最优控制

最优控制
最优控制

最优控制

学院

专业

班级

姓名

学号

1948年维纳发表了题为《控制论—关于动物和机器中控制与通讯的科学》的论文,第一次科学的提出了信息、反馈和控制的概念,为最优控制理论的诞生和发展奠定了基础。钱学森1954年所着的《工程控制论》直接促进了最优控制理论的发展和形成。

最优控制理论所研究的问题可以概括为:对一个受控的动力学系统或运动过程,从一类允许的控制方案中找出一个最优的控制方案,使系统的运动在由某个初始状态转移到指定的目标状态的同时,其性能指标值为最优。这类问题广泛存在于技术领域或社会问题中。

从数学上看,确定最优控制问题可以表述为:在运动方程和允许控制范围的约束下,对以控制函数和运动状态为变量的性能指标函数(称为泛函)求取极值(极大值或极小值)。解决最优控制问题的主要方法有古典变分法(对泛函求极值的一种数学方法)、极大值原理和动态规划。最优控制已被应用于综合和设计最速控制系统、最省燃料控制系统、最小能耗控制系统、线性调节器等。

例如,确定一个最优控制方式使空间飞行器由一个轨道转换到另一轨道过程中燃料消耗最少,选择一个温度的调节规律和相应的原料配比使化工反应过程的产量最多,制定一项最合理的人口政策使人口发展过程中老化指数、抚养指数和劳动力指数等为最优等,都是一些典型的最优控制问题。最优控制理论是50年代中期在空间技术的推动下开始形成和发展起来的。苏联学者Л.С.庞特里亚金1958年提出的极大值原理和美国学者R.贝尔曼1956年提出的动态规划,对最优控制理论的形成和发展起了重要的作用。线性系统在二次型性能指标下的最优控制问题则是R.E.卡尔曼在60年代初提出和解决的。

最优控制理论-主要方法

解决最优控制问题的主要方法

解决最优控制问题,必须建立描述受控运动过程的运动方程

为了解决最优控制问题,必须建立描述受控运动过程的运动方程,给出控制变量的允许取值范围,指定运动过程的初始状态和目标状态,并且规定一个评价运动过程品质优劣的性能指标。通常,性能指标的好坏取决于所选择的控制函数和相应的运动状态。系统的运动状态受到运动方程的约束,而控制函数只能在允许的范围内选取。因此,从数学上看,确定最优控制问题可以表述为:在运动方程和允许控制范围的约束下,对以控制函数和运动状态为变量的性能指标函数(称为泛函)求取极值(极大值或极小值)。解决最优控制问题的主要方法有古典变分法、极大值原理和动态规划。

最优控制理论是现在控制理论的一个重要组成部分。控制理论发展到今天,经历了古典控制理论和现代控制理论两个重要发展阶段,现已进入了以大系统理论和智能控制理论为核心的第三个阶段。对于确定性系统的最优控制理论,实际是从20世纪50年代才开始真正发展起来的,它以1956年原苏联数学家庞特里亚金(Pontryagin )提出的极大值原理和1957年贝尔曼提出的动态规划法为标志。这些理论一开始被应用于航空航天领域,这是由于导弹、卫星等都是复杂的MIMO 非线性系统,而且在性能上有极其严格的要求。时至今日,随着数字技术和电子计算机的快速发展,最优控制的应用已不仅仅局限于高端的航空航天领域,而更加渗入到生产过程、军事行动、经济活动以及人类的其他有目的的活动中。最优控制的发展成果主要包括分布式参数的最优控制、随机最优控制、自适应控制、大系统最优控制、微分对策等,可以这样讲,最有控制理论对于国民经济和国防事业起着非常重要的作用。

这个学期开设的最优控制课程,主要介绍的是静态优化,经典变分法以及极小值原理。对于静态优化的方法,解决的主要是如何求解函数的极值问题;变分法则被用来求解泛函的极值问题;极小值原理的方法,适用于类似最短时间控制、最少燃料控制的问题。另外,在这些的基础上,我们还学习研究了线性系统二次型指标的最优控制,即线性二次型问题(LQR )。

类似其他的控制理论与控制工程的专业课程,最优控制的基础不但是有关自动化、控制方面的内容,很大一部分可以说是高等数学,以及更加深刻的数学知识和理论。就这门课程而言,遇到的第一个比较重要的数学命题,就是关于泛函的问题。在学习泛函之前,我们都对于函数的定义非常清楚,简而言之,泛函就是“函数的函数”。在动态系统最优控制问题中,其性能指标就是一个泛函,而性能指标最优即泛函达到极值。

以如下方式表示泛函,

[()]J J X t =

那么求解泛函极值的问题,就是让()J X 在*

X X =处有极值的必要条件是对于所有容许的增量函数X δ(自变量的变分),泛函()J X 在*X 处的变分为0: *(,)0J X X δδ=

为了判别其为极大还是极小,就需要计算其二阶变分2J δ。

具体的泛函极值问题又可以分为两类,无约束条件与有约束条件。对于泛函0,,f t t J F X X t dt ??=???&(,X X &为向量)取无约束极值的必要条件为()0F d F X dt X

??-=??&(欧拉-拉格朗日方程),当0()X t ()f X t 自由时,还需要横截条件0F X

?=?&(当0t t =和f t t =时)。 对于状态方程为[]

(),(),X f X t U t t =&的系统,其性能指标[]0(),(),(),f

t f f t J X t t F X t U t t dt φ??=+???,初始状态给定,终端状态满足向量约束方程,给出其取极值时的必要条件为:()()H

X

H X λλ??=-??????=???

&&协态方程正则方程状态方程

0H U

?=? (控制方程) ()()()

T

f f f G t v X t X t φλ??=+?? (横截条件) 其中,(,,,)(,,)(,,)T H X U t F X U t f X U t λλ=+?称作哈密顿函数。

在经典变分法中,U δ为任意,如果不满足这种情况,就需要利用极小值原理来求解。极小值原理是对经典变分法的扩展,可以解决经典变分法无法解决的最优控制问题。也就是当控制有约束,哈密顿函数H 对U 不可微时,要用极小值原理。所得出的最优控制必要条件与变分法所得的条件的差别,仅在于用哈密顿函数在最优控制上取值的条件*****(,,,)min (,,,)U H X U t H X U t λλ∈Ω=代替0H U

?=?,可以看出,后者可以作为前者的特殊情况。其他条件包括正则方程,横截条件,边界条件等都一样。需要注意的是,极小值原理解决最短时间控制问题时,最短时间的控制量只能取约束的边界值+1或-1;而最少燃料控制的控制量可取边界值+1、-1、0。

用极小值原理解非线性系统的最优控制将导致非线性两点边值问题,这类问题求解是很困难的。即使系统是线性的,但当指标函数是最短时间、最少燃料这种形式,要求得到最优控制的解析表达式,并构成反馈控制(即把U(t)表示为X(t)的函数)也是非常困难的。线性二次型问题的实用意义在于:把它所得到的最优反馈控制与非线性系统的开环最优控制结合起来,可减少开环控制的误差,达到更精确的控制的目的。

与经典控制问题相比,线性二次型问题有两个显著的特点:第一,它研究的是多输入多输出动态系统的控制问题,其中包括了作为特例的单输入单输出情形;第二,它的性能指标是综合性的,既包含有误差的成分,又包含有控制能量的成分。根据线性的最优反馈控制律,即控制量正比与状态变量,可写成()()()u t G t X t =-或()()()u k L k X k =-。把这种线性二次型问题的最优控制与非线性系统的开环控制结合起来,还可减少开环控制的误差。线性二次型问题的最优控制一般可分状态调节器问题和伺服跟踪问题两大类。

对于终端时刻t f 有限的连续系统状态调节器问题,要求加权阵P 、Q 为对称半正定,R 为对称正定,但并不要求系统完全可控。

将最优控制写成1()()()()()()()T

U t R t B t K t X t G t X t -=-=-,()K t 满足黎卡提矩阵微分方程1()()()()()()()()()()()T T

K t K t A t A t K t K t B t R t B t K t Q t -=--+-&从t f 到t 0逆向积分建议采用变步长四阶龙格-库塔法。

近一段时间看了一些相关与最优控制方法的论文,同时通过控制系统实验,进一步加强了对最优化控制理论的了解和认识。在对单级倒立摆的控制中,采用了线性二次最优LQR

控制,根据系统方程Bu AX X

+=&确定最佳控制向量K ,使得性能指标dt Ru u QX X J )(0**?∞

+=达到最小值,其控制原理图如下

对线性系统:

CX Y Bu

AX X

=+

=

&

根据期望性能指标选取Q和R,利用MATLAB命令lqr就可以得到反馈矩阵K的值。

K=lqr(A,B,Q,R)

改变矩阵Q的值,可以得到不同的响应效果,Q的值越大(在一定的范围之内),系统抵抗干扰的能力越强,调整时间越短。具体实验结果如图:

LQR最优控制系统中Q(t),R(t)的选择是相互制约,相互影响的,因此,在实际应用中,根据性能指标的要求来对Q(t),R(t)中元素的加权值提出相应的要求,使系统性能指标最优的同叫又均衡考虑能量消耗等因素.

研究结果表明:使用线性二次型最优控制器对被控对象进行控制,控制效果好,可实现最优控制的目的.适应性强,因而值得进一步研究和推广。

最优控制理论的实现,离不开一系列的最优化方法,主要包括两个方面就是如何将最优化问题表示为数学模型,如何根据数学模型尽快求出其最优解。在最优化问题的数学模型建立后,其求解方法大致可以分为解析法、数值解法(即直接法)、解析与数值相结合的求解方法、网络最优化方法。而随着模糊理论、神经网络等智能技术和计算机技术的发展,智能

式的优化方法在控制领域中得到了重视和发展,比如将模糊控制与自适应算法相融合,或者将模糊控制与神经网络、遗传算法等相融合的智能优化。它们通过改进自学习算法、遗传算法,按给定的优化性能指标,对被控对象进行逐步寻优学习,从而有效地确定控制器的结构和参数。

作为一名双控专业的研究生,对于控制算法的精益求精是最本质的追求。在如今的控制领域,各种控制算法,尤其是与数学学科相融合,得到了极大的发展。最优控制作为一门发展较为成熟的理论,其成效已在日常生活中显而易见。人们不断的追求高质量的生活,同时也不得不考虑未来的能源紧缺问题,因此寻找一个适合人类生存的最优方式,已经成了人类面临的最大命题。因此,最优控制理论还亟待更快更好的发展。而学习到的最优控制知识还远远不够,不仅需要拓宽自己的知识层面,也需要巩固已学到的知识。将理论与实际结合,将知识付诸于实践。同时,不断深入研究,争取在控制领域有所建树。

参考文献

[1] 张洪钺,王青。最优控制理论与应用。北京:高等教育出版社,2006.

[2] 方洋旺。随机系统最优控制。北京:清华大学出版社,2005.

[3] 巨永锋,李登峰。最优控制。重庆:重庆大学出版社,2005.

[4] 肖军,白静。状态反馈最优控制器设计及仿真。鞍山师范学院学报,2009-08,11(4):58-61.

[5] 袁野,张靓。最优控制理论及其在视频编码中的应用。软件导刊,2009-06,Vol.8,No.6

[6] 张亚锋,和兴锁。普适变量下的最优控制求解研究。飞行力学,2009-12,Vol.27,No.6

[7] 罗东升,刘衍民。最优控制与最优参数选择问题的转化。遵义师范学院学报,2008-8,V ol.11,No.4.

最优控制胡寿松版部分习题答案

2-5 求通过(0)1x =,(1)2x =,使下列性能泛函为极值的极值曲线*()x t : 2(1)f t t J x dt =+? 解:由题可知,始端和终端均固定 被积函数2 1L x =+, 0L x ?=?,2L x x ?=?, 2d L x dt x ??=? 代入欧拉方程 0L d L x dt x ??-?=??,可得20x =,即0x = 故1x c = 其通解为:12x c t c =+ 代入边界条件(0)1x =,(1)2x =,求出11c =,21c = 极值曲线为* ()1x t t =+ 2-6 已知状态的初值和终值为 (1)4x =,()4f x t = 式中f t 自由且f t >1,试求使下列性能泛函达到极小值的极值轨线* ()x t : 2 1 1[2()()]2 f t J x t x t dt =+ ? 解:由题可知,2 122 L x x =+ ,()4f t ψ=,()14x =,()4f x t = 欧拉方程: L 0d L x dt x ??-=?? 横截条件:()00t x =x ,()() f f x t t ψ=,()0f T t L L x x ψ??? + -= ? ??? 易得到 2dx dt = 故12x t c =+ 其通解为:()2 12x t t c t c =++ 根据横截条件可得:()()()122121114424 f f f f f x c c x t t c t c x t t c ?=++=?? =++=??=+=?? 解以上方程组得:12 569f t c c =?? =-??=? 将f t ,1c ,2c 代入J 可得5 * 20 1500502150233 J x x dt =+=-=? 极值轨线为()* 2 69x t t t =-+ 2-7 设性能泛函为

最优控制

最优控制综述 摘要:最优化方法是一种求极值的方法,即在一组约束为等式或不等式的条件下,使系统的目标函数达到极值,即最大值或最小值。从经济意义上说,是在一定的人力、物力和财力资源条件下,使经济效果达到最大(如产值、利润),或者在完成规定的生产或经济任务下,使投入的人力、物力和财力等资源为最少。而最优控制通常针对控制系统而言,目的在于使一个机组、一台设备或一个生产过程实现局部最优。本文重点阐述了最优系统常用的变分法、极小值原理和动态规划三种方法的基本理论及其在典型系统设计中的应用。 关键词:变分法、极小值原理、动态规划 1 引言 最优控制是分析控制系统常用的方法,是现代控制理论的核心之一。它尤其与航空航天的制导、导航和控制技术密不可分。最优控制理论所研究的问题可以概括为:对一个受控的动力学系统或运动过程,从一类允许的控制方案中找出一个最优的控制方案,使系统的运动在由某个初始状态转移到指定的目标状态的同时,其性能指标最优。 这类问题广泛存在于技术领域或社会问题中。例如,确定一个最优控制方式使空间飞行器由一个轨道转换到另一轨道过程中燃料消耗最少,选择一个温度的调节规律和相应的原料配比使化工反应过程的产量最多,制定一项最合理的人口政策使人口发展过程中的老化指数、抚养指数和劳动力指数为最优等,都是一些经典的最优控制问题。 最优控制问题是要在满足约束条件下寻求最优控制函数,使目标泛函取极值。求解动态最优化问题的方法主要有古典变分法,极小值原理及动态规划法等。 2 研究最优控制的前提条件 2.1状态方程 对连续时间系统: x t=f x t,u t,t 对离散时间系统:x(k+1)=f x k,u k,k k=0,1,……,(N-1)

最优控制综述

最优控制综述 摘要:本文主要阐述了关于最优控制问题的基本概念。最优控制理论是研究和解决从一切可能的控制方案中寻找最优解的一门学科,解决最优控制问题的主要方法有古典变分法、极大值原理和动态规划,同时本文也介绍了最优控制理论在几个研究领域中的应用,并对最优控制理论做了一定的总结。 关键字:最优控制;最优化;最优控制理论 Abstract: This article mainly elaborated on the basic concept of optimal control problems. Optimal control theory is studied and solved from all possible solutions to find the optimal solution of a discipline, to solve optimal control problems of the main methods are classical variational method, with the maximum principle and dynamic programming principle. At the same time, this paper also introduces the application of optimal control theory in several research fields, and a summary of optimal control theory. Key Words: Optimal control; optimization; optimal control theory 1.引言 最优控制是现代控制理论的重要组成部分,它研究的主要问题是:在满足一定约束条件下,寻求最优控制策略,使得性能指标取极大值或极小值。最优控制是使控制系统的性能指标实现最优化的基本条件和综合方法。可概括为:对一个受控的动力学系统或运动过程,从一类允许的控制方案中找出一个最优的控制方案,使系统的运动在由某个初始状态转移到指定的目标状态的同时,其性能指标值为最优。最优控制是最优化方法的一个应用。从数学意义上说,最优化方法是一种求极值的方法,即在一组约束为等式或不等式的条件下,使系统的目标函数达到极值,即最大值或最小值。 最优控制理论是研究和解决从一切可能的控制方案中寻找最优解的一门学科,基本内容和常用方法包括动态规划、最大值原理和变分法。这方面的开创性工作主要是由贝尔曼(R.E.Bellman)提出的“动态规划”和庞特里亚金等人提出的“极大值原理”,到了60年代,卡尔曼(Kalman)等人又提出了可控制性及可观测性概念,建立了最优估计理论。这方面的先期工作应该追溯到维纳(N.Wiener)等人奠基的控制论(Cybernetics)。最优控制理论的实现离不开最优化技术。控制系统最优化问题,包括性能指标的合理选择以及最优化控制系统的设计,而性能指标在很大程度上决定了最优控制性能和最优控制形式。最优化技术就

最优控制第六章习题答案

1. 有十个城市①为起点,⑩为终点。站与站之间称为段,每段路程所用的时间(小时)写 在段上,则应如何行使,让从①到⑩所花的时间最短。 解:⑴ 4N =11(8)3,(9)4J J ==将距离数字标注于图中,数字旁括号内的文字表示相应的决策变量。由于从8到10及从9到10都只有一种可能,所以本级无决策问题。 ⑵3N = 本级决策有三种选择。每种选择中又有两条可能的路线。例如,从5出发,可达8,也 可达9,所以131(5,8)(8)13(2)min min 4(5,9)(9)44d J J d J ++???? ===????++???? 说明5到10的最短距离为4,路线为5-8-10决策变量为2(5)8S = 同理,从6出发时,有121(6,8)(8)63(6)min min 7(6,9)(9)34d J J d J ++???? ===????++???? 说明6到10的最短距离为7,路线为6-9-10决策变量为2(6)9S = 从7出发时,有121(7,8)(8)33(7)min min 6(7,9)(9)34d J J d J ++???? ===? ???++???? 说明7到10的最短距离为6,路线为7-8-10决策变量为2(7)8S = ⑶2N =本级有三种选择,计算过程如下: 2322(2,5)(5)74(2)min (2,6)(6)min 471166(2,7)(7)d J J d J d J ++???? ???? =+=+=???????? ++???? 决策变量3(2)5(6)S =

2322(3,5)(5)34(3)min (3,6)(6)min 27746(3,7)(7)d J J d J d J ++???????? =+=+=???????? ++???? 决策变量3(3)5S = 2322(4,5)(5)44(4)min (4,6)(6)min 17856(4,7)(7)d J J d J d J ++???? ???? =+=+=???????? ++???? 决策变量3(4)5(6)S = ⑷1N =本级决策是唯一的,计算结果为 2422(1,2)(2)211(1)min (1,3)(3)min 471138(1,4)(4)d J J d J d J ++???? ???? =+=+=???????? ++???? 决策变量4(1)3(4)S = 可确定最短路线为1-3-5-8-10 2.一维线性系统,设变量无约束,最优控制问题的数学模型为: 2 22 10(),k k k k k J qx ru T x ax bu +=+=+∑ 初始状态0x 为已知。式中,,,a b q r 为常数,0,=1r T >设。求最优控制序列。 解: 本题为三级决策问题. 因为=1T ,2 2 210 (),k k k k k J qx ru T x ax bu += +=+∑ ①令3,2N k ==*22 122322,J qx ru x ax bu =+=+ 因为k u 无约束,故令 *122 20J ru u ?==?求得*20u =将上述结果代入*1J 方程,易得*2 12 J qx = ② 2,1N k == 211x ax bu =+ *22*2111222 1212 2 21 111 2222 1111()[()](1)2()J qx ru J q x x ru q x ax bu ru q a x abqx u qb r u =++=++=+++=++++

MATLAB时间最优PID控制算法

MATLAB时间最优PID控制算法 function [ output_args ] = Untitled3( input_args ) %UNTITLED3 Summary of this function goes here % Detailed explanation goes here clear all; close all; ts=20; sys=tf([1],[60,1],'inputdelay',80); dsys=c2d(sys,ts,'zoh'); [num,den]=tfdata(dsys,'v'); u1=0;u2=0;u3=0;u4=0;u5=0; y1=0;y2=0;y3=0; error1=0;error2=0; ei=0; for k=1:1:200 time(k)=k*ts; yd(k)=1.0; y(k)=-den(2)*y1+num(2)*u5; error(k)=yd(k)-y(k); kp=0.45;kd=12;ki=0.0048; A=0.4;B=0.6; ei=ei+(error(k)+error1)/2*ts; M=1; if M==1 if abs(error(k))<=B f(k)=1; elseif abs(error(k))>B&abs(error(k))<=A+B f(k)=(A-abs(error(k))+B)/A; else f(k)=0; end elseif M==2 f(k)=1; end u(k)=kp*error(k)+kd*(error(k)-error1)/ts+ki*f(k)*ei; if u(k)>=10 u(k)=10; end if u(k)<=-10 u(k)=-10; end u5=u4;u4=u3;u3=u2;u2=u1;u1=u(k);

最优控制习题参考解答

§2.6 习题 2.2 解: ()()()()()()0 120 010 01 22J J x t x t x x t x x dt x x x t x dt x t xdt αααδαδααδαδααδδδδ===?= +???? ?? ?? =+++? ??=++???? = +?? ? 已知0.1x t δ=, 当0.1x t δ=, ()12 10.1212J t t t dt δ= += ? 当0.2x t δ=, ()12 10.226 J t t t dt δ=+= ? 2.4 解: ()10 ,,t t J L x x t dt = ? L = ()()00L 0 ,f f d L dt x x t x x t x ????-=???? ==??? 欧拉方程:横截条件:x

?0d x x c c x a dt ?? =→=→=±= ? 令 设()()( )()* 000 111x b x t at b x t t x a ?=→=?=+→→=? =→=?? , ()*1x t = 1* J ?==? ,最短曲线为()* x t t = 2.5 解: 2122 L x x =+ , ()4f t ψ=,()14x =, ()4f x t = ()()()()00L 0 ,,0 f T f f t d L dt x x L t x x t t L x x ψψ????-=???? ????==+-= ? ???? ? 欧拉方程:横截条件:x ()*211222dx x t c x t t c t c dt ? =→=+→=++ , ()* 12x t t c = + 又由横截条件得: ()()2* 164f f x t x t =→= ()()() 122 121114 424f f f f f x c c x t t c t c x t t c ?=++=???=++=??=+=?? ()()*21* 25696269f t x t t t c x t t c =??=-+??→=-→??=-??? =? 520 150021502 3 J x x dt ?=+ =-? , 极值轨线为()* 2 69x t t t =-+

连续系统的最优控制

第6章 连续系统的最优控制 6.1 最优化问题 6.2 最优控制的变分法求解 6.3 线性系统二次型性能指标的最优控制 1、线性系统有限时间最优状态调节系统 ◆二次型性能指标 设受控系统对平衡点的增量方程为 ()()()()()x t A t x t B t u t ?=?+?,00()x t x ?=? 简记为 ()()()()()x t A t x t B t u t =+,00()x t x = 最优状态调节是指:对上述系统,在时间区间0[,]f t t t ∈,

寻求最优状态反馈控制,使初始状态偏差00()x t x =迅速衰减,且同时使二次型性能泛函 11()()[()()()()]d 22f t t t t f f f x u t J x t Q x t x t Q x t u t Q u t t =++? * min f x u J J J J J =++→= 式中 ()0f n n Q ?≥——终端加权矩阵。 ()0x n n Q ?≥——状态加权矩阵。 ()0u r r Q ?>——控制加权矩阵。 三个加权矩阵均为对称矩阵,为简单,一般取为对角矩 阵。 ●1()()2 t f f f f J x t Q x t =表示对终端状态偏差即稳态控制精度的限制。当1 diag[]f f fn Q q q =,2 1 1()2n f fi i f i J q x t ==∑

●0 1()()d 2f t t x x t J x t Q x t t =?表示对控制过程中状态偏差衰减速度的要求。当1 diag[]x x xn Q q q =,0 2 11()d 2f t n x xi i i t J q x t t ==∑? ●0 1()()d 2f t t u u t J u t Q u t t =?表示对控制过程中所消耗的能量的限制,以避免状态偏差过快衰减导致控制量超过允许数值。当 1 diag[]u u ur Q q q =,0 2 11()d 2f t r u ui i i t J q u t t ==∑?,2()i u t 可理解为功率。 实际上,在性能指标中,x J 已经对控制的稳态精度有所要求。当对稳态精度有更高的要求时,才增加f J 项。 由上可知,上述二次型性能指标的物理意义是,在整个时间区间0[,]f t t t ∈,特别是终值时刻f t t =上状态变量尽量接近于0

最优控制第五章习题答案

1. · 2. 已知二阶系统的状态方程122()(),()()x t x t x t u t ==性能泛函 3 222221212120111[(3)2(3)][2()4()2()()()]222 J x x x t x t x t x t u t dt =+++++?求最优控制。 解:把状态方程和性能指标与标准状态方程和标准性能指标比较,可得 0,101,02,11,,,,0,010,21,42A B P Q R ????????=====???????????????? 考虑到()K t 是对称阵,设11121222,(),k k K t k k ?? =? ??? 代入黎卡提方程1()()()()()()()()()()() T T K t K t A t A t K t K t B t R t B t K t Q t -=--+-即 1112111211121112111212221222122212221222,,,,,0,10,002,12[0,1],0,01,0,,1,1,4,k k k k k k k k k k k k k k k k k k k k ?????????????????? =--+-????????????????????????????????????? ? 令上式等号左右端的对应元相等,得2 111212111222222122222 21224 k k k k k k k k k =-=-+-=-+- 这是一组非线性微分方程。由边界条件(3)K P =即11121222(3),(3)1,0(3),(3)0,2k k k k ???? =? ? ???? ?? 最优控制为 11112112122212222()()() ,()2*[0,1]2()2() ,()T u t R B K t X t k k x t k x t k x t k k x t -=-???? =-=--???????? 3. ) 4. 能控的系统状态方程为122()(),()()x t x t x t u t ==这是一种双积分系统,其输出为1()x t ,其输入为()u t ,其传递函数为 12()1 ()()x s G s u s s ==其性能泛函为22 211220 1[()2()()()()]2J x t bx t x t ax t u t dt ∞ =+++?其中220a b ->求最优控制。 解:稳态时连续系统的状态调节器问题:由状态方程和性能指标求得 0,101,,,10,01A B Q R ??????====???????????? b ,b,a 显然Q 为半正定阵。 可控性阵为[]0,1,1,0B AB ?? =? ??? 是非奇异的,系统可控。

最优控制课程介绍

最优控制 先修课程:常微分方程,最优化方法最优控制问题是具有特殊数学结构的一类最优化问题,在科学、工程和管理乃至人文领域都存在大量的最优控制问题。最优控制研究动态系统在各种约束条件下,寻求目标泛函取极值的最优控制函数与最优状态轨线的数学理论和方法,它是静态最优化在无穷维空间的扩展。希望学生通过本课程的学习,能够结合实际背景,建立最优控制的模型,理解求解最优控制的三大类基本方法的数学思想,灵活地掌握这些方法的基本过程,并能解释计算结果的意义。主要内容如下:最优控制问题及其建模;数学基础;变分法及其在最优控制的应用;极小值原理及其应用;动态规划方法及其应用;应用。 最优控制 一、课程基本信息 1.先修课程:数学系本科包括到大三的全部课程 2.面向对象:理学院数学系各专业 3.推荐教学参考书:吴沧浦,《最优控制的理论与方法》,国防工业出版社,2000 王朝珠等,《最优控制理论》,科学出版社,2003 邢继祥等,《最优控制应用基础》,科学出版社,2003 W. L. Brogan, Modern C ontrol Theor y, (3th eidition), Prentice-Hall, Englew ood C liffs,1991 二、课程的性质和任务本课程是数学与应用数学专业本科生高年级选修课程之一。从数学的角度,最优控制问题是最优化问题中具有特殊结构的一类问题。就问题的来源看,它又是控制问题。最优控制研究动态系统在各种约束条件下寻求使目标泛函取极值的最优控制函数和最优状态轨线的数学理论和方法。最优控制问题涉及范围广跨度大,几乎理工医农,管理军事乃至人文经法领域,都存在着大量此类问题。最优化已是寻求最优系统和结构,挖掘系统潜力的有力武器,学会求解最优控制问题,是应用数学工作者的最基本素养之一。通过本课程的主要任务是,从各个教学环节引导学生认识不同数学问题的特点和相应数学模型的结构,自己学会分析实际问题,建立各种数量之间的联系,写出正确的合理的最优控制的模型;领会求解最优控制问题解法是如何提出的数学思想,并学会如何根据这些思想来构成相应方法的技巧;学会能正确地解释计算结果的物理意义的能力。最根本的是学会和培养系统地、动态地、综合地考虑,认识和处理问题的思想方法和动手能力。这样,通过本课程的各个教学环节,提高学生的数学素质,加强学生开展科研工作和解决实际问题的能力。三、教学内容和要求基本要求:期望学生能够结合工程背景认识最优控制问题的数学结构的特点,从而能灵活地建立实际问题的数学模型,深刻领会求解它们的三大类方法的数学思想,熟练地掌握这些方法的运用步骤,能正确地解释求解结果的意义,并学会最优控制问题的数值解法。第一章最优控制与最优化问题 1.1 最优化问题的源和流 1.2 最优控制问题的例子和数学描述 1.3 最优控制问题求解的基本思想第二章数学基础 2.1 向量与矩阵的求导法则 2.2 函数极值的几个条件 2.3 线性微分方程的解第三章变分法 3.1 泛函的变分与极值 3.2 Euler方程 3.3 等式约束条件下泛函极值问题的必要条件 3.4 几类可用变分方法求解的最优控制问题 3.5 应用实例第四章极小值原理 4.1 极值曲线场与充分条件 4.2 有控制变量不等式约束的极小值原 理 4.3 含有状态变量不等式的极小值原理 *4.4 极小值原理的证明 4.5 极小值原理的应用实例 4.6 离散极小值原理第五章极小值原理的几类应用 5.1 时间最短最优控制问题 5.2 燃料最省最优控制问题 5.3 线性二次型最优控制问题第六章动态规划 6.1 多阶段决策问题与动态规划思想 6.2 用动态规划思想解最优化问题 6.3 离散系统最优控制问题的动态规划解法 6.4 离散线性二次型问题的动态规划解 6.5 连续系统做优控制问题的动态规划解和HJB方程 6.6 连续二次型问题的动态规划解 6.7 Riccatti方程的求解第七章最优控制的新发展 7.1 对策论和微分对策 7.2 随机最优控制四.实验(上机)内容和基本要求本课程无实验和上机的教学安排,但要求学生结合本专业的特点和所研究的课题,选择部分算法自己上机实现。要求学生熟悉至少一门数学软件平台(Mathematica/ matleb/Maple)和至少一种编程语言。教学实验就是编程解决实际问题。至少做有求解

最优控制应用概述

最优控制的应用概述 1.引言 最优控制是现代控制理论的重要组成部分,它研究的主要问题是:在满足一定约束条件下,寻求最优控制策略,使得性能指标取极大值或极小值。最优控制是使控制系统的性能指标实现最优化的基本条件和综合方法。可概括为:对一个受控的动力学系统或运动过程,从一类允许的控制方案中找出一个最优的控制方案,使系统的运动在由某个初始状态转移到指定的目标状态的同时,其性能指标值为最优。最优控制是最优化方法的一个应用。从数学意义上说,最优化方法是一种求极值的方法,即在一组约束为等式或不等式的条件下,使系统的目标函数达到极值,即最大值或最小值。从经济意义上说,是在一定的人力、物力和财力资源条件下,是经济效果达到最大(如产值、利润),或者在完成规定的生产或经济任务下,使投入的人力、物力和财力等资源为最少。 最优控制理论是研究和解决从一切可能的控制方案中寻找最优解的一门学科,基本内容和常用方法包括动态规划、最大值原理和变分法。这方面的开创性工作主要是由贝尔曼(R.E.Bellman)提出的“动态规划”和庞特里亚金等人提出的“极大值原理”,到了60年代,卡尔曼(Kalman)等人又提出了可控制性及可观测性概念,建立了最优估计理论。这方面的先期工作应该追溯到维纳(N.Wiener)等人奠基的控制论(Cybernetics)。最优控制理论的实现离不开最优化技术。控制系统最优化问题,包括性能指标的合理选择以及最优化控制系统的设计,而性能指标在很大程度上决定了最优控制性能和最优控制形式。最优化技术就是研究和解决最优化问题,主要包括两个需要研究和解决的方面:一个是如何将最优化问题表示为数学模型;另一个是如何根据数学模型尽快求出其最优解。 2.最优控制问题 所谓最优控制问题,就是指 在给定条件下,对给定系统确定 一种控制规律,使该系统能在规 定的性能指标下具有最优值。也 就是说最优控制就是要寻找容 许的控制作用(规律)使动态系 统(受控系统)从初始状态转移 到某种要求的终端状态,且保证 所规定的性能指标(目标函数)图1 最优控制问题示意图 达到最大(小)值。 最优控制问题的示意图如图1所示。其本质乃是一变分学问题。经典变分理论只能解决一类简单的最优控制问题。为满足工程实践的需要,20世纪50年代中期,出现了现代变分理论。最常用的方法就是极大值原理和动态规划。最优控制在被控对象参数已知的情况下,已成为设计复杂系统的有效方法之一。

连续线性二次型最优控制的MATLAB实现

连续线性二次型最优控制的MATLAB 实现 1.绪 论 最优控制问题就是在一切可能的控制方案中寻找一个控制系统的最优控制方案或最优控制规律,使系统能最优地达到预期的目标。随着航海、航天、导航和控制技术不断深入研究,系统的最优化问题已成为一个重要的问题。 本文介绍了最优控制的基本原理,并给定了一个具体的连续线性二次型控制系统,利用MATLAB 软件对其最优控制矩阵进行了求解,通过仿真实验,设计得到最优控制效果比较好,达到了设计的目的。 2.最优控制理论介绍 2.1最优控制问题 设系统状态方程为: ]00)(,),(),()(x t x t t u t x f t x ==? (2—1) 式中,x(t)是n 维状态向量;u(t)是r 维控制向量;n 维向量函数[]t t u t x f ),(),(是x(t)、u(t)和t 的连续函数,且对x(t)与t 连续可微;u(t)在[]f t t ,0上分段连续。所谓最优控制问题,就是要寻求最优控制函数,使得系统状态x(t)从已知初态0 x 转移到要求的终态)(f t x ,在满足如下约束条件下: (1)控制与状态的不等式约束 []0),(),(≥t t u t x g (2—2) (2)终端状态的等式约束 []0),(=f f t t x M (2—3) 使性能指标 [][]?+Θ=f f t t t t t u t x F t t x J f 0 d ),(),(),( (2—4) 达到极值。式中[]t t u t x g ),(),(是m 维连续可微的向量函数,r m ≤;[]f f t t x M ),(是s 维连续可微的向量函数,n s ≤;[]f t t x f ),(Θ和[]t t u t x F ),(),(都是x(t)与t 的连续可

计算机控制技术课后习题答案

第一章计算机控制系统概述 习题及参考答案 1.计算机控制系统的控制过程是怎样的? 计算机控制系统的控制过程可归纳为以下三个步骤: (1)实时数据采集:对被控量的瞬时值进行检测,并输入给计算机。 (2)实时决策:对采集到的表征被控参数的状态量进行分析,并按已定的控制规律,决定下一步的控制过程。 (3)实时控制:根据决策,适时地对执行机构发出控制信号,完成控制任务。 2.实时、在线方式和离线方式的含义是什么? (1)实时:所谓“实时”,是指信号的输入、计算和输出都是在一定时间范围内完成的,即计算机对输入信息以足够快的速度进行处理,并在一定的时间内作出反应并进行控制,超出了这个时间就会失去控制时机,控制也就失去了意义。 (2)“在线”方式:在计算机控制系统中,如果生产过程设备直接与计算机连接,生产过程直接受计算机的控制,就叫做“联机”方式或“在线”方式。 (3)“离线”方式:若生产过程设备不直接与计算机相连接,其工作不直接受计算机的控制,而是通过中间记录介质,靠人进行联系并作相应操作的方式,则叫做“脱机”方式或“离线”方式。 3.微型计算机控制系统的硬件由哪几部分组成?各部分的作用是什么? 由四部分组成。

图1.1微机控制系统组成框图 (1)主机:这是微型计算机控制系统的核心,通过接口它可以向系统的各个部分发出各种命令,同时对被控对象的被控参数进行实时检测及处理。主机的主要功能是控制整个生产过程,按控制规律进行各种控制运算(如调节规律运算、最优化计算等)和操作,根据运算结果作出控制决策;对生产过程进行监督,使之处于最优工作状态;对事故进行预测和报警;编制生产技术报告,打印制表等等。 (2)输入输出通道:这是微机和生产对象之间进行信息交换的桥梁和纽带。过程输入通道把生产对象的被控参数转换成微机可以接收的数字代码。过程输出通道把微机输出的控制命令和数据,转换成可以对生产对象进行控制的信号。过程输入输出通道包括模拟量输入输出通道和数字量输入输出通道。 (3)外部设备:这是实现微机和外界进行信息交换的设备,简称外设,包括人机联系设备(操作台)、输入输出设备(磁盘驱动器、键盘、打印机、显示终端等)和外存贮器(磁盘)。其中操作台应具备显示功能,即根据操作人员的要求,能立即显示所要求的内容;还应有按钮,完成系统的启、停等功能;操作台还要保证即使操作错误也不会造成恶劣后果,即应有保护功能。 (4)检测与执行机构 a.测量变送单元:在微机控制系统中,为了收集和测量各种参数,采用了各种检测元件及变送器,其主要功能是将被检测参数的非电量转换成电量,例如热电偶把温度转换成mV信号;压力变送器可以把压力转换变为电信号,这些信号经变送器转换成统一的计算机标准电平信号(0~5V或4~20mA)后,再送入微机。 b.执行机构:要控制生产过程,必须有执行机构,它是微机控制系统中的重要部件,其功能是根据微机输出的控制信号,改变输出的角位

最优控制

作者:潘高超 学号:15120017 班级:研15电气 完成日期:2016年6月20日

摘要 最优控制问题就是寻求一容许控制 uΩ,使系统的状态从给定的初值x0 (t ) 在终止时刻:t1(>t0)转移到目标集A,并使性能指标J(u)取最大值(或最小值)。最优控制理论间世50多年来"吸收现代技术进步和现代数学的成就,得到了很大的发展,在生产、生活、国防、和经济管理等领域得到广泛的应用,由于实际问题的需要,最优控制仍是十分活跃的领域,最优控制问题的数值求解也是人们十分关注的问题之一许多学者研究最优控制问题数值求解,针对最优控制问题数值求解的难点所在,将小波分析方法引入这一领域,利用小波多尺度逼近特性将含有微积分运算的原问题转化为一般的代数间题进行求解。数值仿真表明,小波展开法更加精确而且方便,本文就是一篇基于小波算法来寻找最优控制问题数值求解的综述。 关键词:最优控制,小波分析,小波基,多尺度分析

绪论 最优控制理论是现代控制理论中最早发展起来的分支之一。所谓控制就是人们用某种方法和手段去影响事件及其运动的进程和轨道,使之朝着有利于控制主体的方向发展。对于一个给定的受控系统,常常要求找到这样的控制函数,使得在它的作用下,系统从一个状态转移到为设计者希望的另一个状态,且使得系统的某种性能尽可能好。通常称这种控制问题为最优控制问题。最优控制理论主要讨论求解最优控制问题的方法和理论,包括最优控制的存在性和唯一性和最优控制应满足的必要条件以及最优控制的数值求解等。最优控制理论始于20世纪50年代末,其主要标志是前苏联数学家庞特里亚金(L.C.Pontryagin)等人提出的“最大值原理”。最优控制问题源于工矿企业、交通运输、电力工业、国防工业和国民经济管理等部门的诸多实际问题。如航空领域中的宇宙飞船和卫星的控制,国防中导弹的控制,工业领域中现代工业设备与生产过程控制,国民经济管理中的生产计划和国民经济增长等问题。 20世纪50年代初期,人们就有从工程角度研究最短时间控制问题、最优性的证明借助于几何图形,它为现代控制理论的发展提供了第一批实际模型。随后,由于最优控制问题引人注目的严格的数学表述形式以及空间技术的迫切需要,吸引了一大批数学家的密切注意。 通过研究,人们发现经典变分理论只能解决无约束或开集约束一类简单的最优控制间题,而实际上,工程应用中往往是容许控制。属于闭集的一类最优控制问题,经典变分理论无能为力,这就需要人们去探索求解最优控制间题的新途径。受力学中哈密尔顿原理的启发,庞特里亚金等人把“最大值原理”作为一种推测首先提出来,随后不久又提供了一种严格的证明,并于1958年在爱丁堡召开的国际数学会议上首次宣读。“最大值原理”发展了经典变分原理,成为处理闭集性约束变分问题的强有力工具。“动态法则”是贝尔曼在1953至1957年逐步创立的。他依据最优性原理,发展了变分分学中的哈密尔顿一雅可比理论构成了“动态规划”,它是一种适用于计算机计算,处理问题范围更广泛的方法。在现代控制理论的形成与发展中,最大值原理,动态规划和卡尔曼的最优估计理论等对最优控制的发展起了重要的推动作用。

最优控制

最优控制 学院 专业 班级 姓名 学号

1948年维纳发表了题为《控制论—关于动物和机器中控制与通讯的科学》的论文,第一次科学的提出了信息、反馈和控制的概念,为最优控制理论的诞生和发展奠定了基础。钱学森1954年所着的《工程控制论》直接促进了最优控制理论的发展和形成。 最优控制理论所研究的问题可以概括为:对一个受控的动力学系统或运动过程,从一类允许的控制方案中找出一个最优的控制方案,使系统的运动在由某个初始状态转移到指定的目标状态的同时,其性能指标值为最优。这类问题广泛存在于技术领域或社会问题中。 从数学上看,确定最优控制问题可以表述为:在运动方程和允许控制范围的约束下,对以控制函数和运动状态为变量的性能指标函数(称为泛函)求取极值(极大值或极小值)。解决最优控制问题的主要方法有古典变分法(对泛函求极值的一种数学方法)、极大值原理和动态规划。最优控制已被应用于综合和设计最速控制系统、最省燃料控制系统、最小能耗控制系统、线性调节器等。 例如,确定一个最优控制方式使空间飞行器由一个轨道转换到另一轨道过程中燃料消耗最少,选择一个温度的调节规律和相应的原料配比使化工反应过程的产量最多,制定一项最合理的人口政策使人口发展过程中老化指数、抚养指数和劳动力指数等为最优等,都是一些典型的最优控制问题。最优控制理论是50年代中期在空间技术的推动下开始形成和发展起来的。苏联学者Л.С.庞特里亚金1958年提出的极大值原理和美国学者R.贝尔曼1956年提出的动态规划,对最优控制理论的形成和发展起了重要的作用。线性系统在二次型性能指标下的最优控制问题则是R.E.卡尔曼在60年代初提出和解决的。 最优控制理论-主要方法 解决最优控制问题的主要方法 解决最优控制问题,必须建立描述受控运动过程的运动方程 为了解决最优控制问题,必须建立描述受控运动过程的运动方程,给出控制变量的允许取值范围,指定运动过程的初始状态和目标状态,并且规定一个评价运动过程品质优劣的性能指标。通常,性能指标的好坏取决于所选择的控制函数和相应的运动状态。系统的运动状态受到运动方程的约束,而控制函数只能在允许的范围内选取。因此,从数学上看,确定最优控制问题可以表述为:在运动方程和允许控制范围的约束下,对以控制函数和运动状态为变量的性能指标函数(称为泛函)求取极值(极大值或极小值)。解决最优控制问题的主要方法有古典变分法、极大值原理和动态规划。

线性系统时间最优控制的存在性和唯一性

线性系统时间最优控制的存在性和唯一性 王思江 08070110242 贵州大学 理学院信计 1.内容介绍: 最优控制理论是现代控制理论中最早发展起来的分支之一。所谓控制就是人们用某种方法和手段去影响事件及其运动的进程和轨道,使之朝着有利于控制主体的方向发展。对于一个给定的受控系统,常常要求找到这样的控制函数,使得在它的作用下,系统从一个状态转移到为设计者希望的另一个状态,且使得系统的某种性能尽可能好。通常称这种控制问题为最优控制问题。最优控制理论主要讨论求解最优控制问题的方法和理论,包括最优控制的存在性、唯一性和最优控制应满足的必要条件等。最优控制理论始于20世纪50年代末,其主要标志是前苏联数学家庞特里亚金等提出的“最大值原理”。最优控制理论在工矿企业、交通运输、电力工业、国防工业和国民经济管理等部门有着广泛的应用。 2.问题: 控制系统 000 ()()()()(),()(2.1)()ad x t A t x t B t u t t t x t x u U =+>?? =???∈? 其中01():[,]n n A t t R ??→,01():[,]n m B t t R ??→.初始状态0x 是n R 中给定的点.控制区 域U 是m R 中有界闭集,ad U 表示取值于U 的可积函数全体. 12()((),(),,())T n n x t x t x t x t R =∈ 表示控制系统的状态变量, 12()((),(),,())T m m u t u t u t u t R =∈ 表示控制系统的控制变量. 假定以下基本条件成立: ()[0,;],()[0,;]:[0,)2[0,),()n n n n m loc loc R A L R B L R L M Hausdorff t M t ρ∞?∞???∈+∞?∈+∞?? +∞→???∈+∞?? 是关于度量连续的多值函数对是非空紧集. 对于00,[1,)t T p ≤<<+∞∈+∞,记 00[,]{:[,]()}u t T u t T U u =→?可测, 00[,+{:[,+()}u t u t U u ∞=∞→?))可测, 00[,][0,](,;)p p m u t T u T L t T R = , 000[,)[,)(,;)p p m loc u t u t L t R +∞=+∞+∞ , 0000(,;){:[,)()[,],}p m m p loc L t R u t R u L t T T t +∞=+∞→?∈?>. 000(,)[0,)n t x R t t ?∈+∞?≥对以及,能达集00()(;,)t t t x ?=?是凸紧的. 假设 {()()}(2.2)t t M t t ≥?≠? , 表示从00(,)t x 到目标()M ?是能控的.

《计算机控制技术》习题参考答案完整版

《计算机控制技术》 (机械工业出版社范立南、李雪飞) 习题参考答案 第1章 1.填空题 (1) 闭环控制系统,开环控制系统 (2) 实时数据采集,实时决策控制,实时控制输出 (3) 计算机,生产过程 (4) 模拟量输入通道,数字量输入通道,模拟量输出通道,数字量输出通道 (5) 系统软件,应用软件 2.选择题 (1) A (2) B (3) C (4) A (5) B 3.简答题 (1) 将闭环自动控制系统中的模拟控制器和和比较环节用计算机来代替,再加上A/D转换器、D/A转换器等器件,就构成了计算机控制系统,其基本框图如图所示。 计算机控制系统由计算机(通常称为工业控制机)和生产过程两大部分组成。工业控制机是指按生产过程控制的特点和要求而设计的计算机,它包括硬件和软件两部分。生产过程包括被控对象、测量变送、执行机构、电气开关等装置。 (2)

操作指导控制系统:其优点是控制过程简单,且安全可靠。适用于控制规律不是很清楚的系统,或用于试验新的数学模型和调试新的控制程序等。其缺点是它是开环控制结构,需要人工操作,速度不能太快,控制的回路也不能太多,不能充分发挥计算机的作用。 直接数字控制系统:设计灵活方便,经济可靠。能有效地实现较复杂的控制,如串级控制、自适应控制等。 监督计算机控制系统:它不仅可以进行给定值的控制,还可以进行顺序控制、最优控制、自适应控制等。其中SCC+模拟调节器的控制系统,特别适合老企业的技术改造,既用上了原有的模拟调节器,又可以实现最佳给定值控制。SCC+DDC的控制系统,更接近于生产实际,系统简单,使用灵活,但是其缺点是数学模型的建立比较困难。 集散控制系统:又称分布式控制系统,具有通用性强、系统组态灵活,控制功能完善、数据处理方便,显示操作集中,调试方便,运行安全可靠,提高生产自动化水平和管理水平,提高劳动生产率等优点。缺点是系统比较复杂。 计算机集成制造系统:既能完成直接面向过程的控制和优化任务,还能完成整个生产过程的综合管理、指挥调度和经营管理的任务。但是计算机集成制造系统所要解决的不仅是局部最优问题,而是一个工厂、一个企业乃至一个区域的总目标或总任务的全局多目标最优,即企业综合自动化问题。 现场总线控制系统:成本低、可靠性高,而且在同一的国际标准下可以实现真正的开放式互联系统结构。 嵌入式控制系统:嵌入式控制系统是面向特定应用而设计的、对功能、

离散时间系统最优控制

第五章离散时间系统最优控制

引言 ?前面所讨论的都是关于连续时间系统的最优控制问题。?现实世界中,很多实际系统本质上是时间离散的。 机 ?即使是系统是时间连续的,因为计算机是基于时间和数值上都离散的数字技术的,实行计算机控制时必须 将时间离散化后作为离散系统处理。 ?因此,有必要讨论离散时间系统的最优控制问题。 ?离散时间系统仍然属于连续变量动态系统(CVDS)范畴。 注意与离散事件动态系统(DEDS)的区别。 ?CVDS与DEDS是自动化领域的两大研究范畴,考虑不同的自动化问题。

5.1 离散时间系统最优控制问题的提法 (1) 离散系统最优控制举例——多级萃取过程最优控制 ?萃取是指可被溶解的物质在两种互不相溶的溶剂之间的转移,一般用于将是指可被溶解的物质在两种互不相溶的溶剂之间的转移,般用于将要提取的物质从不易分离的溶剂中转移到容易分离的溶剂中。 ?多级萃取是化工生产中提取某种价值高、含量低的物质的常用生产工艺。 萃取V u (0) u (1) u (k -1) u (N -1) V V V V V V 萃取器1萃取器2 萃取器 k 萃取器N x (0) x (1)x (2) x (k -1) x (k ) x (N )x (N -1) 含物质z (0)z (1) z (k-1) z (N -1) 多级萃取过程 A 的混合物以流量V 进入萃取器1,混合物中A 浓度x (0); 萃取剂以流量u (0)通过萃取器1,单位体积萃取剂带走A 的量为z (0); 一般萃取过程的萃取物含量均较低,可认为通过萃取器1后混合物流量仍为V ; 流出萃取器1的混合物中A 物质的浓度为x (1)。以此类推至萃取器N 。

相关文档
最新文档