 22+y 2=1.(2)设C (x 1,y 1),D (x 2,y 2),由已知可得|AB |= 2. 当m =0时,不合题意.当m ≠0时,由直线l 与圆x 2+y 2=1相切,可得|n |m 2+1=1,即m 2+1=n 2. 联立⎩⎪⎨⎪⎧y =mx +n ,x 22+y 2=1消去y 得⎝ ⎛⎭⎪⎫m 2+12x 2+2mnx +n 2-1=0,Δ=4m 2n 2-4⎝ ⎛⎭⎪⎫m 2+12(n 2-1)=2m 2>0,x 1=-2mn +Δ2m 2+1,x 2=-2mn -Δ2m 2+1, S 四边形ACBD =12|AB ||x 2-x 1|=2|m |2m 2+1=22|m |+1|m |≤22,当且仅当2|m |=1|m |,即m =±22时等号成立,此时n =±62,经检验可知,直线y =22x -62和直线y =-22x +62符合题意.。