最新高中物理生活中的圆周运动专题训练答案

合集下载

最新高考物理生活中的圆周运动题20套(带答案)

最新高考物理生活中的圆周运动题20套(带答案)

最新高考物理生活中的圆周运动题20套(带答案)一、高中物理精讲专题测试生活中的圆周运动1.如图所示,带有14光滑圆弧的小车A 的半径为R ,静止在光滑水平面上.滑块C 置于木板B 的右端,A 、B 、C 的质量均为m ,A 、B 底面厚度相同.现B 、C 以相同的速度向右匀速运动,B 与A 碰后即粘连在一起,C 恰好能沿A 的圆弧轨道滑到与圆心等高处.则:(已知重力加速度为g ) (1)B 、C 一起匀速运动的速度为多少?(2)滑块C 返回到A 的底端时AB 整体和C 的速度为多少?【答案】(1)023v gR =(2)123gRv =253gR v =【解析】本题考查动量守恒与机械能相结合的问题.(1)设B 、C 的初速度为v 0,AB 相碰过程中动量守恒,设碰后AB 总体速度u ,由02mv mu =,解得02v u =C 滑到最高点的过程: 023mv mu mu +='222011123222mv mu mu mgR +⋅=+'⋅ 解得023v gR =(2)C 从底端滑到顶端再从顶端滑到底部的过程中,满足水平方向动量守恒、机械能守恒,有01222mv mu mv mv +=+22220121111222222mv mu mv mv +⋅=+⋅ 解得:123gRv =253gR v =2.如图所示,水平长直轨道AB 与半径为R =0.8m 的光滑14竖直圆轨道BC 相切于B ,BC 与半径为r =0.4m 的光滑14竖直圆轨道CD 相切于C ,质量m =1kg 的小球静止在A 点,现用F =18N 的水平恒力向右拉小球,在到达AB 中点时撤去拉力,小球恰能通过D 点.已知小球与水平面的动摩擦因数μ=0.2,取g =10m/s 2.求: (1)小球在D 点的速度v D 大小;(2)小球在B 点对圆轨道的压力N B 大小; (3)A 、B 两点间的距离x .【答案】(1)2/D v m s = (2)45N (3)2m 【解析】 【分析】 【详解】(1)小球恰好过最高点D ,有:2Dv mg m r=解得:2m/s D v = (2)从B 到D ,由动能定理:2211()22D B mg R r mv mv -+=- 设小球在B 点受到轨道支持力为N ,由牛顿定律有:2Bv N mg m R-=N B =N联解③④⑤得:N =45N (3)小球从A 到B ,由动能定理:2122B x Fmgx mv μ-= 解得:2m x =故本题答案是:(1)2/D v m s = (2)45N (3)2m 【点睛】利用牛顿第二定律求出速度,在利用动能定理求出加速阶段的位移,3.水平面上有一竖直放置长H =1.3m 的杆PO ,一长L =0.9m 的轻细绳两端系在杆上P 、Q 两点,PQ 间距离为d =0.3m ,一质量为m =1.0kg 的小环套在绳上。

高考物理生活中的圆周运动专项训练100(附答案)及解析

高考物理生活中的圆周运动专项训练100(附答案)及解析

高考物理生活中的圆周运动专项训练100( 附答案 ) 及分析一、高中物理精讲专题测试生活中的圆周运动1.如下图,带有1 圆滑圆弧的小车A 的半径为R,静止在圆滑水平面上.滑块 C 置于4木板 B 的右端, A、 B、 C 的质量均为m, A、 B 底面厚度同样.现B、 C 以同样的速度向右匀速运动, B 与A 碰后即粘连在一同, C 恰巧能沿 A 的圆弧轨道滑到与圆心等高处.则: (已知重力加快度为g)(1)B、C 一同匀速运动的速度为多少?(2)滑块 C 返回到 A 的底端时AB 整体和 C 的速度为多少?【答案】(1)v023gR( 2)v12 3gR, v253gR 33【分析】此题考察动量守恒与机械能相联合的问题.(1)设 B、 C 的初速度为 v , AB 相碰过程中动量守恒,设碰后AB 整体速度 u,由mv02mu ,解得 u v0 2C 滑到最高点的过程:mv02mu3mu1mv0212mu213mu 2mgR222解得v0 2 3gR(2)C从底端滑到顶端再从顶端滑究竟部的过程中,知足水平方向动量守恒、机械能守恒,有 mv02mu mv12mv21mv0212mu21mv1212mv222222解得:v123gR53gR,v2332.如下图,圆滑轨道“”D 处入、出口不重合,CDEF 是一过山车的简化模型,最低点E 点是半径为 R 0.32m 的竖直圆轨道的最高点,DF 部分水平,尾端 F 点与其右边的水平传递带光滑连结,传递带以速率v=1m/s逆时针匀速转动,水平部分长度L=1m.物块B 静止在水平面的最右端F处.质量为m A1kg 的物块 A 从轨道上某点由静止开释,恰巧经过竖直圆轨道最高点 E ,而后与 B 发生碰撞并粘在一同.若 B 的质量是 A 的 k 倍,A、B 与传递带的动摩擦因数都为0.2 ,物块均可视为质点,物块 A 与物块 B 的碰撞时间极短,取 g10m / s2.求:(1)当k 3时物块A、B碰撞过程中产生的内能;(2)当 k=3 时物块A、B在传递带上向右滑行的最远距离;(3)议论k在不一样数值范围时,A、B 碰撞后传递带对它们所做的功W 的表达式.【答案】(1) 6J( 2) 0.25m( 3)① W 2 k 1 J②W k 22k15 2 k1【分析】(1)设物块 A 在 E 的速度为v0,由牛顿第二定律得:m A g m A v02①,R设碰撞前 A 的速度为v1.由机械能守恒定律得:2m A gR1m A v021m A v12②,22联立并代入数据解得:v14m / s③ ;设碰撞后 A、B 速度为v2,且设向右为正方向,由动量守恒定律得m A v1 m A m2 v2④;m Av1141m / s ⑤;解得: v2m Bm A 1 3由能量转变与守恒定律可得:Q 1m A v121m A m B v22⑥,代入数据解得Q=6J⑦;22(2)设物块 AB 在传递带上向右滑行的最远距离为s,由动能定理得:m A m B gs1m A m B v22⑧,代入数据解得s0.25m ⑨;2(3)由④式可知:v2m A v14m / s ⑩;m A m B1k(i )假如 A、 B 能从传递带右边走开,一定知足1m A m B v22m A m B gL ,2解得: k< 1,传递带对它们所做的功为:W m A m B gL 2 k 1 J;(ii )( I)当v2v 时有:k 3 ,即AB返回到传递带左端时速度仍为v2;由动能定理可知,这个过程传递带对AB 所做的功为: W=0J,(II)当0 k时, AB 沿传递带向右减速到速度为零,再向左加快,当速度与传递带速度相等时与传递带一同匀速运动到传递带的左边.在这个过程中传递带对AB 所做的功为W1m A m B v21m A m B v22,22k 22k15解得 Wk1;2【点睛】此题考察了动量守恒定律的应用,剖析清楚物体的运动过程是解题的前提与重点,应用牛顿第二定律、动量守恒定律、动能定理即可解题;解题时注意议论,不然会漏解. A 恰巧经过最高点E,由牛顿第二定律求出 A 经过 E 时的速度,由机械能守恒定律求出 A 与 B 碰撞前的速度,A、B 碰撞过程系统动量守恒,应用动量守恒定律与能量守恒定律求出碰撞过程产生的内能,应用动能定理求出向右滑行的最大距离.依据A、B 速度与传送带速度间的关系剖析AB 的运动过程,依据运动过程应用动能定理求出传递带所做的功.3.如下图,一个固定在竖直平面上的圆滑半圆形管道,管道里有一个直径略小于管道内径的小球,小球在管道内做圆周运动,从 B 点离开后做平抛运动,经过0.3s 后又恰巧与倾角为450的斜面垂直相碰.已知半圆形管道的半径为R1m ,小球可看作质点且其质量为m1kg ,g10m / s2,求:(1)小球在斜面上的相碰点 C 与 B 点的水平距离;(2)小球经过管道上 B 点时对管道的压力大小和方向.【答案】( 1)0.9m;( 2)1N【分析】【剖析】(1)依据平抛运动时间求得在 C 点竖直分速度,而后由速度方向求得v,即可依据平抛运动水平方向为匀速运动求得水平距离;(2)对小球在 B 点应用牛顿第二定律求得支持力N B的大小和方向.【详解】(1)依据平抛运动的规律,小球在 C 点竖直方向的分速度v y=gt=10m/s水均分速度v x=v y tan450=10m/s则 B 点与 C 点的水平距离为: x=v x t=10m(2)依据牛顿运动定律,在 B 点Bv2N +mg=m R解得 N B=50N依据牛顿第三定律得小球对轨道的作使劲大小N, =N B=50N方向竖直向上【点睛】该题考察竖直平面内的圆周运动与平抛运动,小球恰巧垂直与倾角为45°的斜面相遇到是解题的重点,要正确理解它的含义.要注意小球经过 B 点时,管道对小球的作使劲可能向上,也可能向下,也可能没有,要依据小球的速度来剖析.4.如下图,用绝缘细绳系带正电小球在竖直平面内运动,已知绳长为L,重力加快度g,小球半径不计,质量为m,电荷 q.不加电场时,小球在最低点绳的拉力是球重的9倍。

高考物理生活中的圆周运动专题训练答案含解析

高考物理生活中的圆周运动专题训练答案含解析

高考物理生活中的圆周运动专题训练答案含解析一、高中物理精讲专题测试生活中的圆周运动1.光滑水平面AB 与竖直面内的圆形导轨在B 点连接,导轨半径R =0.5 m ,一个质量m =2 kg 的小球在A 处压缩一轻质弹簧,弹簧与小球不拴接.用手挡住小球不动,此时弹簧弹性势能Ep =49 J ,如图所示.放手后小球向右运动脱离弹簧,沿圆形轨道向上运动恰能通过最高点C ,g 取10 m/s 2.求:(1)小球脱离弹簧时的速度大小; (2)小球从B 到C 克服阻力做的功;(3)小球离开C 点后落回水平面时的动能大小. 【答案】(1)7/m s (2)24J (3)25J 【解析】 【分析】 【详解】(1)根据机械能守恒定律 E p =211m ?2v ① v 12Epm=7m/s ② (2)由动能定理得-mg ·2R -W f =22211122mv mv - ③ 小球恰能通过最高点,故22v mg m R= ④ 由②③④得W f =24 J(3)根据动能定理:22122k mg R E mv =-解得:25k E J =故本题答案是:(1)7/m s (2)24J (3)25J 【点睛】(1)在小球脱离弹簧的过程中只有弹簧弹力做功,根据弹力做功与弹性势能变化的关系和动能定理可以求出小球的脱离弹簧时的速度v;(2)小球从B 到C 的过程中只有重力和阻力做功,根据小球恰好能通过最高点的条件得到小球在最高点时的速度,从而根据动能定理求解从B 至C 过程中小球克服阻力做的功; (3)小球离开C 点后做平抛运动,只有重力做功,根据动能定理求小球落地时的动能大小2.如图所示,在光滑的圆锥体顶部用长为的细线悬挂一质量为的小球,因锥体固定在水平面上,其轴线沿竖直方向,母线与轴线之间的夹角为,物体绕轴线在水平面内做匀速圆周运动,小球静止时细线与母线给好平行,已知,重力加速度g取若北小球运动的角速度,求此时细线对小球的拉力大小。

高中物理生活中的圆周运动及其解题技巧及练习题(含答案)

高中物理生活中的圆周运动及其解题技巧及练习题(含答案)

高中物理生活中的圆周运动及其解题技巧及练习题(含答案)一、高中物理精讲专题测试生活中的圆周运动1.如图所示,水平桌面上有一轻弹簧,左端固定在A 点,自然状态时其右端位于B 点.D 点位于水平桌面最右端,水平桌面右侧有一竖直放置的光滑轨道MNP ,其形状为半径R =0.45m 的圆环剪去左上角127°的圆弧,MN 为其竖直直径,P 点到桌面的竖直距离为R ,P 点到桌面右侧边缘的水平距离为1.5R .若用质量m 1=0.4kg 的物块将弹簧缓慢压缩到C 点,释放后弹簧恢复原长时物块恰停止在B 点,用同种材料、质量为m 2=0.2kg 的物块将弹簧缓慢压缩到C 点释放,物块过B 点后其位移与时间的关系为x =4t ﹣2t 2,物块从D 点飞离桌面后恰好由P 点沿切线落入圆轨道.g =10m/s 2,求:(1)质量为m 2的物块在D 点的速度;(2)判断质量为m 2=0.2kg 的物块能否沿圆轨道到达M 点:(3)质量为m 2=0.2kg 的物块释放后在桌面上运动的过程中克服摩擦力做的功. 【答案】(1)2.25m/s (2)不能沿圆轨道到达M 点 (3)2.7J 【解析】 【详解】(1)设物块由D 点以初速度v D 做平抛运动,落到P 点时其竖直方向分速度为:v y 22100.45gR =⨯⨯m/s =3m/sy Dv v =tan53°43=所以:v D =2.25m/s(2)物块在内轨道做圆周运动,在最高点有临界速度,则mg =m 2v R,解得:v 322gR ==m/s 物块到达P 的速度:22223 2.25P D y v v v =+=+=3.75m/s若物块能沿圆弧轨道到达M 点,其速度为v M ,由D 到M 的机械能守恒定律得:()22222111cos5322M P m v m v m g R =-⋅+︒ 可得:20.3375M v =-,这显然是不可能的,所以物块不能到达M 点(3)由题意知x =4t -2t 2,物块在桌面上过B 点后初速度v B =4m/s ,加速度为:24m/s a =则物块和桌面的摩擦力:22m g m a μ= 可得物块和桌面的摩擦系数: 0.4μ=质量m 1=0.4kg 的物块将弹簧缓慢压缩到C 点,释放后弹簧恢复原长时物块恰停止在B 点,由能量守恒可弹簧压缩到C 点具有的弹性势能为:p 10BC E m gx μ-=质量为m 2=0.2kg 的物块将弹簧缓慢压缩到C 点释放,物块过B 点时,由动能定理可得:2p 2212BC B E m gx m v μ-=可得,2m BC x = 在这过程中摩擦力做功:12 1.6J BC W m gx μ=-=-由动能定理,B 到D 的过程中摩擦力做的功:W 2222201122D m v m v =- 代入数据可得:W 2=-1.1J质量为m 2=0.2kg 的物块释放后在桌面上运动的过程中摩擦力做的功12 2.7J W W W =+=-即克服摩擦力做功为2.7 J .2.光滑水平面AB 与一光滑半圆形轨道在B 点相连,轨道位于竖直面内,其半径为R ,一个质量为m 的物块静止在水平面上,现向左推物块使其压紧弹簧,然后放手,物块在弹力作用下获得一速度,当它经B 点进入半圆形轨道瞬间,对轨道的压力为其重力的9倍,之后向上运动经C 点再落回到水平面,重力加速度为g .求:(1)弹簧弹力对物块做的功;(2)物块离开C 点后,再落回到水平面上时距B 点的距离;(3)再次左推物块压紧弹簧,要使物块在半圆轨道上运动时不脱离轨道,则弹簧弹性势能的取值范围为多少? 【答案】(1) (2)4R (3)或【解析】【详解】(1)由动能定理得W =在B 点由牛顿第二定律得:9mg -mg =m解得W =4mgR(2)设物块经C 点落回到水平面上时距B 点的距离为S ,用时为t ,由平抛规律知 S=v c t 2R=gt 2从B 到C 由动能定理得联立知,S= 4 R(3)假设弹簧弹性势能为EP,要使物块在半圆轨道上运动时不脱离轨道,则物块可能在圆轨道的上升高度不超过半圆轨道的中点,则由机械能守恒定律知 EP≤mgR若物块刚好通过C 点,则物块从B 到C 由动能定理得物块在C 点时mg =m 则联立知:EP≥mgR .综上所述,要使物块在半圆轨道上运动时不脱离轨道,则弹簧弹性势能的取值范围为 EP≤mgR 或 EP≥mgR .3.如图所示,光滑轨道CDEF 是一“过山车”的简化模型,最低点D 处入、出口不重合,E 点是半径为0.32R m =的竖直圆轨道的最高点,DF 部分水平,末端F 点与其右侧的水平传送带平滑连接,传送带以速率v=1m/s 逆时针匀速转动,水平部分长度L=1m .物块B 静止在水平面的最右端F 处.质量为1A m kg =的物块A 从轨道上某点由静止释放,恰好通过竖直圆轨道最高点E ,然后与B 发生碰撞并粘在一起.若B 的质量是A 的k 倍,A B 、与传送带的动摩擦因数都为0.2μ=,物块均可视为质点,物块A 与物块B 的碰撞时间极短,取210/g m s =.求:(1)当3k =时物块A B 、碰撞过程中产生的内能; (2)当k=3时物块A B 、在传送带上向右滑行的最远距离;(3)讨论k 在不同数值范围时,A B 、碰撞后传送带对它们所做的功W 的表达式.【答案】(1)6J (2)0.25m (3)①()21W k J =-+②()221521k k W k +-=+【解析】(1)设物块A 在E 的速度为0v ,由牛顿第二定律得:20A A v m g m R=①,设碰撞前A 的速度为1v .由机械能守恒定律得:220111222A A A m gR m v m v +=②, 联立并代入数据解得:14/v m s =③;设碰撞后A 、B 速度为2v ,且设向右为正方向,由动量守恒定律得()122A A m v m m v =+④;解得:21141/13A AB m v v m s m m ==⨯=++⑤;由能量转化与守恒定律可得:()22121122A AB Q m v m m v =-+⑥,代入数据解得Q=6J ⑦; (2)设物块AB 在传送带上向右滑行的最远距离为s ,由动能定理得:()()2212A B A B m m gs m m v μ-+=-+⑧,代入数据解得0.25s m =⑨; (3)由④式可知:214/1A A B m v v m s m m k==++⑩;(i )如果A 、B 能从传送带右侧离开,必须满足()()2212A B A B m m v m m gL μ+>+,解得:k <1,传送带对它们所做的功为:()()21J A B W m m gL k μ=-+=-+; (ii )(I )当2v v ≤时有:3k ≥,即AB 返回到传送带左端时速度仍为2v ; 由动能定理可知,这个过程传送带对AB 所做的功为:W=0J ,(II )当0k ≤<3时,AB 沿传送带向右减速到速度为零,再向左加速, 当速度与传送带速度相等时与传送带一起匀速运动到传送带的左侧. 在这个过程中传送带对AB 所做的功为()()2221122A B A B W m m v m m v =+-+,解得()221521k k W k +-=+; 【点睛】本题考查了动量守恒定律的应用,分析清楚物体的运动过程是解题的前提与关键,应用牛顿第二定律、动量守恒定律、动能定理即可解题;解题时注意讨论,否则会漏解.A 恰好通过最高点E ,由牛顿第二定律求出A 通过E 时的速度,由机械能守恒定律求出A 与B 碰撞前的速度,A 、B 碰撞过程系统动量守恒,应用动量守恒定律与能量守恒定律求出碰撞过程产生的内能,应用动能定理求出向右滑行的最大距离.根据A 、B 速度与传送带速度间的关系分析AB 的运动过程,根据运动过程应用动能定理求出传送带所做的功.4.如图所示,一质量M =4kg 的小车静置于光滑水平地面上,左侧用固定在地面上的销钉挡住。

(物理) 高考物理生活中的圆周运动专项训练100(附答案)

(物理) 高考物理生活中的圆周运动专项训练100(附答案)

(物理) 高考物理生活中的圆周运动专项训练100(附答案)一、高中物理精讲专题测试生活中的圆周运动1.如图所示,水平传送带AB 长L=4m ,以v 0=3m/s 的速度顺时针转动,半径为R=0.5m 的光滑半圆轨道BCD 与传动带平滑相接于B 点,将质量为m=1kg 的小滑块轻轻放在传送带的左端.已,知小滑块与传送带之间的动摩擦因数为μ=0.3,取g=10m/s 2,求:(1)滑块滑到B 点时对半圆轨道的压力大小;(2)若要使滑块能滑到半圆轨道的最高点,滑块在传送带最左端的初速度最少为多大. 【答案】(1)28N.(2)7m/s 【解析】 【分析】(1)物块在传送带上先加速运动,后匀速,根据牛顿第二定律求解在B 点时对轨道的压力;(2)滑块到达最高点时的临界条件是重力等于向心力,从而求解到达D 点的临界速度,根据机械能守恒定律求解在B 点的速度;根据牛顿第二定律和运动公式求解A 点的初速度. 【详解】(1)滑块在传送带上运动的加速度为a=μg=3m/s 2;则加速到与传送带共速的时间01v t s a == 运动的距离:211.52x at m ==, 以后物块随传送带匀速运动到B 点,到达B 点时,由牛顿第二定律:2v F mg m R-= 解得F=28N ,即滑块滑到B 点时对半圆轨道的压力大小28N.(2)若要使滑块能滑到半圆轨道的最高点,则在最高点的速度满足:mg=m 2Dv R解得v D 5; 由B 到D ,由动能定理:2211222B D mv mv mg R =+⋅ 解得v B =5m/s>v 0可见,滑块从左端到右端做减速运动,加速度为a=3m/s 2,根据v B 2=v A 2-2aL 解得v A =7m/s2.如图,AB 为倾角37θ=︒的光滑斜面轨道,BP 为竖直光滑圆弧轨道,圆心角为143︒、半径0.4m R =,两轨道相切于B 点,P 、O 两点在同一竖直线上,轻弹资一端固定在A 点另一自由端在斜面上C 点处,现有一质量0.2kg m =的小物块(可视为质点)在外力作用下将弹簧缓慢压缩到D 点后(不栓接)静止释放,恰能沿轨道到达P 点,已知0.2m CD =、sin370.6︒=、cos370.8︒=,g 取210m/s .求:(1)物块经过P 点时的速度大小p v ;(2)若 1.0m BC =,弹簧在D 点时的弹性势能P E ; (3)为保证物块沿原轨道返回,BC 的长度至少多大. 【答案】(1)2m/s (2)32.8J (3)2.0m 【解析】 【详解】(1)物块恰好能到达最高点P ,由重力提供圆周运动的向心力,由牛顿第二定律得:mg=m 2p v R解得:100.42m/s P v gR =⨯=(2)物块从D 到P 的过程,由机械能守恒定律得:E p =mg (s DC +s CB )sin37°+mgR (1+cos37°)+12mv P 2. 代入数据解得:E p =32.8J(3)为保证物块沿原轨道返回,物块滑到与圆弧轨道圆心等高处时速度刚好为零,根据能量守恒定律得:E p =mg (s DC +s ′CB )sin37°+mgR (1+cos37°)解得:s ′CB =2.0m点睛:本题综合考查了牛顿第二定律、机械能守恒定律的综合,关键是搞清物体运动的物理过程;知道圆周运动向心力的来源,即径向的合力提供向心力.3.如图所示,在光滑水平桌面EAB 上有质量为m =2 kg 的小球P 和质量为M =1 kg 的小球Q ,P 、Q 之间压缩一轻弹簧(轻弹簧与两小球不拴接),桌面边缘E 处放置一质量也为M =1 kg 的橡皮泥球S ,在B 处固定一与水平桌面相切的光滑竖直半圆形轨道。

最新高考物理生活中的圆周运动专项训练100(附答案)

最新高考物理生活中的圆周运动专项训练100(附答案)

最新高考物理生活中的圆周运动专项训练100(附答案)一、高中物理精讲专题测试生活中的圆周运动1.如图,在竖直平面内,一半径为R 的光滑圆弧轨道ABC 和水平轨道PA 在A 点相切.BC 为圆弧轨道的直径.O 为圆心,OA 和OB 之间的夹角为α,sinα=35,一质量为m 的小球沿水平轨道向右运动,经A 点沿圆弧轨道通过C 点,落至水平轨道;在整个过程中,除受到重力及轨道作用力外,小球还一直受到一水平恒力的作用,已知小球在C 点所受合力的方向指向圆心,且此时小球对轨道的压力恰好为零.重力加速度大小为g .求:(1)水平恒力的大小和小球到达C 点时速度的大小; (2)小球到达A 点时动量的大小; (3)小球从C 点落至水平轨道所用的时间. 【答案】(15gR(223m gR (3355R g 【解析】试题分析 本题考查小球在竖直面内的圆周运动、受力分析、动量、斜下抛运动及其相关的知识点,意在考查考生灵活运用相关知识解决问题的的能力.解析(1)设水平恒力的大小为F 0,小球到达C 点时所受合力的大小为F .由力的合成法则有tan F mgα=① 2220()F mg F =+②设小球到达C 点时的速度大小为v ,由牛顿第二定律得2v F m R=③由①②③式和题给数据得034F mg =④5gRv =(2)设小球到达A 点的速度大小为1v ,作CD PA ⊥,交PA 于D 点,由几何关系得 sin DA R α=⑥(1cos CD R α=+)⑦由动能定理有22011122mg CD F DA mv mv -⋅-⋅=-⑧由④⑤⑥⑦⑧式和题给数据得,小球在A 点的动量大小为 1232m gR p mv ==⑨ (3)小球离开C 点后在竖直方向上做初速度不为零的匀加速运动,加速度大小为g .设小球在竖直方向的初速度为v ⊥,从C 点落至水平轨道上所用时间为t .由运动学公式有212v t gt CD ⊥+=⑩ sin v v α⊥=由⑤⑦⑩式和题给数据得355R t g=点睛 小球在竖直面内的圆周运动是常见经典模型,此题将小球在竖直面内的圆周运动、受力分析、动量、斜下抛运动有机结合,经典创新.2.如图所示,在水平桌面上离桌面右边缘3.2m 处放着一质量为0.1kg 的小铁球(可看作质点),铁球与水平桌面间的动摩擦因数μ=0.2.现用水平向右推力F =1.0N 作用于铁球,作用一段时间后撤去。

高考物理生活中的圆周运动解题技巧和训练方法及练习题(含答案)及解析

高考物理生活中的圆周运动解题技巧和训练方法及练习题(含答案)及解析

高考物理生活中的圆周运动解题技巧和训练方法及练习题(含答案)及解析一、高中物理精讲专题测试生活中的圆周运动1.光滑水平面AB 与竖直面内的圆形导轨在B 点连接,导轨半径R =0.5 m ,一个质量m =2 kg 的小球在A 处压缩一轻质弹簧,弹簧与小球不拴接.用手挡住小球不动,此时弹簧弹性势能Ep =49 J ,如图所示.放手后小球向右运动脱离弹簧,沿圆形轨道向上运动恰能通过最高点C ,g 取10 m/s 2.求:(1)小球脱离弹簧时的速度大小; (2)小球从B 到C 克服阻力做的功;(3)小球离开C 点后落回水平面时的动能大小. 【答案】(1)7/m s (2)24J (3)25J 【解析】 【分析】 【详解】(1)根据机械能守恒定律 E p =211m ?2v ① v 12Epm=7m/s ② (2)由动能定理得-mg ·2R -W f =22211122mv mv - ③ 小球恰能通过最高点,故22v mg m R= ④ 由②③④得W f =24 J(3)根据动能定理:22122k mg R E mv =-解得:25k E J =故本题答案是:(1)7/m s (2)24J (3)25J 【点睛】(1)在小球脱离弹簧的过程中只有弹簧弹力做功,根据弹力做功与弹性势能变化的关系和动能定理可以求出小球的脱离弹簧时的速度v;(2)小球从B 到C 的过程中只有重力和阻力做功,根据小球恰好能通过最高点的条件得到小球在最高点时的速度,从而根据动能定理求解从B 至C 过程中小球克服阻力做的功; (3)小球离开C 点后做平抛运动,只有重力做功,根据动能定理求小球落地时的动能大小2.如图所示,一个固定在竖直平面上的光滑半圆形管道,管道里有一个直径略小于管道内径的小球,小球在管道内做圆周运动,从B 点脱离后做平抛运动,经过0.3s 后又恰好与倾角为045的斜面垂直相碰.已知半圆形管道的半径为1R m =,小球可看作质点且其质量为1m kg =,210/g m s =,求:(1)小球在斜面上的相碰点C 与B 点的水平距离; (2)小球通过管道上B 点时对管道的压力大小和方向. 【答案】(1)0.9m ;(2)1N 【解析】 【分析】(1)根据平抛运动时间求得在C 点竖直分速度,然后由速度方向求得v ,即可根据平抛运动水平方向为匀速运动求得水平距离;(2)对小球在B 点应用牛顿第二定律求得支持力N B 的大小和方向. 【详解】(1)根据平抛运动的规律,小球在C 点竖直方向的分速度 v y =gt=10m/s水平分速度v x =v y tan450=10m/s则B 点与C 点的水平距离为:x=v x t=10m (2)根据牛顿运动定律,在B 点N B +mg=m 2v R解得 N B =50N根据牛顿第三定律得小球对轨道的作用力大小N , =N B =50N 方向竖直向上 【点睛】该题考查竖直平面内的圆周运动与平抛运动,小球恰好垂直与倾角为45°的斜面相碰到是解题的关键,要正确理解它的含义.要注意小球经过B 点时,管道对小球的作用力可能向上,也可能向下,也可能没有,要根据小球的速度来分析.3.如图所示,质量m =3kg 的小物块以初速度秽v 0=4m/s 水平向右抛出,恰好从A 点沿着圆弧的切线方向进入圆弧轨道。

高中物理生活中的圆周运动题20套(带答案)及解析

高中物理生活中的圆周运动题20套(带答案)及解析

高中物理生活中的圆周运动题20套(带答案)及解析一、高中物理精讲专题测试生活中的圆周运动1.如图所示,在水平桌面上离桌面右边缘3.2m 处放着一质量为0.1kg 的小铁球(可看作质点),铁球与水平桌面间的动摩擦因数μ=0.2.现用水平向右推力F =1.0N 作用于铁球,作用一段时间后撤去。

铁球继续运动,到达水平桌面边缘A 点飞出,恰好落到竖直圆弧轨道BCD 的B 端沿切线进入圆弧轨道,碰撞过程速度不变,且铁球恰好能通过圆弧轨道的最高点D .已知∠BOC =37°,A 、B 、C 、D 四点在同一竖直平面内,水平桌面离B 端的竖直高度H =0.45m ,圆弧轨道半径R =0.5m ,C 点为圆弧轨道的最低点,求:(取sin37°=0.6,cos37°=0.8)(1)铁球运动到圆弧轨道最高点D 点时的速度大小v D ;(2)若铁球以v C =5.15m/s 的速度经过圆弧轨道最低点C ,求此时铁球对圆弧轨道的压力大小F C ;(计算结果保留两位有效数字) (3)铁球运动到B 点时的速度大小v B ; (4)水平推力F 作用的时间t 。

【答案】(1)铁球运动到圆弧轨道最高点D 5;(2)若铁球以v C =5.15m/s 的速度经过圆弧轨道最低点C ,求此时铁球对圆弧轨道的压力大小为6.3N ;(3)铁球运动到B 点时的速度大小是5m/s ; (4)水平推力F 作用的时间是0.6s 。

【解析】 【详解】(1)小球恰好通过D 点时,重力提供向心力,由牛顿第二定律可得:2Dmv mg R=可得:D 5m /s v =(2)小球在C 点受到的支持力与重力的合力提供向心力,则:2Cmv F mg R-=代入数据可得:F =6.3N由牛顿第三定律可知,小球对轨道的压力:F C =F =6.3N(3)小球从A 点到B 点的过程中做平抛运动,根据平抛运动规律有:2y 2gh v = 得:v y =3m/s小球沿切线进入圆弧轨道,则:35m/s 370.6y B v v sin ===︒(4)小球从A 点到B 点的过程中做平抛运动,水平方向的分速度不变,可得:3750.84/A B v v cos m s =︒=⨯=小球在水平面上做加速运动时:1F mg ma μ-=可得:218/a m s =小球做减速运动时:2mg ma μ=可得:222/a m s =-由运动学的公式可知最大速度:1m v a t =;22A m v v a t -= 又:222m m A v v vx t t +=⋅+⋅ 联立可得:0.6t s =2.如图所示,一质量为m 的小球C 用轻绳悬挂在O 点,小球下方有一质量为2m 的平板车B 静止在光滑水平地面上,小球的位置比车板略高,一质量为m 的物块A 以大小为v 0的初速度向左滑上平板车,此时A 、C 间的距离为d ,一段时间后,物块A 与小球C 发生碰撞,碰撞时两者的速度互换,且碰撞时间极短,已知物块与平板车间的动摩擦因数为μ ,重力加速度为g ,若A 碰C 之前物块与平板车已达共同速度,求: (1)A 、C 间的距离d 与v 0之间满足的关系式;(2)要使碰后小球C 能绕O 点做完整的圆周运动,轻绳的长度l 应满足什么条件?【答案】(1);(2)【解析】(1)A 碰C 前与平板车速度达到相等,设整个过程A 的位移是x ,由动量守恒定律得由动能定理得:解得满足的条件是(2)物块A 与小球C 发生碰撞,碰撞时两者的速度互换, C 以速度v 开始做完整的圆周运动,由机械能守恒定律得小球经过最高点时,有解得【名师点睛】A 碰C 前与平板车速度达到相等,由动量守恒定律列出等式;A 减速的最大距离为d ,由动能定理列出等式,联立求解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)小物块从 点出发时对管道的作用力;
(2)小物块第一次经过 点时的速度大小;
(3)小物块在直管道 上经过的总路程。
【答案】(1)106N,方向向下(2)4 m/s(3) m
【解析】
【详解】
(1)物块在C1点做圆周运动,由牛顿第二定律有:
可得:
由牛顿第三定律可知,小物块对管道的作用力大小为106N,方向向下
代入数据得
(3)∵ ,∴物块已经离开转台在空中做圆周运动.设细绳与竖直方向夹角为α,有
代入数据得
转台对物块做的功等于物块动能增加量与重力势能增加量的总和即
代入数据得:
【点睛】
本题考查牛顿运动定律和功能关系在圆周运动中的应用,注意临界条件的分析,至绳中出现拉力时,摩擦力为最大静摩擦力;转台对物块支持力为零时,N=0,f=0.根据能量守恒定律求转台对物块所做的功.
(1)小球到B点时的速度大小vB
(2)小球第一次落到斜面上C点时的速度大小v
(3)改变h,为了保证小球通过B点后落到斜面上,h应满足的条件
【答案】(1) (2) (3)
【解析】
【分析】
【详解】
(1)小球经过B点时,由牛顿第二定律及向心力公式,有
解得
(2)设小球离开B点做平抛运动,经时间t,下落高度y,落到C点,则
vp=4m/s
(2)物块A经过P点时,根据牛顿第二定律
FN+mg=m
代入数据解得弹力大小
FN=22N
方向竖直向下
(3)物块A与物块B碰撞前,物块A的速度大小vA=v0=6m/s
两物块在碰撞过程中,根据动量守恒定律
mAv0=(mA+mB)v
两物块碰撞后一起向右滑动
由动能定理
-μ(mA+mB)gs=0- (mA+mB)v2
最新高中物理生活中的圆周运动专题训练答案
一、高中物理精讲专题测试生活中的圆周运动
1.如图所示,水平桌面上有一轻弹簧,左端固定在A点,自然状态时其右端位于B点.D点位于水平桌面最右端,水平桌面右侧有一竖直放置的光滑轨道MNP,其形状为半径R=0.45m的圆环剪去左上角127°的圆弧,MN为其竖直直径,P点到桌面的竖直距离为R,P点到桌面右侧边缘的水平距离为1.5R.若用质量m1=0.4kg的物块将弹簧缓慢压缩到C点,释放后弹簧恢复原长时物块恰停止在B点,用同种材料、质量为m2=0.2kg的物块将弹簧缓慢压缩到C点释放,物块过B点后其位移与时间的关系为x=4t﹣2t2,物块从D点飞离桌面后恰好由P点沿切线落入圆轨道.g=10m/s2,求:
两式联立,得
对小球下落由机械能守恒定律,有
解得
(3)设小球恰好能通过B点,过B点时速度为v1,由牛顿第二定律及向心力公式,有


可以证明小球经过B点后一定能落到斜面上
设小球恰好落到D点,小球通过B点时速度为v2,飞行时间为 ,
解得

可得
故h应满足的条件为
【点睛】
小球的运动过程可以分为三部分,第一段是自由落体运动,第二段是圆周运动,此时机械能守恒,第三段是平抛运动,分析清楚各部分的运动特点,采用相应的规律求解即可.
滑块在圆导轨最低点E时受到的支持力大小;
滑块从D到B的运动过程中损失的机械能. 计算结果可保留根式
点睛:本题综合考查了牛顿第二定律、机械能守恒定律的综合,关键是搞清物体运动的物理过程;知道圆周运动向心力的来源,即径向的合力提供向心力.
6.如图所示,一滑板放置在光滑的水平地面上,右侧紧贴竖直墙壁,滑板由圆心为O、半径为R的四分之一光滑圆弧轨道和水平轨道两部分组成,且两轨道在B点平滑连接,整个系统处于同一竖直平面内.现有一可视为质点的小物块从A点正上方P点处由静止释放,落到A点的瞬间垂直于轨道方向的分速度立即变为零,之后沿圆弧轨道AB继续下滑,最终小物块恰好滑至轨道末端C点处.已知滑板的质量是小物块质量的3倍,小物块滑至B点时对轨道的压力为其重力的3倍,OA与竖直方向的夹角为θ=60°,小物块与水平轨道间的动摩擦因数为μ=0.3,重力加速度g取10 ,不考虑空气阻力作用,求:
5.如图, 为倾角 的光滑斜面轨道, 为竖直光滑圆弧轨道,圆心角为 、半径 ,两轨道相切于 点, 、 两点在同一竖直线上,轻弹资一端固定在 点另一自由端在斜面上 点处,现有一质量 的小物块(可视为质点)在外力作用下将弹簧缓慢压缩到 点后(不栓接)静止释放,恰能沿轨道到达 点,已知 、 、 , 取 .求:
W2
代入数据可得:W2=-1.1J
质量为m2=0.2kg的物块释放后在桌面上运动的过程中摩擦力做的功
即克服摩擦力做功为2.7 J.
2.如图所示,物体A置于静止在光滑水平面上的平板小车B的左端,物体在A的上方O点用细线悬挂一小球C(可视为质点),线长L=0.8m.现将小球C拉至水平无初速度释放,并在最低点与物体A发生水平正碰,碰撞后小球C反弹的速度为2m/s.已知A、B、C的质量分别为mA=4kg、mB=8kg和mC=1kg,A、B间的动摩擦因数μ=0.2,A、C碰撞时间极短,且只碰一次,取重力加速度g=10m/s2.
则物块和桌面的摩擦力:
可得kg的物块将弹簧缓慢压缩到C点,释放后弹簧恢复原长时物块恰停止在B点,由能量守恒可弹簧压缩到C点具有的弹性势能为:
质量为m2=0.2kg的物块将弹簧缓慢压缩到C点释放,物块过B点时,由动能定理可得:
可得,
在这过程中摩擦力做功:
由动能定理,B到D的过程中摩擦力做的功:
【详解】
(1)在B点时,由牛顿第二定律: ,其中NB=3mg;
解得 ;
从B点向C点滑动的过程中,系统的动量守恒,则 ;
由能量关系可知:
联立解得:L=2.5R;
(2)从P到A点,由机械能守恒:mgh= mvA2;
在A点: ,
从A点到B点:
联立解得h= R
7.如图所示,在竖直平面内有一“ ”管道装置,它是由两个完全相同的圆弧管道和两直管道组成。直管道和圆弧管道分别相切于 、 、 、 , 、 分别是两圆弧管道的最高点, 、 分别是两圆弧管道的最低点, 、 固定在同一水平地面上。两直管道略微错开,其中圆弧管道光滑,直管道粗糙,管道的粗细可忽略。圆弧管道的半径均为R, 。一质量为m的小物块以水平向左的速度 从 点出发沿管道运动,小物块与直管道间的动摩擦因数为 。设 ,m=1kg,R=1.5m, , (sin37°=0.6,cos37°=0.8)。求:
(1)求小球C与物体A碰撞前瞬间受到细线的拉力大小;
(2)求A、C碰撞后瞬间A的速度大小;
(3)若物体A未从小车B上掉落,小车B的最小长度为多少?
【答案】(1)30 N (2)1.5 m/s (3)0.375 m
【解析】
【详解】
(1)小球下摆过程机械能守恒,由机械能守恒定律得:m0gl m0v02
代入数据解得:v0=4m/s,
对小球,由牛顿第二定律得:F﹣m0g=m0
代入数据解得:F=30N
(2)小球C与A碰撞后向左摆动的过程中机械能守恒,得:
所以: m/s
小球与A碰撞过程系统动量守恒,以小球的初速度方向为正方向,
由动量守恒定律得:m0v0=﹣m0vc+mvA
代入数据解得:vA=1.5m/s
(3)物块A与木板B相互作用过程,系统动量守恒,以A的速度方向为正方向,
(1)当转台角速度ω1为多大时,细绳开始有张力出现;
(2)当转台角速度ω2为多大时,转台对物块支持力为零;
(3)转台从静止开始加速到角速度 的过程中,转台对物块做的功.
【答案】(1) (2) (3)
【解析】
【分析】
【详解】
(1)当最大静摩擦力不能满足所需要向心力时,细绳上开始有张力:
代入数据得
(2)当支持力为零时,物块所需要的向心力由重力和细绳拉力的合力提供
Ep=mg(sDC+sCB)sin37°+mgR(1+cos37°)+ mvP2.
代入数据解得:
Ep=32.8J
(3)为保证物块沿原轨道返回,物块滑到与圆弧轨道圆心等高处时速度刚好为零,根据能量守恒定律得:
Ep=mg(sDC+s′CB)sin37°+mgR(1+cos37°)
解得:
s′CB=2.0m
4.如图所示,竖直平面内的光滑3/4的圆周轨道半径为R,A点与圆心O等高,B点在O的正上方,AD为与水平方向成θ=45°角的斜面,AD长为7 R.一个质量为m的小球(视为质点)在A点正上方h处由静止释放,自由下落至A点后进入圆形轨道,并能沿圆形轨道到达B点,且到达B处时小球对圆轨道的压力大小为mg,重力加速度为g,求:
(2)由几何知识易有:
从C1到C2由动能定理可得:
可得:
(3)以C1C2水平线作为重力势能的参考平面,则小物块越过D1、D2点时的机械能需满足:
由于直管道的摩擦,物块每完整经历直管道一次,机械能的减少量满足:
设n为从第一次经过D1后,翻越D1和D2的总次数,则有:

可得:n=2,表明小物块在第二次经过D1后就到不了D2,之后在D1B1A2C2D2之间往复运动直至稳定,最后在A2及C2右侧与A2等高处之间往复稳定运动。
(1)物块经过 点时的速度大小 ;
(2)若 ,弹簧在 点时的弹性势能 ;
(3)为保证物块沿原轨道返回, 的长度至少多大.
【答案】(1)2m/s (2)32.8J (3)2.0m
【解析】
【详解】
(1)物块恰好能到达最高点P,由重力提供圆周运动的向心力,由牛顿第二定律得:
mg=m
解得:
(2)物块从D到P的过程,由机械能守恒定律得:
由开始到稳定运动到达A2点,由动能定理有:
可得:s= m
故在B1A2直管道上经过的路程为s'=s-l= m
8.如图所示,半径为0. 5m的光滑细圆管轨道竖直固定,底端分别与两侧的直轨道相切.物块A以v0=6m/s的速度进入圆轨道,滑过最高点P再沿圆轨道滑出,之后与静止于直轨道上Q处的物块B碰撞;A、B碰撞时间极短,碰撞后二者粘在一起.已知Q点左侧轨道均光滑,Q点右侧轨道与两物块间的动摩擦因数均为μ=0.1.物块AB的质量均为1kg,且均可视为质点.取g=10m/s2.求:
相关文档
最新文档