复合函数定义域与值域经典习题及答案

复合函数定义域与值域经典习题及答案
复合函数定义域与值域经典习题及答案

复合函数定义域和值域练习题

一、 求函数的定义域

1、求下列函数的定义域:

⑴y =

⑵y =

⑶01(21)111

y x x =

+-++-

2、设函数f x ()的定义域为[]01,,则函数f x ()2

的定义域为_ _ _;函数f x ()-2的定义

域为________;

3、若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数1

(2)f x

+的定义域为 。

4、 知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。

二、求函数的值域

5、求下列函数的值域:

⑴2

23y x x =+- ()x R ∈ ⑵2

23y x x =+- [1,2]x ∈ ⑶311x y x -=+ ⑷31

1

x y x -=+ (5)x ≥

y = ⑹ 22

5941x x y x +=-+

⑺31y x x =-++ ⑻2y x x =-

⑼ y = ⑽ 4y =

⑾y x =

6、已知函数222()1

x ax b

f x x ++=+的值域为[1,3],求,a b 的值。

三、求函数的解析式

1、 已知函数2

(1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。

2、 已知()f x 是二次函数,且2

(1)(1)24f x f x x x ++-=-,求()f x 的解析式。

3、已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。

4、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时, ()(1f x x =,则当(,0)x ∈-∞时

()f x =____ _

()f x 在R 上的解析式为

5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且

1

()()1

f x

g x x +=

-,求()f x 与()g x 的解析表达式

四、求函数的单调区间

6、求下列函数的单调区间: ⑴ 2

23y x x =++

⑵y =

⑶ 2

61y x x =--

7、函数()f x 在[0,)+∞上是单调递减函数,则2

(1)f x -的单调递增区间是

8、函数236

x

y x -=

+的递减区间是 ;函数y =的递减区间是

五、综合题

9、判断下列各组中的两个函数是同一函数的为 ( ) ⑴3

)

5)(3(1+-+=x x x y , 52-=x y ;

⑵111-+=

x x y , )1)(1(2-+=x x y ;

⑶x x f =)(, 2)(x x g = ;

⑷x x f =)(, ()g x =

⑸21)52()(-=x x f , 52)(2-=x x f 。 A 、⑴、⑵ B 、 ⑵、⑶ C 、 ⑷ D 、 ⑶、⑸

10、若函数()f x = 3

44

2

++-mx mx x 的定义域为R ,则实数m 的取值范围是 ( )

A 、(-∞,+∞)

B 、(0,43]

C 、(43,+∞)

D 、[0, 4

3

)

11

、若函数()f x =

R ,则实数m 的取值范围是( )

(A)04m << (B) 04m ≤≤ (C) 4m ≥ (D) 04m <≤ 12、对于11a -≤≤,不等式2

(2)10x a x a +-+->恒成立的x 的取值范围是( )

(A) 02x << (B) 0x <或2x > (C) 1x <或3x > (D) 11x -<< 13

、函数()f x =的定义域是( )

A 、[2,2]-

B 、(2,2)-

C 、(,2)(2,)-∞-+∞

D 、{2,2}-

14、函数1

()(0)f x x x x

=+

≠是( ) A 、奇函数,且在(0,1)上是增函数 B 、奇函数,且在(0,1)上是减函数 C 、偶函数,且在(0,1)上是增函数 D 、偶函数,且在(0,1)上是减函数

15、函数22(1)()(12)2(2)x x f x x x x x +≤-??

=-<

,若()3f x =,则x =

16、已知函数f x ()的定义域是(]01,,则g x fx a fx a a ()()()()=+?--<≤1

2

0的定义域

为 。

17、已知函数21mx n

y x +=+的最大值为4,最小值为 —1 ,则m = ,n = 18、把函数1

1

y x =+的图象沿x 轴向左平移一个单位后,得到图象C ,则C 关于原点对称的图象的

解析式为

19、求函数12)(2

--=ax x x f 在区间[ 0 , 2 ]上的最值

20、若函数2

()22,[,1]f x x x x t t =-+∈+当时的最小值为()g t ,求函数()g t 当∈t [-3,-2]时的最值。

复合函数定义域和值域练习题

答 案

一、函数定义域:

1、(1){|536}x x x x ≥≤-≠-或或 (2){|0}x x ≥ (3)1

{|220,,1}2

x x x x x -≤≤≠≠

≠且 2、[1,1]-; [4,9] 3、5

[0,];2 11(,][,)32

-∞-+∞ 4、11m -≤≤ 二、函数值域:

5、(1){|4}y y ≥- (2)[0,5]y ∈ (3){|3}y y ≠ (4)7[,3)3

y ∈ (5)[3,2)y ∈- (6)1{|5}2

y y y ≠≠且 (7){|4}y y ≥ (8)y R ∈ (9)[0,3]y ∈ (10)[1,4]y ∈ (11)1{|}2

y y ≤ 6、2,2a b =±= 三、函数解析式:

1、2()23f x x x =-- ; 2

(21)44f x

x +=- 2、2()21f x x x =-- 3、

4

()33

f x x =+

4

、()(1f x x =

;(10)()(10)

x x f x x x ?+≥?

=?

四、单调区间:

6、(1)增区间:[1,)-+∞ 减区间:(,1]-∞- (2)增区间:[1,1]- 减区间:[1,3] (3)增区间:[3,0],[3,)-+∞ 减区间:[0,3],(,3]-∞-

7、[0,1]

8、(,2),(2,)-∞--+∞ (2,2]

-

五、综合题:

C D B B D B

14

15、(,1]a a -+ 16、4m =± 3n = 17、12

y x =

- 18、解:对称轴为x a = (1)0a ≤时,min ()(0)1f x f ==- , max ()(2)34f x f a ==-

(2)01a <≤时,2

min ()()1f x f a a ==-- ,max ()(2)34f x f a ==-

(3)12a <≤时,2

min ()()1f x f a a ==-- ,max ()(0)1f x f ==-

(4)2a >时 ,min ()(2)34f x f a ==- ,max ()(0)1f x f ==-

19、解:221(0)()1(01)22(1)t t g t t t t t ?+≤?=<

(,0]t ∈-∞时,2

()1g t t =+为减函数

在[3,2]--上,2

()1g t t =+也为减函数

min ()(2)5g t g =-=, max ()(3)10g t g =-=

函数定义域、值域经典习题及答案

复合函数定义域和值域练习题 一、 求函数的定义域 1、求下列函数的定义域: ⑴y = (2 )01(21)111 y x x = +-+- 2、设函数f x ()的定义域为[]01,,则函数f x ()2 的定义域为_ _ _;函数f x ()-2的定义域为 ________; 3、若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数1(2)f x +的定义域为 。 4、 已知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取 值范围。 二、求函数的值域 5、求下列函数的值域: ⑴223y x x =+- ()x R ∈ ⑵2 23y x x =+- [1,2]x ∈

⑶311x y x -=+ ⑷31 1 x y x -=+ (5)x ≥ ⑸ y = 三、求函数的解析式 1、 已知函数2(1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。 2、 已知()f x 是二次函数,且2(1)(1)24f x f x x x ++-=-,求()f x 的解析式。 3、 已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。 4、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时, ()(1f x x =,则当(,0)x ∈-∞时()f x =____ _ ()f x 在R 上的解析式为 5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且 1 ()()1 f x g x x += -,求()f x 与()g x 的解析表达式

高一必修一数学-复合函数定义域

复合函数的定义域 讲解内容: 复合函数的定义域求法 讲解步骤: 第一步:函数概念及其定义域 函数的概念:设是,A B 非空数集,如果按某个确定的对应关系f ,使对于集合A 中的任意一个x ,在集合B 中都有唯一确定的数()f x 和它对应,那么就称:f A B →为集合A 到集合B 的函数,记作:(),y f x x A =∈。其中x 叫自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 的值叫做函数值. 第二步:复合函数的定义 一般地:若)(u f y =,又)(x g u =,且)(x g 值域与)(u f 定义域的交集不空,则函数)]([x g f y =叫x 的复合函数,其中)(u f y =叫外层函数,)(x g u =叫内层函数,简言之:复合函数就是:把一个函数中的自变量替换成另一个函数所得的新函数. 例如: 2()35,()1f x x g x x =+=+; 复合函数(())f g x 即把()f x 里面的x 换成()g x ,22 (())3()53(1)538f g x g x x x =+=++=+ 问:函数()f x 和函数(5)f x +所表示的定义域是否相同?为什么?(不相同;原因:定义域是 求x 的取值范围,这里x 和5x +所属范围相同,导致它们定义域的范围就不同了。) 第三步:介绍复合函数的定义域求法 例1. 已知()f x 的定义域为](3,5-,求函数(32)f x -的定义域; 解:由题意得 35x -<≤ 3325x ∴-<-≤ 137x -<≤ 1 7 33x ∴-<≤ 所以函数(32)f x -的定义域为17,33? ?- ??? . 练1.已知)(x f 的定义域为]30(,,求)2(2x x f +定义域。 解 因为复合函数中内层函数值域必须包含于外层函数定义域中,即 ???≤≤->-+?≤+<13023202320222 x x x x x x x x x ,或

求函数的定义域和值域的方法

解:求函数的定义域的常用方法 函数的定义域是高考的必考内容,高考对函数的定义域常常是通过函数性质或函数的应用来考查的,具有隐蔽性,所以在研究函数问题时必须树立“函数的定义域优先”的观念。因此掌握函数的定义域的基本求解方法是十分重要的。下面通过例题来谈谈函数的定义域的常见题型和常用方法。 一,已知函数解析式求函数的定义域 如果只给出函数解析式(不注明定义域),其定义域是指使函数解析式有意义的自变量的取值范围(称为自然定义域),这时常通过解不等式或不等式组求得函数的定义域。主要依据是:(1)分式的分母不为零,(2)偶次根式的被开方数为非负数,(3)零次幂的底数不为零,(4)对数的真数大于零,(5)指数函数和对数函数的底数大于零且不等于1,(6)三角函数中的正切函数y=tanx ,{x ︱x ∈R 且 x ≠2 k π π+ , k ∈z }和余切函数y=cotx ,{x ︱x ∈R 且 x ≠k π,k ∈z }等。 例题一 求下列函数的定义域: (1) y=2)0+㏒(x —2)x 2 (2) 解:(1)欲使函数有意义,须满足 2≠0 x —1≥0 x —2>0 解得:x >2 且 x ≠3 ,x ≠5 x —2≠1 ∴ 函数的定义域为(2,3)∪(3,5)∪(5,+∞) x ≠0 (2) 由已知须满足 tanx ﹥0 解得: k π ﹤x ﹤2 k π π+ (k ∈z ) x ≠2 k π π+ -4﹤x ﹤4 16—x 2 ﹥0 ∴ 函数的定义域为(-π,2 π - )∪(0, 2 π )∪(π,4) 二,复合函数求定义域 求复合函数定义域应按从外向内逐层求解的方法。最外层的函数的定义域为次外层函数的值域,依次求,直到最内层函数定义域为止。多个复合函数的求和问题,是将每个复合函数定义域求出后取其交集。 例题二(1)已知函数f (x )的定义域为〔-2,2〕,求函数y=f (x 2-1)的定义域。 (2)已知函数y=f (2x+4)的定义域为〔0,1〕,求函数f (x )的定义域。 (3)已知函数f (x )的定义域为〔-1,2〕,求函数y=f (x+1)—f (x 2-1)的定义域。 (4)已知函数y=f (tan2x )的定义域为〔0, 8 π 〕,求函数f (x )的定义域。 分析:(1)是已知f (x )的定义域,求f 〔g (x )〕的定义域。其解法是:已知f

函数定义域 值域 习题及答案

函数定义域值域习题及 答案 Last revision on 21 December 2020

复合函数定义域和值域练习题 一、 求函数的定义域 1、求下列函数的定义域: ⑴33 y x =+- 2、设函数f x ()的定义域为[]01,,则函数f x ()2的定义域为_ _ _;函数f x ()-2的定义域为________; 3、若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数 1(2)f x +的定义域为 。 4、 已知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在, 求实数m 的取值范围。 二、求函数的值域 5、求下列函数的值域: ⑴223y x x =+- ()x R ∈ ⑵223y x x =+- [1,2]x ∈ ⑶311x y x -=+ ⑷311 x y x -=+ (5)x ≥ ⑸ y = 三、求函数的解析式 1、 已知函数2(1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。 2、 已知()f x 是二次函数,且2(1)(1)24f x f x x x ++-=-,求()f x 的解析式。 3、 已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。 4、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时, ()(1f x x =+,则当(,0)x ∈-∞时()f x =____ _

()f x 在R 上的解析式为 5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且 1()()1 f x g x x +=-,求()f x 与()g x 的解析表达式 四、求函数的单调区间 6、求下列函数的单调区间: ⑴ 223y x x =++ ⑵y ⑶ 261y x x =-- 7、函数()f x 在[0,)+∞上是单调递减函数,则2(1)f x -的单调递增区间是 8、函数236 x y x -=+的递减区间是 ;函数y =的递减区间是 五、综合题 9、判断下列各组中的两个函数是同一函数的为 ( ) ⑴3 )5)(3(1+-+=x x x y , 52-=x y ; ⑵111-+=x x y , )1)(1(2-+=x x y ; ⑶ x x f =)(, 2)(x x g = ; ⑷x x f =)(, ()g x =; ⑸21)52()(-=x x f , 52)(2-=x x f 。 A 、⑴、⑵ B 、 ⑵、⑶ C 、 ⑷ D 、 ⑶、⑸ 10、若函数()f x = 3442++-mx mx x 的定义域为R ,则实数m 的取值范围是 ( ) A 、(-∞,+∞) B 、(0,43] C 、(43,+∞) D 、[0, 4 3) 11、若函数()f x =的定义域为R ,则实数m 的取值范围是( ) (A)04m << (B) 04m ≤≤ (C) 4m ≥ (D) 04m <≤ 13、函数()f x = ) A 、[2,2]- B 、(2,2)- C 、(,2)(2,)-∞-+∞ D 、{2,2}- 14、函数1()(0)f x x x x =+≠是( ) A 、奇函数,且在(0,1)上是增函数 B 、奇函数,且在(0,1)上是减函数

高中数学-函数定义域、值域求法总结

函数定义域、值域求法总结 一.求函数的定义域需要从这几个方面入手: (1)分母不为零 (2)偶次根式的被开方数非负。 (3)对数中的真数部分大于0。 (4)指数、对数的底数大于0,且不等于1 (5)y=tanx 中x ≠k π+π/2;y=cotx 中x ≠k π等等。 ( 6 )0x 中x 0≠ 二、值域是函数y=f(x)中y 的取值范围。 常用的求值域的方法: (1)直接法 (2)图象法(数形结合) (3)函数单调性法 (4)配方法 (5)换元法 (包括三角换元)(6)反函数法(逆求法) (7)分离常数法 (8)判别式法 (9)复合函数法 (10)不等式法 (11)平方法等等 这些解题思想与方法贯穿了高中数学的始终。 定义域的求法 1、直接定义域问题 例1 求下列函数的定义域: ① 2 1 )(-=x x f ;② 23)(+=x x f ;③ x x x f -+ +=211)( 解:①∵x-2=0,即x=2时,分式 2 1 -x 无意义, 而2≠x 时,分式 21 -x 有意义,∴这个函数的定义域是{}2|≠x x . ②∵3x+2<0,即x<-32 时,根式23+x 无意义, 而023≥+x ,即3 2 -≥x 时,根式23+x 才有意义, ∴这个函数的定义域是{x |3 2 -≥x }.

③∵当0201≠-≥+x x 且,即1-≥x 且2≠x 时,根式1+x 和分式x -21 同时有意义, ∴这个函数的定义域是{x |1-≥x 且2≠x } 另解:要使函数有意义,必须: ? ??≠-≥+0201x x ? ???≠-≥21 x x 例2 求下列函数的定义域: ①14)(2 --= x x f ②2 14 3)(2-+--= x x x x f ③= )(x f x 11111++ ④x x x x f -+= 0)1()( ⑤3 7 3132+++-=x x y 解:①要使函数有意义,必须:142 ≥-x 即: 33≤≤-x ∴函数14)(2--= x x f 的定义域为: [3,3-] ②要使函数有意义,必须:???≠-≠-≤≥?? ??≠-+≥--131 40210432x x x x x x x 且或 4133≥-≤<--

函数的定义域与值域单调性与奇偶性三角函数典型例题

函数的定义域与值域、单调性与奇偶性 一、知识归纳: 1. 求函数的解析式 (1)求函数解析式的常用方法: ①换元法( 注意新元的取值范围) ②待定系数法(已知函数类型如:一次、二次函数、反比例函数等) ③整体代换(配凑法) ④构造方程组(如自变量互为倒数、已知f (x )为奇函数且g (x )为偶函数等) (2)求函数的解析式应指明函数的定义域,函数的定义域是使式子有意义的自变量的取值范围,同时也要注意变量的实际意义。 (3)理解轨迹思想在求对称曲线中的应用。 2. 求函数的定义域 求用解析式y =f (x )表示的函数的定义域时,常有以下几种情况: ①若f (x )是整式,则函数的定义域是实数集R ; ②若f (x )是分式,则函数的定义域是使分母不等于0的实数集; ③若f (x )是二次根式,则函数的定义域是使根号内的式子大于或等于0的实数集合; ④若f (x )是由几个部分的数学式子构成的,则函数的定义域是使各部分式子都有意义的实数集合; ⑤若f (x )是由实际问题抽象出来的函数,则函数的定义域应符合实际问题. 3. 求函数值域(最值)的一般方法: (1)利用基本初等函数的值域; (2)配方法(二次函数或可转化为二次函数的函数); (3)不等式法(利用基本不等式,尤其注意形如)0(>+=k x k x y 型的函数) (4)函数的单调性:特别关注)0(>+ =k x k x y 的图象及性质 (5)部分分式法、判别式法(分式函数) (6)换元法(无理函数) (7)导数法(高次函数) (8)反函数法 (9)数形结合法 4. 求函数的单调性 (1)定义法: (2)导数法: (3)利用复合函数的单调性: (4)关于函数单调性还有以下一些常见结论: ①两个增(减)函数的和为_____;一个增(减)函数与一个减(增)函数的差是______; ②奇函数在对称的两个区间上有_____的单调性;偶函数在对称的两个区间上有_____的单调性; ③互为反函数的两个函数在各自定义域上有______的单调性; (5)求函数单调区间的常用方法:定义法、图象法、复合函数法、导数法等 (6)应用:比较大小,证明不等式,解不等式。 5. 函数的奇偶性 奇偶性:定义:注意区间是否关于原点对称,比较f (x ) 与f (-x )的关系。f (x ) -

高一数学《函数的定义域值域》练习题

函数值域、定义域、解析式专题 一、函数值域的求法 1、直接法: 例1:求函数y = 例2:求函数1y 的值域。 2、配方法: 例1:求函数242y x x =-++([1,1]x ∈-)的值域。 例2:求 函 数]2,1[x ,5x 2x y 2 -∈+-= 的 值域。 例3:求函数2256y x x =-++的值域。 3、分离常数法: 例1:求函数125 x y x -=+的值域。 例2:求函数1 22+--=x x x x y 的值域. 例3:求函数1 32 x y x -=-得值域. 4、换元法: 例1:求函数2y x = 例2: 求 函 数1x x y -+=的 值 域。 5、函数的单调性法:确定函数在定义域(或某个定义域的子集)上的单调性,求出函数的值域。 例1:求函数y x = 例2:求函数()x x x f -++=11的值域。

例3:求 函 数1x 1x y --+=的 值 域。 6、数型结合法:函数图像是掌握函数的重要手段,利用数形结合的方法,根据函数图像求得函数值域,是一种求值域的重要方法。当函数解析式具有某种明显的几何意义(如两点间距离,直线的斜率、截距等)或当一个函数的图象易于作出时,借助几何图形的直观性可求出其值域。 例1:求函数|3||5|y x x =++-的值域。 7、非负数法 根据函数解析式的结构特征,结合非负数的性质,可求出相关函数的值域。 例1、(1)求函数216x y -=的值域。 (2)求函数1 3 22+-=x x y 的值域。 二、函数定义域 例1:已知函数()f x 的定义域为[]15-,,求(35)f x -的定义域. 例2:若()f x 的定义域为[]35-,,求()()(25)x f x f x ?=-++的定义域. 例3:求下列函数的定义域: ① 2 1 )(-= x x f ; ② 23)(+=x x f ; ③ x x x f -+ += 21 1)( 例4:求下列函数的定义域: ④ 14)(2--=x x f ⑤ ②2 14 3)(2-+--= x x x x f ⑥ 3 7 3132+++-= x x y ④x x x x f -+= 0)1()( 三、解析式的求法 1、配凑法 例1:已知 :23)1(2 +-=+x x x f ,求f(x);

复合函数定义域三种形式解法

先介绍几个名词:(能理解最好,如果感觉这些名词有点晕,你可以跳过) 【定义域】:就是初中我们所学的,函数y=f(x)的自变量x的取值范围;【值域】:函数y=f(x)的因变量y的取值范围; 【显函数】:俗称常见函数,函数解析式是明确的,例如:y=f(x)=2x2+3x-5; 【隐函数】:俗称抽象函数,函数解析式是不明确的,就用y=f(x)表示,具体f(x)是什么内容是隐藏的; 【复合函数】:如果说y=f(x)是一个简单的抽象函数,那么把自变量x 用一个函数g(x)来代替,就称y=f(g(x))为复合的抽象函数,习惯上称y=f(t)是外函数,t=g(x)为内函数。 讲解之前提醒很关键的一句:凡是函数的定义域,永远是指自变量x 的取值范围。 【题型一】已知抽象函数y=f(x)的定义域[m,n],如何求复合抽象函数y=f(g(x))的定义域? 思路分析:本题型是已知y=f(x)的自变量x的范围,求y=f(g(x))的自变量x的范围,其中的关键是,后者的g(x)相当于前者的x。 解决策略:求不等式m≤g(x)≤n的解集,即为y=f(g(x))的定义域【例题1】已知函数y=f(x)的定义域[0,3],求函数y=f(3+2x)的定义域. 解:令t=3+2x,∵y=f(x)的定义域[0,3],∴y=f(t)的定义域也为[0,3],

即t=3+2x∈[0,3], 关于抽象复合函数定义域的求法 说明:内函数g(x)=3+2x,通过令t=3+2x做了一个换元,此处换元不能写为令x=3+2x。原因是y=f(x)中的x与 y=f(3+2x)的x虽然长得一样,但是意义不同,如果令x=3+2x,则等号两边的x就是一模一样了,x只能为-3了。 【题型二】已知复合抽象函数y=f(g(x))定义域[m,n],如何求抽象函数y=f(x)的的定义域? 思路分析:本题型是已知y=f(g(x))的自变量x的范围,求y=f(x)的自变量x的范围,其中的关键是,前者的 g(x)相当于后者的x。 解决策略:求内函数t=g(x)在区间[m,n]的值域(t的取值范围),即为y=f(x)的定义域 【例题2】已知函数y=f(2x-1)的定义域[0,3],求函数y=f(x)的定义域. 解:∵y=f(2x-1)的定义域[0,3],∴0≤x≤3,令t=2x-1,∴t=2x-1∈[-1,5] 故,函数y=f(t)的定义域为t∈[-1,5], 故,函数y=f(x)的定义域为x∈[-1,5] 说明:函数y=f(x)与y=f(t)是同一个函数,与单个自变量是x还是t 无关。另外,题型二是题型一的逆向题目。

函数定义域值域求法(全十一种)

创作编号: GB8878185555334563BT9125XW 创作者: 凤呜大王* 高中函数定义域和值域的求法总结 一、常规型 即给出函数的解析式的定义域求法,其解法是由解析式有意义列出关于自变量的不等式或不等式组,解此不等式(或组)即得原函数的定义域。 例1 求函数8 |3x |15 x 2x y 2-+--= 的定义域。 解:要使函数有意义,则必须满足 ?? ?≠-+≥--②① 8|3x |015x 2x 2 由①解得 3x -≤或5x ≥。 ③ 由②解得 5x ≠或11x -≠ ④ ③和④求交集得3x -≤且11x -≠或x>5。 故所求函数的定义域为}5x |x {}11x 3x |x {>-≠-≤ 且。 例2 求函数2 x 161 x sin y -+=的定义域。 解:要使函数有意义,则必须满足 ???>-≥②①0 x 160 x sin 2 由①解得Z k k 2x k 2∈π+π≤≤π, ③ 由②解得4x 4<<- ④ 由③和④求公共部分,得 π≤<π-≤<-x 0x 4或 故函数的定义域为]0(]4(ππ--,, 评注:③和④怎样求公共部分?你会吗? 二、抽象函数型 抽象函数是指没有给出解析式的函数,不能常规方法求解,一般表示为已知一个抽象函数的定义域求另一个抽象函数的解析式,一般有两种情况。 (1)已知)x (f 的定义域,求)]x (g [f 的定义域。 (2)其解法是:已知)x (f 的定义域是[a ,b ]求)]x (g [f 的定义域是解b )x (g a ≤≤,即为所求的定义域。 例3 已知)x (f 的定义域为[-2,2],求)1x (f 2-的定义域。 解:令21x 22≤-≤-,得3x 12≤≤-,即3x 02≤≤,因此3|x |0≤≤,从而3x 3≤≤-,故函数的定义域是}3x 3|x {≤ ≤-。

函数定义域与值域经典类型总结 练习题 含答案

<一>求函数定义域、值域方法和典型题归纳 一、基础知识整合 1.函数的定义:设集合A 和B 是非空数集,按照某一确定的对应关系f ,使得集合A 中任意一个数x,在集合B 中都有唯一确定的数f(x)与之对应。则称f:为A 到B 的一个函数。 2.由定义可知:确定一个函数的主要因素是①确定的对应关系(f ),②集合A 的取值范围。由这两个条件就决定了f(x)的取值范围③{y|y=f(x),x ∈A}。 3.定义域:由于定义域是决定函数的重要因素,所以必须明白定义域指的是: (1)自变量放在一起构成的集合,成为定义域。 (2)数学表示:注意一定是用集合表示的范围才能是定义域,特殊的一个个的数时用“列举法”;一般表示范围时用集合的“描述法”或“区间”来表示。 4.值域:是由定义域和对应关系(f )共同作用的结果,是个被动变量,所以求值域时一定注意求的是定义域范围内的函数值的范围。 (1)明白值域是在定义域A 内求出函数值构成的集合:{y|y=f(x),x ∈A}。 (2)明白定义中集合B 是包括值域,但是值域不一定为集合B 。 二、求函数定义域 (一)求函数定义域的情形和方法总结 1已知函数解析式时:只需要使得函数表达式中的所有式子有意义。 (1)常见情况简总: ①表达式中出现分式时:分母一定满足不为0; ②表达式中出现根号时:开奇次方时,根号下可以为任意实数;开偶次方时,根号下满足大于或等于0(非负数)。 ③表达式中出现指数时:当指数为0时,底数一定不能为0. ④根号与分式结合,根号开偶次方在分母上时:根号下大于0. ⑤表达式中出现指数函数形式时:底数和指数都含有x ,必须满足指数底数大于0且不等于1.(0<底数<1;底数>1) ⑥表达式中出现对数函数形式时:自变量只出现在真数上时,只需满足真数上所有式子大于0,且式子本身有意义即可;自变量同时出现在底数和真数上时,要同时满足真数大于0,底数要大于0且不等于 1. (2 ()log (1)x f x x =-) 注:(1)出现任何情形都是要注意,让所有的式子同时有意义,及最后求的是所有式子解集的交集。

(完整版)几种复合函数定义域的求法

配凑法就是在)]([x g f 中把关于变量x 的表达式先凑成)(x g 整体的表达式,再直接把)(x g 换成x 而得)(x f 。 f(x -1x )=x 2+1x 2,函数f(x)的解析式 换元法就是先设t x g =)(,从中解出x (即用t 表示x ),再把x (关于t 的式子)直接代入)]([x g f 中消去x 得到)(t f ,最后把)(t f 中的t 直接换成x 即得)(x f ,这种代换遵循了同一函数的原则。 f(x +1)=x 2 +x,函数f(x)的解析式: 复合函数的定义域 复合函数的定义 一般地:若)(u f y =,又)(x g u =,且)(x g 值域与)(u f 定义域的交集不空,则函数)]([x g f y =叫x 的复合函数,其中)(u f y =叫外层函数,)(x g u =叫内层函数,简言之:复合函数就是:把一个函数中的自变量替换成另一个函数所得的新函数. 例如: 2()35,()1f x x g x x =+=+; 复合函数(())f g x 即把()f x 里面的x 换成()g x , 22(())3()53(1)538f g x g x x x =+=++=+ 问:函数()f x 和函数(5)f x +所表示的定义域是否相同?为什么?(不相同;原因:定义域是 求x 的取值范围,这里x 和5x +所属范围相同,导致它们定义域的范围就不同了。)说明: ⑴复合函数的定义域,就是复合函数(())y f g x =中x 的取值范围。 ⑵x 称为直接变量,u 称为中间变量,u 的取值范围即为()g x 的值域。 ⑶))((x g f 与))((x f g 表示不同的复合函数。 设函数53)(,32)(-=+=x x g x x f ,求))(()),((x f g x g f 复合函数的定义域求法 .已知)(x f 的定义域,求复合函数()][x g f 的定义域 由复合函数的定义我们可知,要构成复合函数,则内层函数的值域必须包含于外层函数的定义域之中,因此可得其方法为:若)(x f 的定义域为()b a x ,∈,求出)]([x g f 中b x g a <<)(的解x 的范围,即为)]([x g f 的定义域。

函数定义域、值域经典习题及答案88322

复合函数定义域和值域练习题 一、 求函数的定义域 1、求下列函数的定义域: 2) y = 1 + (2 x - 1)0+ 4 - x 2 1+ 1 x -1 2、设函数 f (x )的定义域为[0,1],则函数f (x 2)的定义域为_ _ _;函数 f ( x -2) 的定义域为 _______ 3、若函数 f (x +1)的定义域为[-2,3],则函数 f (2x -1)的定义域是 ;函 数 f (1 + 2)的定义域为 。 x 4、 已知函数f (x )的定义域为[-1, 1],且函数F (x )= f (x +m )-f (x -m )的定义域存在, 求实数m 的取值范围。 二、求函数的值域 5、求下列函数的值域: ⑴ y = x 2 +2x -3 (x R ) ⑵ y = x 2 +2x -3 x [1,2] ⑶y =3x -1 x + 1 ⑷y = 3x -1 (x 5) x +1 三、求函数的解析式 1、 已知函数 f (x -1) = x - 4x ,求函数 f (x ), f (2x +1) 的解析式。 2、 已知 f (x )是二次函数,且 f (x +1)+ f (x -1)=2x -4x ,求 f (x )的解析式。 ⑴y = x 2 -2x -15 x +3-3 y = 2x - 6 x +2

3、已知函数f(x)满足2f(x)+ f(-x)=3x+4,则f(x)= 。 4、设f(x)是R 上的奇函数,且当x[0,+)时,f(x)=x(1+3x),则当x(-,0)时f(x)= ________ _ f(x)在R 上的解析式为 5、设f(x)与g(x)的定义域是{x|x R,且x1},f(x) 是偶函数,g(x)是奇函数,且 f(x)+g(x)=1,求f(x)与g(x) 的解析表达式 x - 1 四、求函数的单调区间 6、求下列函数的单调区间: ⑴ y= x2+2x+3 ⑵ y = -x2+2x +3 ⑶ y = x2- 6x -1 7、函数f(x)在[0,+)上是单调递减函数,则f(1-x2)的单调递增区间是 8、函数y = 2-x的递减区间是;函数y = 2-x的递减 3x + 6 3x + 6 区间是 五、综合题 9、判断下列各组中的两个函数是同一函数的为 ( ) ⑴y1=(x+3)(x-5),y2=x-5;⑵y1= x+1 x-1 ,y2= (x+1)(x-1) ; x+3 ⑶f (x) = x,g(x) = x2 ;⑷f (x) = x,g(x)= 3x3 ;⑸f1(x) = ( 2x-5)2 , f (x) = 2x - 5。 A、⑴、⑵ B 、⑵、 ⑶ C 、⑷D、⑶、⑸ 10、若函数f(x)= x - 4的定义域为R ,则实数 m mx2+ 4mx + 3 的取值范围是 ( ) A、(-∞,+∞) 3 B 、(0,3 ] 3 C 、(3,+∞ ) 3 D 、[0, 3 ) 11、若函数f (x) = mx2+mx+1的定义域为R,则实数m的取值范围是( )

函数定义域值域经典习题及答案

复合函数定义域和值域练习题 一、 求函数的定义域 1、求下列函数的定义域: ⑴33 y x = +- (2 )01(21)111 y x x = +-++ - 2、设函数的定义域为,则函数的定义域为_ _ _;函数 的定义域为________; 3、若函数(1)f x +的定义域为 ,则函数(21)f x -的定义域是 ;函 数1 (2)f x +的定义域为 。 4、 已知函数 的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在, 求实数m 的取值范围。 二、求函数的值域 5、求下列函数的值域: ⑴223y x x =+- ()x R ∈ ⑵223y x x =+- [1,2]x ∈ ⑶31 1x y x -= + ⑷311 x y x -=+ (5)x ≥ ⑸ y = 三、求函数的解析式 1、 已知函数2(1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。 2、 已知()f x 是二次函数,且2(1)(1)24f x f x x x ++-=-,求()f x 的解析式。

3、已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。 4、设 ()f x 是R 上的奇函数,且当[0,)x ∈+∞时, ()(1f x x =+,则当(,0)x ∈-∞时 ()f x =____ _ ()f x 在R 上的解析式为 5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且 1 ()()1 f x g x x += -,求()f x 与()g x 的解析表达式 四、求函数的单调区间 6、求下列函数的单调区间: ⑴ 223y x x =++ ⑵ y = ⑶ 261y x x =-- 7、函数()f x 在[0,)+∞上是单调递减函数,则2(1)f x -的单调递增区间是 8、函数236 x y x -= +的递减区间是 ;函数y =的递减 区间是 五、综合题 9、判断下列各组中的两个函数是同一函数的为 ( ) ⑴3 ) 5)(3(1+-+= x x x y , 52-=x y ; ⑵111-+=x x y , )1)(1(2-+=x x y ; ⑶ x x f =)(, 2)(x x g = ; ⑷x x f =)(, ()g x =; ⑸ 2 1)52()(-=x x f , 52)(2-=x x f 。 A 、⑴、⑵ B 、 ⑵、⑶ C 、 ⑷ D 、 ⑶、⑸ 10、若函数()f x = 3 44 2 ++-mx mx x 的定义域为R ,则实数m 的取值范围是 ( ) A 、(-∞,+∞) B 、(0,43] C 、(43,+∞) D 、[0, 4 3 )

复合函数定义域的常见求法

复合函数定义域的常见求法 一、复合函数的概念 假如y 是u 的函数,而u 是x 的函数,即y = f ( u ), u = g ( x ) ,那么y 关于x 的函数y = f [g ( x ) ]叫做函数f 与 g 的复合函数,u 叫做中间变量。 注意:复合函数并不是一类新的函数,它只是反映某些函数在结构方面的某种特点,因此,依照复合函数结构,将它折成几个简单的函数时,应从外到里一层一层地拆,注意不要漏层。 另外,在研究有关复合函数的咨询题时,要注意复合函数的存在条件,即当且仅当g ( x )的值域与f ( u )的定义域的交集非空时,它们的复合函数才有意义,否那么如此的复合函数不存在。 例:f ( x + 1 ) = (x + 1)2 能够拆成y = f ( u ) = u 2 , u = g ( x ) , g ( x ) = x + 1 ,即能够看成f ( u ) = u 2 与g ( x ) = x + 1 两个函数复合而成。 二、求复合函数的定义域: 〔1〕假设f(x)的定义域为a ≤ x ≤ b,那么f [ g ( x ) ] 中的a ≤ g ( x ) ≤ b ,从中解得x 的范畴,即为f [g ( x )]的定义域。 例1、y = f ( x ) 的定义域为[ 0 , 1 ],求f ( 2x + 1 )的定义域。 答案: [-1/2 ,0 ] 例2、f ( x )的定义域为〔0,1〕,求f ( x 2)的定义域。 答案: [-1 ,1] 〔2〕假设f [ g ( x ) ]的定义域为〔m , n 〕那么由m < x < n 确定出g ( x )的范畴即为f ( x )的定义域。 例3、函数f ( 2x + 1 )的定义域为〔0,1〕,求f ( x ) 的定义域。 答案: [ 1 ,3] 〔3〕由f [ g ( x ) ] 的定义域,求得f ( x )的定义域后,再求f [ h ( x ) ]的定义域。 例4、f ( x + 1 )的定义域为[-2 ,3],求f ( 2x 2 – 2 ) 的定义域。 答案:[-√3/2 ,-√3]∪[√3/2 ,√3] 三、求复合函数的解析式。 关于复合函数的解析式的求法,尽管种类专门多,在那个地点重点介绍配凑法和换元法,详细内容请参阅?教学周刊?第6期。 〔1〕配凑法 假设f [ g ( x ) ] = F ( x )是关于x 的函数,能够把F ( x )表示g ( x )的复合函数形式,然后用x 替换g ( x ),即可得到f ( x )的解析式。 例5、f (x x x x x 21)122++=+,求f ( x )的解析式。 答案:f(x)= x 2 例6、f ( x + 331)1x x x +=,求f ( x )的解析式。 答案:f(x)= x 3-2x-1 〔2〕换元法 假设f [ g ( x ) ]的表达式,能够令g ( x ) = t ,从中解出x 再将x 代入f [ g ( x ) ]的表达式中,如此

函数的定义域和值域

函数定义 映射 一般地,设A 、B 是两个非空的集合,如果按某一个确定的对应法则f ,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,那么就称对应:f A B →为从集合A 到集合B 的一个映射(mapping ).记作“:f A B →” 函数的概念 1.定义:如果A ,B 是非空的数集,如果按某个确定的对应关系f ,使对于集合A 中的任意一个数,在集合B 中都有唯一确定的数)(x f 和它对应,那么就称B A f →:为从集合A 到集合B 的一个函数,记作 )(x f y =,A x ∈。 其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 的值叫做函数值,函数值的集合{}A x x f ∈|)(叫做函数的值域。 函数与映射的关系与区别 相同点:(1)函数与映射都是两个非空集合中元素的对应关系; (2)函数与映射的对应都具有方向性; (3)A 中元素具有任意性,B 中元素具有唯一性; 区别:函数是一种特殊的映射,它要求两个集合中的元素必须是数,而映射中两个集合的元素是任意的数学对象。 函数的三要素 函数是由三件事构成的一个整体,分别称为定义域.值域和对应法则.当我们认识一个函数时,应从这三方面去了解认识它. 例 已知函数f(x)=3x 2+5x -2,求f(3)、f(-2)、f(a)、f(a+1) 例 函数y =x x 2 3与y =3x 是不是同一个函数?为什么? 练习 判断下列函数f (x )与g (x )是否表示同一个函数,说明理由? ① f ( x ) = (x -1) 0;g ( x ) = 1 ② f ( x ) = x ; g ( x ) = 2x ③ f ( x ) = x 2;f ( x ) = (x + 1) 2 ④ f ( x ) = | x | ;g ( x ) = 2x

函数定义域知识点梳理、经典例题及解析、高考题带答案

函数的定义域 【考纲说明】 1、理解函数的定义域,掌握求函数定义域基本方法。 2、会求较简单的复合函数的定义域。 3、会讨论求解其中参数的取值范围。 【知识梳理】 (1) 定义:定义域是在一个函数关系中所有能使函数有意义的 的集合。 (2) 确定函数定义域的原则 1.当函数y=f(x)用列表法给出时,函数的定义域指的是表格中所有实数x 的集合。 2.当函数y=f(x)用图象法给出时,函数的定义域指的是图象在x 轴上的投影所覆盖的实数的集合。 3.当函数y=f(x)用解析式给出时,函数定义域指的是使解析式有意义的实数的集合。 4.当函数y=f(x)由实际问题给出时,函数定义域要使函数有意义,同时还要符合实际情况。 3、.确定定义域的依据: ①f(x)是整式(无分母),则定义域为 ; ②f(x)是分式,则定义域为 的集合; ③f(x)是偶次根式,则定义域为 的集合; ④对数式中真数 ,当指数式、对数式底中含有变量x 时,底数 ; ⑤零次幂中, ,即x 0中 ; ⑥若f(x)是由几个基本初等函数的四则运算而合成的函数,则定义域是各个函数定义域的 。 ⑦正切函数x y tan = 4、抽象函数的定义域(难点) (1)已知)(x f 的定义域,求复合函数()][x g f 的定义域 由复合函数的定义我们可知,要构成复合函数,则内层函数的值域必须包含于外层函数的定义域之中,因此可 得其方法为:若)(x f 的定义域为()b a x ,∈,求出)]([x g f 中b x g a <<)(的解x 的范围,即为)]([x g f 的定义域。 (2)已知复合函数()][x g f 的定义域,求)(x f 的定义域 方法是:若()][x g f 的定义域为()b a x ,∈,则由b x a <<确定)(x g 的范围即为)(x f 的定义域。

函数定义域、值域、解析式习题及答案

一、 求函数的定义域 1、求下列函数的定义域: ⑴y = ⑵y = ⑶01(21)111 y x x = +-+- (4) f(x)= 2 32--x x ; (5) ; (6)f(x)=1+x -x x -2; (7 )0y = (8 )223 y x x =+- 2、设函数f x ()的定义域为[]01,,则函数f x ()2的定义域为_ _ _;函数f x ()-2的定义域为________; 3、若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数1(2)f x +的定义域为 。 4、f(x)的定义域为[0,1],求f(x +1)的定义域。 5、已知f(x-1)的定义域为[-1,0],求f(x+1)的定义域。 二、求函数的值域 5、求下列函数的值域: ⑴2 23y x x =+- ()x R ∈ ⑵2 23y x x =+- [1,2]x ∈ ⑶31 1x y x -= + ⑷311 x y x -=+ (5)x ≥ (5 )y x =(6)求函数y =-x 2 +4x -1 ,x ∈[-1,3) 的值域

三、求函数的解析式 1、已知函数 2 (1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。 2、已知()f x 是二次函数,且 2(1)(1)24f x f x x x ++-=-,求()f x 的解析式。 3、已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。 4、已知f(2x+1)=3x-2,求函数f(x)的解析式。(配凑法或换元法) 5、已知函数f(x)满足1 ()2()f x f x x -=,求函数f(x)的解析式。(消去法) 6、已知()1f x x =+,求函数f(x)的解析式。 7、已知 2 2 11()11x x f x x --=++,求函数f(x)的解析式。 8、已知2 211()f x x x x +=+,求函数f(x)的解析式。 9、已知()2()1f x f x x +-=-,求函数f(x)的解析式。 10、求下列函数的单调区间: ⑴ 2 23y x x =++ 11、函数236x y x -= +的递减区间是

求函数的定义域与值域的常用方法完整版

求函数的定义域与值域 的常用方法 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

求函数的定义域与值域的常用方法 引入: 自变量x 的取值范围为 定义域 因变量y 的取值范围为 值域 求函数的解析式、求函数的定义域、求函数的值域、求函数的最值? 一、求函数的解析式 (一)解析式的表达形式 (解析式的表达形式有一般式、分段式、复合式等。) 1、一般式 (是大部分函数的表达形式) 例:一次函数:b kx y +=)0(≠k 二次函数:c bx ax y ++=2 )0(≠a 反比例函数:x k y = )0(≠k 正比例函数:kx y = )0(≠k 2、复合式 若y 是u 的函数,u 又是x 的函数,即),(),(),(b a x x g u u f y ∈==,那么y 关于x 的函数[]()b a x x g f y ,,)(∈=叫做f 和g 的复合函数。 例1、已知3)(,12)(2+=+=x x g x x f ,则[]=)(x g f , []=)(x f g 。 解:[]721)3(21)(2)(22+=++=+=x x x g x g f (二)解析式的求法 (根据已知条件求函数的解析式,常用配凑法、换元法、待定系数法、赋值(式)法、方程法等。) 1. 配凑法 例1.已知 :23)1(2+-=+x x x f ,求f(x); 解:因为15)1(23)1(22+-+=+-=+x x x x x f 例2、已知:221)1(x x x x f +=+,求)(x f 。 解: 2)1(1)1(222-+=+=+x x x x x x f ∴ )22(2)(2-≤≥-=x x x x f 或 注意:使用配凑法也要注意自变量的范围限制。 2.换元法 例1.已知:x x x f 2)1(+=+,求f(x); 解:令2)1(,1,1-=≥=+t x t t x 即则 则1)1(2)1()(22-=-+-=t t t t f 所以)1(1)(2≥-=x x x f 例2、已知:11)11(2-=+x x f ,求)(x f 。

相关文档
最新文档