电子产品的可靠性试验

合集下载

电子产品可靠性测试标准

电子产品可靠性测试标准

电子产品可靠性测试标准引言在当今科技快速发展的时代,电子产品的可靠性测试变得尤为重要。

可靠性测试是评估产品在规定条件下能够稳定运行的能力。

本文将介绍电子产品可靠性测试的标准和方法。

1. 可靠性测试的定义可靠性测试是通过对电子产品进行一系列测试和分析,评估其在特定环境和使用条件下的可靠性。

这些测试旨在发现潜在的故障点和产品在不同环境和负荷下的表现。

2. 可靠性测试的目标可靠性测试的目标是确保产品能够在正常使用条件下稳定工作,并且具有符合标准的寿命和可靠性指标。

通过可靠性测试,可以提前发现潜在的问题,并采取相应的措施来提高产品的可靠性。

3. 可靠性测试的标准电子产品的可靠性测试通常遵循国际电工委员会(IEC)和国际标准化组织(ISO)的标准。

以下是一些常见的可靠性测试标准:3.1 IEC 60068IEC 60068是电子产品可靠性测试的国际标准。

该标准涵盖了电子产品在不同环境条件下的测试方法,包括温度、湿度、振动、冲击等。

通过遵循IEC 60068标准,可以评估产品在不同环境条件下的可靠性。

3.2 ISO 9000系列ISO 9000系列是质量管理体系的国际标准,其中包括了关于可靠性测试的要求和指南。

ISO 9000系列标准注重质量管理和过程控制,可以帮助企业建立和改进可靠性测试流程。

3.3 MIL-STD-810MIL-STD-810是美国国防部针对军事设备的环境工程测试标准。

虽然主要用于军事设备的可靠性测试,但其中的测试方法和标准对其他电子产品的可靠性测试也有参考价值。

4. 可靠性测试的方法可靠性测试可以使用多种方法来评估产品的可靠性。

以下是一些常见的可靠性测试方法:4.1 退化测试退化测试是通过模拟产品的正常使用条件,在一定时间内加速产品的老化过程,以评估产品在寿命期内的可靠性。

退化测试可以通过加速老化试验设备来实现,例如使用高温、高湿度等条件。

4.2 随机振动测试随机振动测试是通过将产品暴露在随机振动环境中,以模拟产品在运输过程中可能遇到的振动情况。

电子行业电子产品可靠性试验与可靠性评估规范

电子行业电子产品可靠性试验与可靠性评估规范

电子行业电子产品可靠性试验与可靠性评估规范电子行业是现代工业的重要组成部分,电子产品的可靠性一直是电子行业的关注焦点。

为了确保电子产品的可靠性,需要进行可靠性试验与可靠性评估。

本文将阐述电子产品可靠性试验与可靠性评估的规范,包括试验方法、试验过程、数据分析等方面。

一、试验目的与依据电子产品可靠性试验与可靠性评估旨在验证产品的可靠性指标,确保产品在规定的工作环境下能够正常运行并满足设计寿命。

本规范参照国际标准ISO 9001以及相关的电子行业标准,包括ISO 14229、IEC 60068等,以确保试验结果的科学性和可靠性。

二、试验方法与环境要求1. 试验方法根据产品的特点和使用环境的要求,确定适合的试验方法。

试验方法包括加速寿命试验、环境应力试验、可靠性增长试验等。

根据产品的不同部件和功能,选择合适的试验参数,包括温度、湿度、振动、冲击等。

2. 试验环境要求根据产品的使用环境和可靠性要求,确定试验环境的要求。

试验环境包括温度、湿度、振动等参数。

根据产品的使用地区和应用场景,确定试验环境的范围和极限值。

在试验过程中,保持试验环境的稳定性和一致性,确保试验结果的可靠性和准确性。

三、试验过程与数据采集1. 试验计划编制在进行试验前,编制详细的试验计划。

试验计划包括试验目的、试验方法、试验环境、试验设备、试验样品等内容。

试验计划应根据产品的特点和可靠性要求,制定合理的试验方案,确保试验的全面性和可行性。

2. 试验过程控制在试验过程中,进行严格的试验过程控制。

确保试验设备的正常运行和试验环境的稳定性,按照试验计划进行试验操作。

在试验过程中,密切关注试验过程中的异常情况,并及时采取措施进行调整和修正。

3. 数据采集与分析试验过程中,对试验样品的运行状态、电气参数、物理特性等进行数据采集。

通过数据分析,评估产品的可靠性指标,包括失效率、故障率、寿命分布等。

分析试验数据,确定产品的可靠性评估结果,并根据评估结果进行相关的改进和优化。

电子行业电子产品可靠性试验

电子行业电子产品可靠性试验

电子行业电子产品可靠性试验简介在电子行业中,电子产品的可靠性试验是评估产品在预期使用条件下能够正常运行和持续性能的能力。

可靠性试验对产品的质量和可信度非常重要,因为它们直接影响到产品能否满足用户的需求,并且在产品寿命周期内提供稳定的性能。

本文将介绍电子行业中常见的电子产品可靠性试验方法,包括环境试验、可靠性加速试验和可靠性模拟试验。

环境试验环境试验是评估电子产品在不同工作环境条件下的可靠性和稳定性。

常见的环境试验包括温度试验、湿度试验、大气压力试验和振动试验等。

温度试验温度试验主要用于评估电子产品在不同温度条件下的可靠性。

它能够模拟产品在高温、低温和温度变化环境中的工作性能。

通常,温度试验会分为高温试验和低温试验。

高温试验通常在高于产品额定工作温度的条件下进行,而低温试验则在低于产品额定工作温度的条件下进行。

湿度试验湿度试验用于评估电子产品在高湿度环境下的可靠性。

湿度试验可以通过模拟产品在高湿度环境下的工作情况,进一步了解产品在潮湿环境下的性能表现和可靠性。

大气压力试验大气压力试验主要用于评估电子产品在高海拔和大气压力变化环境中的可靠性。

在大气压力较低的高海拔地区,电子产品可能会面临不同的工作条件和物理环境,例如气压降低、温度变化等。

通过大气压力试验,可以验证产品在这些特殊环境下的可靠性。

振动试验振动试验用于评估电子产品在振动环境下的可靠性。

这种试验可以模拟产品在运输过程中可能受到的振动和冲击,以及在实际使用过程中可能遭受的振动和震动。

通过振动试验,可以评估产品的机械可靠性和耐振性能。

可靠性加速试验可靠性加速试验是一种通过增加产品在试验中所受到的应力或环境条件,以达到缩短试验时间的目的的试验方法。

可靠性加速试验可以加速产品潜在的故障模式和机理的发展,并揭示产品可能出现的隐患和问题。

常见的可靠性加速试验方法包括高温高湿试验、温度循环试验、振动加速试验和脉冲宽度调制(PWM)加速试验等。

可靠性模拟试验可靠性模拟试验是通过模拟产品在实际使用中可能遇到的环境和应力条件,评估产品的可靠性和寿命。

电子产品可靠性测试

电子产品可靠性测试

电子产品可靠性测试电子产品在现代社会中扮演着重要的角色,它们的可靠性是用户最为关注的问题之一。

因此,为了确保电子产品的质量和性能,各行业都将可靠性测试作为产品生产和开发过程中的重要环节。

本文将探讨电子产品可靠性测试的相关规范、规程和标准。

一、可靠性测试的概述可靠性测试是指通过一系列的实验和分析,评估电子产品在特定环境条件下的长期稳定性和质量可靠性。

它对产品的设计、制造和材料选择提出了高要求,旨在提高产品的性能和使用寿命,减少故障率,保证产品在各种工作环境下的正常运行。

可靠性测试通常包括以下几个方面的内容:1.环境适应性测试:测试产品在各种温度、湿度、振动、电磁辐射等不同环境条件下的性能表现和稳定性。

2.可靠性指标测试:如寿命测试、故障率测试、平均无故障时间测试等,通过对产品的长期运行和故障统计,评估产品的可靠性水平。

3.可靠性设计评估:对产品的设计方案进行可靠性评估和改进,提前发现潜在的问题,提高产品的可靠性。

二、可靠性测试的规范和标准为了统一可靠性测试的方法和标准,各行业都会制定相应的规范和标准。

以下为常见的一些规范和标准:1.国际电工委员会(IEC):IEC制定了多项关于电子产品可靠性测试的国际标准,如IEC68、IEC60068等。

2.美国国家标准协会(ANSI):ANSI制定了多项与电子产品可靠性测试相关的标准,如ANSI/IEEE 344、ANSI/ISA S2.27等。

3.制造业标准化协会(MESA):MESA致力于制定和推广制造业的技术标准,其制定的MES模型可用于电子产品可靠性测试的信息管理和流程控制。

4.国际可靠性工程师协会(IREA):IREA制定了一系列可靠性工程师的认证考试标准,包括可靠性测试的理论、方法和实践。

5.电子工业标准化协会(EIA):EIA制定了多项与电子产品可靠性测试相关的标准和指南,如EIA-364、EIA-409等。

三、可靠性测试的方法和技术为了进行有效的可靠性测试,需要采用一系列科学的方法和先进的技术手段。

电子产品可靠性试验报告

电子产品可靠性试验报告

电子产品可靠性试验报告1. 引言本报告旨在评估电子产品的可靠性以及其在正常使用条件下的表现。

可靠性试验是为了确定电子产品的寿命、故障率和性能稳定性,以便为消费者提供可靠的产品。

试验中所使用的电子产品为XXXX型号,由XXXX公司生产。

试验期间将对电子产品进行多项测试,包括温度测试、振动测试、湿度测试等。

2. 试验方法2.1 温度测试温度测试用于评估电子产品在不同温度条件下的可靠性和性能表现。

试验中使用温度控制装置,将电子产品置于不同的温度环境中,包括高温、低温和常温。

在不同温度条件下,使用到的电子产品将连续运行一定时间,并通过记录温度变化、性能指标以及运行是否正常等数据来评估产品的可靠性。

2.2 振动测试振动测试用于模拟电子产品在运输过程中的震动情况,评估电子产品在震动环境下的可靠性。

试验中,我们将电子产品放置在特殊的振动机设备上,并设置不同的振动频率和振动强度。

根据试验结果,我们将评估电子产品在运输过程中是否会出现故障或损坏。

2.3 湿度测试湿度测试用于评估电子产品在高湿环境下的性能和可靠性。

试验中,我们将电子产品运行在高湿度条件下,记录其运行情况和性能参数。

通过湿度测试,我们可以了解电子产品在潮湿环境中的稳定性和耐久性。

3. 试验结果3.1 温度测试结果在不同温度条件下测试,电子产品的运行和性能一直保持正常。

无论是在高温环境下还是低温环境下,电子产品都没有出现异常现象。

试验数据显示,在-10至50的范围内,电子产品的性能保持稳定,没有出现故障或功能异常。

3.2 振动测试结果经过振动测试,电子产品没有出现损坏或故障。

试验中对电子产品进行了长时间、高强度的振动测试,产品仍然保持良好的运行状态。

振动测试的结果表明,电子产品具有较好的抗震性能,能够在运输过程中保持正常工作。

3.3 湿度测试结果湿度测试结果显示,电子产品在高湿度环境下表现良好。

产品在高湿度环境中运行没有出现异常,性能指标依然稳定。

试验数据表明,电子产品具有一定的防潮能力,能够适应潮湿的环境条件。

电子产品的可靠性试验

电子产品的可靠性试验

:电子产品的可靠性试验评价分析电子产品可靠性而进行的试验称为可靠性试验。

试验目的通常有如下几方面:1. 在研制阶段用以暴露试制产品各方面的缺陷,评价产品可靠性达到预定指标的情况;2. 生产阶段为监控生产过程提供信息;3. 对定型产品进行可靠性鉴定或验收;4. 暴露和分析产品在不同环境和应力条件下的失效规律及有关的失效模式和失效机理;5. 为改进产品可靠性,制定和改进可靠性试验方案,为用户选用产品提供依据。

对于不同的产品,为了达到不同的目的,可以选择不同的可靠性试验方法。

可靠性试验有多种分类方法. 1. 如以环境条件来划分,可分为包括各种应力条件下的模拟试验和现场试验; 2. 以试验项目划分,可分为环境试验、寿命试验、加速试验和各种特殊试验; 3. 若按试验目的来划分,则可分为筛选试验、鉴定试验和验收试验;4. 若按试验性质来划分,也可分为破坏性试验和非破坏性试验两大类。

5. 但通常惯用的分类法,是把它归纳为五大类: A. 环境试验 B. 寿命试验 C. 筛选试验 D. 现场使用试验 E. 鉴定试验1. 环境试验是考核产品在各种环境(振动、冲击、离心、温度、热冲击、潮热、盐雾、低气压等)条件下的适应能力,是评价产品可靠性的重要试验方法之一。

2.寿命试验是研究产品寿命特征的方法,这种方法可在实验室模拟各种使用条件来进行。

寿命试验是可靠性试验中最重要最基本的项目之一,它是将产品放在特定的试验条件下考察其失效(损坏)随时间变化规律。

通过寿命试验,可以了解产品的寿命特征、失效规律、失效率、平均寿命以及在寿命试验过程中可能出现的各种失效模式。

如结合失效分析,可进一步弄清导致产品失效的主要失效机理,作为可靠性设计、可靠性预测、改进新产品质量和确定合理的筛选、例行(批量保证)试验条件等的依据。

如果为了缩短试验时间可在不改变失效机理的条件下用加大应力的方法进行试验,这就是加速寿命试验。

通过寿命试验可以对产品的可靠性水平进行评价,并通过质量反馈来提高新产品可靠性水平。

电子产品可靠性试验标准

电子产品可靠性试验标准

电子产品可靠性试验标准引言:在现代社会中,电子产品已经渗透到各个行业和人们的日常生活中。

为了确保电子产品的可靠性和安全性,制定一套科学合理的可靠性试验标准是非常必要的。

本文将从电子产品可靠性试验的概念、意义、试验方法和标准等方面进行探讨,旨在为各行业提供参考和指导。

一、电子产品可靠性试验的概念与意义在电子产品设计、生产和使用过程中,为了保证其在预定时间内可靠地完成设计目标和用户需求,需要进行各种可靠性试验。

电子产品可靠性试验是通过对产品进行模拟或实际的环境、物理、电子等条件下的测试,以评估产品的可靠性、寿命和稳定性。

电子产品可靠性试验的意义在于:1. 提高产品的可靠性:通过可靠性试验,可以检测和发现产品在不同环境和使用条件下的潜在问题和缺陷,帮助生产厂家改进产品设计和制造过程,提高产品的可靠性水平。

2. 降低产品故障率和维修成本:通过可靠性试验,可以评估产品的故障率和寿命预测,为用户提供可信的使用寿命信息,降低产品的故障率和维修成本,提高用户满意度。

3. 增强用户信心和品牌形象:通过可靠性试验,可以提高产品的质量和可靠性,增强用户对产品的信心,提高品牌形象和市场竞争力。

4. 保障产品安全和可持续发展:通过可靠性试验,可以评估产品在各种极端情况下的安全性和稳定性,保障人身安全和环境保护,促进产品的可持续发展。

二、电子产品可靠性试验的方法电子产品可靠性试验的方法主要包括环境试验、物理试验和电子试验。

1. 环境试验环境试验主要是模拟或实际地对电子产品在各种自然和人为环境条件下的性能和可靠性进行测试,以评估产品在不同环境下的可靠性和稳定性,其中包括但不限于以下试验方法:- 高温试验:模拟电子产品在高温环境下的工作条件和稳定性,检测产品在高温条件下的性能退化和故障概率。

- 低温试验:模拟电子产品在低温环境下的工作条件和稳定性,检测产品在低温条件下的性能退化和故障概率。

- 湿热试验:模拟电子产品在高温高湿环境下的工作条件和稳定性,检测产品在湿热条件下的性能退化和故障概率。

电子产品可靠性测试标准

电子产品可靠性测试标准

电子产品可靠性测试标准引言电子产品的可靠性是指产品在设定的使用条件下,能够保持正常运行的能力。

对于用户来说,可靠性是评判一个产品好坏的重要标准之一。

为了保证电子产品的可靠性,制定一套标准的测试方法是必不可少的。

本文将介绍电子产品可靠性测试的标准和相应的测试方法。

1. 电子产品可靠性测试标准概述电子产品可靠性测试标准是指为了评估产品性能和可靠性而制定的一套规范和准则。

这些标准在制定过程中充分考虑了产品的设计、制造、测试等环节,以确保产品能够在正常使用条件下长期、稳定地工作。

1.1 国际标准国际电工委员会(IEC)是制定国际标准的权威机构之一,其发布的标准被广泛应用于电子产品可靠性测试中。

常见的国际标准有:•IEC 60068:环境试验•IEC 60749:半导体器件可靠性试验方法•IEC 61000:电磁兼容性测试1.2 行业标准除了国际标准,各个行业也会针对不同类型的电子产品制定相应的可靠性测试标准。

例如,汽车行业采用了AEC-Q100等标准,电信行业采用了GR-63-CORE等标准。

这些行业标准主要考虑了产品在特定应用环境下的可靠性需求。

2. 电子产品可靠性测试方法为了确保电子产品的可靠性,需要进行一系列的测试。

常见的可靠性测试方法包括:2.1 温度试验温度试验是通过暴露产品于高温和低温环境中,评估产品在极端温度条件下的可靠性表现。

常用的温度试验方法包括:•热老化试验:将产品置于高温环境下,持续一定时间,观察产品的性能变化情况。

•低温试验:将产品置于低温环境下,观察产品的性能变化情况。

•温度循环试验:将产品在高温和低温之间循环变化,观察产品的性能变化情况。

2.2 振动试验振动试验是通过施加不同频率和振幅的振动载荷,评估产品在振动环境下的可靠性表现。

常用的振动试验方法包括:•正弦振动试验:施加单一频率和振幅的正弦振动载荷,观察产品的性能变化情况。

•随机振动试验:施加随机频率和振幅的振动载荷,模拟实际使用环境中的振动情况。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电子产品的可靠性试验评价分析电子产品可靠性而进行的试验称为可靠性试验。

试验目的通常有如下几方面:1. 在研制阶段用以暴露试制产品各方面的缺陷,评价产品可靠性达到预定指标的情况;2. 生产阶段为监控生产过程提供信息;3. 对定型产品进行可靠性鉴定或验收;4. 暴露和分析产品在不同环境和应力条件下的失效规律及有关的失效模式和失效机理;5. 为改进产品可靠性,制定和改进可靠性试验方案,为用户选用产品提供依据。

对于不同的产品,为了达到不同的目的,可以选择不同的可靠性试验方法。

可靠性试验有多种分类方法. 1. 如以环境条件来划分,可分为包括各种应力条件下的模拟试验和现场试验; 2. 以试验项目划分,可分为环境试验、寿命试验、加速试验和各种特殊试验; 3. 若按试验目的来划分,则可分为筛选试验、鉴定试验和验收试验; 4. 若按试验性质来划分,也可分为破坏性试验和非破坏性试验两大类。

5. 但通常惯用的分类法,是把它归纳为五大类: A. 环境试验 B. 寿命试验 C. 筛选试验 D. 现场使用试验 E.鉴定试验1. 环境试验是考核产品在各种环境(振动、冲击、离心、温度、热冲击、潮热、盐雾、低气压等)条件下的适应能力,是评价产品可靠性的重要试验方法之一。

2. 寿命试验是研究产品寿命特征的方法,这种方法可在实验室模拟各种使用条件来进行。

寿命试验是可靠性试验中最重要最基本的项目之一,它是将产品放在特定的试验条件下考察其失效(损坏)随时间变化规律。

通过寿命试验,可以了解产品的寿命特征、失效规律、失效率、平均寿命以及在寿命试验过程中可能出现的各种失效模式。

如结合失效分析,可进一步弄清导致产品失效的主要失效机理,作为可靠性设计、可靠性预测、改进新产品质量和确定合理的筛选、例行(批量保证)试验条件等的依据。

如果为了缩短试验时间可在不改变失效机理的条件下用加大应力的方法进行试验,这就是加速寿命试验。

通过寿命试验可以对产品的可靠性水平进行评价,并通过质量反馈来提高新产品可靠性水平。

3. 筛选试验是一种对产品进行全数检验的非破坏性试验。

其目的是为选择具有一定特性的产品或剔早期失效的产品,以提高产品的使用可靠性。

产品在制造过程中,由于材料的缺陷,或由于工艺失控,使部分产品出现所谓早期缺陷或故障,这些缺陷或故障若能及早剔除,就可以保证在实际使用时产品的可靠性水平。

可靠性筛选试验的特点是: A. 这种试验不是抽样的,而是100%试验; B. 该试验可以提高合格品的总的可靠性水平,但不能提高产品的固有可靠性,即不能提高每个产品的寿命; C. 不能简单地以筛选淘汰率的高低来评价筛选效果。

淘汰率高,有可能是产品本身的设计、元件、工艺等方面存在严重缺陷,但也有可能是筛选应力强度太高。

淘汰率低,有可能产品缺陷少,但也可能是筛选应力的强度和试验时间不足造成的。

通常以筛选淘汰率Q和筛选效果β值来评价筛选方法的优劣:合理的筛选方法应该是β 值较大,而Q值适中。

上述各种试验都是通过模拟现场条件来进行的。

模拟试验由于受设备条件的限制,往往只能对产品施加单一应力,有时也可以施加双应力,这与实际使用环境条件有很大差异,因而未能如实地、全面地暴露产品的质量情况。

现场使用试验则不同,因为它是在使用现场进行,故最能真实地反映产品的可靠性问题,所获得的数据对于产品的可靠性预测、设计和保证有很高价值。

对制定可靠性试验计划、验证可靠性试验方法和评价试验精确性,现场使用试验的作用则更大。

鉴定试验是对产品的可靠性水平进行评价时而做的试验。

它是根据抽样理论制定出来的抽样方案。

在保证生产者不致使质量符合标准的产品被拒收的条件下进行鉴定试验。

1 .可靠性设计的意义①可靠性贯穿于电子产品的整个寿命周期,从产品的设计、制造到安装、使用、维护的个阶段都有一个可靠性问题。

但首先要抓好可靠性设计。

产品可靠性的定量指标应该在设计过程就得到落实,为产品的固有可靠性奠定良好的基础。

反之,一个忽视可靠性设计的产品,必然是“先天不足,后患无穷”,在使用过程中大部会暴露出一系列不可靠问题。

据统计,由于设计不当而影响产品可靠性的程度占各种不可靠因素的首位。

所以,我们必须扭转只搞性能指标设计,忽视可靠性设的倾向,在产品研制、设计阶段,认真开展可靠性设计,为产品固有可靠性奠定基础。

②随着科学技术的进步和经济技术发展的需要,电子产品日益向多功能、小型化、高可靠方向发展。

功能的复杂化,使设备应用的元器件、零部件越来越多,对可靠性要求也越来越高。

每一个元器件的失效,都可能使设备或电子系统发生故障。

这就必须加强可靠性设计,正确选用元器件并采用降额、降温、冗余等设计技术,降低元器件的使用失效率,保证产品的可靠性。

③电子设备或系统广泛应用于各种场所,会遇到各种复杂的环境因素,如:高温、高湿、低气压、有害气体、霉菌、冲击、振动、辐射、电磁干扰……。

这些环境因素的存在,都将大大影响电子产品的可靠性。

只有通过可靠性设计,充分考虑产品在使用过程中可能遇到的各种环境条件,采取耐环境设计和电磁兼容性设计等各项措施,才能保证产品在规定环境条件下的可靠性。

④在设计阶段采取提高可靠性的措施,比起以后各阶段采取措施耗资最少,收效也最显著。

2.可靠性设计的基本任务电子设备或系统可靠性设计的基本任务是:在现有元器件水平的基础上,从设备或系统的总体设计、元器件选用、降额设计、热设计、稳定性设计、电磁兼容设计、耐环境设计、工艺设计以及维修性设计等各方面,采取各种措施,在重量、体积、性能、费用、研制时间等因素的综合权衡下,实现设备或系统既定的可靠性指标。

二、可靠性设计的基本内容可靠性设计的基本内容包括:确定总体方案;应用专门的可靠性设计技术实施专题可靠性设计;应用专门的可靠性评价分析技术对产品的可靠性进行定性和定量的评价分析。

制定总体方案是实施专题可靠性设计的依据,专题可靠性设计则是总体方案的具体实现和保证,而可靠性评价分析则是对专题可靠性设计的及则检验和反馈。

下面就逐一介绍这三部分内容。

1.制定总体方案制定总体方案包括如下六个方面的内容:①明确产品的功能和性能要求;②了解产品的使用环境条件;③确定产品可靠性的定量标准;④调查相似老产品的现场使用情况;⑤拟定为实现可靠性指标应采取的相应措施;⑥进行方案论证。

2.可靠性设计技术的应用元器件选用与降额设计选用元器件一般有二条原则:①尽量选用经过质量认证或认定,并经现场使用证明质量良好,可靠性高的通用元器件。

对于新研制的新型元器件则必须经过严格的质量和可靠性试验后方能使用。

②必须根据不同电路的工作参数和整机的使用环境条件,选用能满足这些要求的相应元器件,以充分发挥元器件应有的功能提高元器件的使用可靠性。

各种电子元器由于它们的材料、结构、设计和制造工艺等方面的原因,对外应力(包括电应力、热应力等)都有一定的耐受强度。

当外应力超过元器件本身的应力承受强度(即额定应力)时,元器件就会损坏。

降额就是使元器件在低于其额定的应力条件下工作。

降额能提高元器件和设备的可靠性。

这是因为绝大部分元器件的失效率随着所施加的热应力和电应力的降低而下降。

但是降额要适当,既不能使降额不足,对某些元件(如电解电容等)也不能让降额过了头,且要与体积、重量、成本综合考虑。

(2) 热设计电子元器件及电子设备的可靠性与温度的关系极为密切。

例如,当环境温度升高时,就会使晶体管内部材料的物理和化学反应的速率加快,从而使晶体管的性能参数(电流放大系数hfe、反向饱和电流Is 和噪声系数Nf 等)随温的升高而产生漂移;额定功率降低,热击穿概率上升。

温度对电容器的可靠性也有极大影响,当使用温度超过电容器的额定温度时,温度每提高10℃电容器的使用寿命将下降一半。

此外,过高的温度还会使设备内的塑料件变形、变硬、变脆、老化,使材料的绝缘性能下降等。

因此为了提高产品的可靠性,就必须充分重视并搞好热设计。

热设计的基本准则可归纳为以下四点:①降低热源电子产品所消耗的功率绝大部分被转化为热能,故为了降低设备的温升就应在保证设备完成规定功能的前提下,尽量降低设备的功耗。

②合理布局把设备内的发热元件均匀地分散于各个部位,防止设备内部出现局部过热。

③采取有效的散热措施所谓散热,就是采取一定的传热方式,把发热体的热量散发出去。

传热有三种基本形式,即传导、对流和辐射,因此,要提高散热效果可以从以下几方面着手:第一,充分利用传导散热。

应充分利用设备的各个部分(如结构件,印制板和引线等)作为传导通路,对发热量较高的大中功率管,可装在散热器上,让发热体的热量先传导至散热器,再通过对流、辐射把热量从散热器传至周围环境。

第二,加强对流。

合理设计通风孔,进风口和出风口应开在温差最大的两处。

对自然通风的设备,进风口应开在设备的底部,出风口应尽量高,以形成较强的拔风效应。

对功率较大的设备还应采用强迫风冷措施,以加强对流效果。

第三,减小辐射热阻。

要扩大辐射面积,提高发热体黑度。

第四,对热敏元件隔热。

热敏元件对温度变化非常敏感,如晶体管、铁氧体磁性元件、石英晶体、槽路电容等,在热的影响下,或是电参数急剧变化使设备出现性能失效,或是元件失效率升高使设备故障增多。

故应对热敏元件进行隔热。

(3) 电磁兼容性设计电子设备或系统总是处在电磁环境中工作,一是自然界造成的电磁环境,如雷电、宇宙射线、地磁辐射等;二是周围其他电子设备造成的电磁环境,如家用电器、工业电器、仪器设备、雷达、发射台、输电网等;三是自身造成的电磁环境,如变压器、扬声器、电路的非线性失真、本振辐射、自激振荡及各种信号馈线等形成的电场、磁场、电磁场环境等。

设备处在这些电磁环境中,将会受到电的、磁的或电磁的干扰。

因此,能否适应这种公共的电磁环境,使其仍然能正常工作,就成为可靠性设讨必须考虑的问题。

如果所设计的设备缺少电磁兼容能力,就会在电磁干扰下,不断发生暂时的或永久的故障,降低了设备的可靠性。

电磁干扰通常分为外来干扰和自身干扰两大类:常见的外来干扰有:电吹风、手电钻、汽车发动机、电焊机等启动时,由于电机电刷的接触,汽车发动机点火系统的放电,及注塑机继电器触点的接触而产生的电火花等。

这些电火花频率高,高次谐波多,脉宽窄,幅度大,由此而产生的高频辐射会使电子设备的正常工作受到影响。

常见的自身干扰有:变压器的漏磁、电路的自激振荡、电路的非线性失真或高速开关电路所产生的高次谐波的辐射等。

电磁干扰的途径一般有传导、近场感应和远场辐射三种方式。

干扰通过于扰源和被干扰电路之间的公共阻抗而引人被干扰电路的方式称为传导干扰。

当干扰源和被干扰物相距较近时(小于λ/2π,其中λ为干扰波的波长),干扰通过电容或电感性耦合而引人被干扰电路的方式称为近场感应。

当干扰源和被干扰物相距较远(大于λ/2π)时,干扰由电磁辐射方式引入被干扰电路就称为远场辐射。

相关文档
最新文档