高考文科数学解析几何练习题

合集下载

高考数学《解析几何》专项训练及答案解析

高考数学《解析几何》专项训练及答案解析

高考数学《解析几何》专项训练一、单选题1.已知直线l 过点A (a ,0)且斜率为1,若圆224x y +=上恰有3个点到l 的距离为1,则a 的值为( )A .B .±C .2±D .2.已知双曲线2222:1x y C a b-=(0,0)a b >>,过右焦点F 的直线与两条渐近线分别交于A ,B ,且AB BF =uu u r uu u r,则直线AB 的斜率为( ) A .13-或13B .16-或16C .2D .163.已知点P 是圆()()22:3cos sin 1C x y θθ--+-=上任意一点,则点P 到直线1x y +=距离的最大值为( )AB .C 1D 2+4.若过点(4,0)A 的直线l 与曲线22(2)1x y -+=有公共点,则直线l 的斜率的取值范围为( )A .⎡⎣B .(C .33⎡-⎢⎣⎦D .33⎛⎫- ⎪ ⎪⎝⎭5.已知抛物线C :22x py =的焦点为F ,定点()M ,若直线FM 与抛物线C 相交于A ,B 两点(点B 在F ,M 中间),且与抛物线C 的准线交于点N ,若7BN BF =,则AF 的长为( )A .78B .1C .76D6.已知双曲线2222:1x y C a b-=(0,0)a b >>的两个焦点分别为1F ,2F ,以12F F 为直径的圆交双曲线C 于P ,Q ,M ,N 四点,且四边形PQMN 为正方形,则双曲线C 的离心率为( )A .2-BC .2D7.已知抛物线C :22(0)y px p =>的焦点F ,点00(2p M x x ⎛⎫>⎪⎝⎭是抛物线上一点,以M 为圆心的圆与直线2p x =交于A 、B 两点(A 在B 的上方),若5sin 7MFA ∠=,则抛物线C 的方程为( )A .24y x =B .28y x =C .212y x =D .216y x =8.已知离心率为2的椭圆E :22221(0)x y a b a b +=>>的左、右焦点分别为1F ,2F ,过点2F 且斜率为1的直线与椭圆E 在第一象限内的交点为A ,则2F 到直线1F A ,y 轴的距离之比为( )A .5B .35C .2D二、多选题9.已知点A 是直线:0l x y +=上一定点,点P 、Q 是圆221x y +=上的动点,若PAQ ∠的最大值为90o ,则点A 的坐标可以是( )A .(B .()1C .)D .)1,110.已知抛物线2:2C y px =()0p >的焦点为F ,F ,直线l 与抛物线C交于点A 、B 两点(点A 在第一象限),与抛物线的准线交于点D ,若8AF =,则以下结论正确的是( ) A .4p = B .DF FA =uuu r uu rC .2BD BF = D .4BF =三、填空题11.已知圆C 经过(5,1),(1,3)A B 两点,圆心在x 轴上,则C 的方程为__________.12.已知圆()2239x y -+=与直线y x m =+交于A 、B 两点,过A 、B 分别作x 轴的垂线,且与x轴分别交于C 、D 两点,若CD =m =_____.13.已知双曲线()2222:10,0x y C a b a b-=>>的焦距为4,()2,3A 为C 上一点,则C 的渐近线方程为__________.14.已知抛物线()220y px p =>,F 为其焦点,l 为其准线,过F 任作一条直线交抛物线于,A B 两点,1A 、1B 分别为A 、B 在l 上的射影,M 为11A B 的中点,给出下列命题: (1)11A F B F ⊥;(2)AM BM ⊥;(3)1//A F BM ;(4)1A F 与AM 的交点的y 轴上;(5)1AB 与1A B 交于原点. 其中真命题的序号为_________.四、解答题15.已知圆22:(2)1M x y ++=,圆22:(2)49N x y -+=,动圆P 与圆M 外切并且与圆N 内切,圆心P 的轨迹为曲线C . (1)求曲线C 的方程;(2)设不经过点(0,Q 的直线l 与曲线C 相交于A ,B 两点,直线QA 与直线QB 的斜率均存在且斜率之和为-2,证明:直线l 过定点.16.已知椭圆方程为22163x y +=.(1)设椭圆的左右焦点分别为1F 、2F ,点P 在椭圆上运动,求1122PF PF PF PF +⋅u u u r u u u u r的值;(2)设直线l 和圆222x y +=相切,和椭圆交于A 、B 两点,O 为原点,线段OA 、OB 分别和圆222x y +=交于C 、D 两点,设AOB ∆、COD ∆的面积分别为1S 、2S ,求12S S 的取值范围.参考答案1.D 【解析】 【分析】因为圆224x y +=上恰有3个点到l 的距离为1,所以与直线l 平行且距离为1的两条直线,一条与圆相交,一条与圆相切,即圆心到直线l 的距离为1,根据点到直线的距离公式即可求出a 的值. 【详解】直线l 的方程为:y x a =-即0x y a --=.因为圆224x y +=上恰有3个点到l 的距离为1,所以与直线l 平行且距离为1的两条直线,一条与圆相交,一条与圆相切,而圆的半径为2,即圆心到直线l 的距离为1.1=,解得a =故选:D . 【点睛】本题主要考查直线与圆的位置关系的应用,以及点到直线的距离公式的应用,解题关键是将圆上存在3个点到l 的距离为1转化为两条直线与圆的位置关系,意在考查学生的转化能力与数学运算能力,属于中档题. 2.B 【解析】 【分析】根据双曲线的离心率求出渐近线方程,根据AB BF =u u u r u u u r,得到B 为AF 中点,得到B 与A 的坐标关系,代入到渐近线方程中,求出A 点坐标,从而得到AB 的斜率,得到答案. 【详解】因为双曲线2222:1x y C a b-=(0,0)a b >>,又222c e a =22514b a =+=,所以12b a =,所以双曲线渐近线为12y x =± 当点A 在直线12y x =-上,点B 在直线12y x =上时, 设(),A A Ax y (),B B B x y ,由(c,0)F 及B 是AF 中点可知22A B A B x c x y y +⎧=⎪⎪⎨⎪=⎪⎩,分别代入直线方程,得121222A A A A y x y x c ⎧=-⎪⎪⎨+⎪=⋅⎪⎩,解得24A Ac x c y ⎧=-⎪⎪⎨⎪=⎪⎩,所以,24c c A ⎛⎫-⎪⎝⎭, 所以直线AB 的斜率AB AFk k =42cc c =--16=-,由双曲线的对称性得,16k =也成立. 故选:B. 【点睛】本题考查求双曲线渐近线方程,坐标转化法求点的坐标,属于中档题. 3.D 【解析】 【分析】计算出圆心C 到直线10x y +-=距离的最大值,再加上圆C 的半径可得出点P 到直线10x y +-=的距离的最大值. 【详解】圆C 的圆心坐标为()3cos ,sin θθ+,半径为1,点C 到直线10x y +-=的距离为sin 14d πθ⎛⎫===++≤+ ⎪⎝⎭因此,点P 到直线1x y +=距离的最大值为12122++=+. 故选:D. 【点睛】本题考查圆上一点到直线距离的最值问题,当直线与圆相离时,圆心到直线的距离为d ,圆的半径为r ,则圆上一点到直线的距离的最大值为d r +,最小值为d r -,解题时要熟悉这个结论的应用,属于中等题. 4.D 【解析】设直线方程为(4)y k x =-,即40kx y k --=,直线l 与曲线22(2)1x y -+=有公共点,圆心到直线的距离小于等于半径22411k k d k -=≤+,得222141,3k k k ≤+≤,选择C 另外,数形结合画出图形也可以判断C 正确. 5.C 【解析】 【分析】由题意画出图形,求出AB 的斜率,得到AB 的方程,求得p ,可得抛物线方程,联立直线方程与抛物线方程,求解A 的坐标,再由抛物线定义求解AF 的长. 【详解】解:如图,过B 作'BB 垂直于准线,垂足为'B ,则'BF BB =,由7BN BF =,得7'BN BB =,可得1sin 7BNB '∠=, 3cos 7BNB '∴∠=-,tan 43BNB '∠=又()23,0M ,AB ∴的方程为2343y x =-, 取0x =,得12y =,即10,2F ⎛⎫ ⎪⎝⎭,则1p =,∴抛物线方程为22x y =. 联立223432y x x y ⎧=-⎪⎨⎪=⎩,解得23A y =.12172326A AF y ∴=+=+=. 故选:C . 【点睛】本题考查抛物线的简单性质,考查直线与抛物线位置关系的应用,考查计算能力,是中档题. 6.D 【解析】 【分析】设P 、Q 、M 、N 分别为第一、二、三、四象限内的点,根据对称性可得出22,22P c ⎛⎫⎪ ⎪⎝⎭,将点P 的坐标代入双曲线C 的方程,即可求出双曲线C 的离心率. 【详解】设双曲线C 的焦距为()20c c >,设P 、Q 、M 、N 分别为第一、二、三、四象限内的点, 由双曲线的对称性可知,点P 、Q 关于y 轴对称,P 、M 关于原点对称,P 、N 关于x 轴对称,由于四边形PQMN 为正方形,则直线PM 的倾斜角为4π,可得,22P c ⎛⎫ ⎪ ⎪⎝⎭, 将点P 的坐标代入双曲线C 的方程得2222122c c a b -=,即()22222122c c a c a -=-, 设该双曲线的离心率为()1e e >,则()2221221e e e -=-,整理得42420e e -+=,解得22e =,因此,双曲线C 故选:D. 【点睛】本题考查双曲线离心率的计算,解题的关键就是求出双曲线上关键点的坐标,考查计算能力,属于中等题. 7.C 【解析】 【分析】根据抛物线的定义,表示出MF ,再表示出MD ,利用5sin 7MFA ∠=,得到0x 和p 之间的关系,将M 点坐标,代入到抛物线中,从而解出p 的值,得到答案.【详解】抛物线C :22(0)y px p =>, 其焦点,02p F ⎛⎫⎪⎝⎭,准线方程2p x =-,因为点(002p M x x ⎛⎫> ⎪⎝⎭是抛物线上一点, 所以02p MF x =+AB所在直线2p x =, 设MD AB ⊥于D ,则02p MD x =-, 因为5sin 7MFA ∠=,所以57 MD MF=,即5272pxpx-=+整理得03x p=所以()3,66M p将M点代入到抛物线方程,得()26623p p=⨯,0p>解得6p=,所以抛物线方程为212y x=故选:C.【点睛】本题考查抛物线的定义,直线与圆的位置关系,求抛物线的标准方程,属于中档题.8.A【解析】【分析】结合椭圆性质,得到a,b,c的关系,设2AF x=,用x表示112,AF F F,结合余弦定理,用c表示x,结合三角形面积公式,即可。

高考数学分类练习 H单元 解析几何(文科)含答案4

高考数学分类练习  H单元 解析几何(文科)含答案4

H 解析几何H1 直线的倾斜角与斜率、直线的方程22.H1、H2、H7 如图1-6,在直角坐标系xOy 中,点P ⎝ ⎛⎭⎪⎫1,12到抛物线C :y 2=2px (p >0)的准线的距离为54.点M (t,1)是C 上的定点,A ,B 是C 上的两动点,且线段AB 被直线OM 平分.(1)求p ,t 的值;(2)求△ABP 面积的最大值.图1-622.解:(1)由题意知⎩⎪⎨⎪⎧2pt =1,1+p 2=54,得⎩⎪⎨⎪⎧p =12,t =1.(2)设A (x 1,y 1),B (x 2,y 2),线段AB 的中点为Q (m ,m ),由题意知,设直线AB 的斜率为k (k ≠0).由⎩⎪⎨⎪⎧y 21=x 1,y 22=x 2,得(y 1-y 2)(y 1+y 2)=x 1-x 2. 故k ·2m =1.所以直线AB 方程为y -m =12m(x -m ),即x -2my +2m 2-m =0.由⎩⎪⎨⎪⎧x -2my +2m 2-m =0,y 2=x消去x ,整理得y 2-2my +2m 2-m =0,所以Δ=4m -4m 2>0,y 1+y 2=2m ,y 1·y 2=2m 2-m . 从而|AB |=1+1k2·|y 1-y 2|=1+4m 2·4m -4m 2.设点P 到直线AB 的距离为d ,则 d =|1-2m +2m 2|1+4m 2. 设△ABP 的面积为S ,则S =12|AB |·d =|1-2(m -m 2)|·m -m 2.由Δ=4m -4m 2>0,得0<m <1. 令u =m -m 2,0<u ≤12,则S =u (1-2u 2),设S (u )=u (1-2u 2),0<u ≤12,则S ′(u )=1-6u 2.由S ′(u )=0得u =66∈⎝ ⎛⎭⎪⎫0,12,所以 S (u )max =S ⎝⎛⎭⎪⎫66=69. 故△ABP 面积的最大值为69.17.H1、H7 定义:曲线C 上的点到直线l 的距离的最小值称为曲线C 到直线l 的距离.已知曲线C 1:y =x 2+a 到直线l :y =x 的距离等于曲线C 2:x 2+(y +4)2=2到直线l :y =x 的距离,则实数a =________.17. 94本题在新定义背景下考查直线、圆和抛物线的方程,一、二次曲线之间的位置关系与导数几何意义等基础知识,考查学生综合运用知识的能力和学情,考查函数方程和数形结合的数学思想.求出曲线C 1到直线l 的距离和曲线C 2到直线l 的距离,建立等式,求出参数a的值. 曲线C 2:x 2+(y +4)2=2到直线l :y =x 的距离为圆心到直线的距离与圆的半径之差,即d -r =|-4|2-2=2,由y =x 2+a 可得y ′=2x ,令y ′=2x =1,则x =12,在曲线C 1上对应的点P ⎝ ⎛⎭⎪⎫12,14+a ,所以曲线C 1到直线l 的距离即为点P ⎝ ⎛⎭⎪⎫12,14+a 到直线l 的距离,故⎪⎪⎪⎪⎪⎪12-14-a 2=⎪⎪⎪⎪⎪⎪14-a 2,所以⎪⎪⎪⎪⎪⎪14-a 2=2,可得⎪⎪⎪⎪⎪⎪a -14=2,a =-74或a =94,当a =-74时,曲线C 1:y =x 2-74与直线l :y =x 相交,两者距离为0,不合题意,故a =94.4.H1、F1 若d =(2,1)是直线l 的一个方向向量,则l 的倾斜角的大小为________(结果用反三角函数值表示).4.arctan 12 考查直线的方向向量、斜率与倾斜角三者之间的关系,关键是求出直线的斜率.由已知可得直线的斜率k =12,k =tan α,所以直线的倾斜角α=arctan 12.20.H5、F1、H1 已知椭圆C 1:x 24+y 2=1,椭圆C 2以C 1的长轴为短轴,且与C 1有相同的离心率.(1)求椭圆C 2的方程;(2)设O 为坐标原点,点A ,B 分别在椭圆C 1和C 2上,OB →=2OA →,求直线AB 的方程.20.解:(1)由已知可设椭圆C 2的方程为y 2a 2+x 24=1(a >2),其离心率为32,故a 2-4a =32,则a =4,故椭圆C 2的方程为y 216+x 24=1.(2)解法一:A ,B 两点的坐标分别记为(x A ,y A ),(x B ,y B ), 由OB →=2OA →及(1)知,O ,A ,B 三点共线且点A ,B 不在y 轴上, 因此可设直线AB 的方程为y =kx .将y =kx 代入x 24+y 2=1中,得(1+4k 2)x 2=4,所以x 2A =41+4k 2,将y =kx 代入y 216+x 24=1中,得(4+k 2)x 2=16,所以x 2B =164+k2,又由OB →=2OA →得x 2B =4x 2A ,即164+k 2=161+4k 2,解得k =±1,故直线AB 的方程为y =x 或y =-x . 解法二:A ,B 两点的坐标分别记为(x A ,y A ),(x B ,y B ), 由OB →=2OA →及(1)知,O ,A ,B 三点共线且点A ,B 不在y 轴上, 因此可设直线AB 的方程为y =kx .将y =kx 代入x 24+y 2=1中,得(1+4k 2)x 2=4,所以x 2A =41+4k 2,由OB →=2OA →得x 2B =161+4k 2,y 2B =16k 21+4k 2,将x 2B ,y 2B 代入y 216+x 24=1中,得4+k21+4k2=1,即4+k 2=1+4k 2,解得k =±1, 故直线AB 的方程为y =x 或y =-x .H2 两直线的位置关系与点到直线的距离22.H1、H2、H7 如图1-6,在直角坐标系xOy 中,点P ⎝ ⎛⎭⎪⎫1,12到抛物线C :y 2=2px (p >0)的准线的距离为54.点M (t,1)是C 上的定点,A ,B 是C 上的两动点,且线段AB 被直线OM 平分.(1)求p ,t 的值;(2)求△ABP 面积的最大值.图1-622.解:(1)由题意知⎩⎪⎨⎪⎧2pt =1,1+p 2=54,得⎩⎪⎨⎪⎧p =12,t =1.(2)设A (x 1,y 1),B (x 2,y 2),线段AB 的中点为Q (m ,m ),由题意知,设直线AB 的斜率为k (k ≠0).由⎩⎪⎨⎪⎧y 21=x 1,y 22=x 2,得(y 1-y 2)(y 1+y 2)=x 1-x 2. 故k ·2m =1.所以直线AB 方程为y -m =12m(x -m ), 即x -2my +2m 2-m =0.由⎩⎪⎨⎪⎧x -2my +2m 2-m =0,y 2=x消去x ,整理得y 2-2my +2m 2-m =0,所以Δ=4m -4m 2>0,y 1+y 2=2m ,y 1·y 2=2m 2-m . 从而|AB |=1+1k2·|y 1-y 2|=1+4m 2·4m -4m 2.设点P 到直线AB 的距离为d ,则 d =|1-2m +2m 2|1+4m 2. 设△ABP 的面积为S ,则S =12|AB |·d =|1-2(m -m 2)|·m -m 2.由Δ=4m -4m 2>0,得0<m <1. 令u =m -m 2,0<u ≤12,则S =u (1-2u 2),设S (u )=u (1-2u 2),0<u ≤12,则S ′(u )=1-6u 2.由S ′(u )=0得u =66∈⎝ ⎛⎭⎪⎫0,12,所以S (u )max =S ⎝⎛⎭⎪⎫66=69. 故△ABP 面积的最大值为69.H3 圆的方程20.H3、H7、H8 设抛物线C :x 2=2py (p >0)的焦点为F ,准线为l ,A 为C 上一点,已知以F 为圆心,FA 为半径的圆F 交l 于B ,D 两点.(1)若∠BFD =90°,△ABD 的面积为42,求p 的值及圆F 的方程;(2)若A 、B 、F 三点在同一直线m 上,直线n 与m 平行,且n 与C 只有一个公共点,求坐标原点到m ,n 距离的比值.20.解:(1)由已知可得△BFD 为等腰直角三角形,|BD |=2p ,圆F 的半径|FA |=2p . 由抛物线定义可知A 到l 的距离d =|FA |=2p . 因为△ABD 的面积为42,所以12|BD |·d =42,即12·2p ·2p =42,解得p =-2(舍去),p =2. 所以F (0,1),圆F 的方程为x 2+(y -1)2=8.(2)因为A ,B ,F 三点在同一直线m 上,所以AB 为圆F 的直径,∠ADB =90°. 由抛物线定义知 |AD |=|FA |=12|AB |,所以∠ABD =30°,m 的斜率为33或-33. 当m 的斜率为33时,由已知可设n :y =33x +b ,代入x 2=2py 得x 2-233px -2pb =0. 由于n 与C 只有一个公共点,故Δ=43p 2+8pb =0.解得b =-p6.因为m 的截距b 1=p 2,|b 1||b |=3,所以坐标原点到m ,n 距离的比值为3.当m 的斜率为-33时,由图形对称性可知,坐标原点到m ,n 距离的比值为3.21.H3、H7、H8 如图1-4所示,等边三角形OAB 的边长为83,且其三个顶点均在抛物线E :x 2=2py (p >0)上.图1-4(1)求抛物线E 的方程;(2)设动直线l 与抛物线E 相切于点P ,与直线y =-1相交于点Q ,证明以PQ 为直径的圆恒过y 轴上某定点.21.解:解法一:(1)依题意,|OB |=83,∠BOy =30°. 设B (x ,y ),则x =|OB |sin30°=43,y =|OB |cos30°=12. 因为点B (43,12)在x 2=2py 上,所以(43)2=2p ×12,解得p =2. 故抛物线E 的方程为x 2=4y . (2)由(1)知y =14x 2,y ′=12x .设P (x 0,y 0),则x 0≠0,且l 的方程为y -y 0=12x 0(x -x 0),即y =12x 0x -14x 20.由⎩⎪⎨⎪⎧y =12x 0x -14x 20,y =-1,得⎩⎪⎨⎪⎧x =x 20-42x 0,y =-1.所以Q ⎝ ⎛⎭⎪⎫x 20-42x 0,-1.假设以PQ 为直径的圆恒过定点M ,由图形的对称性知M 必在y 轴上,设M (0,y 1),令MP →·MQ →=0对满足y 0=14x 20(x 0≠0)的x 0,y 0恒成立.由于MP →=(x 0,y 0-y 1),MQ →=⎝ ⎛⎭⎪⎫x 20-42x 0,-1-y 1. 由MP →·MQ →=0,得x 20-42-y 0-y 0y 1+y 1+y 21=0.即(y 21+y 1-2)+(1-y 1)y 0=0.(*)由于(*)式对满足y 0=14x 20(x 0≠0)的y 0恒成立,所以⎩⎪⎨⎪⎧1-y 1=0,y 21+y 1-2=0,解得y 1=1.故以PQ 为直径的圆恒过y 轴上的定点M (0,1). 解法二: (1)同解法一.(2)由(1)知y =14x 2,y ′=12x ,设P (x 0,y 0),则x 0≠0,且l 的方程为y -y 0=12x 0(x -x 0),即y =12x 0x -14x 20.由⎩⎪⎨⎪⎧y =12x 0x -14x 20,y =-1,得⎩⎪⎨⎪⎧x =x 20-42x 0,y =-1,所以Q ⎝ ⎛⎭⎪⎫x 20-42x 0,-1.取x 0=2,此时P (2,1),Q (0,-1),以PQ 为直径的圆为(x -1)2+y 2=2,交y 轴于点M 1(0,1)或M 2(0,-1);取x 0=1,此时P ⎝⎛⎭⎪⎫1,14,Q ⎝⎛⎭⎪⎫-32,-1,以PQ 为直径的圆为⎝⎛⎭⎪⎫x +142+⎝ ⎛⎭⎪⎫y +382=12564,交y 轴于M 3(0,1)或M 4⎝⎛⎭⎪⎫0,-74. 故若满足条件的点M 存在,只能是M (0,1). 以下证明点M (0,1)就是所要求的点. 因为MP →=(x 0,y 0-1),MQ →=⎝ ⎛⎭⎪⎫x 20-42x 0,-2, MP →·MQ →=x 20-42-2y 0+2=2y 0-2-2y 0+2=0.故以PQ 为直径的圆恒过y 轴上的定点M .21.H3、H5、H8 设A 是单位圆x 2+y 2=1上的任意一点,l 是过点A 与x 轴垂直的直线,D 是直线l 与x 轴的交点,点M 在直线l 上,且满足|DM |=m |DA |(m >0,且m ≠1).当点A在圆上运动时,记点M 的轨迹为曲线C .(1)求曲线C 的方程,判断曲线C 为何种圆锥曲线,并求其焦点坐标;(2)过原点斜率为k 的直线交曲线C 于P ,Q 两点,其中P 在第一象限,且它在y 轴上的射影为点N ,直线QN 交曲线C 于另一点H .是否存在m ,使得对任意的k >0,都有PQ ⊥PH ?若存在,求m 的值;若不存在,请说明理由.21.解:(1)如图(1),设M (x ,y ),A (x 0,y 0),则由|DM |=m |DA |(m >0,且m ≠1), 可得x =x 0,|y |=m |y 0|,所以x 0=x ,|y 0|=1m|y |.①因为A 点在单位圆上运动,所以x 20+y 20=1.②将①式代入②式即得所求曲线C 的方程为x 2+y 2m2=1(m >0,且m ≠1).因为m ∈(0,1)∪(1,+∞),所以当0<m <1时,曲线C 是焦点在x 轴上的椭圆, 两焦点坐标分别为(-1-m 2,0),(1-m 2,0); 当m >1时,曲线C 是焦点在y 轴上的椭圆, 两焦点坐标分别为(0,-m 2-1),(0,m 2-1).(2)方法1:如图(2)、(3),对任意k >0,设P (x 1,kx 1),H (x 2,y 2),则Q (-x 1,-kx 1),N (0,kx 1),直线QN 的方程为y =2kx +kx 1,将其代入椭圆C 的方程并整理可得(m 2+4k 2)x 2+4k 2x 1x +k 2x 21-m 2=0.依题意可知此方程的两根为-x 1,x 2,于是由韦达定理可得 -x 1+x 2=-4k 2x 1m 2+4k 2,即x 2=m 2x 1m 2+4k 2. 因为点H 在直线QN 上, 所以y 2-kx 1=2kx 2=2km 2x 1m 2+4k 2.于是PQ →=(-2x 1,-2kx 1),PH →=(x 2-x 1,y 2-kx 1)=⎝ ⎛⎭⎪⎫-4k 2x 1m 2+4k 2,2km 2x 1m 2+4k 2.而PQ ⊥PH 等价于PQ →·PH →=42-m 2k 2x 21m 2+4k 2=0,即2-m 2=0,又m >0,得m =2,故存在m =2,使得在其对应的椭圆x 2+y 22=1上,对任意的k >0都有PQ ⊥PH .方法2:如图(2)、(3),对任意x 1∈(0,1),设P (x 1,y 1),H (x 2,y 2),则Q (-x 1,-y 1),N (0,y 1),因为P ,H 两点在椭圆C 上,所以⎩⎪⎨⎪⎧m 2x 21+y 21=m 2,m 2x 22+y 22=m 2,两式相减可得m 2(x 21-x 22)+(y 21-y 22)=0.③依题意,由点P 在第一象限可知,点H 也在第一象限,且P ,H 不重合, 故(x 1-x 2)(x 1+x 2)≠0.于是由③式可得y 1-y 2y 1+y 2x 1-x 2x 1+x 2=-m 2.④又Q ,N ,H 三点共线,所以k QN =k QH ,即2y 1x 1=y 1+y 2x 1+x 2.于是由④式可得k PQ ·k PH =y 1x 1·y 1-y 2x 1-x 2=12·y 1-y 2y 1+y 2x 1-x 2x 1+x 2=-m 22,而PQ ⊥PH 等价于k PQ ·k PH =-1,即-m 22=-1,又m >0,得m =2,故存在m =2,使得在其对应的椭圆x 2+y 22=1上,对任意的k >0,都有PQ ⊥PH .H4 直线与圆、圆与圆的位置关系6.H4 已知圆C :x 2+y 2-4x =0,l 是过点P (3,0)的直线,则( ) A .l 与C 相交 B .l 与C 相切C .l 与C 相离D .以上三个选项均有可能6.A 本小题主要考查直线与圆的位置关系,解题的突破口为熟练掌握判断直线与圆位置关系的方法.x 2+y 2-4x =0是以(2,0)为圆心,以2为半径的圆,而点P (3,0)到圆心的距离为d =3-22+0-02=1<2,点P (3,0)恒在圆内,过点P (3,0)不管怎么样画直线,都与圆相交.故选A.7.H4 将圆x 2+y 2-2x -4y +1=0平分的直线是( ) A .x +y -1=0 B .x +y +3=0 C .x -y +1=0 D .x -y +3=07.C 本小题主要考查直线与圆的位置关系.解题的突破口为弄清平分线的实质是过圆心的直线,即圆心符合直线方程.圆的标准方程为(x -1)2+(y -2)2=4,所以圆心为(1,2),把点(1,2)代人A 、B 、C 、D ,不难得出选项C 符合要求.5.H4 过点P (1,1)的直线,将圆形区域{}x ,y |x 2+y 2≤4分为两部分,使得这两部分的面积之差最大,则该直线的方程为( )A .x +y -2=0B .y -1=0C .x -y =0D .x +3y -4=05.A 要使直线将圆形区域分成两部分的面积之差最大,通过观察图形,显然只需该直线与直线OP 垂直即可,又已知P (1,1),则所求直线的斜率为-1,又该直线过点P (1,1),易求得该直线的方程为x +y -2=0.故选A.8.H4 在平面直角坐标系xOy 中,直线3x +4y -5=0与圆x 2+y 2=4相交于A 、B 两点,则弦AB 的长等于( )A .3 3B .2 3 C. 3 D .18.B 考查直线与圆相交求弦长,突破口是“弦心距、半径、弦长之半构成直角三角形”,利用勾股定理计算.由点到直线的距离得,弦心距d =|5|32+42=1,所以弦长AB =222-1=23,所以选择B.9.H4 直线y =x 被圆x 2+(y -2)2=4截得的弦长为________.9.2 2 本题考查直线和圆的位置关系、考查简单的平面几何知识.法一:几何法:圆心到直线的距离为d =|0-2|2=2,圆的半径r =2,所以弦长为l=2×r 2-d 2=24-2=22;法二:代数法:联立直线和圆的方程⎩⎪⎨⎪⎧y =x ,x 2+y -22=4,消去y 可得x 2-2x =0,所以直线和圆的两个交点坐标分别为(2,2),(0,0),弦长为22-02=2 2.9.H4 若直线x -y +1=0与圆(x -a )2+y 2=2有公共点,则实数a 的取值范围是( ) A . B .C .D .(-∞,-3]∪ 因为直线x -y +1=0与圆()x -a 2+y 2=2有公共点,所以圆心到直线的距离d =||a -0+12≤r =2,可得||a +1≤2,即a ∈[]-3,1.7.H4 直线x +3y -2=0与圆x 2+y 2=4相交于A ,B 两点,则弦AB 的长度等于( ) A .2 5 B .2 3 C. 3 D .17.B 根据圆的方程知,圆的圆心为(0,0),半径R =2,弦心距d =|-2|3+1=1,所以弦长|AB |=222-1=23,所以选择B.12.H4 在平面直角坐标系xOy 中,圆C 的方程为x 2+y 2-8x +15=0,若直线y =kx -2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是________.12.43 本题考查用几何方法判定两圆的位置关系.解题突破口为设出圆的圆心坐标. 圆C 方程可化为(x -4)2+y 2=1圆心坐标为(4,0),半径为1,由题意,直线y =kx -2上至少存在一点(x 0,kx 0-2),以该点为圆心,1为半径的圆与圆C 有公共点,因为两个圆有公共点,故x -42+kx -22≤2,整理得(k 2+1)x 2-(8+4k )x +16≤0,此不等式有解的条件是Δ=(8+4k )2-64(k 2+1)≥0,解之得0≤k ≤43,故最大值为43.14.H4 过直线x +y -22=0上点P 作圆x 2+y 2=1的两条切线,若两条切线的夹角是60°,则点P 的坐标是________.14.(2,2) 设切点为A ,B ,设P (x,22-x ),连结PA ,PB ,PO ,则|PO |=2|OA |=2,即x 2+(22-x )2=4,整理得x 2-22x +2=0,解得x =2,故P 的坐标为(2,2).22.H6、H4 在平面直角坐标系xOy 中,已知双曲线C :2x 2-y 2=1. (1)设F 是C 的左焦点,M 是C 右支上一点.若|MF |=22,求点M 的坐标; (2)过C 的左顶点作C 的两条渐近线的平行线,求这两组平行线围成的平行四边形的面积;(3)设斜率为k (|k |<2)的直线l 交C 于P 、Q 两点.若l 与圆x 2+y 2=1相切,求证:OP ⊥OQ .22.解:(1)双曲线C :x 212-y 2=1,左焦点F ⎝ ⎛⎭⎪⎫-62,0,设M (x ,y ),则|MF |2=⎝ ⎛⎭⎪⎫x +622+y 2=⎝⎛⎭⎪⎫3x +222, 由M 点是右支上一点,知x ≥22,所以|MF |=3x +22=22,得x =62, 所以M ⎝⎛⎭⎪⎫62,±2. (2)左顶点A ⎝⎛⎭⎪⎫-22,0,渐近线方程:y =±2x . 过点A 与渐近线y =2x 平行的直线方程为y =2⎝ ⎛⎭⎪⎫x +22,即y =2x +1. 解方程组⎩⎨⎧y =-2x ,y =2x +1得⎩⎪⎨⎪⎧x =-24,y =12.所以所求平行四边形的面积为S =|OA ||y |=24. (3)证明:设直线PQ 的方程是y =kx +b ,因直线PQ 与已知圆相切,故|b |k 2+1=1,即b 2=k 2+1(*).由⎩⎪⎨⎪⎧y =kx +b ,2x 2-y 2=1,得(2-k 2)x 2-2kbx -b 2-1=0.设P (x 1,y 1)、Q (x 2,y 2),则⎩⎪⎨⎪⎧x 1+x 2=2kb2-k2,x 1x 2=-1-b22-k2.又y 1y 2=(kx 1+b )(kx 2+b ),所以 OP →·OQ →=x 1x 2+y 1y 2=(1+k 2)x 1x 2+kb (x 1+x 2)+b 2=1+k2-1-b 22-k2+2k 2b 22-k 2+b 2=-1+b 2-k 22-k2. 由(*)知,OP →·OQ →=0,所以OP ⊥OQ .20.H4、H5 如图1-7,动圆C 1:x 2+y 2=t 2,1<t <3,与椭圆C 2:x 29+y 2=1相交于A ,B ,C ,D 四点,点A 1,A 2分别为C 2的左,右顶点.(1)当t 为何值时,矩形ABCD 的面积取得最大值?并求出其最大面积; (2)求直线AA 1与直线A 2B 交点M 的轨迹方程.图1-720.解:(1)设A (x 0,y 0),则矩形ABCD 的面积S =4|x 0||y 0|.由x 209+y 20=1得y 20=1-x 209,从而 x 20y 2=x 20⎝ ⎛⎭⎪⎫1-x 209=-19⎝ ⎛⎭⎪⎫x 20-922+94,当x 20=92,y 20=12时,S max =6.从而t =5时,矩形ABCD 的面积最大,最大面积为6.(2)由A (x 0,y 0),B (x 0,-y 0),A 1(-3,0),A 2(3,0)知直线AA 1的方程为y =y 0x 0+3(x +3). ① 直线A 2B 的方程为 y =-y 0x 0-3(x -3). ② 由①②得y 2=-y 2x 20-9(x 2-9) ③又点A (x 0,y 0)在椭圆C 上,故y 20=1-x 209. ④将④代入③得x 29-y 2=1(x <-3,y <0).因此点M 的轨迹方程为x 29-y 2=1(x <-3,y <0).3.H4 设A ,B 为直线y =x 与圆x 2+y 2=1的两个交点,则|AB |=( ) A .1 B. 2 C. 3 D .23.D 因为圆x 2+y 2=1的圆心(0,0)在直线AB 上,所以AB 为圆的直径,所以|AB |=2×1=2.9.H4 圆(x +2)2+y 2=4与圆(x -2)2+(y -1)2=9的位置关系为( ) A .内切 B .相交 C .外切 D .相离9.B 本题考查两圆的位置关系,考查数形结合思想,推理能力,容易题. ∵两圆的圆心距为2+22+1-02=17,又∵3-2<17<3+2,∴两圆相交.12.H4 设m ,n ∈R ,若直线l :mx +ny -1=0与x 轴相交于点A ,与y 轴相交于点B ,且l 与圆x 2+y 2=4相交所得弦的长为2,O 为坐标原点,则△AOB 面积的最小值为________.12.3 直线mx +ny -1=0与两坐标轴的交点坐标分为⎝ ⎛⎭⎪⎫1m,0,⎝⎛⎭⎪⎫0,1n ,又∵直线l被圆x 2+y 2=4截得弦长为2 ,由垂径定理得,⎝⎛⎭⎪⎫1m 2+n 22+12=22,即1m 2+n 2=3,∴S △OAB =12×1|m |×1|n |≥1m 2+n2=3.4.A2、H2 设a ∈R ,则“a =1”是“直线l 1:ax +2y -1=0与直线l 2:x +2y +4=0平行”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件4.C 本题考查了简易逻辑、两直线平行等基础知识,考查了学生简单的逻辑推理能力.若a =1,则直线l 1:ax +2y -1=0与l 2:x +2y +4=0平行;若直线l 1:ax +2y -1=0与l 2:x +2y +4=0平行,则2a -2=0即a =1.∴“a =1”是“l 1:ax +2y -1=0与l 2:x +2y +4=0平行”的充要条件.H5 椭圆及其几何性质21.H5、H8、F3 如图,设椭圆的中点为原点O ,长轴在x 轴上,上顶点为A ,左、右焦点分别为F 1,F 2,线段OF 1,OF 2的中点分别为B 1,B 2,且△AB 1B 2是面积为4的直角三角形.(1)求该椭圆的离心率和标准方程;(2)过B 1作直线交椭圆于P ,Q 两点,使PB 2⊥QB 2,求△PB 2Q 的面积.21.解:(1)设所求椭圆的标准方程为x 2a 2+y 2b2=1(a >b >0),右焦点为F 2(c,0).因△AB 1B 2是直角三角形且|AB 1|=|AB 2|,故∠B 1AB 2为直角,从而|OA |=|OB 2|, 即b =c2.结合c 2=a 2-b 2得4b 2=a 2-b 2,故a 2=5b 2,c 2=4b 2,所以离心率e =c a =255.在Rt △AB 1B 2中,OA ⊥B 1B 2,故S △AB 1B 2=12·|B 1B 2|·|OA |=|OB 2|·|OA |=c2·b =b 2,由题设条件S △AB 1B 2=4得b 2=4,从而a 2=5b 2=20. 因此所求椭圆的标准方程为:x 220+y 24=1.(2)由(1)知B 1(-2,0)、B 2(2,0).由题意,直线PQ 的倾斜角不为0,故可设直线PQ 的方程为:x =my -2.代入椭圆方程得(m 2+5)y 2-4my -16=0.(*)设P (x 1,y 1),Q (x 2,y 2),则y 1,y 2是上面方程的两根,因此 y 1+y 2=4m m 2+5,y 1·y 2=-16m 2+5.又B 2P →=(x 1-2,y 1),B 2Q →=(x 2-2,y 2),所以B 2P →·B 2Q →=(x 1-2)(x 2-2)+y 1y 2=(my 1-4)(my 2-4)+y 1y 2 =(m 2+1)y 1y 2-4m (y 1+y 2)+16 =-16m 2+1m 2+5-16m 2m 2+5+16 =-16m 2-64m 2+5,由PB 2⊥QB 2,知B 2P →·B 2Q →=0,即16m 2-64=0,解得m =±2. 当m =2时,方程(*)化为:9y 2-8y -16=0, 故y 1=4+4109,y 2=4-4109,|y 1-y 2|=8910,△PB 2Q 的面积S =12|B 1B 2|·|y 1-y 2|=16910.当m =-2时,同理可得(或由对称性可得)△PB 2Q 的面积S =16910.综上所述,△PB 2Q 的面积为16910.8.H5、H6 如图1-3,中心均为原点O 的双曲线与椭圆有公共焦点,M ,N 是双曲线的两顶点.若M ,O ,N 将椭圆长轴四等分,则双曲线与椭圆的离心率的比值是( )图1-3A .3B .2 C. 3 D. 28.B 本题考查了椭圆与双曲线的简单几何性质,考查了学生对书本知识掌握的熟练程度,属于送分题.设椭圆、双曲线的方程分别为x 2a 21 + y 2b 21= 1(a 1>b 1>0),x 2a 22-y 2b 22=1(a 2>0,b 2>0),由题意知c 1=c 2且a 1=2a 2,则e 1e 2=c 1a 1c 2a 2=a 2a 1=2. 19.H5、H8 已知椭圆x 2a 2+y 2b 2=1(a >b >0),点P ⎝ ⎛⎭⎪⎫55a ,22a 在椭圆上.(1)求椭圆的离心率;(2)设A 为椭圆的左顶点,O 为坐标原点,若点Q 在椭圆上且满足|AQ |=|AO |,求直线OQ 的斜率的值.19.解:(1)因为点P ⎝ ⎛⎭⎪⎫55a ,22a 在椭圆上,故a 25a 2+a 22b 2=1,可得b 2a 2=58,于是e 2=a 2-b 2a 2=1-b 2a 2=38,所以椭圆的离心率e =64. (2)设直线OQ 的斜率为k ,则其方程为y =kx .设点Q 的坐标为(x 0,y 0).由条件得⎩⎪⎨⎪⎧y 0=kx 0,x 20a 2+y 2b 2=1,消去y 0并整理得x 20=a 2b 2k 2a 2+b2.①由|AQ |=|AO |,A (-a,0)及y 0=kx 0,得(x 0+a )2+k 2x 20=a 2.整理得,(1+k 2)x 20+2ax 0=0.而x 0≠0,故x 0=-2a 1+k 2,代入①,整理得(1+k 2)2=4k 2·a 2b2+4.由(1)知a 2b 2=85,故(1+k 2)2=325k 2+4,即5k 4-22k 2-15=0,可得k 2=5.所以直线OQ 的斜率k =± 5.4.H5 设F 1,F 2是椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,P 为直线x =3a2上一点,△F 2PF 1是底角为30°的等腰三角形,则E 的离心率为( )A.12B.23C.34D.454.C 根据题意直线PF 2的倾斜角是π3,所以32a -c =12|PF 2|=12|F 1F 2|=12×2c ,解得e=34.故选C. 16.A2、H5 对于常数m 、n ,“mn >0”是“方程mx 2+ny 2=1的曲线是椭圆”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件16.B 考查充分条件和必要条件,以及椭圆方程.判断充分条件和必要条件,首先要确定条件与结论.条件是“mn >0”,结论是“方程mx 2+ny 2=1的曲线是椭圆”, 方程mx 2+ny 2=1的曲线是椭圆,可以得出mn >0,且m >0,n >0,m ≠n ,而由条件“mn >0”推不出“方程mx 2+ny 2=1的曲线是椭圆”.所以为必要不充分条件,选B.20.H5、F1 已知椭圆C 1:x 24+y 2=1,椭圆C 2以C 1的长轴为短轴,且与C 1有相同的离心率.(1)求椭圆C 2的方程;(2)设O 为坐标原点,点A ,B 分别在椭圆C 1和C 2上,OB →=2OA →,求直线AB 的方程.20.解:(1)由已知可设椭圆C 2的方程为y 2a 2+x 24=1(a >2),其离心率为32,故a 2-4a =32,则a =4,故椭圆C 2的方程为y 216+x 24=1.(2)解法一:A ,B 两点的坐标分别记为(x A ,y A ),(x B ,y B ), 由OB →=2OA →及(1)知,O ,A ,B 三点共线且点A ,B 不在y 轴上, 因此可设直线AB 的方程为y =kx .将y =kx 代入x 24+y 2=1中,得(1+4k 2)x 2=4,所以x 2A =41+4k 2,将y =kx 代入y 216+x 24=1中,得(4+k 2)x 2=16,所以x 2B =164+k 2,又由OB →=2OA →得x 2B =4x 2A ,即164+k 2=161+4k 2,解得k =±1,故直线AB 的方程为y =x 或y =-x . 解法二:A ,B 两点的坐标分别记为(x A ,y A ),(x B ,y B ), 由OB →=2OA →及(1)知,O ,A ,B 三点共线且点A ,B 不在y 轴上, 因此可设直线AB 的方程为y =kx .将y =kx 代入x 24+y 2=1中,得(1+4k 2)x 2=4,所以x 2A =41+4k 2,由OB →=2OA →得x 2B =161+4k 2,y 2B =16k 21+4k 2,将x 2B ,y 2B 代入y 216+x 24=1中,得4+k21+4k2=1,即4+k 2=1+4k 2,解得k =±1, 故直线AB 的方程为y =x 或y =-x .21.H3、H5、H8 设A 是单位圆x 2+y 2=1上的任意一点,l 是过点A 与x 轴垂直的直线,D 是直线l 与x 轴的交点,点M 在直线l 上,且满足|DM |=m |DA |(m >0,且m ≠1).当点A在圆上运动时,记点M 的轨迹为曲线C .(1)求曲线C 的方程,判断曲线C 为何种圆锥曲线,并求其焦点坐标;(2)过原点斜率为k 的直线交曲线C 于P ,Q 两点,其中P 在第一象限,且它在y 轴上的射影为点N ,直线QN 交曲线C 于另一点H .是否存在m ,使得对任意的k >0,都有PQ ⊥PH ?若存在,求m 的值;若不存在,请说明理由.21.解:(1)如图(1),设M (x ,y ),A (x 0,y 0),则由|DM |=m |DA |(m >0,且m ≠1), 可得x =x 0,|y |=m |y 0|,所以x 0=x ,|y 0|=1m|y |.①因为A 点在单位圆上运动,所以x 20+y 20=1.②将①式代入②式即得所求曲线C 的方程为x 2+y 2m2=1(m >0,且m ≠1).因为m ∈(0,1)∪(1,+∞),所以当0<m <1时,曲线C 是焦点在x 轴上的椭圆, 两焦点坐标分别为(-1-m 2,0),(1-m 2,0); 当m >1时,曲线C 是焦点在y 轴上的椭圆, 两焦点坐标分别为(0,-m 2-1),(0,m 2-1).(2)方法1:如图(2)、(3),对任意k >0,设P (x 1,kx 1),H (x 2,y 2),则Q (-x 1,-kx 1),N (0,kx 1),直线QN 的方程为y =2kx +kx 1,将其代入椭圆C 的方程并整理可得(m 2+4k 2)x 2+4k 2x 1x +k 2x 21-m 2=0.依题意可知此方程的两根为-x 1,x 2,于是由韦达定理可得 -x 1+x 2=-4k 2x 1m 2+4k 2,即x 2=m 2x 1m 2+4k 2. 因为点H 在直线QN 上, 所以y 2-kx 1=2kx 2=2km 2x 1m 2+4k 2.于是PQ →=(-2x 1,-2kx 1),PH →=(x 2-x 1,y 2-kx 1)=⎝ ⎛⎭⎪⎫-4k 2x 1m 2+4k 2,2km 2x 1m 2+4k 2.而PQ ⊥PH 等价于PQ →·PH →=42-m 2k 2x 21m 2+4k 2=0,即2-m 2=0,又m >0,得m =2,故存在m =2,使得在其对应的椭圆x 2+y 22=1上,对任意的k >0都有PQ ⊥PH .方法2:如图(2)、(3),对任意x 1∈(0,1),设P (x 1,y 1),H (x 2,y 2),则Q (-x 1,-y 1),N (0,y 1),因为P ,H 两点在椭圆C 上,所以⎩⎪⎨⎪⎧m 2x 21+y 21=m 2,m 2x 22+y 22=m 2,两式相减可得m 2(x 21-x 22)+(y 21-y 22)=0.③依题意,由点P 在第一象限可知,点H 也在第一象限,且P ,H 不重合, 故(x 1-x 2)(x 1+x 2)≠0.于是由③式可得y 1-y 2y 1+y 2x 1-x 2x 1+x 2=-m 2.④又Q ,N ,H 三点共线,所以k QN =k QH ,即2y 1x 1=y 1+y 2x 1+x 2.于是由④式可得k PQ ·k PH =y 1x 1·y 1-y 2x 1-x 2=12·y 1-y 2y 1+y 2x 1-x 2x 1+x 2=-m 22,而PQ ⊥PH 等价于k PQ ·k PH =-1,即-m 22=-1,又m >0,得m =2,故存在m =2,使得在其对应的椭圆x 2+y 22=1上,对任意的k >0,都有PQ ⊥PH .21.H5、H8 如图1-7所示,椭圆M :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,直线x =±a和y =±b 所围成的矩形ABCD 的面积为8.图1-7(1)求椭圆M 的标准方程;(2)设直线l :y =x +m (m ∈R )与椭圆M 有两个不同的交点P ,Q ,l 与矩形ABCD 有两个不同的交点S ,T .求|PQ ||ST |的最大值及取得最大值时m 的值.21.解:(1)设椭圆M 的半焦距为c ,由题意知⎩⎪⎨⎪⎧a 2=b 2+c 2,c a =32,4ab =8,所以a =2,b =1,因此椭圆M 的标准方程为x 24+y 2=1.(2)由⎩⎪⎨⎪⎧x 24+y 2=1,y =x +m ,整理得5x 2+8mx +4m 2-4=0,由Δ=64m 2-80(m 2-1)=80-16m 2>0. 得-5<m < 5.设P (x 1,y 1),Q (x 2,y 2), 则x 1+x 2=-8m 5,x 1x 2=4m 2-15.所以|PQ |=x 1-x 22+y 1-y 22=2[x 1+x 22-4x 1x 2]=4525-m2(-5<m <5).线段CD 的方程为y =1(-2≤x ≤2),线段AD 的方程为x =-2(-1≤y ≤1). ①不妨设点S 在AD 边上,T 在CD 边上,可知1≤m <5,S (-2,m -2),D (-2,1), 所以|ST |=2|SD |=2=2(3-m ), 因此|PQ ||ST |=455-m 23-m2.令t =3-m (1≤m <5), 则m =3-t ,t ∈(3-5,2]. 所以|PQ ||ST |=455-3-t2t2=45-4t 2+6t -1=45-4⎝ ⎛⎭⎪⎫1t -342+54, 由于t ∈(3-5,2]. 所以1t ∈⎣⎢⎡⎭⎪⎫12,3+54.因此当1t =34,即t =43时,|PQ ||ST |取得最大值255,此时m =53.②不妨设点S 在AB 边上,T 在CD 边上,此时-1≤m ≤1, 因此|ST |=2|AD |=22,此时|PQ ||ST |=255-m 2.所以当m =0时,|PQ ||ST |取得最大值255.③不妨设点S 在AB 边上,T 在BC 边上,-5<m ≤-1. 由椭圆和矩形的对称性知|PQ ||ST |的最大值为255,此时m =-53.综上所述m =±53或m =0时,|PQ ||ST |取得最大值255.20.H5、H8 如图1-4,F 1,F 2分别是椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,A 是椭圆C 的顶点,B 是直线AF 2与椭圆C 的另一个交点,∠F 1AF 2=60°.(1)求椭圆C 的离心率;(2)已知△AF 1B 的面积为403,求a ,b 的值.图1-420.解: (1)由题意可知,△AF 1F 2为等边三角形,a =2c ,所以e =12.(2)( 方法一)a 2=4c 2,b 2=3c 2. 直线AB 的方程可为y =-3(x -c ). 将其代入椭圆方程3x 2+4y 2=12c 2, 得B ⎝ ⎛⎭⎪⎫85c ,-335c .所以|AB |=1+3·⎪⎪⎪⎪⎪⎪85c -0=165c .由S △AF 1B =12|AF 1|·|AB |sin ∠F 1AB=12a ·165c ·32=235a 2=403, 解得a =10,b =5 3. (方法二)设|AB |=t .因为|AF 2|=a ,所以|BF 2|=t -a .由椭圆定义|BF 1|+|BF 2|=2a 可知,|BF 1|=3a -t . 再由余弦定理(3a -t )2=a 2+t 2-2at cos60°可得,t =85a .由S △AF 1B =12a ·85a ·32=235a 2=403知,a =10,b =5 3.5.H5 椭圆的中心在原点,焦距为4,一条准线为x =-4,则该椭圆的方程为( ) A.x 216+y 212=1 B.x 212+y 28=1C.x 28+y 24=1D.x 212+y 24=15.C 本小题主要考查椭圆的标准方程和几何性质.解题的突破口为焦距、准线与a 、b 、c 的关系.∵焦距为4,一条准线为x =-4,∴c =2,a 2c =4,∴a 2=8,b 2=4,故选C.20.H5、H7、H8 在平面直角坐标系xOy 中,已知椭圆C 1:x 2a 2+y 2b2=1(a >b >0)的左焦点为F 1(-1,0),且点P (0,1)在C 1上.(1)求椭圆C 1的方程;(2)设直线l 同时与椭圆C 1和抛物线C 2:y 2=4x 相切,求直线l 的方程.20.解:(1)由C 1的左焦点F 1的坐标为(-1,0)知c =1. 因为点P (0,1)在C 1上,所以b =1. 于是a = 2.故C 1的方程为x 22+y 2=1.(2)由题设l 同时与C 1和C 2相切,设切点分别为A 和B ,点B 的坐标为(x 0,y 0),显然x 0>0.当点B 在第一象限时,点B 的坐标为(x 0,2x 0).考虑抛物线C 2在第一象限的方程y =2x ,x >0.因为y ′=1x,所以l 的斜率为1x 0,从而l 的方程为:y =xx 0+x 0. 由假设直线l 与椭圆C 1相切,因此方程组⎩⎪⎨⎪⎧y =xx 0+x 0, ①x 22+y 2=1, ②有唯一解,将①代入②并整理得: (x 0+2)x 2+4x 0x +2x 0(x 0-1)=0, 所以Δ=16x 20-8(x 0+2)x 0(x 0-1) =-8x 0(x 0+1)(x 0-2)=0. 因为x 0>0,所以x 0=2.当x 0=2时,直线l 的方程为:y =22x + 2. 易验证l 是C 1的切线.由对称性,当切点B 在第四象限时,可得l 的方程为:y =-22x - 2. 综上所述,同时与C 1和C 2相切的直线方程为:y =22x +2,或y =-22x - 2. 21.H5、H10 在直角坐标系xOy 中,已知中心在原点,离心率为12的椭圆E 的一个焦点为圆C :x 2+y 2-4x +2=0的圆心.(1)求椭圆E 的方程;(2)设P 是椭圆E 上一点,过P 作两条斜率之积为12的直线l 1,l 2.当直线l 1,l 2都与圆C相切时,求P 的坐标.21.解:(1)由x 2+y 2-4x +2=0得(x -2)2+y 2=2,故圆C 的圆心为点(2,0).从而可设椭圆E 的方程为x 2a 2+y 2b 2=1(a >b >0),其焦距为2c .由题设知c =2,e =c a =12.所以a =2c =4,b 2=a 2-c 2=12.故椭圆E 的方程为x 216+y 212=1.(2)设点P 的坐标为(x 0,y 0),l 1,l 2的斜率分别为k 1,k 2.则l 1,l 2的方程分别为l 1:y -y 0=k 1(x -x 0),l 2:y -y 0=k 2(x -x 0),且k 1k 2=12.由l 1与圆C :(x -2)2+y 2=2相切得|2k 1+y 0-k 1x 0|k 21+1= 2.即k 21+2(2-x 0)y 0k 1+y 20-2=0. 同理可得k 22+2(2-x 0)y 0k 2+y 20-2=0.从而k 1,k 2是方程k 2+2(2-x 0)y 0k +y 20-2=0的两个实根.于是⎩⎪⎨⎪⎧2-x 02-2≠0,Δ=8[2-x 02+y 20-2]>0,①且k 1k 2=y 20-22-x 02-2=12. 由⎩⎪⎨⎪⎧x 2016+y 212=1,y 2-22-x 02-2=12得5x 20-8x 0-36=0.解得x 0=-2,或x 0=185.由x 0=-2得y 0=±3;由x 0=185得y 0=±575,它们均满足①式.故点P 的坐标为(-2,3),或(-2,-3),或⎝ ⎛⎭⎪⎫185,575,或⎝ ⎛⎭⎪⎫185,-575.8.H5 椭圆x 2a 2+y 2b2=1(a >b >0)的左、右顶点分别是A ,B ,左、右焦点分别是F 1,F 2.若|AF 1|,|F 1F 2|,|F 1B |成等比数列,则此椭圆的离心率为( )A.14B.55C.12 D.5-28.B 由椭圆的定义知,|AF 1|=a -c ,|F 1F 2|=2c ,|BF 1|=a +c .∵|AF 1|,|F 1F 2|,|BF 1|成等比数列,因此4c 2=(a -c )(a +c ),整理得5c 2=a 2,两边同除以a 2得5e 2=1,解得e =55.故选B. 20.H4、H5 如图1-7,动圆C 1:x 2+y 2=t 2,1<t <3,与椭圆C 2:x 29+y 2=1相交于A ,B ,C ,D 四点,点A 1,A 2分别为C 2的左,右顶点.(1)当t 为何值时,矩形ABCD 的面积取得最大值?并求出其最大面积; (2)求直线AA 1与直线A 2B 交点M 的轨迹方程.图1-720.解:(1)设A (x 0,y 0),则矩形ABCD 的面积S =4|x 0||y 0|.由x 209+y 20=1得y 20=1-x 209,从而 x 20y 2=x 20⎝ ⎛⎭⎪⎫1-x 209=-19⎝ ⎛⎭⎪⎫x 20-922+94,当x 20=92,y 20=12时,S max =6.从而t =5时,矩形ABCD 的面积最大,最大面积为6.(2)由A (x 0,y 0),B (x 0,-y 0),A 1(-3,0),A 2(3,0)知直线AA 1的方程为y =y 0x 0+3(x +3). ① 直线A 2B 的方程为 y =-y 0x 0-3(x -3). ② 由①②得y 2=-y 2x 20-9(x 2-9) ③又点A (x 0,y 0)在椭圆C 上,故y 20=1-x 209. ④将④代入③得x 29-y 2=1(x <-3,y <0).因此点M 的轨迹方程为x 29-y 2=1(x <-3,y <0).15.H5 椭圆x 2a 2+y 25=1(a 为定值,且a >5)的左焦点为F ,直线x =m 与椭圆相交于点A 、B ,△FAB 的周长的最大值是12,则该椭圆的离心率是________.15.23 如图,设椭圆右焦点为F ′,直线x =m 与x 轴相交于C , 由椭圆第一定义,|AF |+|AF ′|=|BF |+|BF ′|=2a , 而|AB |=|AC |+|BC |≤|AF ′|+|BF ′|, ∴当且仅当AB 过F ′时,△ABF 周长最大. 此时,由|AF |+|AB |+|BF |=4a =12, 得a =3,进而c =32-5=2,∴椭圆离心率为e =c a =23.H6 双曲线及其几何性质11.H6 已知双曲线C 1:x 2a 2-y 2b 2=1(a >0,b >0)与双曲线C 2:x 24-y 216=1有相同的渐近线,且C 1的右焦点为F (5,0),则a =________,b =________.11.1 2 ∵双曲线C 1与C 2有共同的渐近线,∴b 2=4a 2.① 又∵a 2+b 2=5, ② 联立①②得,a =1,b =2.15.H6 已知双曲线x 2-y 2=1,点F 1,F 2为其两个焦点,点P 为双曲线上一点,若PF 1⊥PF 2,则|PF 1|+|PF 2|的值为________.15.2 3 本小题主要考查双曲线的定义以及性质.解题的突破口为正确应用双曲线的定义.不妨假设点P 位于双曲线的右分支上,故而|PF 1|-|PF 2|=2a =2,所以(|PF 1|-|PF 2|)2=(2a )2=4⇒|PF 1|2+|PF 2|2-2|PF 1||PF 2|=4,因为PF 1⊥PF 2,所以|PF 1|2+|PF 2|2=(2c )2=8,所以2|PF 1||PF 2|=4,所以(|PF 1|+|PF 2|)2=|PF 1|2+|PF 2|2+2|PF 1||PF 2|=12,即|PF 1|+|PF 2|=2 3.5.H6 已知双曲线x 2a 2-y 25=1的右焦点为(3,0),则该双曲线的离心率等于( )A.31414 B.324C.32D.435.C 因为双曲线的右焦点坐标为(3,0),所以c =3,b 2=5,则a 2=c 2-b 2=9-5=4,所以a =2,所以e =c a =32.10.H6 已知F 1、F 2为双曲线C :x 2-y 2=2的左、右焦点,点P 在C 上,|PF 1|=2|PF 2|,则cos ∠F 1PF 2=( )A.14B.35C.34D.4510.C 本小题主要考查双曲线的定义及余弦定理的应用,解题的突破口为运用双曲线的定义求出PF 1和PF 2的长,再用余弦定理即可求.由双曲线的定义有|PF 1|-|PF 2|=|PF 2|=2a =22,∴|PF 1|=2|PF 2|=42,cos ∠F 1PF 2=422+222-422·42·22=34,故选C. 8.H5、H6 如图1-3,中心均为原点O 的双曲线与椭圆有公共焦点,M ,N 是双曲线的两顶点.若M ,O ,N 将椭圆长轴四等分,则双曲线与椭圆的离心率的比值是( )图1-3A .3B .2 C. 3 D. 28.B 本题考查了椭圆与双曲线的简单几何性质,考查了学生对书本知识掌握的熟练程度,属于送分题.设椭圆、双曲线的方程分别为x 2a 21 + y 2b 21= 1(a 1>b 1>0),x 2a 22-y 2b 22=1(a 2>0,b 2>0),由题意知c 1=c 2且a 1=2a 2,则e 1e 2=c 1a 1c 2a 2=a 2a 1=2. 6.H6 已知双曲线C :x 2a 2-y 2b2=1的焦距为10,点P (2,1)在C 的渐近线上,则C 的方程为( )A.x 220-y 25=1 B.x 25-y 220=1C.x 280-y 220=1 D.x 220-y 280=1 6.A 本题考查双曲线方程和渐近线方程,意在考查考生对双曲线方程和其性质的掌握;解题思路:首先由a ,b ,c 的关系,排除C ,D ,再由渐近线方程得答案A.由已知可得双曲线的焦距,2c =10,a 2+b 2=52=25,排除C ,D ,又由渐近线方程为y =b a x =12x ,得12=b a,解得a 2=20,b 2=5,所以选A. 本题易错一:对双曲线的几何性质不清,错以为c =10,错选C ;易错二:渐近线求解错误,错解成12=ab,从而错选B.8.H6 在平面直角坐标系xOy 中,若双曲线x 2m -y 2m 2+4=1的离心率为5,则m 的值为________.8.2 本题考查双曲线离心率的求解.解题突破口是明确焦点所在轴.根据双曲线方程可得:m >0,所以e =m +m 2+4m=5,解之得m =2.22.H6、H4 在平面直角坐标系xOy 中,已知双曲线C :2x 2-y 2=1. (1)设F 是C 的左焦点,M 是C 右支上一点.若|MF |=22,求点M 的坐标; (2)过C 的左顶点作C 的两条渐近线的平行线,求这两组平行线围成的平行四边形的面积;(3)设斜率为k (|k |<2)的直线l 交C 于P 、Q 两点.若l 与圆x 2+y 2=1相切,求证:OP ⊥OQ .22.解:(1)双曲线C :x 212-y 2=1,左焦点F ⎝ ⎛⎭⎪⎫-62,0,设M (x ,y ),则|MF |2=⎝ ⎛⎭⎪⎫x +622+y 2=⎝⎛⎭⎪⎫3x +222, 由M 点是右支上一点,知x ≥22,所以|MF |=3x +22=22,得x =62, 所以M ⎝⎛⎭⎪⎫62,±2. (2)左顶点A ⎝⎛⎭⎪⎫-22,0,渐近线方程:y =±2x . 过点A 与渐近线y =2x 平行的直线方程为。

高考数学分类练习 H单元 解析几何(文科)含答案1

高考数学分类练习  H单元 解析几何(文科)含答案1

数 学H 单元 解析几何 H1 直线的倾斜角与斜率、直线的方程20.H1、H5、H7、H8 已知抛物线C 1:x 2=4y 的焦点F 也是椭圆C 2:y 2a 2+x 2b2=1(a >b >0)的一个焦点,C 1与C 2的公共弦的长为2 6.过点F 的直线l 与C 1相交于A ,B 两点,与C 2相交于C ,D 两点,且AC →与BD →同向.(1)求C 2的方程;(2)若|AC |=|BD |,求直线l 的斜率.20.解:(1)由C 1:x 2=4y 知其焦点F 的坐标为(0,1).因为F 也是椭圆C 2的一个焦点,所以a 2-b 2=1.①C 1与C 2的公共弦的长为26,C 1与C 2都关于y 轴对称,且C 1的方程为x 2=4y ,由此易知C 1与C 2的公共点的坐标为±6,32,所以94a 2+6b 2=1.②联立①②得a 2=9,b 2=8. 故C 2的方程为y 29+x 28=1.(2)如图,设A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),D (x 4,y 4).因为AC →与BD →同向,且|AC |=|BD |,所以AC →=BD →,从而x 3-x 1=x 4-x 2,即x 1-x 2=x 3-x 4,于是(x 1+x 2)2-4x 1x 2=(x 3+x 4)2-4x 3x 4.③设直线l 的斜率为k ,则l 的方程为y =kx +1.由⎩⎪⎨⎪⎧y =kx +1,x 2=4y 得x 2-4kx -4=0,而x 1,x 2是这个方程的两根,所以x 1+x 2=4k ,x 1x 2=-4.④由⎩⎪⎨⎪⎧y =kx +1,x 28+y 29=1得(9+8k 2)x 2+16kx -64=0,而x 3,x 4是这个方程的两根,所以x 3+x 4=-16k 9+8k 2,x 3x 4=-649+8k2.⑤将④⑤代入③,得16(k 2+1)=162k 2(9+8k 2)2+4×649+8k 2,即16(k 2+1)=162×9(k 2+1)(9+8k 2)2, 所以(9+8k 2)2=16×9,解得k =±64,即直线l 的斜率为±64. 19.H1、H5、H8 已知椭圆x 2a 2+y 2b 2=1(a >b >0)的上顶点为B ,左焦点为F ,离心率为55.(1)求直线BF 的斜率.(2)设直线BF 与椭圆交于点P (P 异于点B ),过点B 且垂直于BP 的直线与椭圆交于点Q (Q 异于点B ),直线PQ 与y 轴交于点M ,|PM |=λ|MQ |.(i)求λ的值;(ii)若|PM |sin ∠BQP =759,求椭圆的方程.19.解:(1)设F (-c ,0).由已知离心率c a =55及a 2=b 2+c 2,可得a =5c ,b =2c . 又因为B (0,b ),F (-c ,0),所以直线BF 的斜率k =b -00-(-c )=2cc=2.(2)设点P (x P ,y P ),Q (x Q ,y Q ),M (x M ,y M ).(i)由(1)可得椭圆的方程为x 25c 2+y 24c2=1,直线BF 的方程为y =2x +2c .将直线方程与椭圆方程联立,消去y ,整理得3x 2+5cx =0,解得x P =-5c 3.因为BQ ⊥BP ,所以直线BQ 的方程为y =-12x +2c ,与椭圆方程联立,消去y ,整理得21x 2-40cx =0,解得x Q =40c 21.又因为λ=|PM ||MQ |,且x M =0,可得λ=|x M -x P ||x Q -x M |=|x P ||x Q |=78.(ii)由(i)知|PM ||MQ |=78,所以|PM ||PM |+|MQ |=77+8=715,即|PQ |=157|PM |.又因为|PM |sin ∠BQP =759,所以|BP |=|PQ |sin ∠BQP =157|PM |sin ∠BQP =553.又因为y P =2x P +2c =-43c ,所以|BP |=0+5c 32+2c +4c 32=553c ,因此553c =553,得c =1,所以椭圆的方程为x 25+y 24=1.12.H1、H4 若点P (1,2)在以坐标原点为圆心的圆上,则该圆在点P 处的切线方程为________.12.x +2y -5=0 由题意,得k OP =2-01-0=2,则该圆在点P 处的切线的斜率为-12,所以所求切线方程为y -2=-12(x -1),即x +2y -5=0.20.H1、H3、H4 已知过点A (0,1)且斜率为k 的直线l 与圆C :(x -2)2+(y -3)2=1交于M ,N 两点.(1)求k 的取值范围;(2)OM →·ON →=12,其中O 为坐标原点,求|MN |. 20.解:(1)由题设,可知直线l 的方程为y =kx +1. 因为l 与C 交于两点,所以|2k -3+1|1+k2<1,解得4-73<k <4+73, 所以k 的取值范围为⎝⎛⎭⎪⎫4-73,4+73.(2)设M (x 1,y 1),N (x 2,y 2).将y =kx +1代入方程(x -2)2+(y -3)2=1,整理得(1+k 2)x 2-4(1+k )x +7=0, 所以x 1+x 2=4(1+k )1+k 2,x 1x 2=71+k 2,OM →·ON →=x 1x 2+y 1y 2=(1+k 2)x 1x 2+k (x 1+x 2)+1=4k (1+k )1+k2+8. 由题设可得4k (1+k )1+k 2+8=12,解得k =1,所以直线l 的方程为y =x +1. 故圆心C 在直线l 上,所以|MN |=2.H2 两直线的位置关系与点到直线的距离H3 圆的方程20.H3,H4,H9 已知过原点的动直线l 与圆C 1:x 2+y 2-6x +5=0相交于不同的两点A ,B .(1)求圆C 1的圆心坐标;(2)求线段AB 的中点M 的轨迹C 的方程;(3)是否存在实数k ,使得直线L :y =k (x -4)与曲线C 只有一个交点?若存在,求出k 的取值范围;若不存在,说明理由.16.H3、H4 如图1­3,圆C 与x 轴相切于点T (1,0),与y 轴正半轴交于两点A ,B (B在A 的上方),且|AB |=2.图1­3(1)圆C 的标准方程为________;(2)圆C 在点B 处的切线在x 轴上的截距为________. 16.(1)(x -1)2+(y -2)2=2 (2)-2-1(1)由题意,设圆心C (1,r )(r 为圆C 的半径),则r 2=⎝ ⎛⎭⎪⎫||AB 22+12=2,解得r =2,所以圆C 的标准方程为(x -1)2+(y -2)2=2.(2)对于圆C 的方程,令x =0,得y =2±1,所以点B (0,2+1).又点C (1,2),所以直线BC 的斜率k BC =-1,所以过点B 的切线方程为y -(2+1)=x -0,即y =x +(2+1).令y =0,得切线在x 轴上的截距为-2-1.20.H1、H3、H4 已知过点A (0,1)且斜率为k 的直线l 与圆C :(x -2)2+(y -3)2=1交于M ,N 两点.(1)求k 的取值范围;(2)OM →·ON →=12,其中O 为坐标原点,求|MN |. 20.解:(1)由题设,可知直线l 的方程为y =kx +1. 因为l 与C 交于两点,所以|2k -3+1|1+k2<1,解得4-73<k <4+73, 所以k 的取值范围为⎝⎛⎭⎪⎫4-73,4+73.(2)设M (x 1,y 1),N (x 2,y 2).将y =kx +1代入方程(x -2)2+(y -3)2=1,整理得(1+k 2)x 2-4(1+k )x +7=0, 所以x 1+x 2=4(1+k )1+k 2,x 1x 2=71+k 2,OM →·ON →=x 1x 2+y 1y 2=(1+k 2)x 1x 2+k (x 1+x 2)+1=4k (1+k )1+k2+8. 由题设可得4k (1+k )1+k 2+8=12,解得k =1,所以直线l 的方程为y =x +1. 故圆心C 在直线l 上,所以|MN |=2.7.H3 已知三点A (1,0),B (0,3),C (2,3),则△ABC 外接圆的圆心到原点的距离为( )A.53B.213C.253D.437.B 由已知可得|AB |=|AC |=|BC |=2,所以△ABC 是等边三角形,所以其外接圆圆心即三角形的重心,坐标为1+0+23,0+3+33,即1,233,圆心到原点的距离为12+2332=213.2.H3 圆心为(1,1)且过原点的圆的方程是( ) A .(x -1)2+(y -1)2=1 B .(x +1)2+(y +1)2=1 C .(x +1)2+(y +1)2=2 D .(x -1)2+(y -1)2=22.D 根据题意知圆的半径r =(1-0)2+(1-0)2=2,所以以(1,1)为圆心且过原点的圆的方程为(x -1)2+(y -1)2=2,故选D.H4 直线与圆、圆与圆的位置关系8.H4 直线3x +4y =b 与圆x 2+y 2-2x -2y +1=0相切,则b 的值是( ) A .-2或12 B .2或-12 C .-2或-12 D .2或128.D 圆的标准方程为(x -1)2+(y -1)2=1,依题意得圆心(1,1)到直线3x +4y =b 的距离d =|3+4-b |32+42=1,即|b -7|=5,解得b =12或b =2,选D. 20.H3,H4,H9 已知过原点的动直线l 与圆C 1:x 2+y 2-6x +5=0相交于不同的两点A ,B .(1)求圆C 1的圆心坐标;(2)求线段AB 的中点M 的轨迹C 的方程;(3)是否存在实数k ,使得直线L :y =k (x -4)与曲线C 只有一个交点?若存在,求出k 的取值范围;若不存在,说明理由.16.H3、H4 如图1­3,圆C 与x 轴相切于点T (1,0),与y 轴正半轴交于两点A ,B (B 在A 的上方),且|AB |=2.图1­3(1)圆C 的标准方程为________;(2)圆C 在点B 处的切线在x 轴上的截距为________. 16.(1)(x -1)2+(y -2)2=2 (2)-2-1(1)由题意,设圆心C (1,r )(r 为圆C 的半径),则r 2=⎝ ⎛⎭⎪⎫||AB 22+12=2,解得r =2,所以圆C 的标准方程为(x -1)2+(y -2)2=2.(2)对于圆C 的方程,令x =0,得y =2±1,所以点B (0,2+1).又点C (1,2),所以直线BC 的斜率k BC =-1,所以过点B 的切线方程为y -(2+1)=x -0,即y =x +(2+1).令y =0,得切线在x 轴上的截距为-2-1.20.H1、H3、H4 已知过点A (0,1)且斜率为k 的直线l 与圆C :(x -2)2+(y -3)2=1交于M ,N 两点.(1)求k 的取值范围;(2)OM →·ON →=12,其中O 为坐标原点,求|MN |. 20.解:(1)由题设,可知直线l 的方程为y =kx +1. 因为l 与C 交于两点,所以|2k -3+1|1+k2<1,解得4-73<k <4+73, 所以k 的取值范围为⎝⎛⎭⎪⎫4-73,4+73.(2)设M (x 1,y 1),N (x 2,y 2).将y =kx +1代入方程(x -2)2+(y -3)2=1,整理得(1+k 2)x 2-4(1+k )x +7=0, 所以x 1+x 2=4(1+k )1+k 2,x 1x 2=71+k 2,OM →·ON →=x 1x 2+y 1y 2=(1+k 2)x 1x 2+k (x 1+x 2)+1=4k (1+k )1+k2+8. 由题设可得4k (1+k )1+k 2+8=12,解得k =1,所以直线l 的方程为y =x +1. 故圆心C 在直线l 上,所以|MN |=2.13.H4 若直线3x -4y +5=0与圆x 2+y 2=r 2(r >0)相交于A ,B 两点,且∠AOB =120°(O 为坐标原点),则r =________.13.2 圆心为原点,原点(0,0)到直线3x -4y +5=0的距离d =|0-0+5|32+(-4)2=1,又△OAB 中点O 到AB 边的距离d =r sin 30°=r2=1,所以r =2.13.H4、F3 过点P (1,3)作圆x 2+y 2=1的两条切线,切点分别为A ,B ,则PA →·PB →=________.13.32 如图所示,|PA |=|PB |=3,|OP |=2,|OA |=1,且PA ⊥OA ,∴∠APO =π6,即∠APB =π3,∴PA →·PB →=|PA →||PB →|cos ∠APB =3×3×cos π3=32.10.H4,H8 设直线l 与抛物线y 2=4x 相交于A ,B 两点,与圆(x -5)2+y 2=r 2(r >0)相切于点M ,且M 为线段AB 的中点,若这样的直线l 恰有4条,则r 的取值范围是( )A .(1,3)B .(1,4)C .(2,3)D .(2,4)10.D 不妨设直线l :x =ty +m ,代入抛物线方程有y 2-4ty -4m =0,则Δ=16t 2+16m >0.又中点M (2t 2+m ,2t ),圆心C (5,0),k MC k l =-1,所以m =3-2t 2,当t =0时,对于0<r <5,满足条件的直线有2条,当t ≠0时, 代入Δ=16t 2+16m ,可得3-t 2>0,即0<t 2<3. 又由圆心到直线的距离等于半径,可得r =|5-m |1+t2=2+2t21+t2=21+t 2.由0<t 2<3,可得r ∈(2,4).5.H4、H6 已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的一个焦点为F (2,0),且双曲线的渐近线与圆(x -2)2+y 2=3相切,则双曲线的方程为( )A.x 29-y 213=1B.x 213-y 29=1C.x 23-y 2=1 D .x 2-y 23=15.D 因为双曲线x 2a 2-y 2b2=1(a >0,b >0)的一个焦点为F (2,0),所以a 2+b 2=4①.其渐近线方程为y =±b ax ,且渐近线与圆相切,所以|2b |a 2+b2=3②.联立①②,解得b =3,a=1,所以所求双曲线的方程为x 2-y 23=1.14.H4,E5 已知实数x ,y 满足x 2+y 2≤1,则|2x +y -4|+|6-x -3y |的最大值是________.14.15 方法一:当x ,y 满足x 2+y 2≤1时,2x +y -4<0,6-x -3y >0,设z =|2x +y -4|+|6-x -3y |,则z =-2x -y +4+6-x -3y =-3x -4y +10,即3x +4y +z -10=0.由题意可知,|z -10|5≤1,即|z -10|≤5,所以5≤z ≤15,故所求最大值为15.方法二:坐标原点到直线2x +y -4=0和6-x -3y =0的距离分别是45,610,均大于1,在x ,y 满足x 2+y 2≤1的条件下,2x +y -4≤0,6-x -3y ≥0恒成立.故在x 2+y 2≤1下,|2x +y -4|+|6-x -3y |=-(2x +y -4)+(6-x -3y )=-3x -4y +10,令m =-3x -4y ,则y =-34x -m 4,m 的几何意义是直线m =-3x -4y 在y 轴上的截距的-4倍,若m 最大,则需要直线m =-3x -4y 在y 轴上的截距最小.故只有当直线m =-3x -4y 与单位圆x 2+y 2=1相切于第三象限时,m 取得最大值.此时可求得切点坐标为-35,-45,故m max =-3×⎝ ⎛⎭⎪⎫-35-4×⎝ ⎛⎭⎪⎫-45=5,所以|2x +y -4|+|6-x -3y |=-3x -4y +10的最大值为15.12.H1、H4 若点P (1,2)在以坐标原点为圆心的圆上,则该圆在点P 处的切线方程为________.12.x +2y -5=0 由题意,得k OP =2-01-0=2,则该圆在点P 处的切线的斜率为-12,所以所求切线方程为y -2=-12(x -1),即x +2y -5=0.10.H4 在平面直角坐标系xOy 中,以点(1,0)为圆心且与直线mx -y -2m -1=0(m ∈R )相切的所有圆中,半径最大的圆的标准方程为________.10.(x -1)2+y 2=2 由直线mx -y -2m -1=0得m (x -2)-(y +1)=0,故直线过点(2,-1).当切线与过(1,0),(2,-1)两点的直线垂直时,圆的半径最大,此时有r =1+1=2,故所求圆的标准方程为(x -1)2+y 2=2.H5 椭圆及其几何性质20.H5 设椭圆E 的方程为x 2a 2+y 2b2=1(a >b >0),点O 为坐标原点,点A 的坐标为(a ,0),点B 的坐标为(0,b ),点M 在线段AB 上,满足|BM |=2|MA |,直线OM 的斜率为510. (1)求E 的离心率e ;(2)设点C 的坐标为(0,-b ),N 为线段AC 的中点,证明:MN ⊥AB .20.解:(1)由题设条件知,点M 的坐标为⎝ ⎛⎭⎪⎫23a ,13b ,又k OM =510,所以b 2a =510. 进而a =5b ,c =a 2-b 2=2b ,故e =c a =255.(2)证明:由N 是AC 的中点知,点N 的坐标为⎝ ⎛⎭⎪⎫a2,-b 2,可得NM →=⎝ ⎛⎭⎪⎫a 6,5b 6.又AB →=(-a ,b ),从而有AB →·NM →=-16a 2+56b 2=16(5b 2-a 2).由(1)的计算结果可知a 2=5b 2,所以AB →·NM →=0,故MN ⊥AB .8.H5 已知椭圆x 225+y 2m2=1(m >0)的左焦点为F 1(-4,0),则m =( )A .2B .3C .4D .98.B 由题意得,m 2=25-42=9,因为m >0,所以m =3,故选B.22.H5、H8、H9、H10 一种画椭圆的工具如图1­5所示.O 是滑槽AB 的中点,短杆ON 可绕O 转动,长杆MN 通过N 处铰链与ON 连接,MN 上的栓子D 可沿滑槽AB 滑动,且DN =ON =1,MN =3.当栓子D 在滑槽AB 内作往复运动时,带动..N 绕O 转动,M 处的笔尖画出的椭圆记为C .以O 为原点,AB 所在的直线为x 轴建立如图1­6所示的平面直角坐标系.(1)求椭圆C 的方程.(2)设动直线l 与两定直线l 1:x -2y =0和l 2:x +2y =0分别交于P ,Q 两点.若直线l 总与椭圆C 有且只有一个公共点,试探究:△OPQ 的面积是否存在最小值?若存在,求出该最小值;若不存在,说明理由.图1­5图1­622.解:(1)由题知|OM |≤|MN |+|NO |=3+1=4,当M ,N 在x 轴上时,等号成立; 同理|OM |≥|MN |-|NO |=3-1=2,当D ,O 重合,即MN ⊥x 轴时,等号成立. 所以椭圆C 的中心为原点O ,长半轴长为4,短半轴长为2,其方程为x 216+y 24=1.(2)(i)当直线l 的斜率不存在时,直线l 为x =4或x =-4,都有S △OPQ =12×4×4=8.(ii)当直线l 的斜率存在时,设直线l :y =kx +m ⎝ ⎛⎭⎪⎫k ≠±12. 由⎩⎪⎨⎪⎧y =kx +m ,x 2+4y 2=16,消去y ,可得(1+4k 2)x 2+8kmx +4m 2-16=0.因为直线l 总与椭圆C 有且只有一个公共点,所以Δ=64k 2m 2-4(1+4k 2)(4m 2-16)=0,即m 2=16k 2+4. ①又由⎩⎪⎨⎪⎧y =kx +m ,x -2y =0,可得P ⎝ ⎛⎭⎪⎫2m 1-2k ,m 1-2k ,同理可得Q ⎝ ⎛⎭⎪⎫-2m 1+2k ,m 1+2k .由原点O 到直线PQ 的距离d =|m |1+k2和|PQ |=1+k 2|x P -x Q |,可得S △OPQ =12|PQ |·d =12|m ||x P -x Q |=12|m |2m 1-2k +2m 1+2k =2m21-4k 2. ②将①代入②得,S △OPQ =2m 21-4k 2=84k 2+14k 2-1. 当k 2>14时,S △OPQ =8·4k 2+14k 2-1=8⎝ ⎛⎭⎪⎫1+24k 2-1>8;当0≤k 2<14时,S △OPQ =8·4k 2+11-4k 2=8⎝ ⎛⎭⎪⎫-1+21-4k 2.因为0≤k 2<14,所以0<1-4k 2≤1,21-4k 2≥2,所以S △OPQ =8⎝ ⎛⎭⎪⎫-1+21-4k 2≥8, 当且仅当k =0时取等号,所以当k =0时,S △OPQ 的最小值为8.综合(i)(ii)可知,当直线l 与椭圆C 在四个顶点处相切时,△OPQ 的面积取得最小值8.5.H5、H7 已知椭圆E 的中心为坐标原点,离心率为12,E 的右焦点与抛物线C :y 2=8x的焦点重合,A ,B 是C 的准线与E 的两个交点,则|AB |=( )A .3B .6C .9D .125.B 抛物线C :y 2=8x 的焦点坐标为(2,0),准线方程为x =-2,即椭圆的半焦距c =2.又离心率e =c a =2a =12,所以a =4,于是b 2=12,则椭圆的方程为x 216+y 212=1.A ,B 是C的准线x =-2与E 的两个交点,把x =-2代入椭圆方程得y =±3,所以|AB |=6.20.H5、H8 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,点(2,2)在C 上.(1)求C 的方程;(2)直线l 不经过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M ,证明:直线OM 的斜率与直线l 的斜率的乘积为定值.20.解:(1)由题意有a 2-b 2a =22,4a 2+2b2=1,解得a 2=8,b 2=4.所以C 的方程为x 28+y 24=1.(2)证明:设直线l :y =kx +b (k ≠0,b ≠0),A (x 1,y 1),B (x 2,y 2),M (x M ,y M ). 将y =kx +b 代入x 28+y 24=1得(2k 2+1)x 2+4kbx +2b 2-8=0.故x M =x 1+x 22=-2kb 2k 2+1,y M =k ·x M +b =b2k 2+1. 于是直线OM 的斜率k OM =y M x M =-12k ,即k OM ·k =-12.所以直线OM 的斜率与直线l 的斜率的乘积为定值.20.H5,H8 已知椭圆C :x 2+3y 2=3,过点D (1,0)且不过点E (2,1)的直线与椭圆C 交于A ,B 两点,直线AE 与直线x =3交于点M .(1)求椭圆C 的离心率;(2)若AB 垂直于x 轴,求直线BM 的斜率;(3)试判断直线BM 与直线DE 的位置关系,并说明理由.20.解:(1)椭圆C 的标准方程为x 23+y 2=1.所以a =3,b =1,c = 2.所以椭圆C 的离心率e =c a =63. (2)因为AB 过点D (1,0)且垂直于x 轴,所以可设A (1,y 1),B (1,-y 1), 直线AE 的方程为y -1=(1-y 1)(x -2).令x =3,得M (3,2-y 1). 所以直线BM 的斜率k BM =2-y 1+y 13-1=1.(3)直线BM 与直线DE 平行.证明如下: 当直线AB 的斜率不存在时,由(2)可知k BM =1. 又因为直线DE 的斜率k DE =1-02-1=1,所以BM ∥DE . 当直线AB 的斜率存在时,设其方程为y =k (x -1)(k ≠1). 设A (x 1,y 1),B (x 2,y 2),则直线AE 的方程为y -1=y 1-1x 1-2(x -2). 令x =3,得点M ⎝⎛⎭⎪⎫3,y 1+x 1-3x 1-2.由⎩⎪⎨⎪⎧x 2+3y 2=3,y =k (x -1),得(1+3k 2)x 2-6k 2x +3k 2-3=0.所以x 1+x 2=6k 21+3k 2,x 1x 2=3k 2-31+3k 2.直线BM 的斜率k BM =y 1+x 1-3x 1-2-y 23-x 2.因为k BM -1=k (x 1-1)+x 1-3-k (x 2-1)(x 1-2)-(3-x 2)(x 1-2)(3-x 2)(x 1-2)=(k -1)[-x 1x 2+2(x 1+x 2)-3](3-x 2)(x 1-2)=(k -1)⎝ ⎛⎭⎪⎫-3k 2+31+3k 2+12k 21+3k 2-3(3-x 2)(x 1-2)=0,所以k BM =1=k DE .所以BM ∥DE . 综上可知,直线BM 与直线DE 平行.11.H5 已知椭圆E :x 2a 2+y 2b2=1(a >b >0)的右焦点为F ,短轴的一个端点为M ,直线l :3x-4y =0交椭圆E 于A ,B 两点.若|AF |+|BF |=4,点M 到直线l 的距离不小于45,则椭圆E的离心率的取值范围是( )A .0,32 B .0,34 C.32,1 D.34,1 11.A 因为直线l 过原点,不妨设A 在第一象限,左焦点为F ′,由对称性可知四边形AF ′BF 为平行四边形,所以|AF |+|BF |=|AF ′|+|AF |=2a =4,所以a =2,点M (0,b )到直线l 的距离d =|0-4b |5≥45且b <a ,所以1≤b <2,所以椭圆的离心率e =c a =a 2-b2a =4-b 22∈0,32. 20.H1、H5、H7、H8 已知抛物线C 1:x 2=4y 的焦点F 也是椭圆C 2:y 2a 2+x 2b2=1(a >b >0)的一个焦点,C 1与C 2的公共弦的长为2 6.过点F 的直线l 与C 1相交于A ,B 两点,与C 2相交于C ,D 两点,且AC →与BD →同向.(1)求C 2的方程;(2)若|AC |=|BD |,求直线l 的斜率.20.解:(1)由C 1:x 2=4y 知其焦点F 的坐标为(0,1).因为F 也是椭圆C 2的一个焦点,所以a 2-b 2=1.①C 1与C 2的公共弦的长为26,C 1与C 2都关于y 轴对称,且C 1的方程为x 2=4y ,由此易知C 1与C 2的公共点的坐标为±6,32,所以94a 2+6b 2=1.②联立①②得a 2=9,b 2=8. 故C 2的方程为y 29+x 28=1.(2)如图,设A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),D (x 4,y 4).因为AC →与BD →同向,且|AC |=|BD |,所以AC →=BD →,从而x 3-x 1=x 4-x 2,即x 1-x 2=x 3-x 4,于是(x 1+x 2)2-4x 1x 2=(x 3+x 4)2-4x 3x 4.③设直线l 的斜率为k ,则l 的方程为y =kx +1. 由⎩⎪⎨⎪⎧y =kx +1,x 2=4y得x 2-4kx -4=0,而x 1,x 2是这个方程的两根,所以x 1+x 2=4k ,x 1x 2=-4.④由⎩⎪⎨⎪⎧y =kx +1,x 28+y 29=1得(9+8k 2)x 2+16kx -64=0,而x 3,x 4是这个方程的两根,所以x 3+x 4=-16k 9+8k 2,x 3x 4=-649+8k2.⑤ 将④⑤代入③,得16(k 2+1)=162k 2(9+8k 2)2+4×649+8k 2,即16(k 2+1)=162×9(k 2+1)(9+8k 2)2, 所以(9+8k 2)2=16×9,解得k =±64,即直线l 的斜率为±64. 21.H5、H8 平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,且点⎝⎛⎭⎪⎫3,12在椭圆C 上.(1)求椭圆C 的方程.(2)设椭圆E :x 24a 2+y 24b2=1,P 为椭圆C 上任意一点,过点P 的直线y =kx +m 交椭圆E于A ,B 两点,射线PO 交椭圆E 于点Q .(i)求|OQ ||OP |的值;(ii)求△ABQ 面积的最大值.21.解:(1)由题意知3a 2+14b 2=1,又a 2-b 2a =32,解得a 2=4,b 2=1.所以椭圆C 的方程为x 24+y 2=1. (2)由(1)知,椭圆E 的方程为x 216+y 24=1.(i)设P (x 0,y 0),|OQ ||OP |=λ,由题意知,Q (-λx 0,-λy 0).因为x 204+y 2=1,且(-λx 0)216+(-λy 0)24=1,即λ24⎝ ⎛⎭⎪⎫x 204+y 20=1,所以λ=2,即|OQ ||OP |=2.(ii)设A (x 1,y 1),B (x 2,y 2).将y =kx +m 代入椭圆E 的方程,可得(1+4k 2)x 2+8kmx +4m 2-16=0,由Δ>0,可得m 2<4+16k 2,①则有x 1+x 2=-8km 1+4k 2,x 1x 2=4m 2-161+4k 2,所以|x 1-x 2|=416k 2+4-m21+4k2. 因为直线y =kx +m 与y 轴交点的坐标为(0,m ), 所以△OAB 的面积S =12|m ||x 1-x 2|=216k 2+4-m 2|m |1+4k 2=2(16k 2+4-m 2)m21+4k 2=2⎝ ⎛⎭⎪⎫4-m 21+4k 2m 21+4k 2. 设m 21+4k2=t .将y =kx +m 代入椭圆C 的方程,可得(1+4k 2)x 2+8kmx +4m 2-4=0, 由Δ≥0,可得m 2≤1+4k 2.②由①②可知,0<t ≤1,因此S =2(4-t )t =2-t 2+4t ,故S ≤23, 当且仅当t =1,即m 2=1+4k 2时取得最大值23, 由(i)知,△ABQ 的面积为3S , 所以△ABQ 面积的最大值为6 3.20.H5、H8 如图1­6,椭圆E :x 2a 2+y 2b 2=1(a >b >0)经过点A (0,-1),且离心率为22.(1)求椭圆E 的方程;(2)经过点(1,1),且斜率为k 的直线与椭圆E 交于不同的两点P ,Q (均异于点A ),证明:直线AP 与AQ 的斜率之和为2.图1­620.解:(1)由题设知c a =22,b =1,结合a 2=b 2+c 2,解得a = 2. 所以椭圆E 的方程为x 22+y 2=1.(2)由题设知,直线PQ 的方程为y =k (x -1)+1(k ≠2),代入x 22+y 2=1,得(1+2k 2)x 2-4k (k -1)x +2k (k -2)=0, 由已知得Δ>0.设P (x 1,y 1),Q (x 2,y 2),x 1x 2≠0, 则x 1+x 2=4k (k -1)1+2k 2,x 1x 2=2k (k -2)1+2k 2. 从而直线AP ,AQ 的斜率之和k AP +k AQ =y 1+1x 1+y 2+1x 2=kx 1+2-k x 1+kx 2+2-kx 2=2k +(2-k )1x 1+1x 2=2k +(2-k )x 1+x 2x 1x 2=2k +(2-k )4k (k -1)2k (k -2)=2k -2(k -1)=2.20.F3,H5,H8 如图1­3,椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率是22,点P (0,1)在短轴CD 上,且PC →·PD →=-1.(1)求椭圆E 的方程.(2)设O 为坐标原点,过点P 的动直线与椭圆交于A ,B 两点.是否存在常数λ,使得OA →·OB →+λPA →·PB →为定值?若存在,求λ的值;若不存在,请说明理由.图1­320.解:(1)由已知,点C ,D 的坐标分别为(0,-b ),(0,b ). 又点P 的坐标为(0,1),且PC →·PD →=-1,于是⎩⎪⎨⎪⎧1-b 2=-1,c a =22,a 2-b 2=c 2,解得a =2,b =2.所以椭圆E 的方程为x 24+y 22=1.(2)当直线AB 的斜率存在时,设直线AB 的方程为y =kx +1,A ,B 的坐标分别为(x 1,y 1),(x 2,y 2).联立⎩⎪⎨⎪⎧x 24+y 22=1,y =kx +1,得(2k 2+1)x 2+4kx -2=0.其判别式Δ=(4k )2+8(2k 2+1)>0,所以x 1+x 2=-4k 2k 2+1,x 1x 2=-22k 2+1. 从而OA →·OB →+λPA →·PB →=x 1x 2+y 1y 2+λ=(1+λ)(1+k 2)x 1x 2+k (x 1+x 2)+1=(-2λ-4)k 2+(-2λ-1)2k 2+1=-λ-12k 2+1-λ-2.所以,当λ=1时,-λ-12k 2+1-λ-2=-3.此时,OA →·OB →+λPA →·PB →=-3为定值. 当直线AB 斜率不存在时,直线AB 即为直线CD .此时,OA →·OB →+λPA →·PB →=OC →·OD →+PC →·PD →=-2-1=-3. 故存在常数λ=1,使得OA →·OB →+λPA →·PB →为定值-3.19.H1、H5、H8 已知椭圆x 2a 2+y 2b 2=1(a >b >0)的上顶点为B ,左焦点为F ,离心率为55.(1)求直线BF 的斜率.(2)设直线BF 与椭圆交于点P (P 异于点B ),过点B 且垂直于BP 的直线与椭圆交于点Q (Q 异于点B ),直线PQ 与y 轴交于点M ,|PM |=λ|MQ |.(i)求λ的值;(ii)若|PM |sin ∠BQP =759,求椭圆的方程.19.解:(1)设F (-c ,0).由已知离心率c a =55及a 2=b 2+c 2,可得a =5c ,b =2c . 又因为B (0,b ),F (-c ,0),所以直线BF 的斜率k =b -00-(-c )=2cc=2.(2)设点P (x P ,y P ),Q (x Q ,y Q ),M (x M ,y M ).(i)由(1)可得椭圆的方程为x 25c 2+y 24c2=1,直线BF 的方程为y =2x +2c .将直线方程与椭圆方程联立,消去y ,整理得3x 2+5cx =0,解得x P =-5c 3.因为BQ ⊥BP ,所以直线BQ 的方程为y =-12x +2c ,与椭圆方程联立,消去y ,整理得21x 2-40cx =0,解得x Q =40c 21.又因为λ=|PM ||MQ |,且x M =0,可得λ=|x M -x P ||x Q -x M |=|x P ||x Q |=78.(ii)由(i)知|PM ||MQ |=78,所以|PM ||PM |+|MQ |=77+8=715,即|PQ |=157|PM |.又因为|PM |sin ∠BQP =759,所以|BP |=|PQ |sin ∠BQP =157|PM |sin ∠BQP =553.又因为y P =2x P +2c =-43c ,所以|BP |=0+5c 32+2c +4c 32=553c ,因此553c =553,得c =1,所以椭圆的方程为x 25+y 24=1.7.H5 如图1­3,斜线段AB 与平面α所成的角为60°,B 为斜足,平面α上的动点P 满足∠PAB =30°,则点P 的轨迹是( )图1­3A .直线B .抛物线C .椭圆D .双曲线的一支7.C 射线AP 以AB 为旋转轴,∠PAB =30°为定值,旋转一周,构成斜放的圆锥,故可知,点P 的轨迹为椭圆.15.H5 椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点F (c ,0)关于直线y =bcx 的对称点Q 在椭圆上,则椭圆的离心率是________.15.22设FQ 的中点为A ,椭圆的左焦点为F ′,连接QF ′.因为点F 和Q 关于直线y =b c x 对称,所以点A 在直线y =b cx 上,且OA ⊥QF ,又OA ∥QF ′,所以F ′Q ⊥QF .在直角三角形OAF 中,tan ∠AOF =b c ,又a 2=b 2+c 2,故sin ∠AOF =b a ,cos ∠AOF =c a ,则|OA |=c 2a,|AF |=cb a ,|QF ′|=2c 2a ,|QF |=2cb a ,所以2a =|QF ′|+|QF |=2c 2a +2cb a,即a 2=c 2+cb ,又a 2=c 2+b 2,所以c =b ,故e =ca =22. 21.H5、H8 如图1­5,椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,过F 2的直线交椭圆于P ,Q 两点,且PQ ⊥PF 1.(1)若|PF 1|=2+2,|PF 2|=2-2,求椭圆的标准方程;(2)若|PQ |=λ|PF 1|,且34≤λ<43,试确定椭圆离心率e 的取值范围.图1­521.解:(1)由椭圆的定义,得2a =|PF 1|+|PF 2|=(2+2)+(2-2)=4,故a =2. 设椭圆的半焦距为c ,由已知PF 1⊥PF 2,得2c =|F 1F 2|=|PF 1|2+|PF 2|2=(2+2)2+(2-2)2=23, 即c =3,从而b =a 2-c 2=1. 故所求椭圆的标准方程为x 24+y 2=1.(2)如图所示,连接F 1Q ,由PF 1⊥PQ ,|PQ |=λ|PF 1|,得|QF 1|=|PF 1|2+|PQ |2=1+λ2|PF 1|.由椭圆的定义,得|PF 1|+|PF 2|=2a ,|QF 1|+|QF 2|=2a ,进而|PF 1|+|PQ |+|QF 1|=4a , 于是(1+λ+1+λ2)|PF 1|=4a ,解得|PF 1|=4a 1+λ+1+λ2, 故|PF 2|=2a -|PF 1|=2a (λ+1+λ2-1)1+λ+1+λ2. 由勾股定理得|PF 1|2+|PF 2|2=|F 1F 2|2=(2c )2=4c 2,从而⎝ ⎛⎭⎪⎫4a 1+λ+1+λ22+⎣⎢⎡⎦⎥⎤2a (λ+1+λ2-1)1+λ+1+λ22=4c 2, 两边除以4a 2,得4(1+λ+1+λ2)2+(λ+1+λ2-1)2(1+λ+1+λ2)2=e 2. 若记t =1+λ+1+λ2,则上式变成e 2=4+(t -2)2t 2=8⎝ ⎛⎭⎪⎫1t -142+12.由34≤λ<43,得3≤t <4,即14<1t ≤13. 进而12<e 2≤59,即22<e ≤53.18.H5、H10 如图1­4,在平面直角坐标系xOy 中,已知椭圆x 2a 2+y 2b2=1(a >b >0)的离心率为22,且右焦点F 到左准线l 的距离为3. (1)求椭圆的标准方程;(2)过F 的直线与椭圆交于A ,B 两点,线段AB 的垂直平分线分别交直线l 和AB 于点P ,C ,若PC =2AB ,求直线AB 的方程.图1­418.解:(1)由题意,得c a =22,且c +a 2c =3,解得a =2,c =1,则b =1,所以椭圆的标准方程为x 22+y 2=1.(2)当AB ⊥x 轴时,AB =2,又CP =3,不合题意.当AB 与x 轴不垂直时,设直线AB 的方程为y =k (x -1),A (x 1,y 1),B (x 2,y 2),将直线AB 的方程代入椭圆方程,得(1+2k 2)x 2-4k 2x +2(k 2-1)=0,则x 1,2=2k 2±2(1+k 2)1+2k2,C 点的坐标为⎝ ⎛⎭⎪⎫2k 21+2k 2,-k 1+2k 2,且AB =(x 2-x 1)2+(y 2-y 1)2=(1+k 2)(x 2-x 1)2=22(1+k 2)1+2k2. 若k =0,则线段AB 的垂直平分线为y 轴,与左准线平行,不合题意, 从而k ≠0,故直线PC 的方程为y +k1+2k 2=-1k ⎝ ⎛⎭⎪⎫x -2k 21+2k 2, 则P 点的坐标为⎝ ⎛⎭⎪⎫-2,5k 2+2k (1+2k 2),从而PC =2(3k 2+1)1+k 2|k |(1+2k 2). 因为PC =2AB ,所以2(3k 2+1)1+k 2|k |(1+2k 2)=42(1+k 2)1+2k 2,解得k =±1, 此时直线AB 的方程为y =x -1或y =-x +1.H6 双曲线及其几何性质6.H6 下列双曲线中,渐近线方程为y =±2x 的是( ) A .x 2-y 24=1 B.x 24-y 2=1 C .x 2-y 22=1 D.x 22-y 2=16.A A 中双曲线的渐近线方程为y =±2x ;B 中双曲线的渐近线方程为y =±12x ;C中双曲线的渐近线方程为y =±2x ;D 中双曲线的渐近线方程为y =±22x .故选A. 9.H6 将离心率为e 1的双曲线C 1的实半轴长a 和虚半轴长b (a ≠b )同时增加m (m >0)个单位长度,得到离心率为e 2的双曲线C 2,则( )A .对任意的a ,b ,e 1>e 2B .当a >b 时,e 1>e 2;当a <b 时,e 1<e 2C .对任意的a ,b ,e 1<e 2D .当a >b 时,e 1<e 2;当a <b 时,e 1>e 29.D e 1=1+b 2a 2,e 2=1+(b +m )2(a +m )2.不妨令e 1<e 2,化简得b a <b +ma +m (m >0),得bm <am ,得b <a .所以当b >a 时,有b a >b +m a +m ,即e 1>e 2;当b <a 时,有b a <b +ma +m,即e 1<e 2.故选D.16.H6 已知F 是双曲线C :x 2-y 28=1的右焦点,P 是C 的左支上一点,A (0,66) ,当△APF 周长最小时,该三角形的面积为________.16.12 6 由已知得a =1,c =3,则F (3,0),|AF |=15.设F 1是双曲线的左焦点,根据双曲线的定义有|PF |-|PF 1|=2,所以|PA |+|PF |=|PA |+|PF 1|+2≥|AF 1|+2=17,即点P 是线段AF 1与双曲线的交点时,|PA |+|PF |=|PA |+|PF 1|+2最小,即△APF 周长最小,此时,sin ∠OAF =15,cos ∠PAF =1-2sin 2∠OAF =2325,即有sin ∠PAF =4625.由余弦定理得|PF |2=|PA |2+|AF |2-2|PA ||AF |cos ∠PAF ,即(17-|PA |)2=|PA |2+152-2|PA |×15×2325,解得|PA |=10,于是S △APF =12|PA |·|AF |·sin ∠PAF =12×10×15×4625=12 6.15.H6 已知双曲线过点(4,3),且渐近线方程为y =±12x ,则该双曲线的标准方程为________.15.x 24-y 2=1 根据双曲线的渐近线方程y =±12x ,可设双曲线方程为x 24-y 2=λ(λ≠0),将点(4,3)的坐标代入得λ=1,所以双曲线方程为x 24-y 2=1.12.H6 已知(2,0)是双曲线x 2-y 2b2=1(b >0)的一个焦点,则b =________.12. 3 因为(2,0)是双曲线x 2-y 2b2=1(b >0)的一个焦点,所以1+b 2=22,又因为b >0,所以b = 3.6.H6 若双曲线x 2a 2-y 2b2=1的一条渐近线经过点(3,-4),则此双曲线的离心率为( )A.73 B.54 C.43 D.536.D 由已知可得双曲线的渐近线方程为y =±b a x ,点(3,-4)在渐近线上,故b a =43,又a 2+b 2=c 2,∴c 2=a 2+169a 2=259a 2,∴e =c a =53,选D.15.H6 过双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的右焦点作一条与其渐近线平行的直线,交C于点P ,若点P 的横坐标为2a ,则C 的离心率为________.15.2+ 3 过右焦点且与渐近线平行的一条直线不妨设为y =ba(x -c ),∵该直线与双曲线交点的横坐标为2a ,∴有(2a )2a 2-y2b2=1,解得y =-3b (y =3b 舍去),∴-3b =b a(2a -c ),整理得c =(2+3)a ,即双曲线的离心率e =2+ 3.7.H6,H8 过双曲线x 2-y 23=1的右焦点且与x 轴垂直的直线,交该双曲线的两条渐近线于A ,B 两点,则|AB |=( )A.4 33B .2 3C .6D .4 3 7.D 由题意得,a =1,b =3,故c =2,渐近线方程为y =±3x ,将x =2代入渐近线方程,得y =2 3或y =-2 3,故|AB |=4 3.5.H4、H6 已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的一个焦点为F (2,0),且双曲线的渐近线与圆(x -2)2+y 2=3相切,则双曲线的方程为( )A.x 29-y 213=1B.x 213-y 29=1C.x 23-y 2=1 D .x 2-y 23=1 5.D 因为双曲线x 2a 2-y 2b2=1(a >0,b >0)的一个焦点为F (2,0),所以a 2+b 2=4①.其渐近线方程为y =±b ax ,且渐近线与圆相切,所以|2b |a 2+b 2=3②.联立①②,解得b =3,a=1,所以所求双曲线的方程为x 2-y 23=1.9.H6 设双曲线x 2a 2-y 2b 2=1(a >0,b >0)的右焦点是F ,左、右顶点分别是A 1,A 2,过F 作A 1A 2的垂线与双曲线交于B ,C 两点.若A 1B ⊥A 2C ,则该双曲线的渐近线的斜率为( )A .±12B .±22C .±1D .± 29.C 由题设,得A 1(-a ,0),A 2(a ,0),F (c ,0).将x =c 代入双曲线方程,解得y=±b 2a .不妨设Bc ,b 2a ,Cc ,-b 2a ,则kA 1B =b 2ac +a ,kA 2C =-b 2a c -a ,根据题意,有b 2a c +a ·-b 2a c -a=-1,整理得b a=1,所以该双曲线的渐近线的斜率为±1,故选C.12.H6、H10 在平面直角坐标系xOy 中,P 为双曲线x 2-y 2=1右支上的一个动点.若点P 到直线x -y +1=0的距离大于c 恒成立,则实数c 的最大值为________.12.22不妨设点P (x 0,x 20-1)(x 0≥1),则点P 到直线x -y +1=0的距离d =||x 0-x 20-1+12.令u (x )=x -x 2-1=1x +x 2-1,则u (x )是单调递减函数,且u (x )>0.当x →+∞时,u (x )→0,所以d >22,故c max =22.H7 抛物线及其几何性质5.H5、H7 已知椭圆E 的中心为坐标原点,离心率为12,E 的右焦点与抛物线C :y 2=8x的焦点重合,A ,B 是C 的准线与E 的两个交点,则|AB |=( )A .3B .6C .9D .125.B 抛物线C :y 2=8x 的焦点坐标为(2,0),准线方程为x =-2,即椭圆的半焦距c =2.又离心率e =c a =2a =12,所以a =4,于是b 2=12,则椭圆的方程为x 216+y 212=1.A ,B 是C的准线x =-2与E 的两个交点,把x =-2代入椭圆方程得y =±3,所以|AB |=6.19.H7、H10 已知点F 为抛物线E :y 2=2px (p >0)的焦点,点A (2,m )在抛物线E 上,且|AF |=3.(1)求抛物线E 的方程;(2)已知点G (-1,0),延长AF 交抛物线E 于点B ,证明:以点F 为圆心且与直线GA 相切的圆,必与直线GB 相切.图1­419.解:方法一:(1)由抛物线的定义得|AF |=2+p2.因为|AF |=3,所以2+p2=3,解得p =2,所以抛物线E 的方程为y 2=4x .(2)证明:因为点A (2,m )在抛物线E :y 2=4x 上,所以m =±2 2,由抛物线的对称性,不妨设A (2,2 2). 由A (2,2 2),F (1,0)可得直线AF 的方程为y =2 2(x -1). 由⎩⎨⎧y =2 2(x -1),y 2=4x ,得2x 2-5x +2=0,解得x =2或x =12,从而B 12,- 2. 又G (-1,0),所以k GA = 2 2-02-(-1)=2 23,k GB =-2-012-(-1)=-2 23,所以k GA +k GB =0,从而∠AGF =∠BGF ,这表明点F 到直线GA ,GB 的距离相等,故以点F 为圆心且与直线GA 相切的圆必与直线GB 相切.方法二:(1)同方法一.(2)证明:设以点F 为圆心且与直线GA 相切的圆的半径为r . 因为点A (2,m )在抛物线E :y 2=4x 上,所以m =±2 2,由抛物线的对称性,不妨设A (2,2 2), 由A (2,2 2),F (1,0)可得直线AF 的方程为y =2 2(x -1). 由⎩⎨⎧y =2 2(x -1),y 2=4x ,得2x 2-5x +2=0,解得x =2或x =12,从而B 12,- 2.又G (-1,0),故直线GA 的方程为2 2x -3y +2 2=0, 从而r =|2 2+2 2|8+9=4 217.又直线GB 的方程为2 2x +3y +2 2=0,所以点F 到直线GB 的距离d =|2 2+2 2|8+9=4 217=r .这表明以点F 为圆心且与直线GA 相切的圆必与直线GB 相切.20.H1、H5、H7、H8 已知抛物线C 1:x 2=4y 的焦点F 也是椭圆C 2:y 2a 2+x 2b2=1(a >b >0)的一个焦点,C 1与C 2的公共弦的长为2 6.过点F 的直线l 与C 1相交于A ,B 两点,与C 2相交于C ,D 两点,且AC →与BD →同向.(1)求C 2的方程;(2)若|AC |=|BD |,求直线l 的斜率.20.解:(1)由C 1:x 2=4y 知其焦点F 的坐标为(0,1).因为F 也是椭圆C 2的一个焦点,所以a 2-b 2=1.①C 1与C 2的公共弦的长为26,C 1与C 2都关于y 轴对称,且C 1的方程为x 2=4y ,由此易知C 1与C 2的公共点的坐标为±6,32,所以94a 2+6b 2=1.②联立①②得a 2=9,b 2=8. 故C 2的方程为y 29+x 28=1.(2)如图,设A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),D (x 4,y 4).因为AC →与BD →同向,且|AC |=|BD |,所以AC →=BD →,从而x 3-x 1=x 4-x 2,即x 1-x 2=x 3-x 4,于是(x 1+x 2)2-4x 1x 2=(x 3+x 4)2-4x 3x 4.③设直线l 的斜率为k ,则l 的方程为y =kx +1.由⎩⎪⎨⎪⎧y =kx +1,x 2=4y 得x 2-4kx -4=0,而x 1,x 2是这个方程的两根,所以x 1+x 2=4k ,x 1x 2=-4.④由⎩⎪⎨⎪⎧y =kx +1,x 28+y 29=1得(9+8k 2)x 2+16kx -64=0,而x 3,x 4是这个方程的两根,所以x 3+x 4=-16k 9+8k 2,x 3x 4=-649+8k2.⑤ 将④⑤代入③,得16(k 2+1)=162k 2(9+8k 2)2+4×649+8k 2,即16(k 2+1)=162×9(k 2+1)(9+8k 2)2, 所以(9+8k 2)2=16×9,解得k =±64,即直线l 的斜率为±64. 3.H7 已知抛物线y 2=2px (p >0)的准线经过点(-1,1),则该抛物线焦点坐标为( )A .(-1,0)B .(1,0)C .(0,-1)D .(0,1)3.B 抛物线y 2=2px (p >0)的准线方程为x =-p 2,由已知得-p 2=-1,所以p2=1,故其焦点坐标为(1,0).19.H7,H10 如图1­5,已知抛物线C 1:y =14x 2,圆C 2:x 2+(y -1)2=1,过点P (t ,0)(t >0)作不过原点O 的直线PA ,PB 分别与抛物线C 1和圆C 2相切,A ,B 为切点.(1)求点A ,B 的坐标; (2)求△PAB 的面积.注:直线与抛物线有且只有一个公共点,且与抛物线的对称轴不平行,则称该直线与抛物线相切,称该公共点为切点.图1­519.解:(1)由题意知直线PA 的斜率存在,故可设直线PA 的方程为y =k (x -t ).由⎩⎪⎨⎪⎧y =k (x -t ),y =14x 2消去y ,整理得x 2-4kx +4kt =0,由直线PA 与抛物线相切,得k =t .因此,点A 的坐标为(2t ,t 2).设圆C 2的圆心为D (0,1),点B 的坐标为(x 0,y 0),由题意知,点B ,O 关于直线PD 对称,故⎩⎪⎨⎪⎧y 02=-x 02t +1,x 0t -y 0=0,解得⎩⎪⎨⎪⎧x 0=2t1+t 2,y 0=2t 21+t2, 因此,点B 的坐标为⎝ ⎛⎭⎪⎫2t 1+t 2,2t 21+t 2.(2)由(1)知|AP |=t ·1+t 2,和直线PA 的方程tx -y -t 2=0. 点B 到直线PA 的距离d =t 21+t2.设△PAB 的面积为S (t ),所以S (t )=12|AP |·d =t32.H8 直线与圆锥曲线(AB 课时作业)。

【2020】人教版最新高考文科数学解析几何练习题Word版

【2020】人教版最新高考文科数学解析几何练习题Word版

⑴定义:平面内动点M与一个顶点的距离和它到一条定直线的距离的比是常数
(e<1=时,这个动点的轨迹是椭圆.
⑵准线:根据椭圆的对称性,(>>0)的准线有两条,它们的方程为.对于椭圆(>>0)的准线方程,只要把x换成y就可以了,即.
3.椭圆的焦半径:由椭圆上任意一点与其焦点所连的线段叫做这点的焦半径.
设(-c,0),(c,0)分别为椭圆(>>0)的左、右两焦点,M(x,y)是椭
圆上任一点,则两条焦半径长分别为,.
椭圆中涉及焦半径时运用焦半径知识解题往往比较简便.
椭圆的四个主要元素a、b、c、e中有=+、两个关系,因此确定椭圆的标准方程
只需两个独立条件.
4.椭圆的参数方程
椭圆(>>0)的参数方程为(θ为参数).
说明⑴这里参数θ叫做椭圆的离心角.椭圆上点P的离心角θ与直线OP的倾
斜角α不同:;
⑵椭圆的参数方程可以由方程与三角恒等式相比较而得到,所以椭圆的参数方程的实质是三角代换. 92.椭圆的参数方程是.
5.椭圆的的内外部
(1)点在椭圆的内部.
(2)点在椭圆的外部.
6. 椭圆的切线方程
椭圆上一点处的切线方程是.
(2)过椭圆外一点所引两条切线的切点弦方程是.
圆锥曲线的两类对称问题
A B C D。

2024年高考真题分类专项(解析几何)(学生版)

2024年高考真题分类专项(解析几何)(学生版)

2024年高考真题分类专项(解析几何)一、单选题1.(2024年北京高考数学真题)圆22260x y x y +-+=的圆心到直线20x y -+=的距离为( )A B .2C .3D .2.(2024年天津高考数学真题)双曲线22221()00a x y a b b >-=>,的左、右焦点分别为12.F F P、是双曲线右支上一点,且直线2PF 的斜率为2.12PF F △是面积为8的直角三角形,则双曲线的方程为( )A .22182y x -=B .22184x y -=C .22128x y -=D .22148x y -=3.(2024年新课标全国Ⅱ卷数学真题)已知曲线C :2216x y +=(0y >),从C 上任意一点P 向x 轴作垂线段PP ',P '为垂足,则线段PP '的中点M 的轨迹方程为( ) A .221164x y +=(0y >)B .221168x y +=(0y >)C .221164y x +=(0y >)D .221168y x +=(0y >)4.(2024年高考全国甲卷数学(文)真题)已知直线20ax by a b +-+=与圆2241=0C x y y ++-:交于,A B 两点,则AB 的最小值为( )A .2B .3C .4D .65.(2024年高考全国甲卷数学(理)真题)已知双曲线的两个焦点分别为()()0,4,0,4-,点()6,4-在该双曲线上,则该双曲线的离心率为( )A.4 B .3C .2D6.(2024年高考全国甲卷数学(理)真题)已知b 是,a c 的等差中项,直线0ax by c 与圆22410x y y ++-=交于,A B 两点,则AB 的最小值为( ) A .1B .2C .4D.二、多选题7.(2024年新课标全国Ⅱ卷数学真题)抛物线C :24y x =的准线为l ,P 为C 上的动点,过P 作22:(4)1A x y +-=⊙的一条切线,Q 为切点,过P 作l 的垂线,垂足为B ,则( ) A .l 与A 相切B .当P ,A ,B三点共线时,||PQ = C .当||2PB =时,PA AB ⊥D .满足||||PA PB =的点P 有且仅有2个8.(2024年新课标全国Ⅱ卷数学真题)设计一条美丽的丝带,其造型可以看作图中的曲线C 的一部分.已知C 过坐标原点O .且C 上的点满足:横坐标大于2-,到点(2,0)F 的距离与到定直线(0)x a a =<的距离之积为4,则( )A .2a =- B.点在C 上C .C 在第一象限的点的纵坐标的最大值为1D .当点()00,x y 在C 上时,0042y x ≤+三、填空题9.(2024年上海夏季高考数学真题)已知抛物线24y x =上有一点P 到准线的距离为9,那么点P 到x 轴的距离为 .10.(2024年北京高考数学真题)抛物线216y x =的焦点坐标为 .11.(2024年北京高考数学真题)若直线()3y k x =-与双曲线2214x y -=只有一个公共点,则k 的一个取值为 .12.(2024年天津高考数学真题)圆22(1)25-+=x y 的圆心与抛物线22(0)y px p =>的焦点F 重合,A 为两曲线的交点,则原点到直线AF 的距离为 .13.(2024年新课标全国Ⅱ卷数学真题)设双曲线2222:1(0,0)x y C a b a b-=>>的左右焦点分别为12F F 、,过2F 作平行于y 轴的直线交C 于A ,B 两点,若1||13,||10F A AB ==,则C 的离心率为 .四、解答题14.(2024年上海夏季高考数学真题(网络回忆版))已知双曲线222Γ:1,(0),y x b b-=>左右顶点分别为12,A A ,过点()2,0M -的直线l 交双曲线Γ于,P Q 两点. (1)若离心率2e =时,求b 的值.(2)若2b MA P =△为等腰三角形时,且点P 在第一象限,求点P 的坐标. (3)连接OQ 并延长,交双曲线Γ于点R ,若121A R A P ⋅=,求b 的取值范围.15.(2024年北京高考数学真题)已知椭圆E :()222210x y a b a b +=>>,以椭圆E 的焦点和短轴端点为顶点的四边形是边长为2的正方形.过点()(0,t t >且斜率存在的直线与椭圆E 交于不同的两点,A B ,过点A 和()0,1C 的直线AC 与椭圆E 的另一个交点为D . (1)求椭圆E 的方程及离心率; (2)若直线BD 的斜率为0,求t 的值.16.(2024年天津高考数学真题)已知椭圆22221(0)x y a b a b+=>>椭圆的离心率12e =.左顶点为A ,下顶点为B C ,是线段OB 的中点,其中ABC S △. (1)求椭圆方程.(2)过点30,2⎛⎫- ⎪⎝⎭的动直线与椭圆有两个交点P Q ,.在y 轴上是否存在点T 使得0TP TQ ⋅≤.若存在求出这个T 点纵坐标的取值范围,若不存在请说明理由.17.(2024年新课标全国Ⅱ卷数学真题)已知(0,3)A 和33,2P ⎛⎫ ⎪⎝⎭为椭圆2222:1(0)x y C a b a b+=>>上两点.(1)求C 的离心率;(2)若过P 的直线l 交C 于另一点B ,且ABP 的面积为9,求l 的方程.18.(2024年高考全国甲卷数学(理)真题)已知椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,点31,2M ⎛⎫⎪⎝⎭在C 上,且MF x ⊥轴.(1)求C 的方程;(2)过点()4,0P 的直线交C 于,A B 两点,N 为线段FP 的中点,直线NB 交直线MF 于点Q ,证明:AQ y ⊥轴.。

64高考文科数学解析几何练习题64

64高考文科数学解析几何练习题64

x2 a2
y2 b2
1(a
b
0)
的内部
x02 a2
y02 b2
1
.
x2 (2)点 P(x0 , y0 ) 在椭圆 a2
y2 b2
1(a
b 0)
的外部
x02 a2
y02 b2
1
.
6. 椭圆的切线方程
x2 椭圆 a2
y2 b2
1(a
b
0) 上一点 P(x0 ,
y0 ) 处的切线方程是
x0 x a2
1(a
0, b
0)
与直线
Ax
By
C
0 相切的条件是
A2a2
B2b2
c2
.
抛物线的标准方程和几何性质 1.抛物线的定义:平面内到一定点(F)和一条定直线(l)的距离相等的点的轨迹叫抛物线。这个定点 F 叫抛物线的焦点,这条定直线 l 叫抛物线的准线。 需强调的是,点 F 不在直线 l 上,否则轨迹是过点 F 且与 l 垂直的直线,而不是抛物线。 2.抛物线的方程有四种类型:
点 P(x0 , y0 ) 在抛物线 y2 2 px( p 0) 的外部 y2 2 px( p 0) .
点 P(x0 , y0 ) 在抛物线 y2 2 px( p 0) 的内部 y2 2 px( p 0) .
点 P(x0 , y0 ) 在抛物线 y2 2 px( p 0) 的外部 y2 2 px( p 0) .
点 P(x0 , y0 ) 在抛物线 x2 2 py( p 0) 的内部 x2 2 py( p 0) .
点 P(x0 , y0 ) 在抛物线 x2 2 py( p 0) 的外部 x2 2 py( p 0) .
点 P(x0 , y0 ) 在抛物线 x2 2 py( p 0) 的内部 x2 2 py( p 0) .

高考文科数学二轮专项训练专题:08 解析几何

高考文科数学二轮专项训练专题:08 解析几何

16.(2018 天津)已知双曲线
x2 a2
y2 b2
1(a
0,
b
0) 的离心率为 2,过右焦点且垂直于 x 轴的直线与双
曲线交于 A , B 两点.设 A , B 到双曲线同一条渐近线的距离分别为 d1 和 d2 ,且 d1 d2 6 ,则
双曲线的方程为
A. x2 y2 1 B. x2 y2 1
x2 3
y2 9
1,故选 A.
17.已知 F 是双曲线 C : x2 y2 1的右焦点, P 是 C 上一点,且 PF 与 x 轴垂直,点 A 的坐标是 3
(1,3) .则 APF 的面积为
1
A.
3
1
B.
2
2
C.
3
3
D.
2
D【解析】由 c2 a2 b2 4 得 c 2 ,所以 F (2, 0) ,将 x 2 代入 x2 y2 1, 3
2.圆 (x 1)2 y2 2 的圆心到直线 y x 3 的距离为
A.1
B.2
C. 2
D.2 2
C【解析】圆心坐标为 (1, 0) ,由点到直线的距离公式可知 d | 1 0 3 | 2 ,故选 C. 2
3.已知圆 M: x2 + y2 - 2ay = 0(a > 0) 截直线 x + y = 0 所得线段的长度是 2 2 ,则圆 M 与圆 N:
线,点 N 在 l 上且 MN ⊥ l ,则 M 到直线 NF 的距离为
A. 5
B. 2 2
C. 2 3
D. 3 3
C【解析】由题意可知,如图 MFx 60 ,又抛物线的定义得 MF MN ,所以 MNF 为等边三角 形,在三角形 NFH 中, FH 2 , FH cos 60 ,得 NF 4 ,所以 M 到 NF 的距离为等边三 NF 角形 MNF 中 NF 边上的高,易知为 3 NF 2 3 .选 C. 2

浙江高考历年真题之解析几何大题(文科)

浙江高考历年真题之解析几何大题(文科)

浙江高考历年真题之解析几何大题(教师版)1、(2005年)如图,已知椭圆的中心在坐标原点,焦点12,F F 在x 轴上,长轴A 1A 2的长为4,左准线l 与x 轴的交点为M ,|MA 1|∶|A 1F 1|=2∶1. (Ⅰ)求椭圆的方程;(Ⅱ)若点P 在直线l 上运动,求∠F 1PF 2的最大值.解析:(Ⅰ)设椭圆方程为()222210x y a b a b +=>>,半焦距为c ,则2111,a MA a A F a c c =-=-,()2222224a a a c c a abc ⎧-=-⎪⎪⎪=⎨⎪=+⎪⎪⎩由题意,得2,1a b c ∴== ,221.43x y +=故椭圆方程为(Ⅱ)()004,,0P y y -≠设2、(2006年)如图,椭圆by a x 222+=1(a >b >0)与过点A (2,0)B(0,1)的直线有且只有一个公共点T且椭圆的离心率e=23. (Ⅰ)求椭圆方程;(Ⅱ)设F 1、F 2分别为椭圆的左、右焦点,求证:2121||||||2AT AF AF = 。

解析:(Ⅰ)过 A 、B 的直线方程为12xy += 因为由题意得22221112x y a b y x ⎧+=⎪⎪+⎨⎪=-+⎪⎩有惟一解.即2222221()04b a x a x a b +-+=有惟一解,所以2222(44)0(0),a b a b ab ∆=+-=≠, 故22(44)0a b +-=又因为c =,即22234a b a -= , 所以224a b = ,从而得2212,,2a b ==故所求的椭圆方程为22212x y +=.(Ⅱ)由(Ⅰ)得2c =,所以12((22F F -由 22221112x y a b y x ⎧+=⎪⎪+⎨⎪=-+⎪⎩解得 121,x x ==, 因此1(1,)2T =.从而 254AT =,因为1252AF AF ⋅=, 所以21212AT AF AF =⋅ 3、(2007年)如图,直线y kx b =+与椭圆2214x y +=交于A B ,两点,记AOB △的面积为S . (I )求在0k =,01b <<的条件下,S 的最大值; (II )当2AB =,1S =时,求直线AB 的方程.解析:(I )设点A 的坐标为1()x b ,,点B 的坐标为2()x b ,.由2214x y +=,解得1,2x =±所以22121||2112S b x x b b =-=≤+-=,当且仅当2b =.S 取到最大值1. (Ⅱ)解:由2214y kx bx y =+⎧⎪⎨+=⎪⎩得222(41)8440k x kbx b +++-=2216(41)k b ∆=-+ ①|AB 12|2x x -== ② 又因为O 到AB 的距离21||Sd AB === 所以221b k =+ ③ ③代入②并整理,得424410k k -+=,解得,2213,22k b ==, 代入①式检验,△>0,故直线AB 的方程是22y x =+或22y x =-或22y x =-+或22y x =--. 4、(2008年)已知曲线C 是到点P (83,21-)和到直线85-=y 距离相等的点的轨迹。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1

a

b
>0)的参数方程为
y
bsin
(θ为参数).
tan b tan
说明 ⑴ 这里参数θ叫做椭圆的离心角.椭圆上点 P 的离心角θ与直线 OP 的倾斜角α不同:
a


x2 椭圆的参数方程可以由方程 a 2
y2 b2
1
与三角恒等式
cos2
sin 2
1相比较而得到,所以椭圆的参数方程的
实质是三角代换. 92.椭圆
c
.对于椭圆
y2 x2 1
y a2
a2 b2
( a > b >0)的准线方程,只要把 x 换成 y 就可以了,即
c.
3.椭圆的焦半径:由椭圆上任意一点与其焦点所连的线段叫做这点的焦半径.
x2 y2
设 F1 (-c,0), F2 (c,0)分别为椭圆 a 2
b2
1 ( a > b >0)的左、右两焦点,M(x,y)是椭圆上任一点,则
y02 b2
1
.
6. 椭圆的切线方程
x2 椭圆 a2
y2 b2
1(a
b 0) 上一点 P(x0 , y0 ) 处的切线方程是
x0 x a2
y0 y b2
1
.
x2 (2)过椭圆 a2
y2 b2
1(a
b
0)
外一点
P(x0 ,
y0 )
所引两条切线的切点弦方程是
x0 x a2
y0 y b2
1
.
x2 (3)椭圆 a2
x2 a2
y2 b2
1(a
b
x a cos
0)
的参数方程是
y
b
sin
.
5.椭圆的的内外部
x2 (1)点 P(x0 , y0 ) 在椭圆 a2
y2 b2
1(a
b 0)
的内部
x02 a2
y02 b2
1
.
x2 (2)点 P(x0 , y0 ) 在椭圆 a2
y2 b2
1(a
b 0)
的外部
x02 a2
解析几何单元易错题练习 一.考试内容: 椭圆及其标准方程.椭圆的简单几何性质.椭圆的参数方程. 双曲线及其标准方程.双曲线的简单几何性质. 抛物线及其标准方程.抛物线的简单几何性质. 二.考试要求: 掌握椭圆的定义、标准方程和椭圆的简单几何性质,了解椭圆的参数方程. 掌握双曲线的定义、标准方程和双曲线的简单几何性质. 掌握抛物线的定义、标准方程和抛物线的简单几何性质. 了解圆锥曲线的初步应用. 【注意】圆锥曲线是解析几何的重点,也是高中数学的重点内容,高考中主要出现三种类型的试题:①考查圆锥曲线的概念 与性质;②求曲线方程和轨迹;③关于直线与圆锥曲线的位置关系的问题. 三.基础知识: 椭圆及其标准方程
动点的轨迹是两条射线;若 2a>| F1 F2 |,则无轨迹.
若 MF1 < MF2 时,动点 M 的轨迹仅为双曲线的一个分支,又若 MF1 > MF2 时,轨迹为双曲线的另一支.而双曲线
是由两个分支组成的,故在定义中应为“差的绝对值”.
x2 双曲线的标准方程: a 2
y2 b2
1 y2 和 a2
x2 b2
( a > b >0), a 2 b 2
( a > b >0).
3.椭圆的标准方程判别方法:判别焦点在哪个轴只要看分母的大小:如果 x 2 项的分母大于 y 2 项的分母,则椭圆的焦点在 x
轴上,反之,焦点在 y 轴上. 4.求椭圆的标准方程的方法:⑴ 正确判断焦点的位置;⑵ 设出标准方程后,运用待定系数法求解. 椭圆的简单几何性质
x2 y2 1
椭圆的几何性质:设椭圆方程为 a 2 b 2
( a > b >0).
⑴ 范围: -a≤x≤a,-b≤x≤b,所以椭圆位于直线 x= a 和 y= b 所围成的矩形里. ⑵ 对称性:分别关于 x 轴、y 轴成
轴对称,关于原点中心对称.椭圆的对称中心叫做椭圆的中心.
⑶ 顶点:有四个 A1 (-a,0)、 A2 (a,0) B1 (0,-b)、 B2 (0,b).
线段 A1 A2 、B1 B2 分别叫做椭圆的长轴和短轴.它们的长分别等于 2a 和 2b,a 和 b 分别叫做椭圆的长半轴长和短半轴长. 所
以椭圆和它的对称轴有四个交点,称为椭圆的顶点.
e c ⑷ 离心率:椭圆的焦距与长轴长的比 a 叫做椭圆的离心率.它的值表示椭圆的扁平程度.0<e<1.e 越接近于 1 时,椭圆
两条焦半径长分别为 MF1
a ex , MF2
a ex
.
椭圆中涉及焦半径时运用焦半径知识解题往往比较简便.
椭圆的四个主要元素 a、b、c、e 中有 a 2 = b 2 + c 2 、 e
c a
两个关系,因此确定椭圆的标准方程只需两个独立条件.
4.椭圆的参数方程
x2 椭圆 a 2
y2 b2
x a cos
椭圆的定义:椭圆的定义中,平面内动点与两定点 F1 、 F2 的距离的和大于| F1 F2 |这个条件不可忽视.若这个距离之和小于
| F1 F2 |,则这样的点不存在;若距离之和等于| F1 F2 |,则动点的轨迹是线段 F1 F2 .
x2 y2
y2 x2
1
1
2.椭圆的标准方程: a 2 b 2
越扁;反之,e 越接近于 0 时,椭圆就越接近于圆. 2.椭圆的第二定义
e c ⑴ 定义:平面内动点 M 与一个顶点的距离和它到一条定直线的距离的比是常数 a (e<1=时,这个动点的轨迹是椭
圆.

x2 准线:根据椭圆的对称性, a2
y2 b2
1
x a2
( a > b >0)的准线有两条,它们的方程为
y2 b2
1(aΒιβλιοθήκη b 0) 与直线 Ax By C
0 相切的条件是 A2a2
B2b2
c2
双曲线及其标准方程
双曲线的定义:平面内与两个定点 F1 、 F2 的距离的差的绝对值等于常数 2a(小于| F1 F2 |)的动点 M 的轨迹叫做双曲线.
在这个定义中,要注意条件 2a<| F1 F2 |,这一条件可以用“三角形的两边之差小于第三边”加以理解.若 2a=| F1 F2 |,则
1(a>0,b>0).这里 b2
c2
a 2 ,其中| F1 F2 |=2c.要注意这里的
a、b、c 及它们之间的关系与椭圆中的异同.
3.双曲线的标准方程判别方法是:如果 x 2 项的系数是正数,则焦点在 x 轴上;如果 y 2 项的系数是正数,则焦点在 y 轴上.
对于双曲线,a 不一定大于 b,因此不能像椭圆那样,通过比较分母的大小来判断焦点在哪一条坐标轴上. 4.求双曲线的标准方程,应注意两个问题:⑴ 正确判断焦点的位置;⑵ 设出标准方程后,运用待定系数法求解. 双曲线的简单几何性质
相关文档
最新文档