高中数学压轴题系列——导数专题——极值点偏移

合集下载

专题20 极值点偏移问题(解析版)

专题20 极值点偏移问题(解析版)

专题20极值点偏移问题1.极值点偏移的含义若单峰函数f (x )的极值点为x 0,则极值点的偏移问题的图示及函数值的大小关系如下表所示.极值点x 0函数值的大小关系图示极值点不偏移x 0=x 1+x 22f (x 1)=f (2x 0-x 2)极值点偏移左移x 0<x 1+x 22峰口向上:f (x 1)<f (2x 0-x 2)峰口向下:f (x 1)>f (2x 0-x 2)右移x 0>x 1+x 22峰口向上:f (x 1)>f (2x 0-x 2)峰口向下:f (x 1)<f (2x 0-x 2)2.函数极值点偏移问题的题型及解法极值点偏移问题的题设一般有以下四种形式:(1)若函数f (x )在定义域上存在两个零点x 1,x 2(x 1≠x 2),求证:x 1+x 2>2x 0(x 0为函数f (x )的极值点);(2)若在函数f (x )的定义域上存在x 1,x 2(x 1≠x 2)满足f (x 1)=f (x 2),求证:x 1+x 2>2x 0(x 0为函数f (x )的极值点);(3)若函数f (x )存在两个零点x 1,x 2(x 1≠x 2),令x 0=x 1+x 22,求证:f ′(x 0)>0;(4)若在函数f (x )的定义域上存在x 1,x 2(x 1≠x 2)满足f (x 1)=f (x 2),令x 0=x 1+x 22,求证:f ′(x 0)>0.3.极值点偏移问题的一般解法3.1对称化构造法主要用来解决与两个极值点之和,积相关的不等式的证明问题.其解题要点如下:(1)定函数(极值点为0x ),即利用导函数符号的变化判断函数的单调性,进而确定函数的极值点0x .(2)构造函数,即对结论1202x x x +>型,构造函数0()()(2)F x f x f x x =--或00()()()F x f x x f x x =+--;(3)对结论2120x x x ⋅>型,构造函数20()()()x F x f x f x=-,通过研究()F x 的单调性获得不等式.(4)判断单调性,即利用导数讨论()F x 的单调性.(5)比较大小,即判断函数()F x 在某段区间上的正负,并得出()f x 与0(2)f x x -的大小关系.(6)转化,即利用函数f (x )的单调性,将()f x 与0(2)f x x -的大小关系转化为x 与02x x -之间的关系,进而得到所证或所求.3.2.差值代换法(韦达定理代换令1212,x x t x x t =±=.)差值换元的目的也是消参、减元,就是根据已知条件首先建立极值点之间的关系,然后利用两个极值点之差作为变量,从而实现消参、减元的目的.设法用差值(一般用t 表示)表示两个极值点,即12t x x =-,化为单变量的函数不等式,继而将所求解问题转化为关于t 的函数问题求解.3.3.比值代换法比值换元的目的也是消参、减元,就是根据已知条件首先建立极值点之间的关系,然后利用两个极值点的比值作为变量,从而实现消参、减元的目的.设法用比值(一般用t 表示)表示两个极值点,即12x t x =,化为单变量的函数不等式,继而将所求解问题转化为关于t 的函数问题求解.3.4.对数均值不等式法两个正数a 和b (),(, )ln ln ().a ba b L a b a ba ab -⎧≠⎪=-⎨⎪=⎩(, )2a bL a b +≤≤(此式记为对数平均不等式)取等条件:当且仅当a b =时,等号成立.3.5指数不等式法在对数均值不等式中,设m a e =,nb e =,则()(,)()m nme e m n E a b m n e m n ⎧-≠⎪=-⎨⎪=⎩,根据对数均值不等式有如下关系:2(,)2m nm ne e eE a b ++≤≤专项突破练1.已知函数()1ln f x x a x=++.(1)求函数()f x 的单调区间;(2)当()()()1212f x f x x x =≠时,证明:122x x +>.【解析】(1)∵()1ln f x x a x=++,∴()22111x f x x x x -'=-=,令()0f x '=,得x =1,当01x <<时,()0f x '<,()f x 单调递减;当1x >时,()0f x '>,()f x 单调递增,故函数()f x 的减区间为()0,1,增区间为()1,+∞;(2)由(1)知,不妨设1201x x <<<,构造函数()()()2g x f x f x =--,01x <<,故()()()()()()2222241112022x x x g x f x f x x x x x ----'''=+-=+=<--,故()g x 在()0,1上单调递减,()()10g x g >=,∵()10,1x ∈,∴()()()11120g x f x f x =-->,又∵()()12f x f x =,∴()()2120f x f x -->,即()()212f x f x >-,∵1201x x <<<,∴2x ,()121,x -∈+∞,又∵()f x 在()1,+∞上单调递增,∴212x x >-,即122x x +>,得证.2.已知函数()()e ln xf x x a =+.(1)若()f x 是增函数,求实数a 的取值范围;(2)若()f x 有两个极值点1x ,2x ,证明:122x x +>.【解析】(1)函数的定义域为()0,∞+,()1e ln x f x x a x ⎛⎫'=++ ⎪⎝⎭,若()f x 是增函数,即()0f x '≥对任意0x >恒成立,故1ln 0x a x++≥恒成立,设()1ln g x x a x=++,则()22111x g x x x x -'=-=,所以当01x <<时,()0g x '<,()g x 单调递减,当1x >时,()0g x '>,()g x 单调递增,所以当1x =时,()()min 11g x g a ==+,由10a +≥得1a ≥-,所以a 的取值范围是[)1,-+∞.(2)不妨设120x x <<,因为1x ,2x 是()f x 的两个极值点,所以()11111e ln 0x f x x a x ⎛⎫'=++= ⎪⎝⎭,即111ln 0x a x ++=,同理221ln 0x a x ++=,故1x ,2x 是函数()1ln g x x a x=++的两个零点,即()()120g x g x ==,由(1)知,()()min 110g x g a ==+<,故应有(),1a ∞∈--,且1201x x <<<,要证明122x x +>,只需证212x x >-,只需证()()()()211122g x g x g x g x --=--()()111111111111ln ln 2ln ln 2022x a x a x x x x x x ⎡⎤=++--++=+--+>⎢⎥--⎣⎦,设()()11ln ln 22h x x x x x =+--+-,(]0,1x ∈,则()()()()()22222224111111102222x x x h x x x x x x x x x ---'=----=-≤----,所以()h x 在()0,1上单调递减,因为()10,1x ∈,所以()()110h x h >=,即()()2120g x g x -->,()()212g x g x >-,又21>x ,121x ->,及()g x 在()1,+∞上单调递增,所以212x x >-成立,即122x x +>成立.3.已知函数()()11e xf x x -=+.(1)求()f x 的极大值;(2)设m 、n 是两个不相等的正数,且()()11e 1e 4e n m m n m n +-+++=,证明:2m n +<.【解析】(1)因为()()111e 1e x x f x x x --+==+的定义域为R ,()1e x xf x -'=-,当0x <时,()0f x '>,此时函数()f x 单调递增,当0x >时,()0f x '<,此时函数()f x 单调递减,所以,函数()f x 的极大值为()0e f =.(2)证明:因为()()11e 1e 4e n m m n m n +-+++=,则11114e e em n m n --+++=,即()()4f m f n +=,由(1)知,函数()f x 在(),1-∞上单调递增,在()1,+∞上单调递减,因为m 、n 是两个不相等的正数,且满足()()4f m f n +=,不妨设01m n <<<,构造函数()()()2g x f x f x =+-,则()()()1122ee x xxx g x f x f x ---'''=--=--,令()()h x g x '=,则()()()()111111e 1e e ex x x x xh x x x -----'=---=--.当01x <<时,101x x ->>-,则()0h x '<,此时函数()h x 单调递减,当1x >时,101x x ->>-,则()0h x '<,此时函数()h x 单调递减,又因为函数()h x 在()0,∞+上连续,故函数()h x 在()0,∞+上单调递减,当01x <<时,()()10h x h >=,即()0g x '>,故函数()g x 在()0,1上为增函数,故()()()()()()214f m f m g m g f m f n -+=<==+,所以,()()2f n f m >-,21m -> 且1n >,函数()f x 在()1,+∞上为减函数,故2n m <-,则2m n +<.4.已知函数()1ln xf x ax+=(1)讨论f (x )的单调性;(2)若()()2112e e xxx x =,且121200x x x x >>≠,,,证明:>【解析】(1)()()2ln 0xf x x ax -'=>当0a >时,()01x ∈,,()0f x '>,所以()f x 单调递增;()1x ∈+∞,,()0f x '<,所以()f x 单调递减;当0a <时,()01x ∈,,()0f x '<,所以()f x 单调递减;()1x ∈+∞,,()0f x '>,所以()f x 单调递增;(2)证明:()()2112x x x x =e e ,∴()()2112ln ln x x x x =e e ,()()1212ln ln x x x x =e e 即当1a =时,()()12f x f x =由(1)可知,此时1x =是()f x 的极大值点,因此不妨令1201x x <<<>22122x x +>①当22x ≥时,22122x x +>成立;②当212x <<时先证122x x +>此时()2201x -∈,要证122x x +>,即证:122x x >-,即()()122f x f x >-,即()()222f x f x >-即:()()2220f x f x -->①令()()()()()()1ln 21ln 21,22x x g x f x f x x x x+-+=--=-∈-,∴()()()()()222222ln 2ln 2ln 2ln ln 02x x x x x x g x x x x x x ---'=-->--=->-∴()g x 在区间()12,上单调递增∴()()10x g g >=,∴①式得证.∴122x x +>∵21112x x +>,22212x x +>∴221212222x x x x ++>+∴()221212222x x x x +>+->>5.已知函数()22ln x f x x a=-(a ∈R 且0a ≠).(1)2a =,求函数()f x 在()()22f ,处的切线方程.(2)讨论函数()f x 的单调性;(3)若函数()f x 有两个零点12x x 、()12x x <,且2e a =,证明:122e x x +>.【解析】(1)当2a =时,()22ln 2x f x x =-,所以()222ln 2f =-.()2f x x x '=-,所以()22212f '=-=.所以函数()f x 在()()22f ,处的切线方程为()22ln 22y x --=-,即2ln 2y x =-.(2)()f x 的定义域为(0,+∞),22()x f x a x'=-.当a <0时,()0f x '<恒成立,所以()f x 在(0,+∞)上单调递减;当a >0时,(222()x f x x x a x ax'=-=.在(上,()0f x '<,所以()f x 单调递减;在)+∞上,()0f x '>,所以()f x 单调递增.(3)当2e a =,()222ln ex f x x =-.由(2)知,()f x 在()0,e 上单调递减,在()e,∞+上单调递增.由题意可得:()12(0,e),e,x x ∈∈+∞.由(2e)22ln 20f =->及2()0f x =得:()2e,2e x ∈.欲证x 1+x 2>2e ,只要x 1>2e-x 2,注意到f (x )在(0,e)上单调递减,且f (x 1)=0,只要证明f (2e-x 2)>0即可.由22222()2ln 0ex f x x =-=得22222e ln x x =.所以22222(2e )(2e )2ln(2e )e x f x x --=--2222224e 4e 2ln(2e )e x x x -+=--()2222224e 4e 2e ln 2ln 2e e x x x -+=--2222442ln 2ln(2e ),(e,2e),ex x x x =-+--∈令4()42ln 2ln(2e ),(e,2e)etg t t t t =-+--∈则24224(e )()0e 2e e (2e )t g t t t t t -'=-++=--,则g (t )在(e ,2e)上是递增的,∴g (t )>g (e)=0即f (2e-x 2)>0.综上x 1+x 2>2e.6.已知函数()ln f x x x =-(1)求证:当1x >时,()21ln 1x x x ->+;(2)当方程()f x m =有两个不等实数根12,x x 时,求证:121x x m +>+【解析】(1)令()()()21ln 11x g x x x x -=->+,因为()()()()222114011x g x x x x x -'=-=>++,所以()g x 在()1,+∞上单调递增,所以()()10g x g >=,即当1x >时,()21ln 1x x x ->+.(2)证明:由()ln f x x x =-,得()11f x x'=-,易知()f x 在()0,1单调递减,在()1,+∞单调递增,所以()min 1f x =.因为方程()f x m =有两个不等实根,所以1m >.不妨设1201x x <<<.由(1)知,当1x >时,()21ln 1x x x ->+;当01x <<时,()21ln 1x x x -<+.方程()f x m =可化为ln x m x -=.所以()222221ln 1x x m x x --=>+,整理得()222120x m x m -++->.①同理由()111121ln 1x x m x x --=<+,整理得()211120x m x m -++-+>.②由①②,得()()()211210x x x x m -+-+>⎡⎤⎣⎦.又因为21x x >所以121x x m +>+.法二:由()ln f x x x =-,得()11f x x'=-,易知()f x 在()0,1单调递减,在()1,+∞单调递增,所以()min 1f x =.因为方程()f x m =有两个不等实根,所以1m >.不妨设1201x x <<<.要证121x x m +>+,只要证1211ln 1x x x x +>-+,只要证:21ln 11x x >-+>.因为()f x 在()1,+∞上单调递增,只要证:()()()1211ln f x f x f x =>-.令()()()(1ln 01h x f x f x x =--<<,只要证()0,1x ∀∈,()0h x >恒成立.因为()()()()1111ln 11ln 111ln 1ln x x x h x f x f x x x x x x x --⎛⎫⎛⎫=---=-+-=⎪ ⎪-⎭'⎝'-'⎝⎭,令()()ln 101F x x x x x =--<<,则()ln 0F x x '=->,故()F x 在()0,1上单调递增,()()10F x F <=,所以()0h x '<,所以()h x 在()0,1上单调递减,所以()()10h x h >=,故原结论得证.7.已知函数()()22ln 21f x a x x a x a =-+-+.(1)若1a =,证明:()22f x x x <-;(2)若()f x 有两个不同的零点12,x x ,求a 的取值范围,并证明:122x x a +>.【解析】(1)当1a =时,()22ln 1f x x x =-+,定义域为()0,∞+令()()()222ln 21g x f x x x x x =--=-+,则()22g x x'=-当01x <<时,()0g x '>;当1x <时,()0g x '<;所以函数()g x 在()0,1上单调递增,在()1,+∞上单调递减,故()()max 110g x g ==-<,所以()0g x <,得()22f x x x <-;(2)因为()f x 有两个不同的零点12,x x ,则()f x 在定义域内不单调;由()()()()212221x a x af x x a x x--+'=-+-=当0a ≤时,()0f x '<在()0,∞+恒成立,则()f x 在()0,∞+上单调递减,不符合题意;当0a >时,在()0,a 上有()0f x '>,在(),a +∞上有()0f x '<,所以()f x 在()0,a 上单调递增,在(),a +∞上单调递减.不妨设120x a x <<<令()()()2F x f x f a x =--则()()()()()()222F x f x f a x a x f x f a x ''''''=---=+-()()()()()2422221222122a x a ax a a x a x a x x a x -=-+-+--+-=--当()0,x a ∈时,()0F x '>,则()F 在()0,a 上单调递增所以()()()()20F x F a f a f a a <=--=故()()2f x f a x <-,因为120x a x <<<所以()()12f x f a x <-1,又()()2f x f x =1,122a a x a <-<则()()212f x f a x <-,又()f x 在(),a +∞上单调递减,所以212x a x >-,则122x x a +>.8.已知函数()21ln 2f x x x x x =+-.(1)求曲线()y f x =在点()()1,1f 处的切线方程;(2)若()00f x '=(()f x '为()f x 的导函数),方程()f x m =有两个不等实根1x 、2x ,求证:1202x x x +>.【解析】(1)因为()21ln 2f x x x x x =+-,则()ln f x x x '=+,所以,()112f =-,()11f '=,所以,曲线()y f x =在点()()1,1f 处的切线方程为112y x +=-,即32y x =-.(2)证明:因为()ln f x x x '=+,()00f x '=,所以00ln 0x x +=.因为()f x '为增函数,所以()f x 在()00,x 上单调递减,在()0,x +∞上单调递增.由方程()f x m =有两个不等实根1x 、2x ,则可设102x x x <<,欲证1202x x x +>,即证20102x x x x >->,即证()()2012f x f x x >-,而()()21f x f x =,即()()10120f x f x x -->,即()()()()2211110*********ln 2ln 222022x x x x x x x x x x x x +------+->,设()()()()()22000011ln 2ln 22222g x x x x x x x x x x x x x =+------+-,其中00x x <<,则()()00ln ln 22g x x x x x =+-+',设()()()000ln ln 220h x x x x x x x =<+<+-,则()()()000211022x x x x x x x x h x -=-=>--',所以,函数()g x '在()00,x 上单调递增,所以()()0002ln 20g x g x x x '<='+=,所以()g x 在()00,x 上单调递减,所以()()00g x g x >=,即()()2012f x f x x >-,故1202x x x +>得证.9.已知函数2()1e (1),1,1x f x k x x k R x ⎛⎫=--->-∈ ⎪+⎝⎭.(1)若0k =,证明:(1,0)x ∈-时,()1f x <-;(2)若函数()f x 恰有三个零点123,,x x x ,证明:1231x x x ++>.【解析】(1)0k =时,函数1()e ,(1,0)1xx f x x x -=∈-+,则221()e 0(1)x x f x x +='>+,()f x 在(1,0)-上单调递增,所以1()e (0)11xx f x f x -=<=-+.(2)e ()(1)1x f x x k x ⎛⎫=--⎪+⎝⎭,显然1x =为函数的一个零点,设为3x ;设函数e ()1xF x k x =-+,2e ()(1)x x F x x '=+当(1,0)x ∈-时,()0F x '<,当,()0x ∈+∞时,()0F x '>,故()F x 在(1,0)-上单调递减,在(0,)+∞上单调递增.由已知,()F x 必有两个零点12,x x ,且1210x x -<<<,下证:120x x +>.设函数()()(),(1,0)h x F x F x x =--∈-,则e e ()11x xh x x x -=++-,2e 11()e e (1)11x x x x x x h x x x x -++⎛⎫⎛⎫=+- ⎪⎪+--⎝⎭⎝⎭',由于(1,0)x ∈-,则2e 1e 0(1)1x x x x x x -+⎛⎫-< ⎪+-⎝⎭,由(1)有1e 01xx x ++>-,故()0h x '<,即函数()h x 在(1,0)-上单调递减,所以()(0)0h x h >=,即有()()()211F x F x F x =>-,由于12,(0,)x x -∈+∞,且在(0,)+∞上单调递增,所以21x x >-,所以120x x +>.10.已知函数()()()1ln 3f x x x a x =++-.(1)若函数()f x 为增函数,求实数a 的取值范围;(2)若函数()f x 有两个极值点1x 、()212x x x <.求证:()()12122f x f x x x +++>-.【解析】(1)因为()()()1ln 3f x x x a x =++-,该函数的定义域为()0,∞+,()1ln 2f x x a x'=++-,若函数()f x 为增函数,则()0f x '≥恒成立.令()1ln 2g x x a x =++-,()22111x g x x x x-'=-=,令()0g x '=得1x =,当()0,1x ∈时,()0g x '<,()g x 单调递减;当()1,x ∈+∞时,()0g x '>,()g x 单调递增,故()()11g x g a ≥=-,所以,10a -≥,因此1a ≥.(2)因为函数()f x 有两个极值点1x 、()212x x x <,即方程()0g x =有两个不等的实根1x 、()212x x x <,因为()g x 在()0,1上递减,在()1,+∞上递增,所以,1201x x <<<,即1x 、2x 是1ln 20x a x++-=的两个根,所以11221ln 201ln 20x a x x a x ⎧++-=⎪⎪⎨⎪++-=⎪⎩,则()()111222ln 21ln 21x x a x x x a x ⎧+-=-⎪⎨+-=-⎪⎩,所以,()()()()121211221212ln ln ln ln 2f x f x x x x x x x x x a x x +++=++++-+12ln ln 2x x =+-,即证12ln ln 0x x +>,即证121x x >.由11221ln 201ln 20x a x x a x ⎧++-=⎪⎪⎨⎪++-=⎪⎩两式作差得122111ln x x x x =-,令()120,1x t x =∈,则11ln t x t -=,21ln t x t t-=,即只需证111ln ln t t t t t--⋅>,即证ln 0t >.令()ln t t ϕ=-()0,1t ∈,则()210t ϕ-'=,故()t ϕ在区间()0,1上单调递减,当()0,1t ∈时,()()10t ϕϕ>=,命题得证.11.已知函数()ln f x x x =-.(1)求函数()f x 的单调区间;(2)若函数()y f x =的图象与()y m m R =∈的图象交于()11,A x y ,()22,B x y 两点,证明:12242ln 2x x +>-.【解析】(1)()f x 的定义域为(0,)+∞令11()10xf x x x -'=-=>,解得01x <<令11()10x f x x x-'=-=<,解得1x >所以()f x 的单调增区间为(0,1),减区间为(1,)+∞(2)由(1)不妨设1201x x <<<由题知11ln x x m -=,22ln x x m -=两式相减整理可得:12121ln x x x x -=所以要证明12242ln 2x x +>-成立,只需证明1211222(42ln 2l )n x x x x x x +->-因为12ln 0x x <,所以只需证明212112(42ln 2ln )2x x x x x x <-+-令12,01x t t x =<<,则只需证明1(42ln l 21n 2)t t t -<-+,即证(1)ln (1)02(42ln 2)t t t +--<-令2()(1)ln (1)2(4ln 2)g t t t t -=-+-2ln 22l 12ln (2)1()22n 2ln t t t g t t t t++'--=++=记()2ln (2)12ln 2h x t t t +-=+则()2ln 2h x t '=易知,当102t <<时,()0h x '<,当112t <<时,()0h x '>所以当12t =时,min 11()()022n 2ln l h x h ==+=所以当01t <<时,()0g t '≥,函数()g t 单调递增故()(1)0g t g <=,即(1)ln (1)02(42ln 2)t t t +--<-所以,原不等式12242ln 2x x +>-成立.12.已知函数()()3ln 010f x ax x a a =+≠.(1)讨论()f x 的单调性.(2)若函数()f x 有两个零点12x x ,,且12x x <,证明:12310x x +>.【解析】(1)函数()f x 的定义域为()0,∞+,()()ln ln 1f x a x a a x '=+=+.①当0a >时,令()0f x '<,得10x e <<,则()f x 在10,e ⎛⎫⎪⎝⎭上单调递减;令()0f x '>,得1x e >,则()f x 在1,e ⎛⎫+∞ ⎪⎝⎭上单调递增.②当0a <时,令()0f x '<,得1x e >,则()f x 在1,e ⎛⎫+∞ ⎪⎝⎭上单调递减;令()0f x '>,得10x e <<,则()f x 在10,e ⎛⎫⎪⎝⎭上单调递增.综上所述,当0a >时,()f x 在10,e ⎛⎫ ⎪⎝⎭上单调递减,在1,e ⎛⎫+∞ ⎪⎝⎭上单调递增;当0a <时,()f x 在1,e ⎛⎫+∞ ⎪⎝⎭上单调递减,在10,e ⎛⎫ ⎪⎝⎭上单调递增.(2)证明:因为12x x ,为()f x 的两个零点,所以113ln 010x x +=,223ln 010x x +=,两式相减,可得121233ln ln 01010x x x x -+-=,即1122123ln 10x x x x x x -=⋅,121212310ln x x x x x x -=⋅,因此,121121310ln x x x x x -=⋅,212121310ln x x x x x -=⋅.令12x t x =,则121113513310ln 10ln 10ln t t t x x t t t---+=⋅+⋅=⋅,令()()1ln 01h t t t t t =--<<,则()22211110t t h t t t t -+'=+-=>,所以函数()h t 在()0,1上单调递增,所以()()10h t h <=,即1ln 0t t t--<.因为01t <<,所以11ln t t t->,故12310x x +>得证.13.已知函数()ln f x x x ax a =-+.(1)若1≥x 时,()0f x ≥,求a 的取值范围;(2)当1a =时,方程()f x b =有两个不相等的实数根12,x x ,证明:121x x <.【解析】(1)∵1≥x ,()0f x ≥,∴ln 0a x a x -+≥,设()ln (1)ag x x a x x =-+≥,()221a x a g x x x x-'=-=,当1a >时,令()0g x '=得x a =,当1x a <≤时,()0g x '<,()g x 单调递减;当x a >时,()0g x '>,()g x 单调递增,∴()(1)0g a g <=,与已知矛盾.当1a ≤时,()0g x '≥,∴()g x 在[1,)+∞上单调递增,∴()(1)0g x g ≥=,满足条件;综上,a 取值范围是(,1]-∞.(2)证明:当1a =时,()ln f x x '=,当1x >,'()0f x >,当01x <<,'()0f x <,则()f x 在区间(1,)+∞上单调递增,在区间()0,1上单调递减,不妨设12x x <,则1201x x <<<,要证121x x <,只需证2111x x <<,∵()f x 在区间(1,)+∞上单调递增,∴只需证121()(f x f x <,∵12()()f x f x =,∴只需证111()()f x f x <.设1()()()(01)F x f x f x x =-<<,则22211()ln ln ln 0,x F x x x x x x -'=-=>,∴()F x 在区间()0,1上单调递增,∴()(1)0F x F <=,∴1()()0f x f x-<,即111()()f x f x <成立,∴121x x <.14.设函数()()e xf x x a =+,已知直线21y x =+是曲线()y f x =的一条切线.(1)求a 的值,并讨论函数()f x 的单调性;(2)若()()12f x f x =,其中12x x <,证明:124x x ⋅>.【答案】(1)1a =;()f x 在(),2-∞-上单调递减,在()2,-+∞上单调递增【解析】(1)设直线21y x =+与曲线()y f x =相切于点()()00,x f x ,()()1e x f x x a '=++ ,()()0001e 2x f x x a '∴=++=;又()()0000e 21x f x x a x =+=+,002e 21xx ∴-=+,即00e 210x x +-=;设()e 21x g x x =+-,则()e 20xg x '=+>,()g x ∴在R 上单调递增,又()00g =,()g x ∴有唯一零点0x =,00x ∴=,12a ∴+=,解得:1a =;()()1e x f x x ∴=+,()()2e x f x x '=+,则当(),2x ∞∈--时,()0f x '<;当()2,x ∈-+∞时,()0f x '>;()f x ∴在(),2-∞-上单调递减,在()2,-+∞上单调递增.(2)由(1)知:()()2min 2e 0f x f -=-=-<;当1x <-时,()0f x <;当1x >-时,()0f x >,1221x x ∴<-<<-;要证124x x ⋅>,只需证1242x x <<-;()f x 在(),2-∞-上单调递减,∴只需证()124f x f x ⎛⎫> ⎪⎝⎭,又()()12f x f x =,则只需证()224f x f x ⎛⎫> ⎪⎝⎭对任意()22,1x ∈--恒成立;设()()()421h x f x f x x ⎛⎫=--<<- ⎪⎝⎭,()()()()444333822e 2e e e 8xx xxxx x h x x x x x -⎛⎫++'∴=++=+ ⎪⎝⎭;设()()43e821x xp x x x -=+-<<-,则()2437e024x xp x x x -⎡⎤⎛⎫'=⋅++<⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,()p x ∴在()2,1--上单调递减,()()2880p x p ∴<-=-+=,又当21x -<<-时,()432e 0xx x +<,()0h x '∴>,()h x ∴在()2,1--上单调递增,()()()()2220h x h f f ∴>-=---=,即()4f x f x ⎛⎫> ⎪⎝⎭在()2,1x ∈--时恒成立,又()22,1x ∈--,()224f x f x ⎛⎫∴> ⎪⎝⎭,原不等式得证.15.已知函数()()32ln f x x x a a R x=++-∈有两个不同的零点12,x x .(1)求实数a 的取值范围;(2)求证:121x x >.【解析】(1)定义域为()()22232230,,1x x f x x x x ∞+-+=-+=',()(),0,10x f x '∈<,所以()f x 在()0,1x ∈上单调递减.()()1,,0x f x '∈+∞>,所以()f x 在()1,x ∈+∞上单调递增,所以()f x 在1x =处取得极小值,也是最小值,又()min ()14f x f a ==-,所以先保证必要条件()10f <成立,即4a >满足题意.当4a >时,易知,()()()33222ln 22ln 2022f a a a a a a a a=++-=++>;()111132ln 2ln 0;f a a a a a a aa a ⎛⎫=+--=+->> ⎪⎝⎭由以上可知,当4a >时,()()32ln f x x x a a R x=++-∈有两个不同的零点.(2)由题意,假设1201x x <<<,要证明121x x >,只需证明121x x >.只需证()121f x f x ⎛⎫< ⎪⎝⎭,又()()12f x f x =.即只需证()221f x f x ⎛⎫< ⎪⎝⎭,构造函数()()1,(1)g x f x f x x ⎛⎫=-> ⎪⎝⎭.()224ln g x x xx =-+()222(1)x g x x --∴=',所以()g x 在()1,+∞单调递减.()()()2210,1,1g x g x g =>∴< ,即()221f x f x ⎛⎫<⎪⎝⎭成立,即()121f x f x ⎛⎫< ⎪⎝⎭所以原命题成立.16.已知a 是实数,函数()ln f x a x x =-.(1)讨论()f x 的单调性;(2)若()f x 有两个相异的零点12,x x 且120x x >>,求证:212e x x ⋅>.【解析】(1)()f x 的定义域为()0,∞+,()1a a x f x x x-'=-=,当0a ≤时,()0f x '<恒成立,故()f x 在()0,∞+上单调递减;当0a >时,令()0f x '>得:()0,x a ∈,令()0f x '<得:(),x a ∈+∞,故()f x 在()0,x a ∈上单调递增,在(),x a ∈+∞上单调递减;综上:当0a ≤时,()f x 在()0,∞+上单调递减;当0a >时,()f x 在()0,x a ∈上单调递增,在(),x a ∈+∞上单调递减;(2)由(1)可知,要想()f x 有两个相异的零点12,x x ,则0a >,不妨设120x x >>,因为()()120f x f x ==,所以1122ln 0,ln 0a x x a x x -=-=,所以()1212ln ln x x a x x -=-,要证212e x x ⋅>,即证12ln ln 2x x +>,等价于122x x a a +>,而1212ln ln 1x x a x x -=-,所以等价于证明121212ln ln 2x x x x x x ->-+,即()1212122ln x x x x x x ->+,令12x t x =,则1t >,于是等价于证明()21ln 1t t t ->+成立,设()()21ln 1t g t t t -=-+,1t >()()()()222114011t g t t t t t -'=-=>++,所以()g t 在()1,+∞上单调递增,故()()10g t g >=,即()21ln 1t t t ->+成立,所以212e x x ⋅>,结论得证.17.已知函数()1e xf x ax -=-,(1)讨论函数()f x 的单调性;(2)若函数()f x 在()0,2上有两个不相等的零点12,x x ,求证:121x x a>.【解析】(1)()1e xf x a -='-,x ∈R .①当0a ≤时,()0f x '>恒成立,()f x 单调递增;②当0a >时,由()0f x '>得,()1ln ,x a ∈++∞,()f x 单调递增,由()0f x '<得,(),1ln x a ∈-∞+,()f x 单调递减.综上:当0a ≤时,()f x 单调递增;当0a >时,()f x 在()1ln ,x a ∈++∞上单调递增,在(),1ln x a ∈-∞+上单调递减.(2)∵()f x 在()0,2上有两个不相等的零点1x ,2x ,不妨设12x x <,∴1e x a x -=在()0,2上有两个不相等的实根,令()1e x g x x -=,()0,2x ∈,∴()()12e 1x x g x x --'=,由()0g x '<得,()0,1x ∈,()g x 单调递减,由()0g x '>得,()1,2x ∈,()g x 单调递增,()11g =,()e 22g =,0x →,()g x ∞→+,∴e 1,2a ⎛⎫∈ ⎪⎝⎭要证121x x a>,即证121ax x >,又∵()()12g x g x a ==,只要证211e1x x ->,即证211e x x ->,∵121x x <<,即证()()211e xg x g -<即证()()212e x g x g -<,即证12221e 112e e ex x x x ----<,即证212e ln 10x x -+->令()1eln 1xh x x -=+-,()1,2x ∈,∴()11e x h x x-'=-+,令()e e x x x ϕ=-,()1,2x ∈,则()e e x x ϕ'=-,当()1,2x ∈时,()e e>0x x ϕ'=-恒成立,所以()e e xx x ϕ=-在()1,2x ∈上单调递增,又()()10x ϕϕ>=,∴e e x x >,∴11e x x-<,∴()0h x '>∴()h x 在()1,2上递增,∴()()10h x h >>,∴1e ln 10x x -+->,∴121x x a>.18.已知函数21()ln 2f x x x x x =+-的导函数为()'f x .(1)判断()f x 的单调性;(2)若关于x 的方程()f x m '=有两个实数根1x ,212()x x x <,求证:2122x x <.【解析】(1)()1(1ln )(0)f x x x x x x '=+-+=>,令()ln g x x x =-,由11()1(0)x g x x x x'-=-=>,可得()g x 在(0,1)上单调递减,(1,)+∞上单调递增,所以()()(1)10f x g x g '==>,所以()f x 在(0,)+∞上单调递增;(2)依题意,1122ln ln x x mx x m-=⎧⎨-=⎩,相减得2121ln x x x x -=-,令21(1)x t t x =>,则有1ln 1t x t =-,2ln 1t t x t =-,欲证2122x x <成立,只需证222ln (ln )21(1)t t t t t ⋅<--成立,即证3322(1)(ln )t t t -<成立,即证13232(1)ln t t t-<成立,令13(1)t x x =>,只需证13212()3ln 0x x x-->成立,令1321()2()3ln (1)F x x x x x=-->,即证1x >时,()0F x >成立11323333232(2)3()2(1x x F x x x x+-'=+-=,令1323()2(2)3(1)h x x x x =+->,则11233()2(3)63(22)(1)x x x x x g x '=-=->,可得()h x 在23(1,2)内递减,在23(2,)+∞内递增,所以23()(2)0h x h = ,所以()0F x ',所以()F x 在(1,)+∞上单调递增,所以()(1)0F x F >=成立,故原不等式成立.19.已知函数()ln f x x =.(1)设函数()()ln tg x x t x=-∈R ,且()()g x f x ≤恒成立,求实数t 的取值范围;(2)求证:()12e e x f x x>-;(3)设函数()()1y f x ax a R x=--∈的两个零点1x 、2x ,求证:2122e x x >.【解析】(1)由()()g x f x ≤可得ln ln tx x x-≤,可得2ln t x x ≤,令()2ln h x x x =,其中0x >,则()()21ln h x x '=+,当10ex <<时,()0h x '<,此时函数()h x 单调递减,当1ex >时,()0h x '>,此时函数()h x 单调递增,所以,()min 12e e h x h ⎛⎫==- ⎪⎝⎭,所以,2e t ≤-;(2)要证()12e e x f x x >-,即证2ln e ex x x x >-,由(1)可知,1ln ex x ≥-,当且仅当1e x =时,等号成立,令()2e exx m x =-,其中0x >,则()1e x x m x -'=,当01x <<时,()0m x '>,此时函数()m x 单调递增,当1x >时,()0m x '<,此时函数()m x 单调递减,所以,()()max 11em x m ==-,因为1ln ex x ≥-和()1e m x ≤-取等的条件不同,故2ln e e x x x x >-,即()12e e x f x x >-;(3)由题知1111ln x ax x -=①,2221ln x ax x -=②,①+②得()()12121212ln x x x x a x x x x +-=+③,②-①得()22121112ln xx x a x x x x x ⎛⎫-+=- ⎪⎝⎭④.③÷④得()()1212212122112ln ln x x x x x x x x x x x x ++-=-,不妨设120x x <<,记211x t x =>.令()()()21ln 11t F t t t t -=->+,则()()()()222114011t F t t t t t -'=-=>++,所以()F t 在()1,+∞上单调递增,所以()()10F t F >=,则()21ln 1t t t ->+,即()2121122lnx x x x x x ->+,所以()()1212212122112ln ln 2x x x x x x x x x x x x ++-=>-.因为()()()()1212121212122ln ln ln x x x x x x x x x x +-<==所以2,即1>.令()2ln x x x ϕ=-,()2120x x xϕ'=+>,则()x ϕ在()0,∞+上单调递增.又)1lnln 2112e =+<,所以)1ln >-)ϕϕ>,所以2122x xe >.20.已知函数1()e xx f x -=.(1)求()f x 的单调区间与极值.(2)设m ,n 为两个不相等的正数,且ln ln m n n m m n -=-,证明:4e mn >.【解析】(1)()f x 的定义域为R ,()2e rxf x -'=.当(,2)x ∈-∞时,()0f x '>;当(2,)x ∈+∞时,()0.f x '<所以()f x 的单调递增区间为(,2)-∞,单调递减区间为(2,)+∞.故()f x 在2x =处取得极大值,且极大值为21e ,无极小值.(2)证明:易知m ,0n >,ln ln (ln 1)m n n m m n m n -=-⇔-()ln n ln ln 1ln 1ln 1ln 1ln 1e emn m n m n m n m ----=-⇔=⇔=即()ln (ln )f f m n =,ln ln m n ≠.不妨设1ln x m =,2ln x n =,12x x <.(1)可知2(2,)x ∈+∞,()()120f x f x =>,1(1,2)x ∈当23x ≥时,124x x +>,4e mn >,当223x <<时,2142x <-<,()()()()22224222222441e 31414x xx x x x e x x f x f x e e e ----------=-=设4()(1)e (3)e x x h x x x -=---,(2,3)x ∈,则()()()()()442e2e 2e e xx x x h x x x x --=---=--',因为(2,3)x ∈,4x x -<,所以()0h x '>,()h x 在区间(2,3)上单调递增,422()(21)e (32)e 0h x ->---=,所以()()()()2212440f x f x f x f x --=-->,()()124x f f x >-又因为1x ,24(1,2)x -∈,所以124x x >-,即124x x +>,故4e mm >.21.已知函数()()2ln f x e x x =-,其中 2.71828e =⋅⋅⋅为自然对数的底数.(1)讨论函数()f x 的单调性;(2)若()12,0,1x x ∈,且()21121212ln 2ln ln x x x ex x x x -=-,证明:1211221e e x x <+<+.【解析】(1)2(1)'()ln e x xf x =-+,2e y x =是减函数,1ln y x =+是增函数,所以'()f x 在()0,∞+单调递减,∵()'0f e =,∴()0,x e ∈时,()'()'0f x f e >=,()f x 单调递增;(),x e ∈+∞时,()'()'0f x f e <=,()f x 单调递减.(2)由题意得,121212ln ln 2ln 2ln x x e x e x x x -=-,即1212112ln 2ln e x e x x x ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭,112211112ln 2ln e e x x x x ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭,设111a x =,221a x =,则由()12,0,1x x ∈得,()12,1,a a ∈+∞,且()()12f a f a =.不妨设12a a <,则即证12221e a a e <+<+,由()20f e =及()f x 的单调性知,1212a e a e <<<<.令()()()2F x f x f e x =--,1x e <<,则[]24'()'()'(2)2ln (2)(2)e F xf x f e x x e x x e x =+-=----,∵()22x e x e -≤,∴2224'()2ln 0eF x e e>--=,()()0F x F e <=,∴()()2f x f e x <-,取1x a =,则()()112f a f e a <-,又()()12f a f a =,则()()212f a f e a <-,又12e a e ->,2a e >,且()f x 在(),e +∞单调递减,∴212a e a >-,122a a e +>.下证:1221a a e +<+.(i )当21a e <+时,由1a e <得,1221a a e +<+;(ii )当212e a e +≤<时,令()()(21)G x f x f e x =-+-,12e x e +<<,则22'()'()'(21)1ln 1ln(21)21e e G x f x f e x x e x x e x=++-=--+--+-+-222(21)2ln (21)(21)e e x e x x e x+⎡⎤=---++⎣⎦-++,记2(21)t x e x =-++,12e x e +≤<,则2(21)'()2ln e e G x t t+=--,又2(21)t x e x =-++在[)1,2e e +为减函数,∴()22,1t e e ∈+,2(21)2e e t +-在()22,1e e +单调递减,ln t 在()22,1e e +单调递增,∴2(21)2ln e e t t+--单调递减,从而,'()G x 在[)1,2e e +单调递增,又2(21)'(2)2ln 2(212)21ln 22(212)e e G e e e e e e e e e +=--+-=--+-,ln 1≤-x x ,∴()'20G e >,又2(21)'(1)2ln(1)(211)(1)(211)e e G e e e e e e e ++=--++--++--1ln(1)01e e e -=-+<+,从而,由零点存在定理得,存在唯一0(1,2)x e e ∈+,使得()0'0G x =,当[)01,x e x ∈+时,()0'()'0()G x G x G x <=⇒单调递减;当()0,2x x e ∈时,()0'()'0()G x G x G x >=⇒单调递增.所以,{}()max (1),(2)G x G e G e ≤+,又(1)(1)(211)(1)()(1)ln(1)G e f e f e e f e f e e e e +=+-+--=+-=-+-,ln 11ln ln(1)x x e x e x e e e+≤⇒≤⇒+≤,所以,11(1)(1)0e G e e e e e+-+<-⋅-=<,显然,()()()22212000G e f e f e e =-+-=-=,所以,()0<G x ,即()()210f x f e x -+-<,取[)21,2x a e e =∈+,则()()2221f a f e a <+-,又()()12f a f a =,则()()1221f a f e a <+-,结合()221211e a e e e +-<+-+=,1a e <,以及()f x 在()0,e 单调递增,得到1221a e a <+-,从而1221a a e +<+.22.已知函数()e ln xf x x a x a =--,其中0a >.(1)若2e a =,求()f x 的极值:(2)令函数()()g x f x ax a =-+,若存在1x ,2x 使得()()12g x g x =,证明:1212e e 2x xx x a +>.【解析】(1)当2e a =时()e 2eln 2e xf x x x =-,()0,x ∈+∞,所以()()()1e 2e2e 1e xxx x f x x x x+-'=+-=,当()0,1x ∈时,202x x <+<,1e e x <<,所以()0f x '<,当()1,x ∈+∞时,22x x +>,e e x >,所以()0f x '>,所以()f x 在()0,1上单调递减,在()1,+∞上单调递增,所以()f x 的极小值为()1e f =-,无极大值.(2)证明:()()()e ln e ln e x x xg x a x ax x f x ax x a x a ==-=+---,令e x t x =,则上述函数变形为()ln h a t t t =-,对于()e x t x x =,()0,x ∈+∞,则()()1e 0xt x x '=+>,即()e x t x x =在()0,∞+上单调递增,。

专题08 导数中的极值和极值点偏移(解析版)

专题08 导数中的极值和极值点偏移(解析版)

专题08 导数中的极值和极值点偏移一、重点题型目录【题型】一、求已知函数的极值 【题型】二、根据极值点求参数【题型】三、函数或导函数图象与极值的关系 【题型】四、函数或导函数图象与极值点的关系 【题型】五、求已知函数的极值点 【题型】六、函数最值与极值的关系 【题型】七、导数中的极值偏移问题 二、题型讲解总结【题型】一、求已知函数的极值例1.(2023·全国·高三专题练习)等比数列{}n a 中的项1a ,105a 是函数()32692f x x x x =-+-的极值点,则53a =( )A .3B .C .D 【答案】D【分析】先根据题意确定函数的极值点,进而得到1105a a ⋅,然后根据等比中项求得答案.【详解】由题意,()()()23129313f x x x x x =-+=--',则(),1x ∈-∞时0fx ,函数单调递增,()1,3x ∈时()0f x '<,函数单调递减,()3,x ∈+∞时0fx ,函数单调递增,于是x =1和x =3是函数的两个极值点,故1a ,105a 是()231290x x f x =-+='的两个根,所以11053a a ⋅=,所以25311053a a a =⋅=,又110540a a +=>,所以10a >,1050a >,设公比为q ,525310a a q =>,所以55a =故选:D.例2.(2023·全国·高三专题练习)下列函数中存在极值点的是( ) A .1y x= B .e x y x =- C .2y = D .3y x =【答案】B【分析】对每个选项求导,然后判断即可 【详解】对选项A ,210y x '=-<,故没有极值点; 对选项B ,1e x y '=-,则极值点为0x =,故正确; 对选项C ,0y '=,故没有极值点; 对选项D ,230y x '=≥,故没有极值点;故选:B例3.(2023·全国·高三专题练习)已知函数()22e e x a f x a x =-至多有2个不同的零点,则实数a 的最大值为( ). A .0 B .1 C .2 D .e【答案】C【分析】先将零点问题转化为两函数交点问题,构造函数,研究其单调性,极值,画出函数图象,从而得到20e a a =或224e e a a ≥,再次构造关于a 的函数()2e a a h a =,研究其单调性,解出不等式,求出数a 的最大值.【详解】令()22e e 0xa f x a x =-=,得到22e ex a x a=,函数()22e e xa f x a x =-至多有2个不同的零点,等价于22e ex a x a=至多有两个不同的根,即函数2e x x y =与2e a a y =至多有2个不同的交点令()2ex x g x =,则()22exx x g x -'=, 当02x <<时,()0g x '>,()g x 单调递增, 当0x <或2x >时,()0g x '<,()g x 单调递减,所以0x =与2x =为函数()g x 的极值点,且()()2400,2e g g ==, 且()20e x x g x =≥在R 上恒成立,画出()2ex x g x =的图象如下:有图可知:20e a a =或224e e a a ≥时,符合题意,其中20e aa=,解得:0a = 设()2e a a h a =,则()22e aah a -'=,当1a <时,()0h a '>,当1a >时,()0h a '<, 所以()2e aah a =在()1-∞,上单调递增,在()1+∞,上单调递减, 由224e e a a ≥可得:()()2h a h ≥,所以2a ≤, 综上:实数a 的最大值为2 故选:C【点睛】对于函数零点问题,直接求解无法求解时,可以转化为两函数的交点问题,数形结合进行解决.例4.(2023·全国·高三专题练习)已知t 和3t +是函数()32f x x ax bx c =+++的零点,且3t +也是函数()f x 的极小值点,则()f x 的极大值为( ) A .1 B .4C .43D .49【答案】B【分析】根据给定条件,结合三次函数的特点可得2()()(3)f x x t x t =---,再借助导数求出极大值作答.【详解】因函数()f x 在3t +处取得极小值0,又t 是函数()f x 的另一零点,因此函数()f x 只有两个零点,从而有2()()(3)f x x t x t =---,求导得:()3(1)(3)f x x t x t '=----, 当1x t <+或3x t >+时,()0f x '>,当13t x t +<<+时,()0f x '<, 于是,()f x 在3x t =+处取得极小值,在1x t =+处取得极大值(1)4f t +=, 所以()f x 的极大值为4. 故选:B【题型】二、根据极值点求参数例5.(2023·全国·高三专题练习)已知函数()2e 1x f x x a =+-()a R ∈有两个极值点,则实数a 的取值范围为( ) A .1,0e ⎛⎫- ⎪⎝⎭B .2,0e ⎛⎫- ⎪⎝⎭C .1,e ⎛⎫-+∞ ⎪⎝⎭D .2,e ⎛⎫-+∞ ⎪⎝⎭【答案】B【分析】将函数有两个极值点转化为其导数有两个零点进行求解即可.【详解】对原函数求导得,()2e xf x x a '=+,因为函数()()2e 1xf x x a a R =+-∈有两个极值点,所以()0f x '=有两个不等实根,即2e 0x x a +=有两个不等实根, 亦即2e xxa -=有两个不等实根. 令()2e x xg x =,则()()21exx g x -'= 可知()g x 在(),1-∞上单调递增,在()1,+∞上单调递减, 所以()()max 21eg x g ==, 又因为当0x <时,()0g x <,当0x >时,()0g x >,所以2e 0a a ⎧-<⎪⎨⎪->⎩,解得20e a -<<, 即a 的范围是2,0e ⎛⎫- ⎪⎝⎭.故选:B例6.(2023·全国·高三专题练习)若函数()sin 3f x x πω⎛⎫=+ ⎪⎝⎭在区间[0,π)内有且只有两个极值点,则正数ω的取值范围是( ) A .58,33⎡⎤⎢⎥⎣⎦B .58,33⎡⎫⎪⎢⎣⎭C .713,66⎛⎤ ⎥⎝⎦D .713,66⎡⎫⎪⎢⎣⎭【答案】C【分析】根据极值点的定义,利用整体法,列出关于ω的不等关系,即可求得参数范围. 【详解】因为()f x 在[)0,π有2个极值点,也即()f x 在区间[)0,π取得一次最大值,一次最小值;又0ω>,则当[)0,x π∈,,333x πππωωπ⎡⎫+∈+⎪⎢⎣⎭, 要使得()f x 满足题意,只需35232ππωππ<+≤,解得713,66ω⎛⎤∈ ⎥⎝⎦.故选:C.例7.(2023·全国·高三专题练习)若2x =是函数21()2ln 2f x ax x x =--的极值点,则函数( )A .有最小值2ln2-,无最大值B .有最大值2ln2-,无最小值C .有最小值2ln2-,最大值2ln 2D .无最大值,无最小值【答案】A【分析】对()f x 求导,根据极值点求参数a ,再由导数研究其单调性并判断其最值情况.【详解】由题设,2()1f x ax x '=--且(2)0f '=,∴220a -=,可得1a =.∴2(1)(2)()1x x f x x x x+-'=--=且0x >,当02x <<时()0f x '<,()f x 递减;当2x >时()0f x '>,()f x 递增; ∴()f x 有极小值(2)2ln 2f =-,无极大值. 综上,有最小值2ln2-,无最大值. 故选:A例8.(2023·全国·高三专题练习)已知函数e 1()ln x f x k x x x ⎛⎫=++ ⎪⎝⎭,若1x =是函数()f x 的唯一极值点,则实数k 的取值范围是_______. 【答案】1k ≥-【分析】先求函数()f x 的导函数2(e )(1)()x k x f x x+-'=,由条件1x =是函数()f x 的唯一极值点,说明e 0x k +=在,()0x ∈+∞上无解,或有唯一解1x = ,求实数k 的取值 【详解】e 1()ln x f x k x x x ⎛⎫=++ ⎪⎝⎭的定义域为(0,)+∞222(1)e 11(e )(1)()()x x x k x f x k x x x x -+-'∴=+-+=1x =是函数()f x 的唯一极值点1x ∴= 是导函数()0f x '=的唯一根 (∴)e 0x k +=在(0,)+∞无变号零点令()e x g x k =+ ,则()e 0x g x '=> ,即()g x 在(0,)+∞上单调递增 此时min ()10g x k =+≥ 1∴≥-k(∴)当()e x g x k =+ 在(0,)+∞有解1x = 时,此时e 0k += ,解得e k =- 此时()f x 在(0,1) 和(1,)+∞ 上均单调递增,不符合题意 故答案为:1k ≥-【题型】三、函数或导函数图象与极值的关系例9.(2023·全国·高三专题练习)已知定义在R 上的函数f (x ),其导函数()f x '的大致图象如图所示,则下列叙述正确的是( )A .()()()f b f a f c >>B .函数()f x 在x =c 处取得最大值,在e x =处取得最小值C .函数()f x 在x =c 处取得极大值,在e x =处取得极小值D .函数()f x 的最小值为()f d 【答案】C【分析】根据导函数的图象确定()f x 的单调性,从而比较函数值的大小及极值情况,对四个选项作出判断.【详解】由题图可知,当x c ≤时,()0f x '≥,所以函数()f x 在,c 上单调递增,又a <b <c ,所以()()()f a f b f c <<,故A 不正确. 因为()0f c '=,()0f e '=,且当x c <时,0f x;当c <x <e 时,()0f x '<;当x >e 时,0fx.所以函数()f x 在x =c 处取得极大值,但不一定取得最大值,在x =e处取得极小值,不一定是最小值,故B 不正确,C 正确.由题图可知,当d x e ≤≤时,()0f x '≤,所以函数()f x 在[d ,e ]上单调递减,从而()()f d f e >,所以D 不正确. 故选:C .例10.(2023·全国·高三专题练习)已知函数()f x 的导函数的图像如图所示,则下列结论正确的是( )A .3-是()f x 的极小值点B .1-是()f x 的极小值点C .()f x 在区间(),3-∞上单调递减D .曲线()y f x =在2x =处的切线斜率小于零【答案】D【分析】根据导函数图像,求得函数单调性,结合极值点定义,即可判断ABC 选项,根据导数的定义和几何意义即判断D 选项,从而得出答案. 【详解】由图像知,当3x <-或3x >时,0fx,()f x 单调递增,当33x -<<时,()0f x '<,()f x 单调递减,所以()f x 在区间(),3-∞-,()3,+∞内单调递增,在区间()3,3-内单调递减, 3-是()f x 的极大值点,3是()f x 的极小值点,故ABC 错误;又因为()20f '<,所以曲线()y f x =在2x =处切线斜率小于零,故D 正确. 故选:D.例11.(2023·全国·高三专题练习)函数()f x 定义域为(),a b ,其导函数'()f x 在(),a b 内的图象如图所示,则函数()f x 在区间(),a b 内极小值点的个数是( )A .1B .2C .3D .4【答案】A【分析】根据导函数的图象可判断出()f x 的单调性,结合极小值点的概念即可得结果. 【详解】由()f x '的图象可得:函数()f x 在()1,a x 上单调递增,在()12,x x 上单调递减, 在()24,x x 上单调递增,在()4,x b 上单调递减,故2x x =为函数()f x 的极小值点,即()f x 在区间(),a b 内极小值点的个数是1, 故选:A.例12.(2023·全国·高三专题练习)已知定义在[,]a b 上的函数()y f x =的导函数()y f x '=的图象如图所示,给出下列命题:∴函数()y f x =在区间[]24,x x 上单调递减; ∴若45x m n x <<<,则()()22f m f n m n f ++⎛⎫>'' ⎝'⎪⎭;∴函数()y f x =在[,]a b 上有3个极值点;∴若23x p q x <<<,则[][()()]()()0f p f q f p f q ''-⋅-<. 其中正确命题的序号是( )A .∴∴B .∴∴C .∴∴D .∴∴【答案】B【分析】根据()y f x '=图象判断函数()y f x =单调性和极值点情况,并利用单调性比较函数值的大小,逐一判断四个命题的正误即可.【详解】∴中,看图知,在区间[]23,x x 上,()0f x '≥,在区间[]34,x x 上,()0f x '≤,故函数()y f x =在区间[]24,x x 上先增再减,∴错误;∴中,看图知,在区间[]45,x x 上,()y f x '=是下凸的,任意连接两点()(),(),,()m f m n f n '',中点为()(),22m n f m f n M ''++⎛⎫ ⎪⎝⎭,线段一定在()y f x '=图象上方,故中点也在图象上方,即()()22f m f n m n f ++⎛⎫>'' ⎝'⎪⎭,故∴正确;∴中,看图知,在区间[]3,a x 上,()0f x '≥,在区间[]35,x x 上,()0f x '≤,在区间[]5,x b 上,()0f x '≥,所以()y f x =有一个极大值点3x 和一个极小值点5x ,故∴错误;∴中,看图知,在区间[]23,x x 上,()0f x '≥,且()f x '递减,故()y f x =单调递增,故()(),()()f p f q f p f q '<'>,故[][()()]()()0f p f q f p f q ''-⋅-<,即∴正确.综上,正确命题的序号是∴∴. 故选:B.【点睛】方法点睛:利用导数判断函数()f x 的单调性和极值的方法:∴写定义域,对函数()f x 求导()f x ';∴在定义域内,令 ()0f x '>的区间即是增区间,令()0f x '<的区间即是减区间,∴根据单调区间,判断极值点即可.【题型】四、函数或导函数图象与极值点的关系 例13.(2023·全国·高三专题练习)函数f (x )=ax 3+bx 2+cx +d 的图像如图,则函数y =ax 2+323cbx +的单调递增区间是( )A .(-∞,-2]B .1[,)2+∞C .[2,3)D .9[,)8+∞【答案】D【分析】由图象知0a >,0d =,不妨取1a =,先对函数32()f x x bx cx d =+++进行求导,根据2x =-,3x =时函数取到极值点知(2)0f '-=,(3)f '0=,故可求出b ,c 的值,再根据函数单调性和导数正负的关系得到答案. 【详解】解:不妨取1a =,32()f x x bx cx =++,2()32f x x bx c '∴=++由图可知(2)0f '-=,(3)f '0=1240b c ∴-+=,2760b c ++=, 1.5b ∴=-,18c =-2964y x x ∴=--,924y x '=-,当98x >时,0'>y2964y x x ∴=--的单调递增区间为:9[8,)∞+故选:D .例14.(2023·全国·高三专题练习)已知函数()()sin 04f x x πωω⎛⎫=+> ⎪⎝⎭的最小正周期为π,将()f x 的图象向右平移3π个单位长度得到函数()g x 的图象,若函数()g x 在(),a a -上存在唯一极值点,则实数a 的取值范围是( ) A .11,2424ππ⎡⎫⎪⎢⎣⎭B .11,2424ππ⎡⎤⎢⎥⎣⎦C .11,2424ππ⎛⎫⎪⎝⎭D .11,2424ππ⎛⎤ ⎥⎝⎦【答案】D【分析】首先求函数()f x 的解析式,再根据平移公式,求解函数()g x 的解析式,结合函数的图象,列式求实数a 的取值范围. 【详解】由题意知()f x 的最小正周期2T ππω==,∴2ω=,∴()sin 24f x x π⎛⎫=+ ⎪⎝⎭,∴()5sin 2sin 23412g x x x πππ⎡⎤⎛⎫⎛⎫=-+=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,作出()g x 的图象如图所示,数形结合可知0112424a a a ππ⎧⎪>⎪⎪≤⎨⎪⎪-<-⎪⎩ ,解得:112424a ππ<≤ ∴实数a 的取值范围是11,2424ππ⎛⎤⎥⎝⎦.故选:D例15.(2023·全国·高三专题练习)如图是函数()y f x =的导数()'y f x =的图象,则下面判断正确的是( )A .在()3,1-内()f x 是增函数B .在()4,5内()f x 是增函数C .在1x =时()f x 取得极大值D .在2x =时()f x 取得极小值【答案】B【分析】根据()'y f x =图象判断()f x 的单调性,由此求得()f x 的极值点,进而确定正确选项.【详解】由图可知,()f x 在区间()33,,2,42⎛⎫-- ⎪⎝⎭上()()'0,f x f x <递减;在区间()3,2,4,52⎛⎫- ⎪⎝⎭上()()'0,f x f x >递增.所以1x =不是()f x 的极值点,2x =是()f x 的极大值点.所以ACD 选项错误,B 选项正确. 故选:B例16.(2023·全国·高三专题练习)已知函数()x af x a x =-(0x >,0a >且1a ≠),则( )A .当e a =时,()0f x ≥恒成立B .当01a <<时,()f x 有且仅有一个零点C .当e a >时,()f x 有两个零点D .存在1a >,使得()f x 存在三个极值点 【答案】ABC【分析】选项A ,不等式变形后求函数的最值进行判断;选项B ,确定函数的单调性,利用零点存在定理判断;选项C ,结合选项A 中的新函数进行判断;选项D ,求导,由导函数等于0,构造新函数确定导函数的零点个数,得极值点个数,判断D .【详解】对于A 选项,当e a =时,()0f x ≥,即e ln 1e eln e x x x x x x ≥⇔≥⇔≤,设()ln x g x x=, 则()21ln xg x x-'=,故当()0,e x ∈时,()0g x '>,当()e,x ∈+∞时,()0g x '<, 所以()()ln e 1e e eg x g ≤==,故A 正确; 对于B 选项,当01a <<时,()x af x a x =-单调递减,且当0x +→时,()1f x →,()110f a =-<,因此()f x 只有一个零点,故B 正确;对于C 选项,()0ln ln x af x a x x a a x =⇔=⇔=,即ln ln x ax a=,当e a >时,由A 选项可知,()10eg a <<,因此()()g x g a =有两个零点,即()f x 有两个零点,故C 正确;对于D 选项,()1ln x a f x a a ax -'=-,令()0f x '=,得11ln x a a a x --=,两边同时取对数可得,()()()1ln ln ln 1ln x a a a x -+=-,设()()()()1ln ln ln 1ln h x x a a a x =-+--,则()1ln a h x a x -'=-,令()0h x '=,得1ln a x a -=,则()h x 在10,ln a a -⎛⎫ ⎪⎝⎭上单调递减,在1,ln a a -⎛⎫+∞ ⎪⎝⎭上单调递增,因此()h x 最多有两个零点,所以()f x 最多有两个极值点,故D 错误. 故选:ABC.【题型】五、求已知函数的极值点例17.(2023·全国·高三专题练习)已知函数3()1f x x x =-+,对于以下3个命题: ∴函数()f x 有2个极值点 ∴函数()f x 有3个零点∴点(0,1)是函数()f x 的对称中心 其中正确命题的个数为( ) A .0 B .1 C .2 D .3【答案】C【分析】利用导数研究()f x 的单调性确定极值情况,结合零点存在性定理判断零点个数,根据()()2f x f x +-=判断对称中心. 【详解】令2()310f x x '=-=,可得x =所以(,-∞、)+∞上()0f x '>,()f x递增;(上()0f x '<,()f x 递减;所以x =是()f x 的极值点, 又(2)50f -=-<,(10f =>,10f =->,所以()f x在(2,-上存在一个零点,所以()f x 有2个极值点,1个零点,∴正确,∴错误;33()()112f x f x x x x x +-=-+-++=,故(0,1)是函数()f x 的对称中心,∴正确.故选:C例18.(2023·全国·高三专题练习)已知0x 是函数()12sin cos 3f x x x x =-的一个极值点,则20tan x 的值是( )A .1B .12C .37D .57【答案】D【分析】由题知0()0f x '=,可得01cos26x =,由二倍角公式可算得207cos 12x =,进而有205sin 12x =,所以205tan 7x =. 【详解】()2001112cos2,cos22cos 1366f x x x x =-∴=∴-=',∴207cos 12x =,∴22005sin 1cos 12x x =-=, ∴220020sin 5tan cos 7x x x == 故选:D例19.(2023·全国·高三专题练习)已知函数()8sin 26f x x π⎛⎫=- ⎪⎝⎭,(]0,4x π∈,则()f x 所有极值点的和为( ) A .223πB .13πC .17πD .503π【答案】D【分析】根据已知条件,令()0f x '=,求出方程的根,判断根左右两侧的导函数符号可得极值点,从而可求解()f x 所有极值点的和.【详解】解:()16cos 26f x x π⎛⎫'=- ⎪⎝⎭,令()16cos 206f x x π⎛⎫'=-= ⎪⎝⎭,得,23k x k Z ππ=+∈, 因为()f x '在,23k x k Z ππ=+∈两侧异号,所以,23k x k Z ππ=+∈是函数()f x 的极值点, 又(]0,4x π∈,所以极值点54117171023,,,,,,,36363636x ππππππππ=,所以()f x 所有极值点的和为5411717102350,363636363πππππππππ++++++=, 故选:D.例20.(2023·江苏·苏州中学高三阶段练习)已知函数()2sin 212cos xf x x=+,则下列说法中正确的是( ) A .()()f x f x π+= B .()f xC .()f x 在,22ππ⎛⎫- ⎪⎝⎭上单调递增D .若函数()f x 在区间[)0,a 上恰有2022个极大值点,则a 的取值范围为60646067,33ππ⎛⎤⎥⎝⎦【答案】ABD【分析】利用二倍角公式进行化简,再根据函数的的性质分别判断各选项. 【详解】()2sin 2sin 2sin 21cos 212cos 2cos 2122xx xf x x xx ===+++⎛⎫+ ⎪⎝⎭, A 选项:()()()()sin 22sin 22cos 222cos 2x x f x f x x xπππ++===+++,A 选项正确;B 选项:设()sin 22cos 2xf x t x==+,则()sin 2cos 222x t x t x ϕ-==+≤解得213t ≤,t ≤≤,即max t =,即()f x B 选项正确; C 选项:因为022f f ππ⎛⎫⎛⎫-== ⎪ ⎪⎝⎭⎝⎭,所以()f x 在,22ππ⎛⎫- ⎪⎝⎭上不单调,C 选项错误;D 选项:()()()()()222cos 22cos 2sin 22sin 24cos 222cos 22cos 2x x x x x f x x x +--+'==++,令()0f x '=,解得1cos 22x =-,即3x k ππ=+或23x k ππ=+,Z k ∈, 当2,33x k k ππππ⎛⎫∈++ ⎪⎝⎭,Z k ∈时,()0f x '<,函数单调递减, 当当24,33x k k ππππ⎛⎫∈++⎪⎝⎭,Z k ∈时,0f x ,函数单调递增,所以函数()f x 的极大值点为3π,43π,,()13n ππ+-,又函数()f x 在区间[)0,a 上恰有2022个极大值点,则2021,202233a ππππ⎛⎤∈++ ⎥⎝⎦,即60646067,33a ππ⎛⎤∈ ⎥⎝⎦,D 选项正确;故选:ABD.【题型】六、函数最值与极值的关系例21.(2022·江苏·高三专题练习)已知函数222()xx x f x e+-=,则下列结论不正确的是( ) A .函数()f x 有极小值也有最小值 B .函数()f x 存在两个不同的零点 C .当260k e -<<时,()f x k =恰有三个实根 D .若[0,]x t ∈时,max 26()f x e=,则t 的最小值为2 【答案】C【分析】先求导,通过导函数的单调性分析出原函数大致图象,然后画出图象,结合图象来分析每一个选项即可求出答案.【详解】由222()x x x f x e +-=,得()22'2(22)(22)4()x x x x x e x x e x f x e e +-+--+==, 令'()0f x =,则2x =-或2x =,当<2x -或2x >时,'()0f x <;当22x -<<时,'()0f x > , 所以()f x 在(,2)-∞-和(2,+)∞上单调递减,在(2,2)-上单调递增,所以()f x 有极小值()2244222f e e ---==--,有极大值()224+4262f e e-==, 当x →-∞时,()f x →+∞, 当x →+∞时,()0f x →, 故函数的图象如图,由图像可知A ,B ,D 正确,C 错误. 故选:C例22.(2022·全国·高三专题练习)对函数()242()ln 1f x x a x x =+++(x R ∈,a R ∈且0a ≠)的极值和最值情况进行判断,一定有( ) A .既有极大值,也有最大值 B .无极大值,但有最大值 C .既有极小值,也有最小值 D .无极小值,但有最小值【答案】C【分析】先求出导数,34242()21x xf x x a x x '+=+⋅++4221x x x =++()42(21)1x a x a ++++,然后讨论方程42(21)10x a x a ++++=根的情况,进而判断各选项【详解】34242()21x xf x x a x x '+=+⋅++4221x x x =++()42(21)1x a x a ++++,下面讨论方程42(21)10x a x a ++++=根的情况.令2[0,)u x =∈+∞,2()(21)1g u u a u a =++++,(1)当(0)10g a =+<时(即1a <-),()g u 仅有一个唯一的正零点,不妨设为0u ,此时()f x '有三个不同零点,分别为0(2)当(0)10g a =+=时(即1a =-)3422()(1)(1)1x f x x x x x =+-++';满足既有极小值,也有最小值;(3)当(0)10g a =+>时(即1a >-且0a ≠),若2102a u +=-≤(即12a ≥-且0a ≠),则()f x 仅有一个唯一的极小值点为0,若212a u +=-1012a ⎫⎛>-<<- ⎪⎝⎭,结合22Δ(21)4(1)43a a a =+-+=-分析可知:当1a -<<()g u 有两个不同的正零点(令为1u ,2u 且12u u <).此时()f x 在(,-∞,(),上单调递减,当12a ≤<-时,则()f x 仅有一个唯一的极小值点为0. 满足既有极小值,也有最小值;综上分析, 故选:C【点睛】关键点睛:解题的关键在于:求导后讨论方程42(21)10x a x a ++++=根的情况,讨论的时候,分情况:(1)当(0)10g a =+<;(2)当(0)10g a =+=;(3)当(0)10g a =+>,进而判断各选项,属于难题例23.(2022·全国·高三专题练习)已知函数()2()x f x x a e =+有最小值,则函数()y f x '=的零点个数为( ) A .0 B .1 C .2 D .不确定【答案】C【解析】对函数求导,转化条件为()0f x '<有解,再结合二次函数的性质即可得解.【详解】由题意,()2()2xf x x a e x +'=+,因为函数()f x 有最小值,且e 0x >,所以函数存在单调递减区间,即()0f x '<有解, 所以220x x a ++=有两个不等实根, 所以函数()y f x '=的零点个数为2. 故选:C.【点睛】本题考查了利用导数研究函数的最值,考查了运算求解能力,属于基础题. 例24.(2022·全国·高三专题练习)已知函数()y f x =的导函数()y f x '=的图象如图所示,则下列结论正确的是( )A .()()()f a f b f c <<B .()()()f e f d f c <<C .x c =时,()f x 取得最大值D .x d =时,()f x 取得最小值【答案】AB【分析】由()f x '图象可确定()f x 的单调性,结合单调性依次判断各个选项即可得到结果. 【详解】由()f x '图象可知:当()(),,x c e ∈-∞+∞时,0fx;当(),x c e ∈时,()0f x '<;f x 在(),c -∞,(),e +∞上单调递增,在(),c e 上单调递减;对于A ,a b c <<,()()()f a f b f c ∴<<,A 正确; 对于B ,c d e <<,()()()f e f d f c ∴<<,B 正确;对于C ,由单调性知()f c 为极大值,当>x e 时,可能存在()()0f x f c >,C 错误; 对于D ,由单调性知()()f e f d <,D 错误. 故选:AB.【题型】七、导数中的极值偏移问题例25.(2023·全国·高三专题练习)关于函数()2ln f x x x=+,下列说法错误的是( ) A .2x =是()f x 的极小值点 B .函数()y f x x =-有且只有1个零点 C .存在正实数k ,使得()f x kx >恒成立D .对任意两个正实数1x ,2x ,且12x x >,若()()12f x f x =,则124x x +> 【答案】C【分析】对于A ,分析()f x 导函数可作判断;对于B ,考查函数()y f x x =-的单调性可作判断;对于C ,分离参数,再分析函数()f x x最值情况而作出判断;对于D ,构造函数()()(4)(02)g x f x f x x =--<<讨论其单调性,确定()0g x >即可判断作答.【详解】对于A 选项:()f x 定义域为(0,)+∞,22212()x f x x x x'-=-+=, 02x <<时,()0,2f x x '<>时()0f x '>,2x =是()f x 的极小值点,A 正确;对于B 选项:令222()(),()0x x h x f x x h x x -+'=-=-<, ()h x 在(0,)+∞上递减,(1)1,(2)ln 210h h ==-<, ()h x 有唯一零点,B 正确;对于C 选项:令23()2ln ln 4(),()f x x x x x x x x x x x ϕϕ-+'==+=-, 令()ln 4F x x x x =-+,()ln ,(0,1)F x x x '=∈时,()0,(1,)F x x '<∈+∞时,()0F x '>,()F x 在(0,1)上递减,在(1,)+∞上递增,则min ()(1)30F x F ==>,()0x ϕ'<,()ϕx 在(0,)+∞上递减,()ϕx 图象恒在x 轴上方,与x 轴无限接近,不存在正实数k 使得()f x kx >恒成立,C 错误; 对于D 选项:由A 选项知,()f x 在(0,2)上递减,在(2,)+∞上递增, 因正实数1x ,2x ,且12x x >,()()12f x f x =,则2102x x <<<,02x <<时,令()()(4)g x f x f x =--,()()()()2222404x x g x f x f x x x --=+-'+-''=<, 即()g x 在(0,2)上递减,于是有()()20g x g >=,从而有()()122(4)f x f x f x =>-, 又242x -> ,所以124x x >-,即124x x +>成立,D 正确. 故选:C.例26.(2023·全国·高三专题练习)已知函数()ln xf x x=,则( ) A .()()25f f >B .若()f x m =有两个不相等的实根1x 、2x ,则212e x x <C .ln 2D .若23x y =,x ,y 均为正数,则23x y > 【答案】AD【分析】A :代入2,5直接计算比较大小;B :求()f x 的导函数,分析单调性,可得当()f x m=有两个不相等实根时1x 、2x 的范围,不妨设1x 2x <,则有10e x <<2x <,比较()211,e f x f x ⎛⎫⎪⎝⎭的大小关系,因为()()12f x f x =,可构造()()2e F x f x f x ⎛⎫=- ⎪⎝⎭(0e)x <<,求导求单调性,计算可得()0F x <成立,可证212e x x >;C :用()f x 在()0,e 上单调递增,构造ln 2ln e2e<可证明;D :令23xyt ==,解出lg lg 2t x =,lg lg 3ty =,做差可证明23x y >.【详解】解:对于A :()()12ln 52525n f f ====又105232==1025=,3225>>()()25f f >,A 正确;对于B :若()f x m =有两个不相等的实根1x 、2x ,则212e x x >,故B 不正确;证明如下:函数()ln x f x x =,定义域为()0,∞+,则()21ln xf x x -'=, 当0fx时,0e x <<;当()0f x '<时,e x >;所以()f x 在()0,e 上单调递增,在()e,+∞上单调递减,则()max 1ef x =且e x >时,有()0f x >,所以 若()f x m =有两个不相等的实根1x 、2x ,有10em <<,不妨设1x 2x <,有10e x <<2x <,要证212e x x >,只需证221e x x >,且221e e x x >>,又()()12f x f x =,所以只需证()211e f x f x ⎛⎫< ⎪⎝⎭,令()()2e F x f x f x ⎛⎫=-⎪⎝⎭(0e)x << 则有()()()22241111e ln e F x f x f x x x x ⎛⎫⎛⎫'''=+⋅=-- ⎪ ⎪⎝⎭⎝⎭当0e x <<时,1ln 0x ->,24110e x ->,所以有()0F x '>,即()F x 在(0,e)上单调递增,且()0e F =,所以()0F x <恒成立,即()211e f x f x ⎛⎫< ⎪⎝⎭,即()221e f x f x ⎛⎫< ⎪⎝⎭,即212e x x >.对于C :由B 可知,()f x 在()0,e 上单调递增,则有()()2e f f <,即ln 2ln e2e<,则有2ln 2e <<C 不正确; 对于D :令23x y t ==,则1t >,2lg log lg 2t x t ==,3lg log lg 3ty t ==, 2lg 3lg lg (lg9lg8)230lg 2lg3lg 2lg3t t t x y -∴-=-=>⋅, 23∴>x y ,故D 正确;故选:AD.【点睛】知识点点睛:(1)给定函数比较大小的问题,需判断函数单调性,根据单调性以及需要比较的数值构造函数,利用函数的单调性可比较大小;(2)极值点偏移法证明不等式,先求函数的导数,找到极值点,分析两根相等时两根的范围,根据范围以及函数值相等构造新的函数,研究新函数的单调性及最值,判断新函数小于或大于零恒成立,即可证明不等式.例27.(2023·全国·高三专题练习)已知函数()(0).e xaxf x a =≠ (1)若对任意的x R ∈,都有1()ef x ≤恒成立,求实数a 的取值范围;(2)设,m n 是两个不相等的实数,且e m n m n -=.求证: 2.m n +>【答案】(1)(0,1] (2)证明见解析【分析】(1)先判断a<0不成立,当0a >时,求出函数的导数,结合最值可得参数的取值范围;(2)设()()(2)(1)h x g x g x x =-->,可得()0h x >恒成立,从而可证不等式. (1)当a<0时,111e af a ⎛⎫= ⎪⎝⎭, 因为10e e a<<,所以111e e a>,即11e f a ⎛⎫> ⎪⎝⎭,不符合题意;当0a >时,(1)()e xa x f x -'=, 当(,1)x ∞∈-时,()0f x '>,当(1,)x ∈+∞时,()0f x '<, 所以()f x 在(,1)-∞上单调递增,在(1,)+∞上单调递减. 所以()(1)eaf x f ≤=. 由1()e f x ≤恒成立可知1e ea ≤,所以1a ≤.又因为0a >,所以a 的取值范围为(0,1]. (2)因为e m n m n -=,所以e e m n m n --=,即e em n m n=. 令()e xxg x =,由题意可知,存在不相等的两个实数m ,n ,使得()()g m g n =. 由(1)可知()g x 在区间(,1)-∞上单调递增,在区间(1,)+∞上单调递减. 不妨设m n <,则1m n <<.设()()(2)(1)h x g x g x x =-->,则2221e 1()()[(2)](1)e (1)0e e x x x xx h x g x g x x x ----'''=--=+-=-⋅>, 所以()h x 在(1,)+∞上单调递增,所以()0h x >,即()(2)g x g x >-在区间(1,)+∞上恒成立. 因为1n >,所以()(2)g n g n >-. 因为()()g m g n =,所以()(2)g m g n >-.又因为1m <,21n -<,且()g x 在区间(,1)-∞上单调递增, 所以2m n >-,即2m n +>.【点睛】思路点睛:不等式恒成立问题,可转化函数的最值问题,而极值点偏移问题,通过可构建新函数,并利用原函数的单调性进行转化.例28.(2023·全国·高三专题练习)已知函数2()1e (1),1,1x f x k x x k R x ⎛⎫=--->-∈ ⎪+⎝⎭. (1)若0k =,证明:(1,0)x ∈-时,()1f x <-;(2)若函数()f x 恰有三个零点123,,x x x ,证明:1231x x x ++>.【答案】(1)证明见解析(2)证明见解析【分析】(1)当0k =时,1()e ,(1,0)1x x f x x x -=∈-+,求导,得到导函数大于0恒成立,故得到()(0)1f x f <=-;(2)首先确定1x =为函数的一个零点,接下来研究e ()1xF x k x =-+,构造差函数,求导后单调性,得到证明.(1)0k =时,函数1()e ,(1,0)1x x f x x x -=∈-+, 则221()e 0(1)x x f x x +='>+, ()f x 在(1,0)-上单调递增, 所以1()e (0)11x x f x f x -=<=-+. (2) e ()(1)1x f x x k x ⎛⎫=-- ⎪+⎝⎭,显然1x =为函数的一个零点,设为3x ; 设函数e ()1xF x k x =-+,2e ()(1)x x F x x '=+ 当(1,0)x ∈-时,()0F x '<,当,()0x ∈+∞时,()0F x '>,故()F x 在(1,0)-上单调递减,在(0,)+∞上单调递增.由已知,()F x 必有两个零点12,x x ,且1210x x -<<<,下证:120x x +>.设函数()()(),(1,0)h x F x F x x =--∈-,则e e ()11x x h x x x -=++-, 2e 11()e e (1)11x x x x x x h x x x x -++⎛⎫⎛⎫=+- ⎪⎪+--⎝⎭⎝⎭', 由于(1,0)x ∈-,则2e 1e 0(1)1x x x x x x -+⎛⎫-< ⎪+-⎝⎭,由(1)有1e 01x x x ++>-,故()0h x '<, 即函数()h x 在(1,0)-上单调递减, 所以()(0)0h x h >=,即有()()()211F x F x F x =>-, 由于12,(0,)x x -∈+∞,且在(0,)+∞上单调递增, 所以21x x >-,所以120x x +>.【点睛】对于极值点偏移问题,通常要构造差函数,结合差函数的单调性和最值,进行证明.。

高中数学专题 微专题13 极值点偏移问题

高中数学专题 微专题13 极值点偏移问题

由 f′(x)=1-1x+ln x-2x+a=0 得
a=2x+1x-ln x-1,
所以直线 y=a 与函数 g(x)=2x+1x-ln x-1 的图象有两个交点,

g(x)

2x

1 x

பைடு நூலகம்
ln
x-1

g′(x)

2

1 x2

1 x

2x2-x-1 x2

2x+1x-1
x2
,x∈(0,+∞),
当x∈(0,1)时,g′(x)<0,g(x)单调递减, 当x∈(1,+∞)时,g′(x)>0,g(x)单调递增,因此g(x)min=g(1)=2, 当x→0时,g(x)→+∞, 当x→+∞时,g(x)→+∞, 作出y=g(x)的大致图象,如图所示. 所以若有两个交点,只需a>2,即a的取值范围为 (2,+∞).
(2)设x1,x2是函数f(x)的两个极值点,证明:x1+x2>2.
因为x1,x2是函数f(x)的两个极值点, 所以f′(x1)=f′(x2)=0,由(1)可知g(x1)=g(x2)=a,不妨设0<x1<1<x2, 要证明x1+x2>2,只需证明x2>2-x1, 显然2-x1>1, 由(1)可知,当x∈(1,+∞)时,g(x)单调递增,所以只需证明g(x2)>g(2 -x1), 而g(x1)=g(x2)=a, 所以证明g(x1)>g(2-x1)即可, 即证明函数h(x)=g(x)-g(2-x)>0在x∈(0,1)时恒成立,
123
(2)若f′(x0)=0(f′(x)为f(x)的导函数),方程f(x)=m有两个不相等的实数 根x1,x2,求证:x1+x2>2x0.

完整版导数压轴题分类2 极值点偏移问题含答案

完整版导数压轴题分类2 极值点偏移问题含答案

导数压轴题分类(2)---极值点偏移问题极值点偏移问题常见的处理方法有⑴构造一元差函数Fx f x f 2x 0 x 或者F x f x o x f x o x 。

其中x o 为函数y f x 的极值点。

⑵利用对数平均不等式。

•、ab-—b -—b 。

⑶变换主元等方法。

In a In b 2任务一、完成下面问题,总结极值点偏移问题的解决方法。

2 21 设函数 f(x) a In x x ax (a R)(1)试讨论函数f (x)的单调性;a 21nx x 2 ax 可知 2x 2 ax a 2 (2x a)(x a)x x① 若a 0时,当 x (0, a)时,f (x)0 ,函数f (x)单调递减,当 x (a, )时,f (x) 0,函数f (x)单调递增;② 若a 0时,当 f (X) 2x 0在x (0,)内恒成立,函数f (x)单调递增;③ 若a 0时,当 x (0,a)时,f (X )0 ,函数f (x)单调递减, 因为函数f(x)的定义域为(0,),所以2 f (x)0,函数f (x)单调递增;当)时,((2) f (x) m 有两解捲必(论x 2),求证:x-i x 2 2a .解析:(1)由f(x)a 2f (x)2x axa 2,(2)要证 X i X 2 2a , 只需证 a 22 a 2xg(x) f (x)为增函数。

只需证: f (X ^jX1) f (a)0,即证2- N +X 2 a 0 (*)x , x 2 a又 a 21n X i X i 2ax i2 2m, a In X 2 X 2 ax 2 m,两式相减整理得:2x a,则 g (x)g(x) (x)x2a 2x , +x 2 aln x 1 ln x 2 1 2(x 1ix x 2a)a0,把丄(x 1aX 2 a) ln x ( xlnX 2 代入(*) X 2式,即证:x 1 x 22ln x (lnx2o 化为2(竺1)=t 即证:2(t 1) lnt 0x2ln^10,令冬x-i x 2x X 2生1xx t 1x令(t ) 2(t 1) ln t(0 t1),则⑴4 1 (t 1)2卜ot 21t 1t t1 t所以⑴为减函数,⑴(1)综上得:原不等式得证。

导数压轴题分类(2)---极值点偏移问题(含答案)

导数压轴题分类(2)---极值点偏移问题(含答案)

导数压轴题分类(2)---极值点偏移问题极值点偏移问题常见的处理方法有⑴构造一元差函数()()()x x f x f F --=02x 或者()()()x x f x x f x F --+=00。

其中0x 为函数()x f y =的极值点。

⑵利用对数平均不等式。

2ln ln ab ba b a b a +<--<。

⑶变换主元等方法。

任务一、完成下面问题,总结极值点偏移问题的解决方法。

1.设函数22()ln ()f x a x x ax a R =-+-∈ (1)试讨论函数()f x 的单调性;(2)()f x m =有两解12,x x (12x x <),求证:122x x a +>. 解析:(1)由22()ln f x a x x ax =-+-可知2222(2)()()2a x ax a x a x a f x x a x x x--+-'=-+-==因为函数()f x 的定义域为(0,)+∞,所以① 若0a >时,当(0,)x a ∈时,()0f x '<,函数()f x 单调递减,当(,)x a ∈+∞时,()0f x '>,函数()f x 单调递增;② 若0a =时,当()20f x x '=>在(0,)x ∈+∞内恒成立,函数()f x 单调递增; ③ 若0a <时,当(0,)2a x ∈-时,()0f x '<,函数()f x 单调递减,当(,)2ax ∈-+∞时,()0f x '>,函数()f x 单调递增; (2)要证122x x a +>,只需证122x x a +>,(x)g =222(x)2,g (x)20(x)(x)a a f x a g f x x'''=-+-=+>∴=则为增函数。

只需证:12x x ()()02f f a +''>=,即证()2121221212221+0+0a x x a x x a x x x x a-+->⇔-+->++(*) 又2222111222ln ,ln ,a x x ax m a x x ax m -+-=-+-=两式相减整理得:1212212ln ln 1(x x a)0x x x x a --++-=-,把1212212ln ln 1(x x a)x x a x x -+-=-代入(*)式,即证:121212ln ln 20x x x x x x --+>+-化为:121112222(1)2(1)ln 0,=,ln 011x x x x t t t x x x t x ---+>-+>++令即证: ()()2222(1)41(t 1)(t)ln (01),(t)0111t t t t t t t tϕϕ---'=-+<<=-+=<+++令则所以(t)ϕ为减函数,(t)(1)0ϕϕ<= 综上得:原不等式得证。

导数中的极值点偏移、泰勒公式与洛必达法则秒杀高考数学压轴题大集

导数中的极值点偏移、泰勒公式与洛必达法则秒杀高考数学压轴题大集

导数中的极值点偏移、泰勒公式与洛必达法则秒杀高考数学压轴题大集1.高考数学最全的极值点偏移问题汇总oo含答案90页2.高考导数:极值点偏移问题之13.高考导数:极值点偏移问题之24.高考导数:极值点偏移问题之35.高考导数:极值点偏移问题之46.高考导数:极值点偏移问题之5与6合集7.高考导数:极值点偏移问题之7.附前6期的阅读链接8.“极值点偏移”的何去何从——泛化、模式化的忧思与高考的全解读9.非常全面的高考导数极值点偏移问题10.高考数学:极值点偏移中点问题11.偏移妙解:十法破解极值点偏移题12.一谈导数中的极值点偏移问题00113.二谈导数中的极值点偏移问题00214.三谈导数中的极值点偏移问题00315.四谈导数中的极值点偏移VS拐点问题00416.五谈极值点偏移问题的多种解法17.用泰勒展开式秒杀高考数学压轴题18.高考数学中的泰勒公式与数列不等式19.泰勒公式在高考数学中的简单应用20.谈谈泰勒展开式在高考数学中的一些应用21.【高等数学】利用泰勒公式证明不等式的技巧22.用导数方法证明不等式(常见不等式的应用)23.高等数学方法:用泰勒公式和拉格朗日中值定理来处理高中函数不等式问题24.用“泰勒公式”演绎的高考数学题25.洛必达法则的基础与进阶26.用洛必达法则求解高考数学中的参数取值范围oo文章2篇27.再谈洛必达法则解高考压轴题28.巧用洛必达法则破解导数存在性问题.附相关阅读链接29.【高考数学】一篇文章,给高中生讲清楚“洛必达法则”30.用“洛必达法则”求参数取值范围的方法【附】高考数学内容精选31.高考数学每日n题2019全年汇编总共100集.许兴华数学32.高考数学:选择与填空题函数零点问题分类解析33.免费视频||高考数学难点选讲.圆锥曲线中的定点定值问题01(许兴华数学)34.免费视频||高考数学难点突破:圆锥曲线中的定点与定值问题02。

专题突破卷05 导数中的极值点偏移问题 (学生版) 2025年高考数学一轮复习考点通关卷(新高考通用

专题突破卷05 导数中的极值点偏移问题 (学生版) 2025年高考数学一轮复习考点通关卷(新高考通用

专题突破卷05 导数中的极值点偏移问题题型一 极值点偏移解决零点问题1.已知函数()ln 1f x x ax =+-有两个零点12,x x ,且12x x <,则下列命题正确的是( )A .1a >B .122x x a +<C .121x x ×<D .2111x x a->-2.已知函数()ln 1f x x ax =+-有两个零点1x 、2x ,且12x x <,则下列命题正确的个数是( )①01a <<;②122x x a +<;③121x x ×>;④2111x x a->-;A .1个B .2个C .3个D .4个3.已知函数()ln f x x ax =-有两个零点1x ,()212x x x <,则下列说法:①函数()f x 有极大值点0x ,且1202x x x +>;②212e x x >;③1232x x a+>;④若对任意符合条件的实数a ,曲线()y f x =与曲线1y b x=-最多只有一个公共点,则实数b 的最大值为ln2.其中正确说法的有( )A .1个B .2个C .3个D .4个4.已知函数()ln x f x x =,对于正实数a ,若关于t 的方程()a f t f t æö=ç÷èø恰有三个不同的正实数根,则a 的取值范围是( )A .()1,8B .()2,8e C .()8,+¥D .()2,e +¥5.关于函数()2ln f x x x=+,下列说法错误的是( )A .2x =是()f x 的极小值点B .函数()y f x x =-有且只有1个零点C .存在正实数k ,使得()f x kx >恒成立D .对任意两个正实数1x ,2x ,且12x x >,若()()12f x f x =,则124x x +>6.关于函数2()ln f x x x=+,下列说法正确的是( )A .2x =是()f x 的极大值点B .函数()y f x x =-有2个零点C .存在正整数k ,使得()f x kx >恒成立D .对任意两个正实数12,x x ,且12x x ¹,若()()12f x f x =,则124x x +>7.已知函数()x f x e ax =-有两个零点1x ,2x ,则下列判断:①a e <;②122x x +<;③121x x ×>;④有极小值点0x ,且1202x x x +<.则正确判断的个数是( )A .4个B .3个C .2个D .1个8.已知函数3()2f x x =+的图象与函数()g x kx =的图象有三个不同的交点11(,)x y 、22(,)x y 、33(,)x y ,其中123x x x <<.给出下列四个结论:①3k >;②12x <-;③232x x +>;④231x x >.其中正确结论的个数有( )个A .1B .2C .3D .49.已知()e x f x ax =-有两个零点12x x <,下列说法正确的是A .e a <B .122x x +>C .121x x ×>D .有极小值0x 且1202x x x +>10.已知函数()2πcos f x x x a =++在()0,π上有两个不同的零点()1212,x x x x <,给出下列结论:①()10f x ¢<;②()20f x ¢>;③12πx x +<.其中错误结论的个数是( )A .0B .1C .2D .311.已知a b >,c d >,e e 1.0111a b a b ==++,()()1e 1e 0.99c dc d -=-=,则( )A .0a b +<B .0c d +>C .0a d +>D .0b c +>12.已知1a >,1x ,2x ,3x 均为2x a x =的解,且123x x x <<,则下列说法正确的是( )A .1(2,1)x Î--B .2e (1,e )a ÎC .120x x +<D .232ex x +<题型二 极值点偏移解决不等式问题13.已知函数()e xf x x =-,则下列说法正确的是( )A .()f x 在R 上是增函数B .1x ">,不等式()()2ln f ax f x ³恒成立,则正实数a 的最小值为2eC .若()f x t =有两个零点12,x x ,则120x x +>D .若过点()1,M m 恰有2条与曲线()y f x =相切的直线,则1e 1m -<<-14.关于函数2()ln f x x x=+,下列说法正确的是( )A .2x =是()f x 的极大值点B .函数()y f x x =-有且只有1个零点C .存在正整数k ,使得()f x kx >恒成立D .对任意两个正实数12,x x ,且12x x ¹,若12()()f x f x =,则124x x +>15.设函数1cos ,0(),0e x x x f x x x -£ìï=í>ïî,下面四个结论中正确的是( )A .函数在()0,1上单调递增B .函数()y f x x =-有且只有一个零点C .函数的值域为[]1,e -D .对任意两个不相等的正实数12,x x ,若()()12f x f x =,则122x x +<16.已知函数()e xf x x =,()lng x x x =,则下列说法正确的是( )A .函数()f x 与函数()g x 有相同的极小值B .若方程()f x a =有唯一实根,则a 的取值范围为0a ³C .若方程()g x a =有两个不同的实根12,x x ,则212x x a>D .当0x >时,若()()12f x g x t ==,则12x x t =成立17.已知函数ln ()xf x x=,则( )A .(2)(3)f f >B .若()f x m =有两个不相等的实根1x ,2x ,则212ex x >C .ln 2<D .若23x y =,x ,y 均为正数,则23x y >18.关于函数()2ln f x x x=+,下列说法正确的是( )A .()f x 在()2,+¥上单调递增B .+12,R x x "Î且21x x >,若()()12f x f x =,则124x x +>C .R k +$Î,使得()f x kx >恒成立D .函数()y f x x =-有且只有1个零点19.定义在R 上的函数()f x 满足()()e xf x f x =¢+,且()01f =,则下列说法正确的是( )A .()f x 在2x =-处取得极小值B .()f x 有两个零点C .若0x ">,()f x k >恒成立,则1k <D .若1x $,2R x Î,12x x ¹,()()12f x f x =,则124x x +<-20.宠物很可爱,但身上会有寄生虫,小猫“墩墩”的主人每月定期给“墩墩”滴抺驱虫剂.刚开始使用的时候,寄生虫的数量还会继续增加,随着时间的推移,奇生虫增加的幅度逐渐变小,到一定时间,寄生虫数量开始减少.若已知使用驱虫剂t 小时后寄生虫的数量大致符合函数()()()47e 50(0720),t f t t t f t -=-+¢£<为()f t 的导数,则下列说法正确的是( )A .驱虫剂可以杀死所有寄生虫B .()100f ¢表示100t =时,奇生虫数量以10052e -的速度在减少C .若存在,,a b a b ¹,使()()f a f b =,则96a b +<D .寄生虫数量在48t =时的瞬时变化率为021.已知()()12()ln ,f x x x f x f x ==且12x x ¹,则( )A .1212ex x +>B .1212ex x +<C1e>D1e<22.已知关于x 的方程e 0x x a -=有两个不等的实根12,x x ,且12x x <,则下列说法正确的有( )A .1e 0a --<<B .122x x +<-C .2x a>D .11e 0xx +<23.已知函数()e xf x x =-,()lng x x x =-,则下列说法正确的是( )A .()ln f x 在()1,+¥上是增函数B .1x ">,不等式()()2ln f ax f x ³恒成立,则正实数a 的最小值为2eC .若()g x t =有两个根1x ,1x ,则121x x ×>D .若()()()122f x g x t t ==>,且210x x >>,则21ln t x x -的最大值为1e24.已知2.86ln ln a ba b==,ln ln 0.35c c d d ==-,a b <,c d <,则有( )A .2e a b +<B .2ec d +>C .1ad <D .1bc >题型三 极值点偏移解决双变量问题25.已知函数 ()()2e xx f x g x x ax ==+,,且曲线()y f x =在()0,0处切线也是曲线()y g x =的切线.(1)求a 的值;(2)求证:()()f x g x £;(3)若直线y k =与曲线()y f x =有两个公共点()11,A x y ,()22,B x y ,与曲线()y g x =有两个公共点()()33,C x g x ,()()44,D x g x ,求证:12341x x x x +++>26.已知函数()()2e ln 1xf x a x a -=+-ÎR .(1)若函数()f x 在()0,¥+上单调递增,求实数a 的取值范围;(2)若函数()f x 恰有两个极值点()1212,x x x x <,且21x x 的最大值为2e ,求证:2122e 1e 1x x ++£-.27.已知函数()22ln 1f x x x x =-+.(1)证明:()1f x <;(2)若120x x <<,且()()120f x f x +=,证明:122x x +>.28.设函数23115e ()e e (1),[0,)232x f x x x x =---+Î+¥.(1)判断函数()f x 的单调性;(2)若12x x ¹,且()()126e f x f x +=,求证:122x x +<.29.已知函数()()1ln f x x x =+.(1)求曲线()y f x =在1x =处的切线方程;(2)若关于x 的不等式()(1)f x m x >-在(1,)+¥上恒成立,求实数m 的最大值;(3)若关于x 的方程2()(1)10()f x ax a x a ++++=ÎR 有两个实根1x ,()212x x x ¹,求证:121123a a x x -<+<+.30.设()()()()1ln 1ln 0f x x x x a a =+-->.(1)若1a =,求函数()y f x =的图象在1x =处的切线方程;(2)若()0f x ³在 [)1,+¥上恒成立,求实数a 的取值范围;(3)若函数()y f x =存在两个极值点1212x x x x (<)、,求证:122x x +>.31.已知函数()11e ,0axf x x a a a -æö=-+>ç÷èø.(1)若()f x 的极小值为-4,求a 的值;(2)若()()ln g x f x a x =-有两个不同的极值点12,x x,证明:12x x +>32.已知函数()e 1xf x ax =--.(1)讨论函数()f x 的单调性;(2)当0a >时,若满足()()()1212f x f x x x =<,求证:122ln x x a +<;(3)若函数()()sin g x f x x =+,当0x ³时,()0g x ³恒成立,求实数a 的取值范围.33.已知函数()()2ln 2g x x ax a x =-+-(R a Î).(1)求()g x 的单调区间;(2)若函数()()()212f x g x a x x =++-,()1212,0x x x x <<是函数()f x 的两个零点,证明:1202x x f +æö¢<ç÷èø.34.已知函数()23ln 4(0)f x x ax x a =+->.(1)当1a =时,讨论()f x 的单调性;(2)当12a =时,若方程()f x b =有三个不相等的实数根123,,x x x ,且123x x x <<,证明:314x x -<.35.已知常数0a >,函数221()2ln 2f x x ax a x =--.(1)若20,()4x f x a ">>-,求a 的取值范围;(2)若1x 、2x 是()f x 的零点,且12x x ¹,证明:124x x a +>.36.已知函数()()2ln R af x x x a x=+Î有两个零点()1212,x x x x <.(1)求实数a 的取值范围;(2)证明:121x x +>.1.已知a b >,且e e 1.01a b a b -=-=,则下列说法正确的有( )①1b <-; ②102a << ;③0b a +<; ④1a b -<.A .①②③B .②③④C .②④D .③④2.已知函数()ln f x x x =-,过点()()1,1P b b >-作函数()f x 的两条切线,PA PB ,切点分别为,A B ,下列关于直线AB 斜率k 的正负,说法正确的是( )A .0k <B .0k =C .0k >D .不确定3.关于函数()22ln x f x x x =++,下列说法错误的是( )A .不存在正实数k ,使得()f x kx >恒成立B .对任意12,(0,)x x Î+¥,若12x x <,有()2112()x f x x f x <C .对任意121212()(),(0,1),()22x x f x f x x x f ++ΣD .若正实数12,x x ,满足12()()4f x f x +=,则122x x +³4.已知函数()()()e ,e xxxf x x a ag x =+Î=R ,下列说法正确的是( )A .若()()1212,x x g x g x ¹=,则122x x +>B .若0a =,则“120x x +=”是“()()120f x g x +=”的充要条件C .若不等式()()f x g x <恰有3个整数解,则实数a 的取值范围是22e e 212e ,e éö--÷êëøD .若不等式()()f x g x <恰有2023个整数解122023,,x x x ×××,则()()20232023112023kkk k f x g x a==+=åå5.已知()()e e ,, 1.01,1e 1e 0.9911a bc d a b c d c d a b >>==-=-=++,则( )A .0a b +>B .0c d +>C .0a d +>D .0b c +>6.已知函数()e xf x x =,若120x x >>,则下列结论正确的是( )A .2121()()f x f x x x ->-B .1122()()x f x x f x +>+C .1221()()x f x x f x >D .若12()()f x f x -=-,则122x x +>7.已知函数()()e xf x x a bx =--,则下列结论正确的是( )A .当1,2a b =-=时,()1f x ³恒成立B .当1,a b R =Î时,()f x 必有零点C .若()f x 有两个极值点12x x 、,则1224x x a +>-D .若()f x 在R 上单调递增,则1a b +£8.已知函数()ln f x x x a =--有两个零点1x 、2x ,则下列说法正确的是( ).A .1a >B .121x x >C .121x x <D .122x x +>9.已知函数()ln xf x x=,则( )A .()()25f f >B .若()f x m =有两个不相等的实根1x 、2x ,则212ex x <C.ln 2>D .若23x y =,x ,y 均为正数,则23x y >10.关于函数f (x )=2x+ln x ,则下列结论正确的是( )A .x =2是f (x )的极小值点B .函数y =f (x )-x 有且只有1个零点C .对任意两个正实数x 1,x 2,且x 2>x 1,若f (x 1)=f (x 2),则x 1+x 2>4D .存在正实数k ,使得f (x )>kx 恒成立11.已知函数()2ln 2a f x x x x =-有两个极值点1x ,212()x x x <,则( )A .a 的取值范围为(-∞,1)B .122x x +>C .12112x x +>D .2111x x a->-12.已知关于x 的方程ln 0x x a -=有两个不等的正根1x ,2x 且12x x <,则下列说法正确的有( )A .1ea -<<B .122ex x +>C .122x x a +<-D .1x a<-13.设函数1,0()cos ,0x xx f x e x x -ì>ï=íï£î,下列四个结论中正确的是( )A .函数()f x 在区间[),1p -上单调递增B .函数()y f x x =-有且只有两个零点C .函数()f x 的值域是[]1,1-D .对任意两个不相等正实数12,x x ,若12()()f x f x =,则122x x +>14.已知函数()e x f x x a =-,则下面结论成立的是( )A .当10ea <<时,函数()0f x =有两个实数根B .函数()0f x =只有一个实数根,则0a £C .若函数()0f x =有两个实数根1x ,2x ,则122x x +>D .若函数()0f x =有两个实数根1x ,2x ,则123x x +>15.已知函数()e x x m f x +=的极大值点为0,则实数m 的值为 ;设12t t ¹,且211212ln ln t t t t t t -=-,不等式12ln ln l +>t t 恒成立,则实数l 的取值范围为 .16.已知函数()2ln ,R f x x x ax x a =-+Î.(1)若函数()f x 是减函数,求a 的取值范围;(2)若()f x 有两个零点12,x x ,且212x x >,证明:1228e x x >.17.已知函数()2ln ,R a f x x a x=+Î.若函数()f x 有两个不相等的零点12,x x .(1)求a 的取值范围;(2)证明:124x x a +>.18.已知函数()ln f x x x a =--有两个不同的零点12,x x .(1)求实数a 的取值范围;(2)求证:122x x +>.19.已知函数ln ()a x a f x x +=.(1)讨论()f x 的极值;(2)若()()2112e e x xx x =(e 是自然对数的底数),且1>0x ,20x >,12x x ¹,证明:122x x +>.20.已知函数()()()2ln 3,0f x x a x x a a =+-->.(1)当1x ³时,()0f x ³,求a 的取值范围.(2)若函数()f x 有两个极值点12,x x ,证明:12122e x x -+>.。

高考数学玩转压轴题专题12极值点偏移问题利器极值点偏移判定定理

高考数学玩转压轴题专题12极值点偏移问题利器极值点偏移判定定理

高考数学玩转压轴题专题12极值点偏移问题利器极值点偏移判定定理极值点偏移问题利器——极值点偏移判定定理一、极值点偏移的判定定理对于可导函数 $y=f(x)$,在区间 $(a,b)$ 上只有一个极大(小)值点 $x$,方程 $f(x)=0$ 的解分别为 $x_1$、$x_2$,且 $a<x_1<x_2<b$,则:1)若 $f(x_1)<f(2x-x_2)$,则极(小)大值点 $x$ 右(左)偏;2)若 $f(x_1)>f(2x-x_2)$,则极(小)大值点 $x$ 右(左)偏。

证明:1)因为对于可导函数 $y=f(x)$,在区间 $(a,b)$ 上只有一个极大(小)值点 $x$,则函数 $f(x)$ 的单调递增(减)区间为 $(a,x)$,单调递减(增)区间为 $(x,b)$。

由于 $x_1)2x-x_2$,$a)2x$,即函数 $y=f(x)$ 在区间 $(x_1,x_2)$ 上$2x_1+x_2)x$,即函数 $y=f(x)$ 的极(小)大值点 $x$ 右(左)偏。

2)证明略。

二、运用判定定理判定极值点偏移的方法1、方法概述:1)求出函数 $f(x)$ 的极值点 $x$;2)构造一元差函数 $F(x)=f(x+x)-f(x-x)$;3)确定函数 $F(x)$ 的单调性;4)结合 $F(x)=0$,判断 $F(x)$ 的符号,从而确定$f(x+x)$、$f(x-x)$ 的大小关系。

口诀:极值偏离对称轴,构造函数觅行踪;四个步骤环相扣,两次单调紧跟随。

2、抽象模型答题模板:若已知函数 $f(x)$ 满足 $f(x_1)=f(x_2)$,$x$ 为函数 $f(x)$ 的极值点,求证:$x_1+x_2<2x$。

1)讨论函数$f(x)$ 的单调性并求出$f(x)$ 的极值点$x$;假设此处 $f(x)$ 在 $(-\infty,x)$ 上单调递减,在$(x,+\infty)$ 上单调递增。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学压轴题系列——导数专题——极值点偏移1.(2010•天津)已知函数f(x)=xe﹣x(x∈R)(Ⅰ)求函数f(x)的单调区间和极值;(Ⅱ)已知函数y=g(x)的图象与函数y=f(x)的图象关于直线x=1对称,证明:当x>1时,f(x)>g(x);(Ⅲ)如果x1≠x2,且f(x1)=f(x2),证明x1+x2>2.【分析】(1)先求导求出导数为零的值,通过列表判定导数符号,确定出单调性和极值.(2)先利用对称性求出g(x)的解析式,比较两个函数的大小可将它们作差,研究新函数的最小值,使最小值大于零,不等式即可证得.(3)通过题意分析先讨论,可设x1<1,x2>1,利用第二问的结论可得f(x2)>g(x2),根据对称性将g(x2)换成f(2﹣x2),再利用单调性根据函数值的大小得到自变量的大小关系.【解答】解:(Ⅰ)解:f′(x)=(1﹣x)e﹣x令f′(x)=0,解得x=1当x变化时,f′(x),f(x)的变化情况如下表x(﹣∞,1)1(1,+∞)f′(x)+0﹣减f(x)增极大值所以f(x)在(﹣∞,1)内是增函数,在(1,+∞)内是减函数.函数f(x)在x=1处取得极大值f(1)且f(1)=.(Ⅱ)证明:由题意可知g(x)=f(2﹣x),得g(x)=(2﹣x)e x﹣2令F(x)=f(x)﹣g(x),即F(x)=xe﹣x+(x﹣2)e x﹣2 于是F'(x)=(x﹣1)(e2x﹣2﹣1)e﹣x当x>1时,2x﹣2>0,从而e2x﹣2﹣1>0,又e﹣x>0,所以F′(x)>0,从而函数F(x)在[1,+∞)是增函数.又F(1)=e﹣1﹣e﹣1=0,所以x>1时,有F(x)>F(1)=0,即f(x)>g(x).(Ⅲ)证明:(1)若(x1﹣1)(x2﹣1)=0,由(I)及f(x1)=f(x2),则x1=x2=1.与x1≠x2矛盾.(2)若(x1﹣1)(x2﹣1)>0,由(I)及f(x1)=f(x2),得x1=x2.与x1≠x2矛盾.根据(1)(2)得(x1﹣1)(x2﹣1)<0,不妨设x1<1,x2>1.由(Ⅱ)可知,f(x2)>g(x2),则g(x2)=f(2﹣x2),所以f(x2)>f(2﹣x2),从而f(x1)>f(2﹣x2).因为x2>1,所以2﹣x2<1,又由(Ⅰ)可知函数f(x)在区间(﹣∞,1)内是增函数,所以x1>2﹣x2,即x1+x2>2.2.(2013•湖南)已知函数f(x)=.(Ⅰ)求f(x)的单调区间;(Ⅱ)证明:当f(x1)=f(x2)(x1≠x2)时,x1+x2<0.【分析】(Ⅰ)利用导数的运算法则求出f′(x),分别解出f′(x)>0与f′(x)<0的x取值范围即可得到单调区间;(Ⅱ)当f(x1)=f(x2)(x1≠x2)时,不妨设x1<x2.由(I)可知:x1∈(﹣∞,0),x2∈(0,1).利用导数先证明:∀x∈(0,1),f(x)<f(﹣x).而x2∈(0,1),可得f(x2)<f(﹣x2).即f(x1)<f(﹣x2).由于x1,﹣x2∈(﹣∞,0),f(x)在(﹣∞,0)上单调递增,因此得证.【解答】解:(Ⅰ)易知函数的定义域为R.==,当x<0时,f′(x)>0;当x>0时,f′(x)<0.∴函数f(x)的单调递增区间为(﹣∞,0),单调递减区间为(0,+∞).(Ⅱ)当x<1时,由于,e x>0,得到f(x)>0;同理,当x>1时,f(x)<0.当f(x1)=f(x2)(x1≠x2)时,不妨设x1<x2.由(Ⅰ)可知:x1∈(﹣∞,0),x2∈(0,1).下面证明:∀x∈(0,1),f(x)<f(﹣x),即证<.此不等式等价于.令g(x)=,则g′(x)=﹣xe﹣x(e2x﹣1).当x∈(0,1)时,g′(x)<0,g(x)单调递减,∴g(x)<g(0)=0.即.∴∀x∈(0,1),f(x)<f(﹣x).而x2∈(0,1),∴f(x2)<f(﹣x2).从而,f(x1)<f(﹣x2).由于x1,﹣x2∈(﹣∞,0),f(x)在(﹣∞,0)上单调递增,∴x1<﹣x2,即x1+x2<0.3.(2011•辽宁)已知函数f(x)=lnx﹣ax2+(2﹣a)x.(I)讨论f(x)的单调性;(Ⅱ)设a>0,证明:当0<x<时,f(+x)>f(﹣x);(Ⅲ)若函数y=f(x)的图象与x轴交于A,B两点,线段AB中点的横坐标为x0,证明:f′(x0)<0.【分析】(I)求导,并判断导数的符号,确定函数的单调区间;(II)构造函数g(x)=f(+x)﹣f(﹣x),利用导数求函数g(x)当0<x<时的最小值大于零即可,(III)设出函数y=f(x)的图象与x 轴交于A,B两点的横坐标,根据(I).(II)结论,即可证明结论.【解答】解:(I)函数f(x)的定义域为(0,+∞),f′(x)==﹣,①若a>0,则由f′(x)=0,得x=,且当x∈(0,)时,f′(x)>0,当x∈(,+∞)时,f′(x)<0,所以f(x)在(0,)单调递增,在(,+∞)上单调递减;②当a≤0时,f′(x)>0恒成立,因此f(x)在(0,+∞)单调递增;(II)设函数g(x)=f(+x)﹣f(﹣x),则g(x)=ln(1+ax)﹣ln(1﹣ax)﹣2ax,g′(x)==,当x∈(0,)时,g′(x)>0,而g(0)=0,所以g(x)>0,故当0<x<时,f(+x)>f(﹣x);(III)由(I)可得,当a≤0时,函数y=f(x)的图象与x轴至多有一个交点,故a>0,从而f(x)的最大值为f(),不妨设A(x1,0),B(x2,0),0<x1<x2,则0<x1<<x2,由(II)得,f(﹣x1)=f()>f(x1)=f(x2)=0,又f(x)在(,+∞)单调递减,∴﹣x1<x2,于是x0=,由(I)知,f′(x0)<0.4.(2016•新课标Ⅰ)已知函数f(x)=(x﹣2)e x+a(x﹣1)2有两个零点.(Ⅰ)求a的取值范围;(Ⅱ)设x1,x2是f(x)的两个零点,证明:x1+x2<2.【分析】(Ⅰ)由函数f(x)=(x﹣2)e x+a(x﹣1)2可得:f′(x)=(x﹣1)e x+2a(x﹣1)=(x﹣1)(e x+2a),对a进行分类讨论,综合讨论结果,可得答案.(Ⅱ)设x1,x2是f(x)的两个零点,则﹣a==,令g(x)=,则g (x1)=g(x2)=﹣a,分析g(x)的单调性,令m>0,则g(1+m)﹣g(1﹣m)=,设h(m)=,m>0,利用导数法可得h(m)>h(0)=0恒成立,即g(1+m)>g(1﹣m)恒成立,令m=1﹣x1>0,可得结论.【解答】解:(Ⅰ)∵函数f(x)=(x﹣2)e x+a(x﹣1)2,∴f′(x)=(x﹣1)e x+2a(x﹣1)=(x﹣1)(e x+2a),①若a=0,那么f(x)=0⇔(x﹣2)e x=0⇔x=2,函数f(x)只有唯一的零点2,不合题意;②若a>0,那么e x+2a>0恒成立,当x<1时,f′(x)<0,此时函数为减函数;当x>1时,f′(x)>0,此时函数为增函数;此时当x=1时,函数f(x)取极小值﹣e,由f(2)=a>0,可得:函数f(x)在x>1存在一个零点;当x<1时,e x<e,x﹣2<﹣1<0,∴f(x)=(x﹣2)e x+a(x﹣1)2>(x﹣2)e+a(x﹣1)2=a(x﹣1)2+e(x﹣1)﹣e,令a(x﹣1)2+e(x﹣1)﹣e=0的两根为t1,t2,且t1<t2,则当x<t1,或x>t2时,f(x)>a(x﹣1)2+e(x﹣1)﹣e>0,故函数f(x)在x<1存在一个零点;即函数f(x)在R是存在两个零点,满足题意;③若﹣<a<0,则ln(﹣2a)<lne=1,当x<ln(﹣2a)时,x﹣1<ln(﹣2a)﹣1<lne﹣1=0,e x+2a<e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)>0恒成立,故f(x)单调递增,当ln(﹣2a)<x<1时,x﹣1<0,e x+2a>e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)<0恒成立,故f(x)单调递减,当x>1时,x﹣1>0,e x+2a>e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)>0恒成立,故f(x)单调递增,故当x=ln(﹣2a)时,函数取极大值,由f(ln(﹣2a))=[ln(﹣2a)﹣2](﹣2a)+a[ln(﹣2a)﹣1]2=a{[ln(﹣2a)﹣2]2+1}<0得:函数f(x)在R上至多存在一个零点,不合题意;④若a=﹣,则ln(﹣2a)=1,当x<1=ln(﹣2a)时,x﹣1<0,e x+2a<e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)>0恒成立,故f(x)单调递增,当x>1时,x﹣1>0,e x+2a>e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)>0恒成立,故f(x)单调递增,故函数f(x)在R上单调递增,函数f(x)在R上至多存在一个零点,不合题意;⑤若a<﹣,则ln(﹣2a)>lne=1,当x<1时,x﹣1<0,e x+2a<e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)>0恒成立,故f(x)单调递增,当1<x<ln(﹣2a)时,x﹣1>0,e x+2a<e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)<0恒成立,故f(x)单调递减,当x>ln(﹣2a)时,x﹣1>0,e x+2a>e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)>0恒成立,故f(x)单调递增,故当x=1时,函数取极大值,由f(1)=﹣e<0得:函数f(x)在R上至多存在一个零点,不合题意;综上所述,a的取值范围为(0,+∞)证明:(Ⅱ)∵x1,x2是f(x)的两个零点,∴f(x1)=f(x2)=0,且x1≠1,且x2≠1,∴﹣a==,令g(x)=,则g(x1)=g(x2)=﹣a,∵g′(x)=,∴当x<1时,g′(x)<0,g(x)单调递减;当x>1时,g′(x)>0,g(x)单调递增;设m>0,则g(1+m)﹣g(1﹣m)=﹣=,设h(m)=,m>0,则h′(m)=>0恒成立,即h(m)在(0,+∞)上为增函数,h(m)>h(0)=0恒成立,即g(1+m)>g(1﹣m)恒成立,令m=1﹣x1>0,则g(1+1﹣x1)>g(1﹣1+x1)⇔g(2﹣x1)>g(x1)=g(x2)⇔2﹣x1>x2,即x1+x2<2.。

相关文档
最新文档