土壤中砷的处理

合集下载

砷污染土壤修复技术概述

砷污染土壤修复技术概述

砷污染土壤修复技术概述砷是一种非常有害的化学物质,它存在于自然界的岩石和土壤中。

砷污染土壤广泛存在于全球范围内,主要来源包括工业废水、农药和农业肥料的使用、化肥的生产和燃煤等。

砷污染对人类健康和环境造成了严重的危害,因此砷污染土壤修复技术的研究和应用至关重要。

砷对人类健康的危害主要表现在长期接触砷会引发慢性中毒,导致慢性砷中毒症状如皮肤病变、消化系统疾病、心血管疾病和癌症等。

而对环境的影响则表现为砷通过水和土壤中的微生物进入食物链,对植物和动物造成危害,破坏生态平衡。

寻找有效的砷污染土壤修复技术成为当务之急。

目前,主要的砷污染土壤修复技术包括物理方法、化学方法和生物方法等,下面将对这些方法进行概述。

首先是物理方法,物理方法主要通过改变土壤的物理结构来还原土壤砷的修复。

一种常见的物理方法是土壤剥离,通过去除含有高砷含量的土壤表层来减轻土壤砷污染程度。

土壤热处理也是一种常见的物理方法,通过加热土壤来挥发土壤中的砷物质。

虽然物理方法可以快速减轻土壤砷污染程度,但是这些方法需要大量的能源和资源。

其次是化学方法,化学方法主要通过化学还原或化学吸附等方式来修复土壤中的砷污染。

化学还原是通过添加化学物质来将土壤中的砷还原成较为稳定的三价砷物质,进而减少砷的生物有效性。

化学吸附是通过添加特定的吸附剂来吸附土壤中的砷物质,将其转化为难溶、难挥发的化合物,以减少砷的迁移和转化。

化学方法可以快速有效地修复土壤中的砷污染,但是在实际应用中需要考虑化学物质的剂量和副作用。

最后是生物方法,生物方法主要是利用植物、微生物或其代谢物来修复土壤中的砷污染。

植物修复是通过植物的吸收和富集将土壤中的砷物质固定在植物体内,增加土壤中的有机质含量和微生物活性,从而减轻土壤砷的毒性。

微生物修复是通过胁迫适应或菌株选育等方式来利用土壤中的微生物来还原和转化土壤中的砷物质。

生物方法是一种环保、可持续的修复方法,但是需要考虑植物和微生物的适应性和生长周期。

砷污染土壤治理技术

砷污染土壤治理技术

砷污染土壤治理技术随着人类的工业化和城市化进程的加快,环境的污染问题已经成为一个急需解决的问题。

其中,土壤污染的情况尤其严重,而砷污染则是其中的一种严重情况。

在我国,砷污染土壤已经成为一种常见现象,进而威胁到着人们的健康和生存环境。

针对这一问题,砷污染土壤治理技术得到了广泛的关注和探索。

一、砷污染土壤的成因为什么会出现砷污染土壤的现象?这与砷的特性有关。

砷化合物具有毒性,并且在土壤中具有相当强的残留性,能够长时间存在于土壤中。

其主要来源包括以下几个方面:1. 工业废弃物。

在工业化的进程中,许多工业生产过程中会产生砷污染废水、废助剂和废渣等物质,这些物质都有可能污染土壤。

2. 农业生产。

农业中的某些施肥方法也可能导致土壤砷污染。

例如,过量施用沼渣等有机肥料,就会导致土壤中砷的累积。

3. 自然存在。

砷是地球上的一种元素,因此在自然界中也会存在砷。

在一些矿区和地下水中,也可能存在着高砷含量的地质环境,从而导致土壤的砷污染。

二、砷污染土壤治理技术砷污染土壤治理技术主要包括以下几种:1. 生物修复技术。

生物修复技术主要是通过利用微生物和植物来去除砷污染土壤中的有害物质。

例如,利用多种微生物和植物,可以将砷污染土壤中的砷转化为无害物质,并达到降低砷含量的作用。

2. 热解技术。

热解技术主要是利用高温来将土壤中的砷热解掉,并转化为无害物质。

这种技术的优点在于对土壤有一定的杀菌和消毒作用。

3. 改良土壤物理化学性质。

改良土壤物理化学性质的方法包括石灰化、有机质添加、土壤改性等,通过调整土壤性质来降低砷的毒性。

4. 土壤盖层技术。

土壤盖层技术主要是在污染土壤表面覆盖封闭层,以达到隔离污染物的效果。

盖层可以是石灰、混凝土、塑料等材料,具有防潮、防水和保温的作用。

三、技术应用与发展砷污染土壤治理技术应用广泛,且通过不断发展,已经有了较为成熟的技术体系和治理方法。

在我国,目前已经建立起了一些砷污染土壤治理技术研究中心,致力于砷污染土壤治理技术的研究与推广。

砷污染土壤修复技术概述

砷污染土壤修复技术概述

砷污染土壤修复技术概述1. 引言1.1 砷污染的背景砷是一种常见的重金属元素,广泛存在于土壤和地下水中。

砷污染的主要原因包括工业生产、矿山开采、废弃物处理等活动,导致土壤中砷超标的现象日益严重。

砷对人体健康具有潜在的危害,长期接触砷污染土壤会引发各种疾病,如皮肤病、呼吸道疾病、肝肾损伤等。

砷对植物生长和土壤生态系统也造成了严重影响,降低土壤的肥力和生产力,破坏土壤生物多样性。

砷污染土壤修复技术的研究和应用显得尤为重要。

通过合理选择和应用各种修复技术,可以有效地降低土壤中砷的含量,恢复土壤的生态功能和农田的生产力,保障人类健康和可持续发展。

【砷污染的背景】这一部分的内容就是对砷污染问题的介绍和概述,引出接下来对修复技术的讨论和分析。

1.2 土壤砷污染的危害土壤砷污染是一个严重的环境问题,对人类健康和生态系统都造成了严重危害。

土壤中的砷可以通过植物的根系被吸收到植物体内,进而进入人体。

长期摄入高砷含量的食物会导致各种健康问题,包括癌症、皮肤病、心血管疾病等。

土壤中的砷还可以通过水体被传播,污染地下水资源,影响周围的农田和生态系统。

土壤砷污染不仅对人类健康造成危害,也会对土壤生物多样性和生态平衡产生破坏。

土壤中的微生物、植物和动物可能受到砷的毒害,砷污染会导致土壤生态系统的破坏,影响土壤的肥力和生产力,甚至造成土地荒漠化。

有效修复砷污染土壤不仅关乎人类健康,也是保护生态环境和维护土地可持续利用的重要措施。

砷污染土壤修复技术的发展和应用,对于减轻土壤砷污染带来的危害,恢复土壤生态系统的健康,具有重要的意义和价值。

1.3 修复技术的重要性修复技术的重要性在于其可以有效减轻土壤砷污染所带来的环境与生态风险,保护人类健康与生态系统的稳定。

砷是一种具有强烈毒性的重金属,长期暴露于含砷土壤环境中可能导致多种健康问题,包括但不限于皮肤病、癌症、神经系统损害等。

修复技术的应用对于减少砷对人体健康的威胁至关重要。

修复技术可以通过一系列的物理、化学、生物手段将砷污染土壤中的砷浓度降至安全水平,恢复土壤的健康状态。

土壤砷污染治理

土壤砷污染治理

一土壤砷污染治理的思路根据土壤防治基本原则中的生态恢复原则,对已受到污染的土壤必须采取有效的措施,降低污染和防止污染扩散,以达到污染土壤的再利用并保证生态和人体的健康。

目前,国内外治理砷污染土壤的途径有两种:1.1毒性强度抑制采用一定的方法改变砷在土壤中的存在形态,或使其固定,降低其活性,使其钝化,脱离食物链,以降低其在环境中的迁移性和生物可利用性,在未改变污染元素砷总量的情况下减轻污染的危害效应。

1.2毒性容量限制利用各种技术从土壤中去除砷,使砷在土壤中的存在量达到或接近背景值,并回收砷,可在降低土壤中砷总量的同时降低其毒性活性。

二土壤砷污染治理技术概况根据以上两条途径,众多的土壤砷污染治理技术可分为如下两类:2.1强度抑制技术在控制砷毒性的途径下,主要利用污染物稀释,隔离,稳定化和固化的原理。

相应的技术包括客土法,翻土法,生物稳定法,物理化学和化学稳定法,固化和玻璃化法等。

由于砷仍然存在于土壤中,在自然条件改变和人为活动作用下,土壤理化性质的变化容易使砷毒性再次活化,造成二次污染。

2.2容量限制技术控制砷总量的途径可以永久地去除土壤中的砷,避免了直接砷的二次污染,主要通过改变砷的迁移性和吸附性,利用物理上,化学上和生物上的作用力使砷脱离出土壤,或者直接采用工程措施将砷污染土壤连土带砷一起转移,并置以未受污染的新土。

相应的技术有化学淋洗(或萃取),植物吸收和挥发,根际菌和植物协同作用,电动修复,渗透性反应墙-电动法联用,换土法等。

三土壤砷污染治理技术砷作为类金属元素,和重金属有类似的性质,同样在进入土壤后以溶解,络合,吸附和氧化还原等不同的作用方式与土壤中的各组成成分反应,形成了不同的存在形态。

因此其迁移性和生物有效性同样受到土壤理化性质的影响,所以根据相同的原理很多重金属的物理,化学和生物治理技术可以通用,具体反应和设置按砷的特性而有不同。

3.1常用治理技术3.1.1改土法改土法包括客土法,翻土法和换土法,是常用的工程措施。

砷污染土壤的修复与治理方法研究

砷污染土壤的修复与治理方法研究

砷污染土壤的修复与治理方法研究砷是一种常见的有毒金属元素,广泛存在于土壤中。

随着工业化进程的加快和农业生产的发展,砷污染问题日益严重,给人类健康和环境安全带来了巨大的威胁。

因此,砷污染土壤的修复与治理方法研究成为了当前环境科学领域的热点问题。

砷污染土壤的修复方法主要包括物理修复、化学修复和生物修复三种。

物理修复方法主要是通过土壤剥离、土壤覆盖和土壤深耕等手段,将砷污染土壤与周围环境隔离开来,减少对周围环境的污染。

化学修复方法则是利用化学物质对砷进行固定、转化或溶解,降低砷在土壤中的活性,从而减少砷的迁移和转化。

生物修复方法则是利用植物和微生物的作用,通过吸收、转移、转化和稳定化等过程,将砷从土壤中去除或转化为无害物质。

物理修复方法相对简单,但其效果有限,往往只能在短期内减少砷的迁移和转化,无法从根本上解决砷污染问题。

化学修复方法虽然能够较好地固定砷,但其使用过程中会产生大量的化学废物,对环境造成二次污染,并且成本较高。

相比之下,生物修复方法具有更好的可持续性和经济性。

通过选择适应砷污染环境的植物和微生物,利用它们的生理和代谢特性,可以有效地修复砷污染土壤。

在生物修复方法中,植物修复是一种常见且有效的方法。

植物修复主要通过植物的吸收、转移和转化作用,将砷从土壤中去除或转化为无害物质。

一些研究表明,某些植物对砷具有较高的耐受性和吸收能力,可以在砷污染土壤中生长并吸收大量的砷。

例如,一些禾本科植物如稻谷和油菜等,以及一些菊科植物如蒿属植物等,都被发现能够在砷污染土壤中生长并吸收砷。

通过种植这些植物,可以有效地降低土壤中的砷含量,达到修复砷污染土壤的目的。

除了植物修复,微生物修复也是一种重要的生物修复方法。

微生物修复主要通过微生物的吸附、转化和稳定化作用,将砷从土壤中去除或转化为无害物质。

一些研究表明,某些细菌和真菌对砷具有较高的耐受性和转化能力,可以在砷污染土壤中生长并修复砷污染。

通过培养和应用这些微生物,可以有效地降低土壤中的砷含量,达到修复砷污染土壤的目的。

砷的处理方法范文

砷的处理方法范文

砷的处理方法范文砷是一种有毒、致癌的元素,广泛存在于自然界的土壤、岩石、地下水中。

长期摄入或暴露于砷可能会对人体健康产生很大的危害,因此对砷的处理十分重要。

本文将就砷的处理方法进行详细介绍。

二、砷的处理方法1.水处理方法砷主要通过水被人体摄入,因此处理饮用水中的砷具有重要意义。

以下是一些常见的处理方法:a.活性炭吸附:活性炭能够有效地吸附砷,并将其从水中去除。

该方法适用于砷浓度较低的水体。

b.离子交换法:通过将水中的砷与合适的离子交换树脂接触,使砷离子被树脂吸附去除。

c.氧化沉淀法:通过添加一定的氧化剂(如氯气、二氧化锰等)使砷被氧化成别的形态,然后通过沉淀或过滤将其从水中分离出来。

d.膜过滤法:通过超滤、反渗透等膜过滤技术可以有效去除水中的砷。

2.土壤和土壤水处理方法砷在土壤中通常以固体形式存在,因此处理土壤中的砷具有较大的难度。

以下是一些处理方法:a.修复和管理技术:包括土壤改良、土壤深耕、植被重建等措施,可以减少砷对农作物和水体的污染。

b.热解技术:通过高温加热将土壤中的砷转化为更稳定的形式,从而减少其可溶性。

c.膨润土等吸附剂:通过将膨润土等吸附剂添加到土壤中,可以有效吸附砷,减少其迁移和可溶性。

3.工业废水处理方法a.化学沉淀法:通过加入适当的化学试剂(如铁盐、铝盐等)将废水中的砷沉淀下来,从而去除砷。

b.离子交换法:通过将废水中的砷与离子交换树脂接触,将其吸附去除。

c.生物除砷:包括微生物、植物等生物种类的利用,通过它们的生物活性将废水中的砷转化为较稳定的形态,进而去除砷。

d.高级氧化技术:如过氧化氢、紫外光等,通过氧化作用将废水中的砷转化成无毒、无害的物质。

4.培养公众的环保意识除了以上的处理技术,培养公众的环保意识也是重要的处理方法之一、加强环境教育,宣传砷对人体健康的危害,引导人们正确对待砷,避免暴露于砷的环境中。

综上所述,砷的处理方法包括水处理、土壤和土壤水处理、工业废水处理以及培养公众环保意识等方面。

砷污染土壤修复技术概述

砷污染土壤修复技术概述

砷污染土壤修复技术概述【摘要】本文主要介绍了砷污染土壤修复技术的概述。

首先从常见的砷污染土壤修复技术入手,包括生物修复技术、化学修复技术、物理修复技术和综合修复技术。

生物修复技术通过植物吸收或微生物降解砷污染物,化学修复技术则是利用化学物质来固定或转化砷。

物理修复技术侧重于通过物理手段将砷转移或隔离出土壤。

综合修复技术则是结合多种技术手段进行修复。

在结论部分总结了砷污染土壤修复技术的概述,强调了不同修复技术的特点和适用范围,为砷污染土壤修复提供了参考依据。

通过本文的阐述,读者可以更全面地了解砷污染土壤修复技术,并为环境修复实践提供一定的指导。

【关键词】砷污染、土壤修复、技术概述、生物修复、化学修复、物理修复、综合修复。

1. 引言1.1 砷污染土壤修复技术概述砷是一种常见的土壤污染物,其对人类健康和环境造成了严重影响。

砷污染土壤的修复技术成为当前环境领域中备受关注的研究方向之一。

砷污染土壤修复技术旨在减少土壤中砷的含量,恢复土壤环境的健康状况,保护生态系统和人类健康安全。

针对砷污染土壤修复技术,目前已经涌现出多种方法,包括生物修复技术、化学修复技术、物理修复技术以及综合修复技术等。

生物修复技术借助微生物、植物等生物体对砷进行吸附、还原、转化等作用来修复污染土壤;化学修复技术则通过化学物质来改变土壤中砷的形态或迁移态以减少其毒性和危害;物理修复技术主要利用物理方法对土壤进行处理,如土壤冲洗、热解吸等;而综合修复技术则是将各种修复技术相结合,以达到更好的修复效果。

砷污染土壤修复技术的研究和应用为解决砷污染问题提供了有效的途径,同时也为环境修复领域的发展提供了重要参考。

随着技术的不断进步和完善,相信砷污染土壤修复技术在未来将发挥越来越重要的作用,为人类创造更加清洁、安全的生存环境。

2. 正文2.1 常见砷污染土壤修复技术常见砷污染土壤修复技术包括生物修复技术、化学修复技术、物理修复技术和综合修复技术。

生物修复技术是利用微生物、植物等生物资源来修复砷污染土壤的技术。

砷污染土壤修复技术概述

砷污染土壤修复技术概述

砷污染土壤修复技术概述砷是一种广泛存在于自然界中的元素,其在土壤中的存在主要是由于岩石的风化和土壤中有机物的降解所带来的。

过度的砷污染土壤会对人类健康和生态环境造成严重影响。

砷污染土壤的修复技术备受关注。

本文将对砷污染土壤的修复技术进行概述,包括传统的修复技术和新兴的生物修复技术。

1. 土壤固化/固化技术土壤固化/固化技术是通过添加固化剂或固化材料来改变土壤结构,从而减少土壤中砷的迁移和生物有效性。

常用的固化剂包括水泥、石灰、硅酸盐等,在土壤中对砷污染区域进行混合处理,形成稳定的复合材料。

这种技术可有效减少土壤中砷的迁移和交换,但对土壤的物理和化学性质造成影响较大。

2. 土壤抽滤/土壤抽采技术土壤抽滤/抽采技术是通过抽取地下水或土壤中的污染物质,利用土壤抽采装置将污染物质带出土壤,再利用化学方法或物理方法对其进行处理。

这种技术适用于地下水和土壤污染严重的情况,但会造成土壤生态系统的破坏。

3. 土壤热处理技术土壤热处理技术是通过加热土壤,利用高温裂解、蒸发或氧化等作用来将有机砷物质转化为无机砷物质,从而减少其生物有效性和迁移性。

这种技术对于有机砷物质的处理效果较好,但需要消耗大量能源和造成土壤的物理破坏。

二、新兴的生物修复技术1. 植物修复技术植物修复技术是利用植物对土壤环境的吸附、富集和转化作用来修复土壤中的砷污染。

通过选择具有强大吸附和富集能力的植物,如柳树、杨树、槐树等植物,种植在砷污染土壤中,利用其根系系统吸收砷污染物质,使其富集在植物体内,达到减少土壤砷污染物质的目的。

植物还可以分泌有机酸、酶类等物质,促进砷的转化和还原,从而减少其生物有效性。

微生物修复技术是利用微生物在土壤中的生物学活性,通过合成代谢、解毒和还原等生物过程来降解和转化土壤中的砷污染物质。

利用自然存在或人工引入的细菌、真菌、藻类等微生物,使其在土壤中进行分解砷有机物和富集砷离子的过程,从而减少土壤砷的生物有效性和迁移性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

土壤中砷的处理1 引言砷是一类广泛存在于土壤中的具有致癌作用的类金属元素,主要来源于含砷农药、化肥的施用及含砷污水灌溉等.据雷鸣等(2008)的调查,湖南郴州、衡阳等地稻田砷污染较严重,土壤砷含量最高达245 mg·kg-1,导致大米砷含量超标,造成严重的健康威胁和巨大的经济损失.同时,砷作为一种变价元素,不同价态毒性及生物有效性有较大差异,如三价砷生物毒性是五价砷的60~100倍.此外,水分可通过改变土壤氧化还原电位、铁锰氧化物等变价元素的价态而影响砷的生物有效性及其环境风险,如淹水导致As(Ⅴ)向As(Ⅲ)转化,提高了土壤中As(Ⅲ)的含量;同时,土壤水分会影响水稻籽粒中砷含量,灌浆期后湿润灌溉可显著降低糙米中砷含量.研究表明,稻田土壤水分含量可影响并改变土壤溶液及稻米中砷含量,而控制土壤水分含量是解决稻田土壤砷污染问题的有效途径之一,并揭示出水分是影响砷毒性的主要因素之一,尤其是在稻田土壤上.因此,需对二者作用关系进行系统探讨.土壤酶是土壤的重要组成成分,土壤中所有生物化学过程的发生都得益于土壤酶的作用.酶促反应动力学是研究酶催化反应速度及各种因素(如污染物等)影响的方法,其结果不仅可显示土壤酶总量的高低,而且还可以反映酶与底物、重金属污染物等之间结合的紧密程度和作用过程,从而能深入探讨污染物与酶作用机理,故被认为是一种理想的研究手段.目前,国内外学者对砷的土壤酶效应进行了研究,发现有激活、抑制和无关3种作用,如As(Ⅴ)会抑制碱性磷酸酶及芳基硫酸酯酶活性,而As(Ⅲ)则不敏感;砷能激活土壤脲酶活性.对不同水分下土壤酶作用机理的研究也有零星报道,如Zhang等(2009a;2009b)发现,土壤脱氢酶活性及酶促最大反应速度均随水分含量升高而增加;高水分含量增强了磷酸酶与底物亲和力,提高了最大反应速度;淹水对土壤脲酶动力学参数无显著影响(隽英华等,2011).但目前对不同水分条件下砷与酶作用机理的研究则鲜见报道.因此,本文拟采用室内模拟培养试验的方法,从酶动力学角度研究水分对砷与土壤碱性磷酸酶关系的影响,揭示砷对碱性磷酸酶的作用受水分影响的机理,以期为稻田土壤砷污染的准确监测和保护修复提供依据.2 材料与方法2.1 供试土壤供试土壤为采自江苏省中国科学院常熟农业生态试验站的水稻土(底潜铁聚水耕人为土,Endogleyic Fe-accumuli-Stagnic Anthrosols).采样时,先去除0~5 cm表层土,采用五点法取5~20 cm土样,混匀风干,过1 mm尼龙筛备用.常规方法测定土壤基本化学性质(鲍士旦,1997),结果为有机质47.69 g·kg-1,pH=6.93(水土比2.5:1),全氮3.1 g·kg-1,全磷0.61 g·kg-1,全钾18.02 g·kg-1,碱解氮10.66 mg·kg-1,速效磷11.74 mg·kg-1,速效钾112.90 mg·kg-1,阳离子交换量26.20 cmol·kg-1,游离氧化铁2.43 g·kg-1,总砷8.70 mg·kg-1,有效砷(0.5 mol·L-1 NaHCO3)0.32 mg·kg-1.2.2 试验方案向600 g土样中添加不同浓度的As(Ⅴ)(Na3AsO4·12H2O,AR)溶液,使As(Ⅴ)含量分别为0、25、50、100、200、400 mg·kg-1,并调节土壤含水量为最大持水量(WHC)的35%、65%、110%,分别代表土壤水分条件为干燥、湿润及淹水.混匀后加盖密闭,于(25±1)℃的培养箱中暗培养,期间称重法控制土壤水分含量;定期(1、8、15、30 d)取样测定并计算酶动力学参数.土壤碱性磷酸酶动力学测定:在3.00 g土壤中加入0.25 mL甲苯,15 min后添加20 mL采用缓冲液(pH=9.4)配制的不同浓度(0.0010、0.0025、0.0050、0.010 mol·L-1)的磷酸苯二钠溶液,37 ℃培养,定时取样,采用磷酸苯二钠比色法测定土壤磷酸酶活性(关松荫,1987).每个处理重复3次,并设无底物和无土壤处理为对照.2.3 数据处理土壤酶动力学参数Km、Vmax的计算参考文献,具体而言,米氏常数Km和最大反应速度Vmax 可用Michaelis方程的积分式计算:经数学变换和整理得到:式中,t为酶促反应时间(h),S0、St分别是初始时刻和t时刻底物浓度(mmol·L-1).可见,上式是一条1/t×ln(S0/St)对1/t×(S0-St)的直线方程.在反应期间通过测定不同时间段利用的底物浓度(或生成的产物浓度),并通过线性回归,即可求得Km和Vmax值.土壤酶促反应速度常数k计算如下(和文祥等,2001):式中,t为酶促反应时间(h),S0、St分别是初始时刻和t时刻底物浓度(mmol·L-1).砷对土壤酶抑制常数Ki的计算见文献(朱铭莪,2011;谭向平,2014),其中,竞争性抑制动力学方程为:式中,Ki为抑制常数(mmol·L-1);Km*为抑制剂存在下表观米氏常数(mmol·L-1);C为外源砷剂量(mg·kg-1).线性混合抑制动力学方程为:式中,Vmax* 为抑制剂存在时酶表观最大速率(μg·g-1·h-1);KS*为酶-底物表观解离常数(mmol·L-1).对于线性混合型抑制,V*max=Vmax/β,Ks*=(α/β)Ks;其中:式中,I为抑制剂浓度(mg·kg-1),δKi为酶-底物-抑制剂解离常数(mmol·L-1),δ可表示酶-抑制剂对底物的亲和力.采用Microsoft Excel 2013和SPSS19.0软件对数据进行方差分析及模型拟合,LSD法对各处理间差异进行多重比较.3 结果与分析3.1 砷对碱性磷酸酶酶促反应动力学特征影响3.1.1 米氏常数Km的变化米氏常数Km表征酶与底物结合牢固程度,在数值上等于初速度达到最大反应速度1/2时的底物浓度.Km值越小,表明酶与底物结合越牢固,亲合力越大(和文祥等,1997).从表 1可以看出:①不同水分下碱性磷酸酶Km总体呈现35%WHC>65%WHC>110%WHC的变化规律,3个水分下Km 均值分别为6.08、4.78、3.66 mmol·L-1,表明随水分含量增加,土壤碱性磷酸酶与底物的亲和力增强,酶与底物更易结合.②除个别处理外,其余处理土壤碱性磷酸酶Km随砷含量增加而显著增大,表明砷污染导致碱性磷酸酶与底物亲和力减弱.③不同处理下Km值虽有差异,但处于同一数量级,整个试验处理中Km变幅为2.34~10.95 mmol·L-1.④不同培养时间的Km变化较小,如砷含量为100 mg·kg-1时,35%WHC、65%WHC、110%WHC下Km变化范围分别为5.12~6.44、4.23~5.54、2.35~4.41 mmol·L-1,表明培养时间对土壤酶与底物亲和力影响较弱.⑤相关分析显示,35%WHC、65%WHC下砷含量与Km呈显著相关(r>0.913*),而110%WHC下则相关性较差,表明干燥条件下砷显著降低土壤酶与底物的亲和力.表 1 供试土壤碱性磷酸酶米氏常数3.1.2 酶促反应最大反应速率Vmax的变化最大反应速率(Vmax)可表征酶-底物复合物分解为酶和产物的能力及土壤中酶的总量,在数值上等于酶完全被底物饱和时的催化反应速度(和文祥等,2010).从表 2看出:①Vmax随水分含量增加显著降低,如第30 d,对照处理65%WHC、110%WHC的Vmax较35%WHC下分别降低了35.32%、40.94%,而当砷含量达200 mg·kg-1时,降幅分别达到42.66%、52.86%.②除个别处理外,随外源砷含量增加,35%WHC、65%WHC下Vmax间变化较小,最大变幅为26%,且处理间差异不显著,表明干燥和湿润条件下砷对土壤酶-底物复合物的解离影响较弱;110%WHC下Vmax则显著降低,揭示出淹水下砷污染阻碍了碱性磷酸酶-底物复合物解离.③110%WHC下,随砷含量增加Vmax降幅增大,可能是由于水分饱和条件下As(Ⅴ)向 As(Ⅲ)转化的缘故(曾希柏等,2010).④35%WHC、65%WHC下,Vmax随培养时间延长而增加,如砷含量为100 mg·kg-1时,两个水分下第30 d的Vmax值分别为第1 d的1.32、1.15倍,表明酶-底物复合物的分解速率加快,砷的毒性减弱.⑤利用Y=A/(1+B×C)模型(Speir et al.,1999)拟合Vmax与砷含量(C)的关系.结果(表 3)发现,仅110%WHC下二者呈显著负相关关系(r>0.912*),表明淹水下Vmax可在一定程度上监测土壤砷的污染程度,且机理为完全抑制作用.⑥生态剂量值(Ecological Dose)ED10是指酶活性变化10%时外界污染物的浓度,可表征土壤轻度污染时的临界浓度(Doelman et al.,1989).计算获得水稻土砷污染ED10值为73.52~156.67 mg·kg-1.表 2 供试土壤碱性磷酸酶最大反应速率Vmax表 3 碱性磷酸酶最大反应速率Vmax与砷含量(C)的拟合关系3.1.3 Vmax/Km及反应速度常数k的变化在较大范围内,Vmax/Km是衡量酶促反应初速度的重要指标,可作为土壤质量的指标之一.反应速度常数k是酶总体催化能力的指标,从本质上反映酶促反应是“快”还是“慢”,且其值与底物浓度无关(和文祥等,2009).从表 4可知:①Vmax/Km、k随水分含量增加总体呈降低趋势,35%WHC下的Vmax/Km、k显著大于65%WHC、110%WHC下,表明较低水分含量有利于土壤酶催化反应的进行.②3种水分下,Vmax/Km、k均随砷含量的增加而显著降低,表明砷污染本质上降低了酶促反应初速度.③35%WHC、65%WHC下,Vmax/Km、k随培养时间延长而增加,这与Vmax变化规律一致.④利用模型Y=A/(1+B×C)拟合二者关系,结果(表 5)表明,Vmax/Km、k在一定程度上可作为土壤砷污染程度的监测指标,且砷对土壤碱性磷酸酶的作用机理为完全抑制(包括竞争性抑制和非竞争性抑制)作用(Speir et al.,1999).⑤计算获得Vmax/Km、k的ED10范围分别为20.45~70.87 mg·kg-1和66.00~131.89 mg·kg-1.⑥综合Vmax的结果可看出,Vmax/Km获得的ED10较小,且不同水分下均呈现出较好相关性,表明Vmax/Km对砷污染最为敏感,且其比Vmax 可更全面、准确地表征不同水分下土壤砷污染程度.⑦根据剂量最小最敏感原则获得水稻土砷轻度污染的临界值为20.45 mg·kg-1,此值与国家土壤质量标准中的二级污染标准值(25 mg·kg-1)较为接近,从侧面表明动力学参数Vmax/Km可较好评价土壤砷污染程度.表 4 供试土壤碱性磷酸酶动力学参数Vmax/Km及反应速度常数k表 5 碱性磷酸酶动力学参数Vmax/Km、k与砷含量(C)的拟合关系3.2 砷对碱性磷酸酶抑制动力学特征影响抑制剂对土壤酶抑制类型一般包括竞争性、非竞争性、反竞争性及线性混合抑制等(朱铭莪,2011).由表 1、2可知,随砷含量增加,35%WHC、65%WHC下Vmax变化较小,Km则显著增大,显示此水分下砷酸根离子会与底物竞争碱性磷酸酶同一活性中心,抑制类型属于典型竞争性抑制;而110%WHC下,随砷含量增加,Vmax降低,Km总体增大,表明淹水时二者作用为线性混合抑制类型(包括竞争性抑制和非竞争性抑制)(朱铭莪,2011).为进一步了解砷对磷酸酶的抑制特征,计算了不同条件下砷对土壤酶抑制常数Ki.Ki反映了抑制剂与酶形成复合物的亲和力,其值越小,说明抑制剂与土壤酶结合形成中间复合物的亲和力越强(和文祥等,2010).从表 6结果可以看出:①采用竞争性抑制模型(35%WHC、65%WHC)和线性混合抑制模型(110%WHC)拟合均达显著或极显著水平,揭示出不同水分含量下砷对碱性磷酸酶作用机理差异.②除第30 d外,其余处理110%WHC下Ki均小于35%WHC、65%WHC下,表明淹水增强了砷与土壤碱性磷酸酶的亲和力.③35%WHC下Ki随培养时间变化规律不明显,65%WHC、110%WHC 下Ki在培养后期(30 d)显著大于前期(1~15 d),表明随时间延长,砷与碱性磷酸酶的亲和力减弱,对酶的抑制作用减轻,这与Vmax、Vmax/Km、k等随时间变化所反映的规律一致.④比较Ki 与Km可发现,除65%WHC、110%WHC下第30 d外,其余处理Ki与Km相差不大;培养第30 d,65%WHC、110%WHC下Ki明显大于Km,揭示出随时间延长,酶与底物亲和力强于酶与砷亲和力.⑤110%WHC 下,线性混合抑制模型求得的δ>1,表明酶-抑制剂对底物的亲和力比酶对底物的亲和力低,进一步揭示出线性混合抑制中非竞争性抑制为主要抑制方式(朱铭莪,2011;谭向平,2014).表 6 砷对供试土壤碱性磷酸酶抑制常数Ki影响4 讨论不同水分及砷污染处理下Km值虽有差异,但处于同一数量级,这与土壤碱性磷酸酶主要来源于土壤微生物有关(Frankenberger et al.,1983;Dick et al.,1984).不同水分下Km随砷含量增加而增大,表明砷污染减弱了碱性磷酸酶和底物的亲和力,这可能是因为砷酸根与磷酸根结构相似,二者共同竞争磷酸酶活性中心(朱铭莪,2011;王紫泉等,2013).35%WHC、65%WHC下Vmax 随砷含量增大变化不明显,而110%WHC下则显著降低,表明110%WHC下,砷不仅通过与底物竞争碱性磷酸酶活性中心减缓了中间复合物的形成(Km增大),也减弱了酶-底物复合物的解离能力(Vmax减小).这可能是因为水分饱和下,砷与酶活性或非活性中心结合,引起酶分子的构象改变,致使活性中心的催化作用降低(朱铭莪,2011);同时,在水分饱和与砷的双重胁迫下,土壤微生物活性受到抑制而使分泌的酶减少.Km随水分含量增加显著降低,这可能是因为水分含量升高土壤更加分散,被土壤有机质或有机质-粘粒复合物吸附包裹的酶更多的解离暴露出来,增加了酶与底物的接触机会(隽英华等,2008).Marx等(2005)研究认为,营养物质(底物)在土壤异质体系中的扩散能力会影响土壤酶动力学参数.在土壤含水量较高情况下,水分可利用性好,底物的扩散能力较强,增加了酶与底物接触的机会,故Km减小(Zhang et al.,2009a).另外,供试土壤为水稻土,土壤中有机质、粘粒、铁锰氧化物等含量较大,水分含量较高情况下外源砷进入后砷酸根离子会迅速与土壤发生吸附、络合和沉淀反应等,可能会置换出部分原来被土壤粘粒吸附的碱性磷酸酶分子,使其从吸附态转变成游离态,从而使 Km 值变小(杨春璐等,2007).Vmax也随水分含量升高显著降低,这是由于水分含量增加,酶与底物亲和力增强(Km减小),酶-底物复合物结合的更牢固,减弱了其分解为酶和产物的能力,从而降低形成产物的数量(朱铭莪,2011).另外,淹水条件下,土壤孔隙中氧气浓度降低,好氧微生物活性受到抑制,土壤酶分泌总量减少,也导致Vmax降低.具体参见污水宝商城资料或更多相关技术文档。

相关文档
最新文档