第七章_激光全息干涉测量
激光全息检测技术

这种方法显示的缺陷图案比较清晰,但为了使物体产生振
动就需要有一套激励装置。而且,由于物体内部的缺陷大小和
深度不一,其激励频率应各不相同,所以要求激励源的频带要
宽,频率要连续可调,其输出功率大小也有一定的要求。同时,
还要根据不同产品对象选择合适的换能器来激励物体。
13
2 激光全息检测方法
2. 激光全息检测的加载方法 (1) 内部充气法。对于蜂窝结构(有孔蜂窝)、轮胎、压 力容器、管道等产品,可以用内部充气法加载。蜂窝结构内部 充气后,蒙皮在气体的作用下向外鼓起。脱胶处的蒙皮在气压 作用下向外鼓起的量比周围大,形成脱胶处相对于周围蒙皮有 一个微小变形。
12
2 激光全息检测方法
3)
时间平均法是在物体振动时摄制全息图。在摄制时所需的 曝光时间要比物体振动循环的一个周期长得多,即在整个曝光 时间内,物体要能够进行多个周期的振动。但由于物体是作正 弦式周期性振动,因此将把大部分时间消耗在振动的两个端点 上。所以,全息图上所记录的状态实际上是物体在振动的两个 端点状态的叠加,当再现全息图时,这两个端点状态的像就相 干涉而产生干涉条纹,从干涉条纹图样的形状和分布来判断物 体内部是否有缺陷。
5
1 激光全息检测的原理及特点
激光全息照相检测的光路图
6
1 激光全息检测的原理及特点
蜂窝结构板脱粘区的全息再现干涉条纹
7
பைடு நூலகம்
1 激光全息检测的原理及特点
2.
(1) 由于激光全息检测是一种干涉计量技术,其干涉计 量的精度与波长同数量级,因此,极微小的变形都能检验出来, 检测的灵敏度高。
(2) 由于激光的相干长度很大,因此,可以检验大尺寸 物体,只要是激光能够充分照射到的物体表面,都能一次检验 完毕。
激光干涉测量

激光干涉测量xxxxxxxxxxxxxxx 摘要:干涉测量技术是以光波干涉原理为基础进行测量的一门技术。
20世纪60年代以来,由于激光的出现、隔振条件的改善及电子与计算机技术的成熟,使干涉测量技术得到长足发展。
本文介绍了激光干涉的基本原理。
关键词:激光干涉测量双频激光干涉仪由于科学技术的进步,干涉测量技术已经得到相当广泛的应用。
一方面因为微电子、微机械、微光学和现代工业提出了愈来愈高的精度和更大的量程,其它方法难以胜任;另一方面因为当代干涉测量技术本身具有灵敏度高、量程大、可以适应恶劣环境、光波和米定义联系而容易溯源等特点,因而在现代工业中应用非常广泛。
激光的出现在世界计量史上具有重大的意义。
用稳频的氦氖激光器作为光源,由于它的相干长度很大,干涉仪的测量范围可以大大的扩展;而且由于它的光束发散角小,能量集中,因而它产生的干涉条纹可以用光电接收器接收,变为电讯号,并由计数器一个不漏的记录下来,从而提高了测量速度和测量精度,比如说我国自行设计与制造的以氦氖激光器作为光源的光电光波比长仪,可以在20分钟之内把1米线纹尺上1001条刻线依次自动鉴定完毕,精度达到±0.2μm,这就是激光干涉仪的成功例证。
一、激光干涉仪的介绍激光干涉仪,以激光波长为已知长度,利用迈克耳逊干涉系统测量位移的通用长度测量,有单频的和双频的两种。
1、单频激光干涉仪从激光器发出的光束,经扩束准直后由分光镜分为两路,并分别从固定反射镜和可动反射镜反射回来会合在分光镜上而产生干涉条纹。
当可动反射镜移动时,干涉条纹的光强变化由接受器中的光电转换元件和电子线路等转换为电脉冲信号,经整形、放大后输入可逆计数器计算出总脉冲数,再由电子计算机按计算式[356-11]式中λ为激光波长(N 为电脉冲总数),算出可动反射镜的位移量L。
使用单频激光干涉仪时,要求周围大气处于稳定状态,各种空气湍流都会引起直流电平变化而影响测量结果。
2、双频激光干涉仪双频激光干涉仪是在单频激光干涉仪的基础上发展的一种外差式干涉仪,,双频激光干涉仪可以在恒温,恒湿,防震的计量室内检定量块,量杆,刻尺和坐标测量机等,也可以在普通车间内为大型机床的刻度进行标定,既可以对几十米的大量程进行精密测量,也可以对手表零件等微小运动进行精密测量,既可以对几何量如长度、角度.直线度、平行度、平面度、垂直度等进行测量,也可以用于特殊场合,诸如半导体光刻技术的微定位和计算机存储器上记录槽间距的测量等等。
《激光干涉测量技术》PPT课件

P
线偏振光 I
偏振化方向 (透振方向)
I 1 I 2
我们研发各种偏振片和延迟器件
o光 e光
双 折折射射现现象
方解石晶体
CaCO 3
纸面
当方解石晶体旋转时, o光不动,e光围绕o光旋转
纸面
双 折
光光
射
方解石 晶体
晶体的光轴
当光在晶体内沿某个特殊方向传播时不发生双折射,该 方向称为晶体的光轴。
在干涉测量中,干涉仪以干涉条纹来反映被测件的信 息,其原理是将光分成两路,干涉条纹是两路光光程差相 同点联成的轨迹。而光程差△是干涉仪两支光路光程之差, 可用下式表示
式中,nj、ni分别为干涉仪两支光路的介质折射率:li, lj分别为干涉仪两支光路的几何路程差。若把被测件放入
干涉仪的一支光路中,干涉仪的光程差将随着被测件的 位置与形状而变,干涉条纹也随之变化,测量出干涉条
激光干涉测量技术
干涉测量技术是以光波干涉原理为基础进行测量的一 门技术。20世纪60年代以来,由于激光的出现、隔振条件 的改善及电子与计算机技术的成熟,使干涉测量技术得到 长足发展。
干涉测量技术大都是非接触测量,具有很高的测量灵 敏度和精度。干涉测量应用范围十分广泛,可用于位移、 长度、角度、面形、介质折射率的变化及振动等方面的测 量。在测量技术中,常用的干涉仪有迈克尔逊干涉仪、马 赫-泽德干涉仪、菲索干涉仪、泰曼-格林干涉仪等;70年 代以后,抗环境干扰的外差干涉仪(交流干涉仪)发展迅速, 如双频激光干涉仪等;近年来,光纤干涉仪的出现使干涉 仪结构更加简单、紧凑,干涉仪性能也更加稳定。
(4)“猫眼”反射器 如下图(c)所示,它由一个透镜L和一 个凹面反射镜M组成、反射镜放在透镜的主焦点上,从左边来 的入射光束聚焦在反射镜上,反射镜又把光束反射到透镜, 并沿与入射光平行的方向射出(与反射镜的曲率无关)。若反 别镜的曲率中心C’和透镜的中心C重合,那么当透镜和反射 镜一起绕C点旋转时,光程保持不变:“猫眼“反射器的优点 是容易加工和不影响偏振光的传输。在光程不长的情况下也 可考虑用平面反射镜代替凹面反射镜,这样更容易加工和调 整。
激光全息干涉测量技术 精品

激光全息干涉测量技术1 激光全息干涉测量技术发展史全息技术是英国科学家丹尼斯 盖伯(Dennis Gabor )在1948年首先提出的。
但是直到1960年初,激光器的出现才为这种方法提供了适用的、具有足够相干性同时又具有高度单色性的照明光源。
1962年利思(Leith )和厄帕特尼克斯(Upatnieks )提出离轴全息图,全息术的研究进入了一个极为活跃的阶段,相继出现了多种全息方法,开辟了全息应用的新领域,成为光学的一个重要分支。
光学全息术的发展到现在经历了三个阶段。
第一阶段是盖伯用水银灯记录同轴全息图,这是全息术的萌芽时期。
其主要问题是再现原始像和共轭像不能分离,以及没有理想的相干光源。
第二阶段是利用厄帕特尼克斯提出离轴全息图,把原始像和共轭像分离,同时激光器的出现为全息术提供了理想的光源。
这一阶段全息术在理论上建立了基础,在可能的应用方面作了大量的实验,取得了丰硕的成果,在全息记录材料方面也得到了相应的发展。
第三阶段是激光记录白光再现全息术,主要有反射全息图、像全息图、彩虹全息图及合成全息图,使全息术在显示方面展示其优越性。
反射全息图,特别是真彩色全息全息图一成为已成为一种高贵的艺术品,在科学技术上亦有较重要的应用价值。
浮雕彩虹全息图的研制成功,发展了全息图模压大批量复制技术,现已形成全息印刷产业。
经过近十几年的发展,全息术被应用于许多领域:如全息干涉计量、全息三维显示、全息显微术、光学信息编码存储、光学信息处理等等。
目前随着实时记录材料和性能优良的光聚合材料的发展以及全息术和光电技术,计算机技术相结合,全息术在科学技术上的应用也扩展到实时全息干涉自动测量、光学图像实时处理、光计算等新的应用领域。
一些有特殊功能的全息光学元件如光学互连元件、二元光学元件、多功能全息成像元件空间光调制器、空间滤波器等全息方法来制作有其优越性。
特别是计算机全息图的实现,补充了照相记录全息图的不足。
2 激光全息干涉测量原理全息技术分两步成像,即全息图的纪录和物光波的再现。
激光全息检测技术

激光全息检测技术1.激光全息检测技术概述全息术或称全息照相(Holography)的思想是英国科学家丹尼斯·伽柏(Dennis Gabor)在1948年首先提出来的。
由于他的发明和对全息技术发展的巨大作用,他于1971年被授予诺贝尔物理学奖。
全息术与普通照相术的区别是,普通照相术只记录物体表面光波的振幅信息,而把相位信息丢掉了,这样只记录物体表面光波部分信息(二维信息)的照片无论从什么角度看都是一样的。
而全息术是利用光的干涉和衍射原理,将物体发射的特定光波以干涉条纹的形式记录下来,在一定条件下使其再现,形成物体逼真的三维像。
由于记录了物体的全部信息(振幅、相位、波长),因而成为全息术或全息照相。
如图,比较了全息照相与普通照相的区别:图1:全息照相与普通照相的区别激光全息无损检验是全息干涉分析的一种应用,它可以用来监视一个复杂的物体在两种不同时刻里所发生的变形,不管物体表面是光洁还是粗糙,都可以观测到光学公差水平几分之一微米以下,由于它是利用全息技术再现原理,因此是无接触地进行三维立体观测。
同其他检测方法比较,激光全息检测的方法有如下优点:1. 激光全息检测是一种干涉测量技术,干涉测量精度与激光波长同数量级,微小(微米数量级)的变形均能被检测出来,检测灵敏度高;2.由于激光的相干度很高,因此,可以检测大尺寸工件,只要激光能够充分照射到这个工件表面,都能一次检测完成;3.对被检对象没有特殊要求,可以检测任何材料和粗糙表面;4.可对缺陷进行定量分析,根据干涉条纹的数量和分布确定缺陷的大小、部位、深度。
5.非接触测量、直观、检测结果便于保存。
但是,物体内部缺陷的检测灵敏度,取决于物体内部的缺陷在外力作用下能否造成物体表面的相应变形。
如果物体内部缺陷过深或过于微小,那么激光全息照相这种检测方法就无能为力了。
对于叠层胶接结构来说,检测其脱粘缺陷的灵敏度取决于脱粘面积和深度比值,在近表面的脱粘缺陷面积,即使很小也能检测出来,而对于埋藏的较深的脱粘缺陷,只有在脱粘面积相当大时才能够被检测出来。
第七章 光全息术2-像全息图、彩虹全息图1

UH ℱFOℱFROO fx , f y R fx , f y
O ( xo , yo ) exp [ - j2 ( fx xo f y yo ) ] d xo d yo Ro exp [ j 2 fx b] fx = xf / ( λf )、fy = yf / ( λf ),xf﹑yf为透镜后焦面的空间坐 标,f为透镜焦距
第二步
制作彩虹全息图 H2 以 H1 的共轭实像为“物”, 通过狭缝 S 记录彩虹全息图 H2
H2
S
R1*
记录
O’
R2
H1
再现
Two-Step Rainbow Holography 二步彩虹全息
用单色光再现(共轭光)
R2* (单色光)
H2
S’
再现
在观察再现像时,仿佛也是通过狭缝去看。
Two-Step Rainbow Holography 二步彩虹全息
全息激光幻彩第一币(藏品赏析)
• “幻”是奇异的变化,“彩”是各种颜色的交织。 这两个字组织到一起,幻中有色,色中有变,变中 有新,新中有奇,奇中有绝。这种幻彩表现在金银 币上,自然灵光四动,流光溢彩,别有一番奇妙风 采。2004年9月推出的《全国人大成立50周年》纪 念金银币,是我国贵金属纪念银币生产首次采用全 息激光工艺技术,此套纪念金银币就有这种特殊的 幻彩效果。
§5-4 平面全息图
2、傅里叶变换全息图
再 现 光 路
第三项U:f 3 ℱ 1 R0OF fx , f y exp j2 fxb
RoOF fx , f y exp- j 2 fxbexp j2 fx x 'o f y y 'o dfxdf y
全息干涉计量

全息干涉计量全息干涉现象是人们在全息照相实践中发现的。
全息干涉计量双曝光法,即实时全息干涉计量法,在精密测量,无损检测,动态监控,生物技术等方面有着广泛的应用前景。
全息干涉计量又是科学技术上的一个新领域,涉及诸多相关学科技术。
本实验,光源采用连续波工作的激光器,摄取和再现被计量或监控物的静态形变状态。
重点了解全息双曝光技术的基本原理,主要特征和操作要领。
一、实验目的1.了解全息干涉计量的原理,有关应用及特点。
2.掌握全息干涉计量的双曝光法。
二、实验原理、应用及特点全息干涉计量是全息照相技术目前应用最广泛的应用领域之一。
它的基本原理是:借助全息干涉测量确定物体表面上的静态与动态的形变。
就是,将没有形变的物体表面形状在第一次曝光中记录在一张全息图上,再将变形的该物体的表面形状在第二次曝光中记录在同一张全息图上。
这种方法我们称为双曝光法。
在全息图再现时就必定同时出现两个有细微差异的物体表面图象。
在全息图上衍射的光互相重叠,并产生肉眼可见的干涉条纹,这些干涉条纹就是衡量物体表面形变的尺度。
利用全息干涉图能够记录物光相位的变动和光程的变动。
要是在形变的测量中,折射率是常数,光程的变动是由几何光程的变化而产生的干涉条纹。
但也可以反过来,使几何光程为常数,折射率变化。
具体操作可以这样来做,例如,将一物体放到一个玻璃容器中。
在做两次曝光时变换填充于容器内的气体,或改变压力(加温)。
这样,就会产生间隔可调的等高线;同样也可利用发射两种不同波长的一台激光器来达到。
在前面介绍的一个物体处在两种状态下通过两次曝光被记录在同一张感光材料上,物像再现时把这些变化状态同时再现出来。
在静态形变状态下光源可以采用连续波工作的激光器,而在动态形变一般就必须采用脉冲激光器。
下面再介绍全息干涉计量另一种叫瞬时观察法(实时法)。
在这种方法中是将初始状态物体利用全息技术拍摄下来,在经光化学显影、定影之后,将感光版再极精确地放回到原拍摄位置上,或将感光材料留在原处实现使显影、定影。
激光全息振动测量与散斑干涉计量

四、实验内容和操作方法
全息测振的方法分两大步:即记录实时全息图和时间平均全息图。记录实时全息图 的目的是为了判断物体的振型。测量光路见图 5-3,具体测量方法如下。
图 5-3 实验光路
1、记录实时全息图并找出所要分析的振型 (1) 现按图排好光路。 同一光路中的物光和参考光应等光程。 参考光和物光的比例应在 3: 1---10:1 左右。参考光和物光的夹角要合适(约 30°) 。试件是一块金属板,表面用
三、实验装置
He-Ne 激光器,光学平台,光学组件,全息干版,冲印设备。
四、实验内容和操作方法
1、 试件毛玻璃片装在可作微转动的夹持器上,夹持器装在小虎钳上(S 处) 。在 H 处置一 毛玻璃观察屏。 2、 开启光闸,让激光照明毛玻璃 S,则可在观察屏 H 上看到透过毛玻璃 S 的出射光相干 形成的随机分布的散斑。 3、 将成像透镜 LC 对准试件 S,并使透镜主轴与被测表面垂直,调节透镜的位置, 使毛 玻璃屏 H 上获得—清晰的像,并测出物体和像的大小,算出放大倍数 M。 4、 用曝光定时器关闭光闸 K,将全息干版装在底片架(H 处)上,使药面对着物体。 5、 开启光闸 K,激光对干版进行第一次曝光,时间约半分钟。 6、 关闭曝光定时器,遮断光路,将试件转动—微小角度。 7、 再次开启光闸,对干版进行第二次曝光,曝光时间与第—次相同。 8、 取下曝光的干版,进行显影,定影,水洗和晾干。 9、 将制作好的两次曝光散斑照片装到底片夹上,置于未经扩束的细激光束中,在照片后 面约 50 厘米以上的地方放置毛玻璃观察屏,则在屏幕上可看到杨氏条纹。 10、被测物体中心为原点,分别测出 r =2,4,6,8,10 mm 等各点的位移值,并以 1/l 为横轴, r 为纵轴。作 1/l-- r 图,求出其斜率 m ,并由 m 算出物体转过的角度。 实验记录: 测物距 a 像距 a