2017中考数学专题训练(三)一次函数和反比例函数结合
中考数学专题:反比例函数与一次函数(难题)(题目含答案)

《反比例函数与一次函数》难度题型 训练3【典型例题1】如图,直线3y x b =-+与y 轴交于点A ,与双曲线k y x =在第一象限交于B 、C两点,且AB·AC=4,则k =______3【解】将长度关系转化为坐标关系;联立方程,韦达定理。
设B (11y x ,),C (22y x ,) 则AB·AC= 21x x = 4【类型题训练1A 】如图,直线y =-12x +1与y 轴交于点A ,与双曲线y =kx在第一象限交于B 、C 两点,设B 、C 两点的纵坐标分别为y 1,y 2,则y 1+y 2的值为____1______.【方法】联立方程消去x 得一元二次方程到关于y 的,韦达定理【类型题训练1B 】如图,已知直线2+-=x y 分别与x 轴,y 轴交于D ,A 两点,与双曲线xky =交于C ,B 两点. 若AD=2CB ,则k 的值是34【类型题训练1C】如图,已知反比例函数y =xm 8-(m 为常数)的图象经过点A (-1,6),过A 点的直线交函数y =xm 8-的图象于另一点B ,与x 轴交于点C ,且AB =2BC ,则点C 的坐标为_____________(-4,0)【解】把A (-1,6)代入y =x m 8-,解得m =2∴y =-x6① 设直线AC 的解析式为y =kx +b ,把(-1,6)代入,得b =k +6 ∴y =kx +k +6 ②联立①②,解得⎩⎨⎧6111-==y x ⎪⎩⎪⎨⎧kk x y-==226∴B (-k 6,k )∵AB =2BC ,∴6-k =2k ,∴k =2,∴b =8∴直线AC 的解析式为y =2x +8,令y =0,得x =-4∴点C 的坐标为(-4,0)【类型题训练1D 】(2016随州)如图,直线4+=x y 与双曲线xk y =(k ≠0)相交于A (﹣1,a )、B 两点,在y 轴上找一点P ,当PA+PB 的值最小时,点P 的坐标为 (0,25) .解:把点A 坐标代入y=x +4得,﹣1+4=a ,a =3,即A (﹣1,3), 把点A 坐标代入双曲线的解析式:3=﹣k ,解得:k=﹣3,联立两函数解析式得:,解得:,,即点B 坐标为:(﹣3,1),作出点A 关于y 轴的对称点C ,连接BC ,与y 轴的交点即为点P ,使得PA+PB 的值最小,则点C 坐标为:(1,3)设直线BC 的解析式为:y=ax+b把B 、C 的坐标代入得:,解得:,函数解析式为:y=x+,则与y 轴的交点为:(0,).故答案为:(0,).【典型例题2】如图,直线x y 21=与双曲线x k y =(k >0,x >0)交于点A ,将直线x y 21=向上平移4个单位长度后,与y 轴交于点C ,与双曲线xky =(k >0,x >0)交于点B ,若OA=3BC ,则k 的值为29【类型题训练2A 】如图,直线y =-12x -1与x 轴交于点A ,与y 轴交于点B ,将该直线向上平移4个单位后与双曲线y =kx(x >0)交于C 、D 两点,若CD =2AB ,则k =_____25_____【方法】设点坐标;联立方程 设C ),(11x k x , D ),(22x k x 直线CD 方程:321+-=x y 代入y = kx,整理得:03212=-+-k x x 622121=+=∴x x k x x , CD = 52 412=-∴x x 25=k【变式训练1】如图,直线y = kx 与双曲线xy 2-=交于A (x 1,y 1),B (x 2,y 2)两点,则2x 1y 2﹣8x 2y 1的值为 ﹣12O ABx yCD【解答】解:将y=kx 代入到x y 2-=中得:xkx 2-=,即kx 2=﹣2, 解得:x 1=﹣,x 2=,∴y 1=kx 1=,y 2=kx 2=﹣, ∴2x 1y 2﹣8x 2y 1=2×(﹣)×(﹣)﹣8××=﹣12.【变式训练2】如图,△AOB 为等边三角形,点B 的坐标为(-2,0),过点C (2,0)的直线交AO 于D ,交AB 于E ,且△ADE 的面积与△DCO 的面积相等.若点E 在某反比例函数图象上,那么该反比例函数的解析式为_____xy 433-=_______【变式训练3】如图,在平面直角坐标系中,等边三角形ABC 的顶点B ,C 的坐标分别为(1,0),(3,0),过坐标原点O 的一条直线分别与边AB ,AC 交于点M ,N ,若OM =MN ,则点M 的坐标为____)43,45(__________. 【方法】作全等三角形、相似三角形【变式训练4】如图,直线y =kx -2(k >0)与双曲线y =kx在第一象限内交于点A ,与x 轴、y 轴分别交于,且△ABD 与△OBC 的面积相等,则k 的值等于____22_____.【变式训练5】如图,一次函数y ax b =+的图象与x 轴,y 轴交于A ,B 两点,与反比例函数ky x=的图象相交于C ,D 两点,分别过C ,D 两点作y 轴,x 轴的垂线,垂足为E ,F ,连接CF ,DE .有下列四个结论:①△CEF 与△DEF 的面积相等; ②△AOB ∽△FOE ; ③△DCE ≌△CDF ; ④AC BD =.其中正确的结论是 ①②④ (把你认为正确结论的序号都填上) 【方法】等面积的迁移【变式训练6】在平面直角坐标系中,直线y=﹣x +2与反比例函数xy 1=的图象有唯一公共点,若直线 y =﹣x +b 与反比例函数xy 1=的图象有2个公共点,则b 的取值范围是( )A .b >2B .﹣2<b <2C .b >2或b <﹣2D .b <﹣2【解答】解:解方程组得:x 2﹣bx+1=0,∵直线y=﹣x+b 与反比例函数y=的图象有2个公共点,∴方程x 2﹣bx+1=0有两个不相等的实数根,∴△=b 2﹣4>0,∴b >2,或b <﹣2,故选C .。
中考数学《一次函数》专题训练(附带答案)

中考数学《一次函数》专题训练(附带答案)一、单选题1.已知一次函数y =(1﹣a )x+2a+1的图象经过第二象限,则a 的值可以是( )A .﹣2B .﹣1C .0D .12.如图,直线y =k 1x +b 1和直线y =k 2x +b 2相交于点M(23,−2),则关于x ,y 的方程组{y =k 1x +b 1y =k 2x +b 2,的解为( )A .{x =23,y =−2 B .{x =−2,y =23C .{x =23,y =2D .{x =−2,y =−233.若一次函数y=(3-k )x -k 的图象经过第二、三、四象限,则k 的取值范围是 ( )A .k >3B .0<k≤3C .0≤k <3D .0<k <34.如图,一直线与两坐标轴的正半轴分别交于A ,B 两点,P 是线段AB 上任意一点(不包括端点),过P 分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为10,则该直线的函数表达式是( )A .y=x+5B .y=x+10C .y=﹣x+5D .y=﹣x+105.设min{x ,y}表示x ,y 两个数中的最小值,例如min{0,2}=0,min{12,8}=8,则关于x 的函数y=min{2x ,x+2}可以表示为( ) A .y={2x(x <2)x +2(x ≥2)B .y={x +2(x <2)2x(x ≥2)C .y=2xD .y=x+26.已知一次函数y=kx ﹣1,若y 随x 的增大而增大,则该函数的图象不经过( )A.第一象限B.第二象限C.第三象限D.第四象限7.已知k≠0,在同一坐标系中,函数y=k(x+1)与y= k x的图象大致为如图所示中的()A.B.C.D.8.下列函数中,当x>0时,y随x的增大而增大的是()A.y=-x+1B.y=x2-1C.y=1x D.y=-x2+19.下列y关于x的函数中,是正比例函数的为()A.y=x2B.y=2x C.y=x2D.y=x+1210.如图,在平面直角坐标系中,O为坐标原点,直线y=−x+4√2与x轴交于B点,与y轴交于A点,点C,D在线段AB上,且CD=2AC=2BD,若点P在坐标轴上,则满足PC+PD=7的点P的个数是()A.4B.3C.2D.111.已知在一次函数y=﹣1.5x+3的图象上,有三点(﹣3,y1)、(﹣1,y2)、(2,y3),则y1,y2,y3的大小关系为()A.y1>y2>y3B.y1>y3>y2C.y2>y1>y3D.无法确定12.一次函数y=(k-3)x|k|-2+2的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限二、填空题13.已知一次函数 y =(k +1)x −b ,若y 随x 的增大而减小,则k 的取值范围是 . 14.如图,一次函数与反比例函数的图象分别是直线 AB 和双曲线.直线 AB 与双曲线的一个交点为点 C ,CD ⊥x 轴于点 D ,OD =2OB =4OA =4 ,则此反比例函数的解析式为 .15.一次函数 y 1=k 1x +b 1 与 y 2=k 2x +b 2 的图象如图,则不等式组 {k 1x +b 1≤0k 2x +b 2>0 的解为 .16.若点 (m,n) 若在直线 y =3x −2 上,则代数式2n -6m+1的值是 .17.已知一次函数y =﹣x ﹣(a ﹣2)中,当a 时,该函数的图象与y 轴的交点坐标在x 轴的下方.18.已知一次函数 y =ax +|a −1| 的图象经过点(0,3),且函数y 的值随x 的增大而减小,则a 的值为 .三、综合题19.甲、乙两车分别从相距480千米的 A 、 B 两地相向而行,乙车比甲车先出发1小时,并以各自的速度匀速行驶,途经 C 地,甲车到达 C 地停留1小时,因有事按原路原速返回 A 地.乙车从 B 地直达 A 地,两车同时到达 A 地.甲、乙两车距各自出发地的路程 y (千米)与甲车出发后所用的时间 x (时)的函数图象如图所示.(1)求t的值;(2)求甲车距它出发地的路程y与x之间的函数关系式;(3)求两车相距120千米时乙车行驶的时间.20.根据对某市相关的市场物价调研,预计进入夏季后的某一段时间,某批发市场内的甲种蔬菜的销售利润y1(千元)与进货量x(吨)之间的函数y1=kx的图象如图①所示,乙种蔬菜的销售利润y2(千元)与进货量x(吨)之间的函数y2=ax2+bx的图象如图②所示.(1)分别求出y1、y2与x之间的函数关系式;(2)如果该市场准备进甲、乙两种蔬菜共10吨,设乙种蔬菜的进货量为t吨.①写出这两种蔬菜所获得的销售利润之和W(千元)与t(吨)之间的函数关系式.并求当这两种蔬菜各进多少吨时获得的销售利润之和最大,最大利润是多少元?②为了获得两种蔬菜的利润之和不少于8400元,则乙种蔬菜进货量应在什么范围内合适?21.已知一次函数y=-2x-2.(1)画出函数的图象;(2)求图象与x轴,y轴的交点A,B的坐标;(3)求A,B两点之间的距离;(4)求△AOB的面积;(5)当x为何值时,y≥0(利用图象解答)?22.在平面直角坐标系中,一次函数y=x+3的图象与x轴交于点A,二次函数y=x2+mx+n的图象经过点A.(1)当m=4时,求n的值;(2)设m=﹣2,当﹣3≤x≤0时,求二次函数y=x2+mx+n的最小值;(3)当﹣3≤x≤0时,若二次函数﹣3≤x≤0时的最小值为﹣4,求m、n的值.23.同时点燃甲乙两根蜡烛,蜡烛燃烧剩下的长度y(cm)与燃烧时间x(min)的关系如图所示.(1)求点P的坐标,并说明其实际意义;(2)求点燃多长时间,甲蜡烛剩下长度是乙蜡烛剩下长度的1.1倍.24.冰墩墩是2022年北京冬季奥运会的吉样物.冬奥会来临之际,冰墩墩玩偶非常畅销.小张在某网店选中A,B两款冰墩墩玩偶,决定用900元(全部用完)从该网店进货并销售.两款玩偶的进货价和销售价如下表:A款玩偶B款玩偶进货价(元/个)2520销售价(元/个)3325(1)求y与x之间的函数表达式;(2)如果小张购进A款玩偶20个,那么这次进货全部售完,能盈利多少元?参考答案1.【答案】C 2.【答案】A 3.【答案】A 4.【答案】C 5.【答案】A 6.【答案】B 7.【答案】D 8.【答案】B 9.【答案】C 10.【答案】A 11.【答案】A 12.【答案】C 13.【答案】k <−1 14.【答案】y =−4x15.【答案】x≤-4 16.【答案】-3 17.【答案】>2 18.【答案】-219.【答案】(1)由函数图象得:乙车的速度为:60÷1=60(千米/小时),甲车从A 地出发至返回A 地的时间为:(480−60)÷60=420÷60=7(小时) ∴t =(7−1)÷2=3 即t 的值是3;(2)当0≤x≤3时,设y 与x 的函数关系式为y =kx , 则360=3k ,解得k =120∴当0≤x≤3时,y 与x 的函数关系式为:y =120x 当3<x≤4时,y =360当4<x≤7,设y 与x 的函数关系式为:y =ax +b 则 {4a +b =3607a +b =0 解得: {a =−120b =840∴当4<x≤7,y与x的函数关系式为:y=−120x+840由上可得,y与x的函数关系式为:y={120x(0≤x≤3) 360(3<x≤4)−120x+840(4<x≤7)(3)设乙车行驶的时间为m小时时,两车相距120千米,乙车的速度为60千米/小时,甲车的速度为360÷3=120(千米/小时)甲乙第一次相遇前,60+(60+120)×(m−1)+120=480,得m=8 3甲乙第一次相遇之后,60+(60+120)×(m−1)=480+120,得m=4甲车返回A地的过程中,当m=5时,两车相距5×60-(480-360)=180(千米)∴(120−60)×(m−5)=180−120得m=6答:两车相距120千米时乙车行驶的时间是83小时、4小时或6小时.20.【答案】(1)解:由题意得,设y1=kx5k=3∴k=0.6∴y1=0.6x根据题意得,设y2=ax2+bx+c,由图知,抛物线经过点(0,0)、(1,2)、(5,6),代入得{c=0a+b+c=2 25a+5b+c=6∴{a=−0.2b=2.2c=0∴y2=−0.2x2+2.2x;(2)解:①设乙种蔬菜的进货量为t吨,w=y1+y2=0.6(10−t)+(−0.2t2+2.2t)=−0.2t2+1.6t+6=−0.2(t−4)2+9.2当t=4,利润之和最大W最大=9200(元)答:当乙种蔬菜进货4吨,甲种蔬菜进货6吨,利润之和最大,最大9200元.②w=y1+y2=−0.2t2+1.6t+6当w≥8.4时,即−0.2t2+1.6t+6≥8.4∴−0.2t2+1.6t−2.4≥0令−0.2t2+1.6t−2.4=0t2−8t−12=0(t−2)(t−6)=0解得t1=2,t2=6因为抛物线开口向下,所以2≤t≤6答:乙种蔬菜进货量为2吨到6吨范围内.21.【答案】(1)解:列表:x……-10……y……0-2……(2)解:由(1)可得该图象与x轴,y轴的交点坐标分别为A(-1,0),B(0,-2).(3)解:A,B两点之间的距离为√OA2+OB2=√12+22=√5(4)解:S△AOB= 12OA·OB=12×1×2= 1(5)解:由(1)中图象可得,当x≤-1时,y≥0.22.【答案】(1)解:当y=x+3=0时,x=﹣3∴点A 的坐标为(﹣3,0).∵二次函数y=x 2+mx+n 的图象经过点A ∴0=9﹣3m+n ,即n=3m ﹣9 ∴当m=4时,n=3m ﹣9=3.(2)解:抛物线的对称轴为直线x=﹣ m 2当m=﹣2时,对称轴为x=1,n=3m ﹣9=﹣15 ∴当﹣3≤x≤0时,y 随x 的增大而减小∴当x=0时,二次函数y=x 2+mx+n 的最小值为﹣15.(3)解:①当对称轴﹣ m2 ≤﹣3,即m≥6时,如图1所示.在﹣3≤x≤0中,y=x 2+mx+n 的最小值为0,∴此情况不合题意;②当﹣3<﹣ m2 <0,即0<m <6时,如图2,有 {4n−m 24=49−3m +n =0解得: {m =2n =−3 或 {m =10n =21(舍去)∴m=2、n=﹣3;③当﹣ m2 ≥0,即m≤0时,如图3有 {n =−49−3m +n =0 ,解得: {m =53n =−4(舍去).综上所述:m=2,n=﹣3. 23.【答案】(1)解:设乙蜡烛剩下的长度y 与燃烧时间x 的函数表达式为y=kx+b ,得:{b =4050k +b =0 ,解得: {k =−0.8b =40,即乙蜡烛剩下的长度y 与燃烧时间x 的函数表达式为y=﹣0.8x+40,将x=20代入得y=24,故P (20,24)该点表示的实际意义是点燃20分钟后,两支蜡烛剩下的长度都是24cm ; (2)解:设甲蜡烛剩下的长度y 甲与x 之间的函数表达式为y 甲=mx+n ,得: {48=n 24=20m +n,解得: {m =−1.2n =48 ,∴y 甲与x 之间的函数表达式为y 甲=﹣1.2x+48.∵甲蜡烛剩下长度是乙蜡烛剩下长度的1.1倍,∴﹣1.2x+48=1.1(﹣0.8x+40),解得:x=12.5. 答:点燃12.5分钟,甲蜡烛剩下长度是乙蜡烛剩下长度的1.1倍24.【答案】(1)解:由题意,得25x +20y =900∴y =−54x +45;(2)解:当x =20时,则y =−54×20+45=20∴这次进货全部售完,能盈利=20(33−25)+20(25−20)=260(元) 答:这次进货全部售完,能盈利260元.。
备考2022年中考数学二轮复习-函数_反比例函数_反比例函数与一次函数的交点问题-综合题专训及答案

备考2022年中考数学二轮复习-函数_反比例函数_反比例函数与一次函数的交点问题-综合题专训及答案反比例函数与一次函数的交点问题综合题专训1、(2017山西.中考真卷) 如图,在平面直角坐标系中,正方形OABC的顶点O与坐标原点重合,其边长为2,点A,点C分别在x轴,y轴的正半轴上,函数y=2x的图象与CB交于点D,函数y= (k为常数,k≠0)的图象经过点D,与AB交于点E,与函数y=2x的图象在第三象限内交于点F,连接AF、EF.(1)求函数y= 的表达式,并直接写出E、F两点的坐标;(2)求△AEF的面积.2、(2017峄城.中考模拟) 如图,在平面直角坐标系xOy中,直线y=kx+b(k≠0)与双曲线y= (m≠0)交于点A(2,﹣3)和点B(n,2).(1)求直线与双曲线的表达式;(2)对于横、纵坐标都是整数的点给出名称叫整点.动点P是双曲线y= (m≠0)上的整点,过点P作垂直于x轴的直线,交直线AB于点Q,当点P位于点Q下方时,请直接写出整点P的坐标.3、(2019宁江.中考模拟) 如图,一次函数y=kx+b的图象与反比例函数y=(x>0)的图象交于A(2,-1)、B(,n)两点,点C的坐标为(0,2),过点C的直线l与x轴平行。
(1)求一次函数与反比例函数的解析式;(2)求△ABC的面积。
4、(2019丹阳.中考模拟) 如图,在平面直角坐标系中,函数(,是常数)的图像经过A(2,6),B(m,n),其中m>2.过点A作轴垂线,垂足为C,过点作轴垂线,垂足为,AC与BD交于点E,连结AD,,CB.(1)若的面积为3,求m的值和直线的解析式;(2)求证:;(3)若AD//BC,求点B的坐标 .5、(2013衢州.中考真卷) 如图,函数y1=﹣x+4的图象与函数y2= (x>0)的图象交于A(a,1)、B(1,b)两点.(1)求函数y2的表达式;(2)观察图象,比较当x>0时,y1与y2的大小.6、(2017宿州.中考模拟) 如图,反比例函数y= 的图象与一次函数y=kx+b的图象交于A,B两点,点A的坐标为(n,6),点B的坐标为(12,1).(1)分别求m、k、b的值.(2)点C为y轴上一动点,若S△ABC=15,求点C的坐标.7、(2017巨野.中考模拟) 如图,已知直线y=﹣x+4与反比例函数y= 的图象相交于点A(﹣2,a),并且与x轴相交于点B.(1)求反比例函数的表达式;(2)求△AOB的面积.8、(2018武汉.中考模拟) 如图,四边形ABCD是平行四边形,点A(1,0),B (4,1),C(4,3),反比例函数的图象经过点D,点P是一次函数y=mx+3﹣4m(m≠0)的图象与该反比例函数图象的一个公共点.(1)求反比例函数的解析式;(2)通过计算说明一次函数y=mx+3﹣4m的图象一定过点C;(3)对于一次函数y=mx+3﹣4m(m≠0),当y随x的增大而增大时,确定点P的横坐标的取值范围.(不必写过程)9、(2017黄石.中考模拟) 如图,已知直线l:y=kx+b(k<0,b>0,且k、b为常数)与y轴、x轴分别交于A点、B点,双曲线C:y= (x>0).(1)当k=﹣1,b=2 时,求直线l与双曲线C公共点的坐标;(2)当b=2 时,求证:不论k为任何小于零的实数,直线l与双曲线C只有一个公共点(设为P),并求公共点P的坐标(用k的式子表示).(3)①在(2)的条件下,试猜想线段PA、PB是否相等.若相等,请加以证明;若不相等,请说明理由;②若直线l与双曲线C相交于两点P1、P2,猜想并证明P1A与P2B之间的数量关系.10、(2017东莞.中考模拟) 如图,一次函数y=﹣x+4的图象与反比例函数y= (k 为常数,且k≠0)的图象交于A(1,a),B(3,b)两点.(1)求反比例函数的表达式;(2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标;(3)求△PAB的面积.11、(2015佛山.中考真卷) 若正比例函数y=x的图象与反比例函数y=的图象有一个交点坐标是(﹣2,4)(1)(1)求这两个函数的表达式;(2)(2)求这两个函数图象的另一个交点坐标.12、(2018天水.中考真卷) 如图,在平面直角坐标系xOy中,函数(x>0)的图象与一次函数y=kx-k的图象交点为A(m,2).(1)求一次函数的表达式;(2)设一次函数y=kx-k的图象与y轴交于点B,如果P是x轴上一点,且满足△PAB的面积是4,请直接写出P的坐标.13、(2020兰州.中考真卷) 如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象交于点和.(1)求一次函数和反比例函数的表达式;(2)请直接写出时,x的取值范围;(3)过点B作轴,于点D,点C是直线BE上一点,若,求点C的坐标.14、(2019江西.中考模拟) 如图在平面直角坐标系中反比例函数y=的图象经过点P(4,3)和点B(m,n)(其中0<m<4),作BA⊥x轴于点A,连接PA、OB,过P、B两点作直线PB,且S△AOB =S△PAB(1)求反比例函数的解析式;(2)求点B的坐标.15、(2020宝应.中考模拟) 如图,帆船A和帆船B在太湖湖面上训练,O为湖面上的一个定点,教练船静候于O点,训练时要求A、B两船始终关于O点对称.以O为原点,建立如图所示的坐标系,x轴、y轴的正方向分别表示正东、正北方向.设A、B两船可近似看成在双曲线y=上运动,湖面风平浪静,双帆远影优美,训练中当教练船与A、B两船恰好在直线y=x上时,三船同时发现湖面上有一遇险的C船,此时教练船测得C船在东南45°方向上,A船测得AC与AB的夹角为60°,B船也同时测得C船的位置(假设C船位置不再改变,A、B、C三船可分别用A、B、C三点表示).(1)发现C船时,A、B、C三船所在位置的坐标分别为A(,)、B(,)和C(,);(2)发现C船,三船立即停止训练,并分别从A、O、B三点出发沿最短路线同时前往救援,设A、B两船的速度相等,教练船与A船的速度之比为3:4,问教练船是否最先赶到?请说明理由.反比例函数与一次函数的交点问题综合题答案1.答案:2.答案:3.答案:4.答案:5.答案:6.答案:7.答案:8.答案:9.答案:10.答案:11.答案:12.答案:13.答案:14.答案:15.答案:。
查补重难点03 反比例函数与一次函数的综合运用(原卷版)

查补重难点03反比例函数与一次函数的综合运用考点一:反比例函数与一次函数综合反比例函数与一次函数进行综合考查的题型是江苏历年中考数学对于函数考查的重点内容,那么关于反比例函数与一次函数的综合专题当中,我们主要涉及到函数共存问题,交点和不等式(比大小)问题、最值问题以及与几何综合压轴类的题型。
无论是哪一类型的题型,在综合的考察过程当中都是对于反比例函数与一次函数的图像和性质有充分的了解,借助数形结合思想、方程思想、化归思想等。
通过函数的图像来得到我们所需要的求解问题。
在这过程当中,如果对于这两类函数没有全面的了解,那么在解题过程当中就要花费大家很多的时间而导致其解题效率的降低,那么在解决这三大类型的提醒过程当中,该如何利用这些函数的性质来进行解题,该专题可供大家在备考阶段能够进行专项的突破。
题型1.反比例函数和一次函数图像共存问题函数图象共存问题是一次函数和反比例函数当中含有共同的参数,根据分类讨论的形式,由函数的图像特点来判定符合两个函数参数的图形。
解决这类型的题不仅是反比例函数和一次函数进行综合考查,连同二次函数在内的题型进行考查也是比较常见的,所以解决这类型的问题时,我们先要根据一次函数或反比例函数中参数的共性,通过分别进行讨论的形式逐一进行排除,最终确定满足要求的函数图像。
.B ...变式1.(2023年湖北省襄阳市中考数学真题)在同一平面直角坐标系中,一次函数y kx =k x的图象可能是().B .C .D .变式2.(2022·广西·中考真题)已知反比例函数(0)b y b x=≠的图象如图所示,则一次函数()0y cx a c =-≠和二次函数2(0)y ax bx c a =++≠在同一平面直角坐标系中的图象可能是()A .B .C .D .题型2.反比例函数和一次函数的交点问题一次函数图像与反比例函数相关问题,牵扯到的知识点比较多,如求它们的函数解析式,或是通过两者的图像相交,需要考生结合两个函数解析式转化成一元二次方程,从而求得交点坐标等。
中考数学《一次函数》《二次函数》《反比例函数》考点分析及专题训练

中考数学《一次函数》《二次函数》《反比例函数》考点分析及专题训练函数及其图象1、坐标与象限定义1:我们把有顺序的两个数a与b所组成的数对,叫做有序数对,记作(a,b)。
定义2:平面直角坐标系即在平面内画互相垂直,原点重合的两条数轴。
水平的数轴称为x轴或横轴,取向右方向为正方向;竖直的数轴称为y轴或纵轴,取向上方向为正方向。
两坐标轴的交点为平面直角坐标系的原点。
建立平面直角坐标系后,坐标平面被两条坐标轴分成了四个部分,每个部分称为象限,分别叫做第一象限、第二象限、第三象限、第四象限,坐标轴上的点不属于任何象限。
2、函数与图象定义1:在一个变化过程中,我们称数值发生变化的量为变量,数值始终不变的量为常量。
定义2:一般地,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数。
如果当x=a时,y=b,那么b叫做当自变量的值为a时的函数值。
定义3:一般地,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象。
定义4:用关于自变量的数学式子表示函数与自变量之间的关系,是描述函数的常用方法。
这种式子叫做函数的解析式。
表示函数的方法:解析式法、列表法和图象法。
解析式法可以明显地表示对应规律;列表法直接给出部分函数值;图象法能直观地表示变化趋势。
画函数图象的方法——描点法:第1步,列表。
表中给出一些自变量的值及其对应的函数值;第2步,描点。
在直角坐标系中,以自变量的值为横坐标、相应的函数值为纵坐标,描出表格中数值对应的各点;第3步,连线。
按照横坐标由小到大的顺序,把所描出的各点用平滑曲线连接起来。
1、结合实例进一步体会用有序数对可以表示物体的位置。
2、理解平面直角坐标系的有关概念,能画出直角坐标系;在给定的直角坐标系中,能根据坐标描出点的位置、由点的位置写出它的坐标。
中考数学复习考点知识讲解与练习17 一次函数与反比例函数综合训练(基础篇)

中考数学复习考点知识讲解与练习专题17 一次函数与反比例函数综合训练(基础篇)中考中,一次函数与反比例函数相结合的题型是必考点,难度分为中档和偏难两个考点,分值点比高,也是期末考试的必考点,因此,本中考数学复习考点知识讲解与练习 专题汇编了一次函数与反比例函数综合训练中考数学复习考点知识讲解与练习 专题,有针对性训练学生的能力,也是教学辅导学生的较好的参考资料,本中考数学复习考点知识讲解与练习 专题分为两部分,基础篇以中档偏下难度为主,以填空和选择题形式出现,提高篇以综合解答题为本,着重培养学生综合能力,本中考数学复习考点知识讲解与练习 专题着眼于数形结合思想解题,提升学生数学思想。
一、单选题1.若0ab >,则一次函数y ax b =-与反比例函数aby x=在同一坐标系数中的大致图象是()A .B .C .D .2.一次函数y =ax -a 与反比例函数y =ax(a ≠0)在同一平面直角坐标系中的图象可能是( )A .B .C .D .3.一次函数y=ax+b 与反比例函数cy x=的图象如图所示,则( )A .a >0,b >0,c >0B .a <0,b <0,c <0C .a <0,b >0,c >0D .a <0,b <0,c >04.(2022·监利县新沟新建中学九年级月考)已知反比例函数y =kx的图象过一、三象限,则一次函数y =kx +k 的图象经过( ) A .一、二、三象限 B .二、三、四象限 C .一、二、四象限D .一、三、四象限5.对于一次函数3y mx =+,如果y 随x 的增大而减小,那么反比例函数my x=满足() A .当0x >时,0y > B .在每个象限内,y 随x 的增大而减小 C .图像分布在第一、三象限D .图像分布在第二、四象限6.如图,已知点A 是一次函数y =x 的图象与反比例函数的图象在第一象限内的交点,点B 在x 轴的负半轴上,且OA=OB ,那么△AOB 的面积为()A.2 B. C. D.7.已知反比例函数kyx(k≠0),当x>0时,y随x的增大而增大,那么一次函数y=kx﹣k的图象经过()A.第一、二、三象限B.第一、二、四象限C.第一、三、四象限D.第二、三、四象限8.(2022·河南九年级期末)已知一次函数y1=kx+b((k≠0)与反比例函数y2=mx(m>0)的图象如图所示,则当y1>y2时,自变量x满足的条件是()A.1<x<3 B.1≤x≤3C.x>1 D.x<39.(2014·甘肃九年级期末)如图,某反比例函数的图象过点(-2,1),则此反比例函数表达式为()A .B .C .D . 10.(2022·河南郑州外国语中学九年级期中)如图,反比例函数y=kx的图象经过点M ,则此反比例函数的解析式为()A .y=-12xB .y=12xC .y=-2xD .y=2x11.(2017·江苏八年级期末)如图,反比例函数y=kx的图象经过点M ,则此反比例函数的解析式为()A .y=-12xB .y=12xC .y=-2xD .y=2x12.一次函数y ax a =-与反比例函数(0)a y a x=≠在同一坐标系中的图象可能是() A . B .2y x =2y x =-12y x =12y x=-C .D .13.(2016·河南九年级月考)反比例函数和一次函数在同一直角坐标系中的图象大致是()A .B .C .D .14.(2016·山西九年级期末)一次函数与反比例函数在同一平面直角坐标系中的图象可能是()A .B .C .D .15.(2022·山西八年级月考)如图,一次函数()0y kx b k =+≠与反比例函数()0m y m x =≠分别交于,A B 两点,则不等式mkx b x+<的解集是()A .2x <-B .4x >C .2x <-或04x <<D .24x -<<16.已知一次函数y k kx =-与反比例函数ky x=,当k 0<时,它们的图像在同一直角坐标平面内大致是()A .B .C .D .17.如图,一次函数23y x =-+分别与x 轴y 轴交于A ,B 两点,AC y ∥轴,BC x ∥轴,反比例函数(0)k y x x=>经过点C ,则k 的值为().A .92B .92-C .94D .94-18.(2022·全国九年级单元测试)如图,一次函数与反比例函数的图象相交于A 、B 两点,则图中使反比例函数的值大于一次函数的值的x 的取值范围是( )A .x <﹣1B .x >2C .﹣1<x <0或x >2D .x <﹣1或0<x <219.(2011·贵州中考真题)一次函数y=kx+k (k≠0)和反比例函数(0)ky k x=≠在同一直角坐标系中的图象大致是( )A .B .C .D .20.一次函数y =ax +a(a 为常数,a≠0)与反比例函数y =ax(a 为常数,a≠0)在同一平面直角坐标系内的图像大致为( )A .B .C .D .二、填空题21.(2022·全国九年级单元测试)如图,一次函数与反比例的图象相交于A 、B 两点,则图中使反比例函数的值小于一次函数的值的x 的取值范围是________.22.(2022·黑龙江九年级期末)已知一次函数23y x =-与反比例函数ky x=的图象交于点()2,3P a -,则k =________.23.如图,一次函数y 1=﹣x ﹣1与反比例函数y 2=﹣2x 的图象交于点A (﹣2,1),B(1,﹣2),则使y 1>y 2的x 的取值范围是_____.24.如图,一次函数y 1=ax +b 和反比例函数y 2=xk的图象相交于A ,B 两点,则使y 1>y 2成立的x 取值范围是_____.25.(2022·四川中考模拟)一次函数y 1=k 1x +b 和反比例函数y 2=2k x(k 1•k 2≠0)的图象如图所示,若y 1>y 2,则x 的取值范围是_______.26.一次函数图象过点()0,2-日与直线23y x =-平行,则一次函数解析式__________. 27.如图,一次函数y kx b =+与反比例函数ky x=交于点()1,A m -、()3,B n ,要使一次函数值大于反比例函数值,则x 的范围是________.28.反比例函数ky x=的图象与一次函数y mx b =+的图象交于()1,3A ,(),1B n -两点.则反比例函数的解析式是________,一次函数的解析式是________.29.(2017·山东中考模拟)如图,反比例函数的图象与一次函数y =x +2的图象交于A 、B 两点. 当x __________时,反比例函数的值小于一次函数的值.30.如图,已知一次函数y kx b =+与反比例函数my x=(0m <)图象在第二象限相交于A (﹣4,12),B (n ,2)两点,当x 满足条件:_____时,一次函数大于反比例函数的值.31.如图,一次函数的图象y x b =-+与反比例函数的图象ay x=交于A(2,﹣4),B(m, 2)两点.当x 满足条件______________时,一次函数的值大于反比例函数值.32.(2022·浙江八年级单元测试)已知反比例函数2ky x=和一次函数,y=2x-1,其中一次函数图象经过(a, b)和(a+1,b+k) 两点,则反比例函数的解析式是__________.三、解答题33.如图,一次函数y x b =+和反比例函数()0ky k x=≠交于点()2,1A .()1求反比例函数和一次函数的解析式; ()2求AOB 的面积;()3根据图象写出一次函数的值大于反比例函数的值的x 的取值范围.34.如图,一次函数y kx b =+的图象与反比例函数my x=的图象交于点()1,6A -,(),2B a .求一次函数和反比例函数的解析式.35.(2022·保定市第三中学分校九年级期末)已知:如图,反比例函数ky x=的图象与一次函数y x b =+的图象交于点(1,4)A 、点(4,)B n -. (1)求一次函数和反比例函数的解析式; (2)求OAB ∆的面积;(3)直接写出一次函数值大于反比例函数值的自变量x 的取值范围.36.如图,一次函数y kx b =+的图象与反比例函数m y x =的图象交于()A 2,3-,B ()4,n 两点.(1)求一次函数与反比例函数的解析式; (2)结合图形,直接写出一次函数大于反比例函数时自变量x 的取值范围.37.如图,一次函数y kx b =+的图象与反比例函数m y x=的图象交于()2,1A -,()1,B n 两点.(1)试确定上述反比例函数和一次函数的表达式; (2)当x 为何值时反比例函数值大于一次函数的值;(3)当x 为何值时一次函数值大于比例函数的值;(4)求AOB ∆的面积.38.(2022·山西九年级期末)如图,反比例函数k y x=(0k ≠)的图象与一次函数y ax b =+的图象交于(1,3)A ,(3,)B m -两点. (1)分别求出反比例函数与一次函数的表达式.(2)当反比例函数的值大于一次函数的值时,请根据图象直接写出x 的取值范围.39.(2022·江西九年级)如图,一次函数y =kx +b 的图象与反比例函数y =m x的图象交于A (﹣2,1),B (1,n )两点.(1)求反比例函数和一次函数的解析式;(2)根据图象写出使一次函数的值>反比例函数的值的x 的取值范围.40.如图,一次函数y kx b =+的图象与反比例函数m y x=的图象交于(21)(1)A B n -,,,两点.(1)试确定上述反比例函数和一次函数的表达式;(2)求AOB 的面积.(3)根据图象写出反比例函数y≥n 的x 取值范围.。
中考数学专题复习《一次函数与反比例函数的综合》经典题型讲解

中考数学专题复习《一次函数与反比例函数的综合》经典题型讲解【经典母题】如图Z6-1是一个光学仪器上用的曲面横截面示意图,图中的曲线是一段反比例函数的图象,端点A的纵坐标为80,另一端点B的坐标为B(80,10).求这段图象的函数表达式和自变量的取值范围.【解析】利用待定系数法设出反比例函数的表达式后,代入点B的坐标即可求得反比例函数的表达式.解:设反比例函数的表达式为y=k x ,∵一个端点B的坐标为(80,10),∴k=80×10=800,∴反比例函数的表达式为y=800x.∵端点A的纵坐标为80,∴80=800x,x=10,∴点A的横坐标为10,∴自变量的取值范围为10≤x≤80.【思想方法】求反比例函数的表达式宜用待定系数法,设y=kx,把已知一点代入函数表达式求出k的值即可.【中考变形】1.已知正比例函数y=ax与反比例函数y=bx的图象有一个公共点A(1,2).(1)求这两个函数的表达式;图Z6-1(2)在图Z6-2中画出草图,根据图象写出正比例函数值大于反比例函数值时x 的取值范围.图Z6-2中考变形1答图解:(1)把A (1,2)代入y =ax ,得2=a , 即y =2x ;把A (1,2)代入y =b x ,得b =2,即y =2x ; (2)画草图如答图所示.由图象可知,当x >1或-1<x <0时,正比例函数值大于反比例函数值. 2.如图Z6-3,已知一次函数y =k 1x +b 与反比例函数y =k 2x 的图象交于第一象限内P ⎝ ⎛⎭⎪⎫12,8,Q (4,m )两点,与x 轴交于A 点.(1)分别求出这两个函数的表达式; (2)写出点P 关于原点的对称点P ′的坐标; (3)求∠P ′AO 的正弦值.图Z6-3【解析】①将P 点坐标代入反比例函数关系式,即可求出反比例函数表达式;将Q 点代入反比例函数关系式,即可求出m 的值;将P ,Q 两个点的坐标分别代入一次函数关系式,即可求出一次函数的表达式.②根据平面直角坐标系中,两点关于原点对称,则横、纵坐标互为相反数,可以直接写出点P ′的坐标;③过点P ′作P ′D ⊥x 轴,垂足为D ,可构造出′AD ,又∵点A 在一次函数的图象上,∴可求出点A 坐标,得到OA 长度,利用P ′ 点坐标,可以求出P ′D ,P ′A ,即可得到∠P ′AO 的正弦值. 解:(1)∵点P 在反比例函数的图象上,∴把点P ⎝ ⎛⎭⎪⎫12,8代入y =k 2x ,得k 2=4,∴反比例函数的表达式为y =4x ,∴Q 点坐标为(4,1).把P ⎝ ⎛⎭⎪⎫12,8,Q (4,1)分别代入y =k 1x +b 中,得⎩⎨⎧8=12k 1+b ,1=4k 1+b ,解得⎩⎪⎨⎪⎧k 1=-2,b =9.∴一次函数的表达式为y =-2x +9; (2)P ′⎝ ⎛⎭⎪⎫-12,-8;(3)如答图,过点P ′作P ′D ⊥x 轴,垂足为D . ∵P ′⎝ ⎛⎭⎪⎫-12,-8,中考变形2答图∴OD =12,P ′D =8.∵点A 在y =-2x +9的图象上,∴点A 坐标为⎝ ⎛⎭⎪⎫92,0,即OA =92,∴DA =5,∴P ′A =P ′D 2+DA 2=89. ∴sin ∠P ′AD =P ′D P ′A =889=88989.∴sin ∠P ′AO =88989.3.[2017·成都]如图Z6-4,在平面直角坐标系xOy 中,已知正比例函数y =12x与反比例函数y =kx 的图象交于A (a ,-2),B 两点. (1)求反比例函数表达式和点B 的坐标;(2)P 是第一象限内反比例函数图象上一点,过点P 作y 轴的平行线,交直线AB 于点C ,连结PO ,若△POC 的面积为3,求点P 的坐标.图Z6-4 中考变形3答图解:(1)∵点A (a ,-2)在正比例函数y =12x 图象上, ∴-2=12a ,∴a =-4, ∴点A 坐标为(-4,-2).又∵点A 在反比例函数y =kx 的图象上, ∴k =xy =-4×(-2)=8, ∴反比例函数的表达式为y =8x .∵A ,B 既在正比例函数图象上,又在反比例函数图象上, ∴A ,B 两点关于原点O 中心对称, ∴点B 的坐标为(4,2);(2)如答图,设点P 坐标为⎝ ⎛⎭⎪⎫a ,8a (a >0),∵PC ∥y 轴,点C 在直线y =12x 上,∴点C 的坐标为⎝ ⎛⎭⎪⎫a ,12a ,∴PC =⎪⎪⎪⎪⎪⎪12a -8a =⎪⎪⎪⎪⎪⎪a 2-162a , ∴S △POC =12PC ·a =12⎪⎪⎪⎪⎪⎪a 2-162a ·a =⎪⎪⎪⎪⎪⎪a 2-164=3, 当a 2-164=3时,解得a =28=27, ∴P ⎝⎛⎭⎪⎫27,477. 当a 2-164=-3时,解得a =2,∴P (2,4).综上所述,符合条件的点P 的坐标为⎝⎛⎭⎪⎫27,477,(2,4). 4.如图Z6-5,一次函数y =kx +b 与反比例函数y =mx 的图象交于A (1,4),B (4,n )两点.(1)求反比例函数的表达式; (2)求一次函数的表达式;(3)P 是x 轴上的一个动点,试确定点P 并求出它的坐标,使得P A +PB 最小.图Z6-5解:(1)∵点A (1,4)在函数y =mx 上, ∴m =xy =4,∴反比例函数的表达式为y =4x ; (2)把B (4,n )代入y =4x ,4=xy =4n ,得n =1, ∴B (4,1),∵直线y =kx +b 经过A ,B , ∴⎩⎪⎨⎪⎧4=k +b ,1=4k +b ,解得⎩⎪⎨⎪⎧k =-1,b =5, ∴一次函数的表达式为y =-x +5; (3)点B 关于x 轴的对称点为B ′(4,-1), 设直线AB ′的表达式为y =ax +q , ∴⎩⎪⎨⎪⎧4=a +q ,-1=4a +q ,解得⎩⎪⎨⎪⎧a =-53,q =173,∴直线AB ′的表达式为y =-53x +173, 令y =0,解得x =175,∴当点P 的坐标为⎝ ⎛⎭⎪⎫175,0时,P A +PB 最小.5.[2017·广安]如图Z6-6,一次函数y =kx +b 的图象与反比例函数y =mx 的图象在第一象限交于点A (4,2),与y 轴的负半轴交于点B ,图Z6-6且OB =6.(1)求函数y =mx 和y =kx +b 的表达式.(2)已知直线AB 与x 轴相交于点C .在第一象限内,求反比例函数y =mx 的图象上一点P ,使得S △POC =9.解:(1)∵点A (4,2)在反比例函数y =mx 的图象上, ∴m =4×2=8,∴反比例函数的表达式为y =8x . ∵点B 在y 轴的负半轴上,且OB =6, ∴点B 的坐标为(0,-6),把点A (4,2)和点B (0,-6)代入y =kx +b 中, 得⎩⎪⎨⎪⎧4k +b =2,b =-6,解得⎩⎪⎨⎪⎧k =2,b =-6. ∴一次函数的表达式为y =2x -6; (2)设点P 的坐标为⎝ ⎛⎭⎪⎫n ,8n (n >0).在直线y =2x -6上,当y =0时,x =3, ∴点C 的坐标为(3,0),即OC =3, ∴S △POC =12×3×8n =9,解得n =43. ∴点P 的坐标为⎝ ⎛⎭⎪⎫43,6.6.[2017·黄冈]如图Z6-7,一次函数y =-2x +1与反比例函数y =kx 的图象有两个交点A (-1,m )和B ,过点A 作AE ⊥x 轴,垂足为E ;过点B 作BD ⊥y 轴,垂足为D ,且点D 的坐标为(0,-2),连结DE . (1)求k 的值;(2)求四边形AEDB 的面积.图Z6-7 中考变形6答图解:(1)将点A (-1,m )代入一次函数y =-2x +1, 得-2×(-1)+1=m ,解得m =3.∴A 点的坐标为(-1,3).将A (-1,3)代入y =kx ,得k =(-1)×3=-3;(2)如答图,设直线AB 与y 轴相交于点M ,则点M 的坐标为(0,1), ∵D (0,-2),则点B 的纵坐标为-2,代入反比例函数,得DB =32, ∴MD =3.又∵A (-1,3),AE ∥y 轴, ∴E (-1,0),AE =3. ∴AE ∥MD ,AE =MD .∴四边形AEDM 为平行四边形. ∴S 四边形AEDB =S ▱AEDM +S △MDB =3×1+12×32×3=214.7.[2016·金华]如图Z6-8,直线y =33x -3与x ,y 轴分别交于点A ,B ,与反比例函数y =kx (k >0)的图象交于点C ,D ,过点A 作x 轴的垂线交该反比例函数图象于点E . (1)求点A 的坐标;(2)若AE =AC ,①求k 的值;②试判断点E 与点D 是否关于原点O 成中心对称?并说明理由.图Z6-8中考变形7答图解:(1)当y =0时,得0=33x -3,解得x =3. ∴点A 的坐标为(3,0);(2)①如答图,过点C 作CF ⊥x 轴于点F .设AE =AC =t ,点E 的坐标是(3,t ),则反比例函数y =k x 可表示为y =3tx . ∵直线y =33x -3交y 轴于点B , ∴B (0,-3).在Rt △AOB 中,tan ∠OAB =OB OA =33, ∴∠OAB =30°.在Rt △ACF 中,∠CAF =30°, ∴CF =12t ,AF =AC ·cos30°=32t ,∴点C 的坐标是⎝⎛⎭⎪⎫3+32t ,12t .∴⎝⎛⎭⎪⎫3+32t ×12t =3t ,解得t 1=0(舍去),t 2=2 3. ∴k =3t =6 3.②点E 的坐标为()3,23,设点D 的坐标是⎝ ⎛⎭⎪⎫x ,33x -3,∴x ⎝ ⎛⎭⎪⎫33x -3=63,解得x 1=6(舍去),x 2=-3, ∴点D 的坐标是()-3,-23, ∴点E 与点D 关于原点O 成中心对称. 【中考预测】如图Z6-9,一次函数y =kx +b (k ,b 为常数,k ≠0)的图象与x 轴,y 轴分别交于A ,B 两点,且与反比例函数y =nx (n 为常数且n ≠0)的图象在第二象限交于点C ,CD ⊥x 轴,垂足为D ,若OB =2OA =3OD =6. (1)求一次函数与反比例函数的表达式; (2)求两函数图象的另一个交点的坐标;(3)直接写出不等式kx +b ≤nx 的解集.图Z6-9解:(1)∵OB =2OA =3OD =6, ∴OB =6,OA =3,OD =2, ∵CD ⊥DA ,∴DC ∥OB , ∴OB DC =AO AD ,∴6DC =35, ∴DC =10,∴C (-2,10),B (0,6),A (3,0), 代入一次函数y =kx +b , 得⎩⎪⎨⎪⎧b =6,3k +b =0,解得⎩⎪⎨⎪⎧k =-2,b =6, ∴一次函数的表达式为y =-2x +6. ∵反比例函数y =nx 经过点C (-2,10), ∴n =-20,∴反比例函数的表达式为y =-20x ;(2)由⎩⎨⎧y =-2x +6,y =-20x ,解得⎩⎪⎨⎪⎧x =-2,y =10或⎩⎪⎨⎪⎧x =5,y =-4, ∴另一个交点坐标为(5,-4);(3)由图象可知kx +b ≤nx 的解集为-2≤x <0或x ≥5.。
中考数学复习《反比例函数及其应用》练习题真题含答案

第三单元函数第十二课时反比例函数及其应用基础达标训练1. (2017台州)已知电流I(安培)、电压U(伏特)、电阻R(欧姆)之间的关系为I=U R,当电压为定值时,I关于R的函数图象是()2. 反比例函数y=kx(k>0),当x<0时,图象在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限第3题图3. (2017广东省卷)如图所示,在同一平面直角坐标系中,直线y=k1x(k1≠0)与双曲线y=k2x(k2≠0)相交于点A,B两点,已知点A的坐标为(1,2),则点B的坐标是()A. (-1,-2)B. (-2,-1)C. (-1,-1)D. (-2,-2)4. 在同一平面直角坐标系中,函数y=mx+m(m≠0)与y=mx(x≠0)的图象可能是()5. (2017兰州)如图,反比例函数y=kx(x<0)与一次函数y=x+4的图象交于A,B两点,A,B两点的横坐标分别为-3,-1,则关于x的不等式kx<x+4(x<0)的解集为()A. x<-3B. -3<x<-1C. -1<x<0D. x<-3或-1<x<0 第5题图6. (2017天津)若点A(-1,y1),B(1,y2),C(3,y3)在反比例函数y=-3x的图象上,则y1,y2,y3的大小关系是()A. y1<y2<y3B. y2<y3<y1C. y3<y2<y1D. y2<y1<y37. (2017济宁)请写出一个过点(1,1),且与x轴无交点的函数解析式:____________.8. (2017哈尔滨)已知反比例函数y=3k-1x的图象经过点(1,2),则k的值为________.9. (2017南宁)对于函数y =2x ,当函数值y <-1时,自变量x 的取值范围________. 10. (2017陕西)已知A ,B 两点分别在反比例函数y =3m x (m ≠0)和y =2m -5x (m ≠52)的图象上,若点A 与点B 关于x 轴对称,则m 的值为________.11. (2017连云港)设函数y =3x 与y =-2x -6的图象的交点坐标为(a ,b ),则1a +2b 的值是________.12. (2017南京)函数y 1=x 与y 2=4x 的图象如图所示,下列关于函数y =y 1+y 2的结论:①函数的图象关于原点中心对称;②当x <2时,y 随x 的增大而减小;③当x >0时,函数的图象最低点的坐标是(2,4),其中所有正确结论的序号是________.第12题图 第13题图13. (2017绍兴)如图,Rt △ABC 的两个锐角顶点A ,B 在函数y =kx (x >0)的图象上,AC ∥x 轴,AC =2.若点A 的坐标为(2,2),则点B 的坐标为________. 14. (8分)(2017湘潭)已知反比例函数y =kx 的图象过点A (3,1).(1)求反比例函数的解析式;(2)若一次函数y=ax+6(a≠0)的图象与反比例函数的图象只有一个交点,求一次函数的解析式.15. (8分)如图,已知反比例函数y=kx的图象经过点A(4,m),AB⊥x轴,且△AOB的面积为2.(1)求k和m的值;(2)若点C(x,y)也在反比例函数y=kx的图象上,当-3≤x≤-1时,求函数值y的取值范围.第15题图16. (8分)如图,一次函数y=k1x+b与反比例函数y=k2x的图象交于A(2,m),B(n,-2)两点.过点B作BC⊥x轴,垂足为C,且S△ABC=5.(1)求一次函数与反比例函数的解析式;(2)根据所给条件,请直接写出不等式k1x+b>k2x的解集;(3)若P(p,y1),Q(-2,y2)是函数y=k2x图象上的两点,且y1≥y2,求实数p的取值范围.第16题图17. (8分)(2017河南)如图,一次函数y=-x+b与反比例函数y=kx(x>0)的图象交于点A(m,3)和B(3,1).(1)填空:一次函数的解析式为______________,反比例函数的解析式为______________;(2)点P是线段AB上一点,过点P作PD⊥x轴于点D,连接OP,若△POD的面积为S,求S的取值范围.第17题图能力提升训练1. 如图,A ,B 两点在反比例函数y =k 1x 的图象上,C ,D 两点在反比例函数y =k 2x 的图象上,AC ⊥y 轴于点E ,BD ⊥y 轴于点F ,AC =2,BD =1,EF =3,则k 1-k 2的值是( ) A. 6 B. 4 C. 3 D. 22. (2017云南)已知点A (a ,b )在双曲线y =5x 上,若a 、b 都是正整数,则图象经过B (a ,0)、C (0,b)两点的一次函数的解析式(也称关系式)为__________.第3题图3. (2017烟台)如图,直线y =x +2与反比例函数y =kx 的图象在第一象限交于点P ,若OP =10,则k 的值为________.4. (2017宁波)已知△ABC 的三个顶点为A (-1,-1),B (-1,3),C (-3,-3),将△ABC 向右平移m(m >0)个单位后,△ABC 某一边的中点恰好落在反比例函数y =3x 的图象上,则m 的值为________.5. (2017成都)在平面直角坐标系x O y 中,对于不在坐标轴上的任意一点P (x ,y ),我们把点P ′(1x ,1y )称为点P 的“倒影点”.直线y =-x +1上有两点A ,B ,它们的倒影点A ′,B′均在反比例函数y =kx 的图象上,若AB =22,则k =__________. 6. (8分)(2017德阳)如图,函数y =⎩⎨⎧2x ,(0≤x≤3)-x +9,(x >3)的图象与双曲线y =k x (k≠0,x >0)相交于点A (3,m)和点B . (1)求双曲线的解析式及点B 的坐标;(2)若点P 在y 轴上,连接P A ,PB ,求当P A +PB 的值最小时点P 的坐标.第6题图拓展培优训练1. (2016长郡第二届澄池杯)如图,直线y =x +4与双曲线y =kx (k ≠0)相交于A (-1,a )、B 两点,在y 轴上找一点P ,当P A +PB 的值最小时,点P 的坐标为________.第1题图 第2题图2. 如图,已知点(1,3)在函数y =kx (x >0)的图象上.正方形ABCD 的边BC 在x 轴上,点E 是对角线BD 的中点,函数y =kx (x >0)的图象又经过A 、E 两点,则点E 的横坐标为________.答案 1. C 【解析】 当电压为定值时,I =U R为反比例函数,且R >0,I >0,∴只有第一象限有图象.2. C 【解析】∵在反比例函数y =kx 中,k >0,∴反比例函数图象在第一、三象限内,∴当x <0时,函数图象在第三象限.3. A 【解析】如题图,A 、B 两点是关于原点对称的,又∵A 的坐标是(1,2),∴B 的坐标是(-1, -2).4. D 【解析】当m <0时,函数y =mx +m 的图象经过第二、三、四象限,函数y =mx 的图象位于第二、四象限;当m >0时,函数y =mx +m 的图象经过第一、二、三象限,函数y =mx 的图象位于第一、三象限,故选D.5. B 【解析】kx <x +4(x <0)表示x <0时,反比例函数图象在一次函数图象下方时x 的取值范围,∵反比例函数图象与一次函数图象交于A 、B 两点,点A 和点B 的横坐标分别为-3,-1,∴由函数图象可知,kx <x +4(x <0)的解集为:-3<x <-1.6. B 【解析】∵点A 、B 、C 在反比例函数图象上,将点A (-1,y 1),B (1,y 2),C (3,y 3)分别代入y =-3x 得,y 1=-3-1=3,y 2=-31=-3,y 3=-33 =-1,∴y 2<y 3<y 1. 7. y =1x8. 19. -2<x <0 【解析】∵y <-1,即2x <-1,∴2x +1<0,整理得x (x +2)<0,解得-2<x <0.10. 1 【解析】设A (x ,y ),则B (x ,-y ),∵A 在y =3mx 上,B 在y =2m -5x 上,∴⎩⎪⎨⎪⎧y =3m x -y =2m -5x,∴3m x +2m -5x =0,∴m =1.11. -2 【解析】∵点(a ,b )是函数y =3x 与y =-2x -6的图象的交点,∴b =3a ,b =-2a -6,即ab =3,2a +b =-6,则1a +2b =b +2a ab =-63=-2.12. ①③ 【解析】由函数图象可知①正确;由反比例函数在y 轴两边增减性不一样,故②错误;∵x >0,∴y =x +4x =(x)2+(2x )2-4+4=(x -2x)2+4,当x =2x时,函数有最小值,此时x =2,y =4,故函数图象最低点的坐标为(2,4),正确结论的序号是①③.13. (4,1) 【解析】∵点A (2,2)在函数y =k x (x >0)的图象上,∴2=k2,得k =4,∵在Rt △ABC 中,AC ∥x 轴,AC =2,∴点B 的横坐标是4,∴y =44=1,∴点B 的坐标为(4,1).14. 解:(1)将点A (3,1)代入反比例函数解析式中,得1=k3, ∴k =3,∴反比例函数的解析式为y =3x ; (2)已知一次函数y =ax +6(a ≠0), 联立两个解析式得⎩⎪⎨⎪⎧y =3x y =ax +6, 整理得ax 2+6x -3=0①,∵一次函数与反比例函数图象只有一个交点,则①式中Δ=62-4a ×(-3)=0,解得a =-3≠0,∴一次函数解析式为y =-3x +6.15. 解:(1)k =xy =2S △OAB =2×2=4,将点A (4,m)代入y =4x ,得m =1;(2)当x =-3时,y =-43; 当x =-1时,y =-4,∴-4≤y ≤-43. 16. 解:(1)将A (2,m ),B(n ,-2)代入y =k 2x 得k 2=2m =-2n ,即m =-n ,则A (2,-n ),如解图,过A 作AE ⊥x 轴于E ,过B 作BF ⊥y 轴于F ,延长AE 、BF 交于D ,第16题解图∵A (2,-n),B (n ,-2),∴BD =2-n ,AD =-n +2,BC =2,∵S △ABC =12·BC ·BD ,∴12×2×(2-n)=5,解得n =-3, 即A (2,3),B (-3,-2),将A(2,3)代入y =k 2x 得k 2=6,即反比例函数的解析式是y =6x ,把A (2,3),B(-3,-2)代入y =k 1x +b 得⎩⎨⎧3=2k 1+b -2=-3k 1+b , 解得k 1=1,b =1,∴一次函数的解析式是y =x +1;(2)不等式k 1x +b >k 2x 的解集是-3<x <0或x >2;(3)分为两种情况:当点P 在第三象限时,要使y 1≥y 2,实数P 的取值范围是P ≤-2;当点P 在第一象限时,要使y 1≥y 2,实数P 的取值范围是P >0,综上所述,P 的取值范围是P ≤-2或P >0.17. 解:(1)y =-x +4,y =3x ;(2)由(1)得3=3m ,解得m =1,∴A 点坐标为(1,3),设P 点坐标为(a ,-a +4)(1≤a ≤3),则S =12OD ·PD =12a (-a +4)=-12(a -2)2+2,∵-12<0, ∴当a =2时,S 有最大值,此时S =-12×(2-2)2+2=2, 由二次函数的性质得,当a =1或3时,S 有最小值,最小值为-12×(1-2)2+2=32, ∴S 的取值范围是32≤S ≤2. 能力提升训练1. D 【解析】设点A (m ,k 1m )、点B (n ,k 1n ),则点C(k 2m k 1,k 1m )、点D (k 2n k 1,k 1n ),∵AC =2,BD =1,EF =3,∴⎩⎪⎨⎪⎧m -k 2m k 1=2k 2n k 1-n =1k 1m -k 1n =3,解得k 1-k 2=2.2. y =-5x +5或y =-15x +1 【解析】∵点A (a ,b ) 在双曲线y =5x 上,∴b =5a ,∵a ,b 都是正整数,∴a =1,b =5或a =5,b =1.①当a =1,b =5时,B (1,0),C (0,5),设一次函数的解析式为y =k 1x +b 1(k 1≠0),把B (1,0),C (0,5)代入,得⎩⎨⎧k 1+b 1=0b 1=5,解得⎩⎨⎧k 1=-5b 1=5,∴一次函数的解析式为y =-5x +5;②当a =5,b =1时,设一次函数解析式为y =k 2x +b 2(k 2≠0),把B (5,0),C (0,1)代入,得⎩⎨⎧5k 2+b 2=0b 2=1,解得⎩⎪⎨⎪⎧k 2=-15b 2=1,∴一次函数的解析式为y =-15x +1,综上所述,一次函数的解析式为y =-5x +5或y =-15x +1. 3. 3 【解析】设点P (m ,m +2),由OP =10,可得m 2+(m +2)2=(10)2,∵m >0,解得m =1,又∵点P (1 ,3)在y =k x 的图象上,∴k =3.4. 0.5或4 【解析】分两种情况讨论:①若为AC 中点(-2,-2)向右平移m个单位后落在图象上,则有点(m -2,-2)在y =3x 上,代入得-2=3m -2,∴m =0.5;②若为AB 中点(-1,1)向右平移m 个单位后落在图象上,则有点(m -1,1)在y =3x 上,代入得1=3m -1,∴m =4,∴m 为0.5或4. 5. -43【解析】设A 、B 的坐标分别为:A (a ,-a +1),B(b ,-b +1),∵AB =22,∴(a -b)2+(-a +1+b -1)2=(22)2,∴a -b =±2,由倒影点的定义得A ′(1a ,11-a ),B ′(1b ,11-b ),又∵A ′、B ′都在函数y =k x 上,∴k =1a (1-a )=1b (1-b ),则a (1-a )=b (1-b ),整理得(a -b)(1-a -b)=0,∵a -b =±2,∴1-a -b =0,即a +b =1,解方程组⎩⎨⎧a +b =1a -b =2与⎩⎨⎧a +b =1a -b =-2,得⎩⎪⎨⎪⎧a =32b =-12或⎩⎪⎨⎪⎧a =-12b =32,∴k =1a (1-a )=-43. 6. 解:(1)∵A (3,m )在直线y =2x 上,∴m =2×3=6,∴A (3,6),∵A (3,6)在双曲线y =k x 上,∴k =3×6=18,∴双曲线的解析式为y =18x ,当x >3时,联立解析式得⎩⎪⎨⎪⎧y =-x +9y =18x , 得⎩⎨⎧x =6y =3或⎩⎨⎧x =3y =6(舍去), ∴点B 的坐标为(6,3);(2)如解图,作A 关于y 轴的对称点A ′(-3,6),第6题解图连接PA′,∵PA ′=PA ,∴PA +PB =PA ′+PB ≥A′B ,当A ′,P ,B 三点共线,即P 在A′B 与y 轴的交点P ′处时,PA +PB 取到最小值,∵A ′(-3,6),B (6,3),∴AB =(6+3)2+(3-6)2=310,∴PA +PB 的最小值是310,设直线A′B 的函数关系式为y =kx +b ,已知直线过点A ′(-3,6),B (6,3),代入得⎩⎨⎧6=-3k +b 3=6k +b ,解得⎩⎪⎨⎪⎧k =-13b =5, ∴y =-13x +5,令x =0,得y =5,∴P ′(0,5),∴当PA +PB 取到最小值310时,点P 的坐标为(0,5).拓展培优训练1. (0,52) 【解析】把点A 坐标代入y =x +4,得-1+4=a ,∴a =3,即A (-1,3),把点A 坐标代入双曲线的解析式得3=-k ,解得k =-3,联立函数解析式得⎩⎪⎨⎪⎧y =x +4y =-3x ,解得⎩⎨⎧x 1=-1y 1=3(舍),⎩⎨⎧x 2=-3y 2=1,即点B 坐标为(-3,1),如解图,作点A 关于y 轴的对称点C ,则点C 坐标为(1,3),连接BC ,与y 轴的交点即为点P ,使得PA +PB 的值最小,设直线BC 的解析式为y =ax +b ,把B ,C 坐标代入得⎩⎨⎧-3a +b =1a +b =3,解得⎩⎪⎨⎪⎧a =12b =52,∴直线BC 解析式为:y =12x +52,令x =0,y =52,即点P 的坐标为(0,52).第1题解图2. 6 【解析】∵点(1,3)在函数y =k x 图象上,代入得:k =3,即y =3x ,设A (a ,b),由题意知E (a +b 2,b 2),又∵函数图象在第一象限,经过点A 、E ,分别代入得⎩⎪⎨⎪⎧ab =3b 2(a +b 2)=3,解得⎩⎨⎧a =62b =6或⎩⎨⎧a =-62b =-6(舍),∴点E 的横坐标为a +b 2= 6.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
y=
k x
(k≠
0,) 得
k=- 4×3=- 12,反比例函数的解析式为
- 12
- 12
- 4a+b= 3,
y=
x
;当 y=- 2 时,- 2=
x
,解得 x= 6,即 B(6,- 2).将 A,B 两点坐标代入
y= ax+b,得 6a+ b=- 2,
解得 a=- 12, 一次函数的解析式为 b= 1,
2 解析式为 y=x.
1. (2016 重庆中考 )在平面直角坐标系中,一次函数
k y= ax+b( a≠ 0的) 图形与反比例函数 y= x(k≠ 0的) 图象交于
第二、四象限内的 A, B 两点,与 y 轴交于 C 点,过点 A 作 AH ⊥ y 轴,垂足为 H , OH= 3, tan∠AOH = 43,点 B
- k+ b= 2,
为 y= kx+ b,由题意得
解得 k=- 1, b= 1,∴直线 AC 的解析式为 y=- x+ 1.
k+ b=0.
3.(2016 宜宾中考 )如图,一次函数 y= kx+ b 的图象与反比例函数
m y= x (x>0) 的图象交于
A(2,-1) ,B 12, n 两
点,直线 y=2 与 y 轴交于点 C.
的坐标为 (m,- 2).
(1)求△ AHO 的周长;
(2)求该反比例函数和一次函数的解析式.
解: (1) 由 OH = 3,tan∠ AOH = 4,得 AH = 4.即 A(- 4, 3).由勾股定理,得 AO= OH 2+ AH 2= 5,△ AHO 的 3
周长= AO+ AH+OH = 3+4+ 5= 12;(2) 将 A 点坐标代入
y=
k x
的图象有且
k 解:(1) ∵A(2,2)在反比例函数 y= x的图象上, ∴ k= 4.∴反比例函数的解析式为
4 y= x.又∵点
B 12, n 在反比例
函数 y= 4的图象上,∴ x
1 2n= 4,解得
n=8,即点
B 的坐标为
12, 8 .由 A(2, 2),B 12, 8 在一次函数
y= ax+ b 的图
=
21 4.
m 4.(2016 泸州中考 )如图,一次函数 y= kx+ b(k<0)与反比例函数 y= x 的图象相交于 A、B 两点,一次函数的图 象与 y 轴相交于点 C,已知点 A(4, 1). (1)求反比例函数的解析式; (2)连接 OB(O 是坐标原点 ),若△ BOC 的面积为 3,求该一次函数的解析式.
k+ b=0,
k= 1,
【学生解答】解: (1)由题意得
解得
一次函数的解析式为 y= x- 1; (2) 当 x=2 时, y= 2-
b=- 1.
b=- 1,
1= 1,所以 C 点坐标为 (2,1);又 C 点在反比例函数
m y= x (m≠ 0的) 图象上,∴
1=mΒιβλιοθήκη 2,解得m= 2.所以反比例函数的
y=-
1 2x+
1.
2. (2016 乐山中考 )如图,反比例函数
k y= x与一次函数
y= ax+ b 的图象交于点
A(2,2), B 12,n .
(1)求这两个函数解析式; (2)将一次函数 y= ax+ b 的图象沿 y 轴向下平移 m 个单位长度, 使平移后的图象与反比例函数 只有一个交点,求 m 的值.
2017 中考数学专题训练 (三)一次函数和反比例函数结合
纵观近 5 年中考试题, 一次函数与反比例函数的综合是中考命题的重点内容. 函数和一次函数解析式及解决相关问题.
利用待定系数法求一次函数及反比例函数的解析式
侧重考查用待定系数确定反比例
【例 1】如图,一次函数 y= kx+ b(k≠0的) 图象与 x 轴, y 轴分别交于 A(1, 0),B(0,- 1)两点,且与反比例函
数
y=
m x(
m≠
0的) 图象在第一象限交于
C 点, C 点的横坐标为 2.
(1)求一次函数的解析式;
(2)求 C 点坐标及反比例函数的解析式. 【解析】 (1) 将点 A(1,0),B(0,- 1)代入 y= kx+ b 即可. (2) 将 C 点的横坐标代入公式 y= kx+ b 即可求出纵坐 标,再代入 y= mx 中即可.
2k + b=- 1,
k= 2,
1
解得
则一次
2k+ b=- 4,
b=- 5.
函数的解析式为 y= 2x- 5; (2) 设直线 AB 与 y 轴交于点 E,则点 E 的坐标为 (0,- 5),∵点 C 的坐标为 (0 ,2), CE
1
1
11
7
= 2- (- 5)= 7,∵点 A 到 y 轴的距离为 2,点 B 到 y 轴的距离为 2,∴ S△ ABC= S△ACE - S△BCE= 2× 7×-22× 7×2= 7- 4
象上,得
2= 2a+ b,
a=- 4,
1
解得
∴一次函数的解析式为
8= 2a+ b,
b= 10,
y=- 4x+ 10; (2) 将直线 y=- 4x+ 10 向下平移 m 个
单位长度得直线的解析式为
y=- 4x+ 10- m,∵直线 y=- 4x+10- m 与双曲线 y=4有且只有一个交点,令- 4x x
+ 10- m= 4x,得 4x2+ (m-10) x+4= 0,∴ Δ= (m- 10)2- 64= 0,解得 m=2 或 18.
与面积有关的问题 【例 2】如图,在平面直角坐标系中,直线 为 C,△ AOC 的面积是 1.
y= mx 与双曲线 y= nx相交于 A(- 1, a), B 两点, BC ⊥x 轴,垂足
(1) 求 m, n 的值; (2)求直线 AC 的解析式. 【解析】 (1) 因为 A(-1, a),所以 B 的横坐标为 1,即 C(1, 0).再由 S△AOC= 1,得 A(- 1, 2),再代入 y= mx 与 y= n即可. (2) 将 A、 C 坐标代入即可.
x n
【学生解答】解: (1) ∵直线 y= mx 与双曲线 y= x相交于 A(-1, a), B 两点,∴ B 点横坐标为 1,即 C(1, 0), ∵△ AOC 的面积为 1,∴ A(-1,2),将 A(- 1,2)代入 y=mx,y= nx可得 m=- 2,n=- 2;(2)设直线 AC 的解析式
(1)求一次函数与反比例函数的解析式;
(2)求△ ABC 的面积.
解: (1)把 A(2,- 1)代入反比例解析式得:-
1= m2 ,即 m=- 2,∴反比例解析式为
y=- 2x,把
B
1 2,n
代入
反比例解析式得:
1 n=- 4,即 B 2,- 4 .把 A 与 B 的坐标代入
y= kx+ b 中得: