第八章--聚合方法
高分子基础:第八章 链式共聚合

➢ r1 = 0,表示M1的均聚反应速率常数为0,不能进行自 聚反应,M1*只能与M2反应; ➢r1 > 1,表示M1*优先与M1反应发生链增长; ➢ r1 < 1,表示M1*优先与M2反应发生链增长;
得到嵌段共聚产物如果存在链转移与链终止反应则也可能存在两单体的均聚物82二元共聚物的组成823共聚产物组成分布控制823共聚产物组成分布控制共聚合方程表征的是某瞬间共聚物组成与单体组成之间的关系随着聚合反应的进行由于两种单体的聚合反应速率不同共聚体系中剩余单体的摩尔比随反应的进行而不断改变因此除恒分共聚外共聚产物的组成也会随反应的进行而不断改变
F1-f1曲线特征:F1-f1曲线随r1的不同而不同程度地偏离对角 线,并且曲线是对称的,若r1>1,F1-f1曲线在对角线的上方, 若r1<1,则在对角线的下方。
8.2 二 元 共 聚 物 的 组 成
(ii) r1 r2 ≠ 1 F1-f1曲线特征:其F1-f1曲线与理想共聚相似,当r1>1,
r2<1时,曲线在对角线上方;当r1<1, r2>1时,曲线在对角 线的下方,都不会与对角线相交,但曲线是不对称的。
两种单体单元的排列没有一定规律,A单体单元相邻的单体 单元是随机的,可能是A单体单元,也可能是B单体单元。
AAABAABAABBABABAAB 这类共聚物命名时,常以单体名称间加“-”或“/”加后缀共 聚物,如: 乙烯-丙烯共聚物
8.1 概 述
(2)交替共聚物(alternating copolymer) 两单体单元在分子链上有规律地交替排列,A单体单元
第八章 开环聚合

A M
+ SiR2 (OSiR2)3
O
A (SiR2O)3SiR2O M
SiR2O M
+ SiR2 (OSiR2)3
O
(SiR2O)4SiR2O M
强质子酸或 Lewis 酸也可使硅氧烷开环聚合,
活性种是硅烷阳离子
Si(R2) A
,环状单体插入而
增长;也可形成氧鎓离子而后重排成硅阳离子。
因此对引发剂的选择和单体的精制要求较高。 例如以五氟化磷为催化剂,在30℃聚合6小时,分
子量为30万左右;而以五氯化锑作催化剂时,聚合速率
和分子量要低的得多。
8.3.3 羰基化合物的聚合和三氧六环的阳离子聚合 1、羰基化合物
羰基化合物中的羰基C=O极性较大,有异裂倾向, 适于离子聚合,产物为聚缩醛。
8.2 环烷烃开环聚合热力学
8.2.1 环的大小 碳的四面体结构,C—C—C 键角为109°28’ 环状单体热力学稳定性: 3,4《 5,7~11〈 12以上,6
构象张力 角张力
实际上较少用到九元以上的环状单体。环烷烃在 热力学上容易开环聚合的程度为3、4 > 8 > 7、5。
三、四元环烷烃由键角变化引起的环张力很大 (三元环60°,四元环90°),环不稳定而易开环聚合。 五元环键角接近正常键角(108 °),张力较小,环 较稳定。
酰化的内酰胺比较活泼,是聚合的活性中心,因
此可以采用酰氯、酸酐、异氰酸酯等酰化剂与单体反
应,使己内酰胺先形成N-酰化己内酰胺。这样可消除 诱导期,加速反应,缩短聚合周期。
O C (CH2)3 NH + RCOCl
O C (CH2)3 N O C R + HCl
8.3.5 环硅氧烷
【高分子合成工艺学】第八章 离子聚合与配位聚合生产工艺

丁基橡胶性能 气密性优良 :透气性为烃类橡胶最低 抗臭氧性好:比天然橡胶、丁苯橡胶高10倍 耐热、耐候性优异 耐酸碱和极性溶剂 电绝缘性能好 应用 因其良好气密性,主要用途制造内胎和水胎。还可
用作电绝缘护套及医疗卫生用品。
生产过程
▪ 三步法制取SBS包括:原材料精制、三嵌段物的制备、 SBS脱气及弹性体的造粒包装四个工序。
▪ 聚合设备为聚合釜,配夹套冷却或加热,以配制好的 单锂有机化合物正丁基锂溶液为引发剂,聚合反应在 非极性溶剂中于惰性气体保护下分三段进行。
▪ 先向聚合釜中加入总量1/2的苯乙烯,然后加入引 发剂溶液。
(1)正离子型聚合的活性中心是碳正离子:
A B + CH2=CH X
A CH2 CH B X
[ CH2 CH ]n X
(2)负离子型聚合的活性中心是碳负离子:
A B + CH2=CH Y
B CH2 CH A Y
[ CH2 CH ]n Y
(3)配位离子聚合的活性中心是具有金属碳键
的配位离子:
Cat-R + CH2=CH Z
SBS结构
S
B
S
线型SBS
S B
S B
B
B
S
S
星型SBS
SBS应用
▪ 概念
8.4 配位聚合
是指烯类单体的碳-碳双键首先在过渡金属引发 剂活性中心上进行配位、活化,随后单体分子相 继插入过渡金属-碳键中进行链增长的过程。
8.4.1 Ziegler-Natta催化剂
1953年,Ziegler等发现以乙酰丙酮的锆盐和Et3Al 催化可得到高分子量的乙烯聚合物,并在此基础上开发 了的乙烯聚合催化剂TiCl4 - AlEt3。
高分子化学-第八章开环聚合

高 分 子 化 学
21
8.2 环醚的开环聚合
醇的影响
一些金属烷氧化物和氢氧化物引发的聚合反应体系中, 常加入适量的醇:溶解引发剂,形成均相聚合体系;促进 增长链阴离子与抗衡阳离子的离解,增加自由离子浓度, 加快聚合反应速度。 在醇的存在下,增长链可和醇之间发生如下交换反应:
开环聚合中,对环醚的研究比较详细,尤其是对三节 环和五节环环醚研究得最多。
高 分 子 化 学
9
8.1 开环聚合概述
按环的大小,环醚单体主要有下列几种:
CH2 CH2 O
CH2 CH CH3 O
CH2 CH2 O
CH2 O CH2 C
CH2Cl CH2Cl
环氧乙烷
8.1 开环聚合概述
环状单体的种类
环中含一个杂原子的环状单体有环醚、环硫化合物和 环亚胺等,含有两个杂原子的有环缩醛,含有一个杂原子 和一个羰基的有环酯,环酰胺等。
环醚
环中含有醚键-O-的环状化合物称为环醚;
三节环醚又称为环氧化合物或氧化烯,如环氧乙烷又 称为氧化乙烯,环氧丙烷又称为氧化丙烯;
高 分 子 化 学
17
8.2 环醚的开环聚合
环氧化合物的开环聚合
环氧化合物的阳离子开环聚合仅生成低相对分子质量的 产物,且副反应很多。 环氧化合物可以用醇盐、氢氧化物和负碳离子来引发聚 合,用碱引发聚合可制得端羟基聚醚,目前工业上采用。 环氧化合物的阴离子开环聚合是在二元醇或三元醇存在 下用醇盐和氢氧化物作引发剂来进行的。 醇(作为起始剂)通常用来溶解引发剂形成均相聚合体 系,同时能明显的提高聚合反应的速率,这可能是因为 均相体系增加了自由离子的浓度以及使紧密离子对转变 为松对的缘故。
第八章 聚合物的化学反应总结

第八章聚合物的化学反应一、课程主要内容本章研究聚合物化学反应的意义和聚合物的化学反应。
聚合物的化学反应包括:聚合度相似的化学反应;聚合度变大的化学反应和聚合度变小的化学反应。
通过学习第八章,掌握聚合物可能发生的聚合反应,以便对聚合物进行改性;了解聚合物老化的原因和防止聚合物老化的方法。
二、试题与答案本章有基本概念题、填空题、选择填空题和简答题。
㈠基本概念题1.聚合物的化学反应:天然聚合物或由单体经聚合反应合成的聚合物为一级聚合物,若其侧基或端基为反应性基团,则在适当的条件下可发生化学反应,从而形成新的聚合物(为二级聚合物),由一级聚合物变为二级聚合物的化学反应,谓之。
2.聚合度相似的化学反应:如果聚合物的化学反应是发生在侧基官能团上,很显然这种化学反应不涉及聚合物的聚合度,反应前后聚合度不变(或相似),将这种聚合物的化学反应称为聚合度相似的化学反应。
3.聚合度变大的化学反应:如果聚合物的化学反应是交联、嵌段或接枝等,使聚合物的聚合度变大,将这种聚合物的化学反应称为聚合度变大的化学反应。
4.聚合度变小的化学反应:如果聚合物的化学反应是降解(热降解、化学降解等)很显然这种化学反应使聚合物的聚合度变小,将这种聚合物的化学反应称为聚合度变小的化学反应。
5.聚合物的老化:聚合物在使用或贮存过程中,由于环境的影响,性能变坏、强度和弹性降低、颜色变暗、发脆或发粘等现象叫聚合物的老化。
6.聚合物的无规降解:聚合物在热的作用下,大分子链发生任意断裂,使聚合度降低,形成低聚体,但单体收率很低(一般小于3%),这种热降解称为无规降解。
7.聚合物的解聚:聚合物在热的作用下发生热降解,但降解反应是从链的末端开始,降解结果变为单体,单体收率可达90%~100%,这种热降解叫解聚。
8.聚合物的侧链断裂:聚氯乙烯和聚偏二氯乙烯加热时易着色,起初变黄,然后变棕,最后变为暗棕或黑色,同时有氯化氢放出。
这一过程是链锁反应,连续脱氯化氢的结果使分子链形成大n键或交联,这种热降解称为侧链断裂。
第八章开环聚合

氯化聚醚
• 丁氧环醚:丁氧环醚可以开环聚合,但是有应用价值的是3, 3‘-二(氯亚甲基)丁氧环。聚合产物俗称氯化聚醚,又称聚 氯醚。结晶性成膜材料,熔点177℃,机械强度比氟树脂好, 吸水性低,耐化学药品腐蚀,尺寸稳定性好,电性能优良, 可作为工程塑料。 • 由于分子中的次甲基上的碳无取代基,因而赋予大分子以良 好的柔顺性,另由于分子链上季碳原子上连有两个位阻较大 的氯甲基,又增加了链的刚性,因此,CPT的分子链为刚柔 兼备并以柔为主。另一方面,由于具有极性的氯甲基的对称 排列而不显极性,同时由于氯原子为憎水基,使它具有极低 的吸水率和良好的电绝缘性。
Cl
O
Cl Cl
Cl
Cl Cl
Cl
O
TCDD 二噁英
Cl
Cl
O
Cl Cl Cl
Cl
二噁英:指结构和化学性质相近的多氯二苯二恶英(PCDDs) 和多氯二苯并呋喃(PCDFs)。某些类二恶英多氯联苯(PCBs) 具有相似毒性,归在“二恶英”名下。大约有419种类似二 恶英的化合物被确定, 但其中只有近30种被认为具有相当的 毒性,以TCDD的毒性最大。
链引发
如果用醇钠引 发,必须脱除 副产醇,以氢 氧化钠引发, 脱除水
聚硅氧烷
• 八元环的硅氧烷开环聚合,热力学特征:1、 ∆H接近于零,∆S却是正值,熵增成为聚合 动力。 • 2、存在环-线平衡,聚合时线性单体和环状 单体共存;在较高的温度下,解聚成6至12 元环的环状低聚物。 • 反应可以采用阴离子引发,也可采用阳离 子引发,阳离子引发产品分子量低,常用 于硅油合成。
• 硅原子半径大于C,硅氧键及硅碳键比较长,硅 侧基相互作用小,容易绕硅氧键旋转,Tg-130℃。 在很宽的温度范围内保持柔顺性和高弹性,耐化 学品、耐氧化、疏水、电绝缘等优点。 • 高分子线性主要做硅橡胶,低分子线性和环状的 做硅油,有三官能度存在的,可以固化交联,做 涂料。 • 低分子的具有良好的表面活性,可以做表面活性 剂。聚氨酯工业用的泡沫稳定剂基本上都是硅油 类产品。 • 聚硅氧烷使用温度在180℃以下,加热至250℃, 降解成环状低聚物。
第八部分溶液聚合-PPT精品.ppt

配比: 丙烯腈:丙烯酸甲酯:衣康酸 = 91.7:7:1.3 单体: 17% 分子量调节剂(异丙醇)1~3% 引发剂(AIBN)0.75% 染色剂(二氧化硫脲)0.75% 溶剂(浓度为51.52%的硫氢酸钠溶液NaSCN)80~
80.5%
聚合条件 温度:70~80℃ 时间:70min~90min 搅拌速度:55~80r/min 高转化率(70~75%) 聚合物的浓度11.9~12.8% 低转化率(50~55%) 聚合物的浓度10~11%
如何选择共聚单体
(1)共聚单体的选择:
第一单体:丙烯腈(AN)为主体
第二单体:丙烯酸酯 甲基丙烯酸酯 醋酸乙烯酯
目的:聚丙烯腈的熔点高于它的分解温度,第二单体的加 入降低聚丙烯腈分子之间的作用力,消除其脆性,降低其熔点 ,用量一般在5~10%之间。
第三单体:就是为了改进聚丙烯腈的染色性,故要求第三单 体具有与染色基团相结合的基团,主要是含有酸性基团或者碱 性基团的单体。
4.生产方法:
A溶液聚合法(一步法)
以硫氰酸钠的水溶液为溶剂,PAN溶于其中可直接 用于纺织。
B水相溶液聚合(二步法)
以水为反应介质,水溶性引发剂引发聚合,PAN不 溶于水溶液,用硫氰酸钠水溶液溶解PAN后纺织。
特点比较 一步法:反应溶液易于控制,聚合物粒径 大小均匀可连续纺织 二步法:反应温度低、产品洁白、分子量 分布窄、聚合速度快、转化率高、不用回 收溶剂,但纺织前需要聚合物的溶解工序。
第八章 溶液聚合
• 8.1 概述 • 8.2 溶剂的影响和选择 • 8.3 链转移作用的应用 • 8.4 丙烯腈的溶液聚合 • 8.5 乙酸乙烯酯的溶液聚合及聚乙酸乙
烯酯的改性
8.1 概述
1.概念 均相溶液聚合:指单体和生成的聚合物都溶于溶剂。 非均相溶液聚合:也称沉淀聚合 即:生成的聚合物不溶于溶 剂。
第8章 开环聚合反应

¾ 酰化的内酰胺比较活泼,是聚合的活性中心,因此可 以采用酰氯、酸酐、异氰酸酯等酰化剂与单体反应, 使己内酰胺先形成N-酰化己内酰胺。这样可消除诱导 期,加速反应,缩短聚合周期。
O C (CH2)3 NH + RCOCl
O C
O (CH2)3 N C R + HCl
(4) 环硅氧烷的开环聚合
¾ 三、四元环烷烃由键角变化引起的环张力很大(三元环 60o,四元环90o);
¾ 五元环和七元环的键角接近正常键角(108o),环上因邻近氢 原子相互排斥形成构象张力,而易开环。
¾ 六元环烷烃呈椅式结构,键角变形为0,不能开环聚合。 ¾ 八元以上的环有跨环张力(属构象张力),即环上氢或取
代基处于拥挤状态造成相斥,其聚合能力较强。十一元以 上环的跨环张力消失,环较稳定,不易聚合。
− d[N] = ktr,M = CM d[M] kp + ktr,M 1 + CM
其中CM为向单体转移常数。
将上式积分,得:
[N]
=
[N]0
+
1
CM + CM
([M]0
−
[M])
[N]o 、(Xn)o为无向单体转移时的聚合物浓度和平均 聚合度。
向单体链转移时的平均聚合度分别为:
X n = [M] 0 − [M] [N]
¾ 其他六元的环酰胺、环酐都较易聚合。如:丙交酯开环 聚合成聚乳酸。
O
CH3
C
CH
O
O
CH
C
C H3
O
CH3
H [ OCH
C ]n O H
环上有取代基时对聚合不利,有大侧基的线性大分 子不稳定,易解聚成环。如四氢呋喃能聚合,2-甲基 四氢呋喃却不能聚合。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第八章--聚合方法第八章聚合方法习题参考答案1.解释下列名词:(1)聚合反应与聚合方法(2)本体聚合、溶液聚合、悬浮聚合、乳液聚合(3)熔融缩聚、溶液缩聚、界面缩聚、固相缩聚解答:(1)聚合反应:主要是指单体到聚合物的合成反应,主要涉及聚合反应机理、反应条件—如引发剂、溶剂、温度、压力、反应时间等。
聚合方法:主要是指完成一个聚合反应所采用的方法。
主要涉及聚合工艺、配方、原料精制、产物分离及后处理等。
(2)本体聚合:不加其它介质,单体在引发剂、或催化剂、或热、光、辐射等其它引发方法作用下进行的聚合。
溶液聚合:单体和引发剂或催化剂溶于适当的溶剂中的聚合。
悬浮聚合:单体以小液滴状悬浮在分散介质中的聚合。
乳液聚合:单体在水介质中,由乳化剂分散成乳液状态进行的聚合。
(3)熔融缩聚:在体系中只有单体和少量催化剂,在单体和聚合物熔点以上(一般高于熔点10~25O C)进行的缩聚。
溶液缩聚:单体、催化剂在溶剂中进行的缩聚。
界面缩聚:单体处于不同的相态中,在相界面处发生的缩聚。
固相缩聚:在原料(单体及聚合物)熔点或软化点以下进行的缩聚。
2.比较本体聚合、溶液聚合、悬浮聚合和乳液聚合的基本组分和优缺点。
解答:(1)本体聚合:体系主要由单体和引发剂或催化剂组成,其它有相对分子质量调节剂、润滑剂等。
优点是体系组成简单,因而产物纯净,特别适用于生产板材、型材等透明制品。
不足是反应热不易排除。
(2)溶液聚合:体系主要由单体、引发剂或催化剂和溶剂组成。
优点是溶剂的加入形成一均相聚合体系,有利于导出聚合热,同时利于降低体系粘度,减弱凝胶效应。
不足是加入溶剂后容易引起副反应;溶剂的回收、精制增加了设备及成本,并加大了工艺控制难度;降低了单体及引发剂的浓度,致使溶液聚合的反应速率比本体聚合要低;降低了反应装置的利用率。
(3)悬浮聚合:体系主要由单体、引发剂、悬浮剂和分散介质组成。
优点是体系粘度低,聚合热容易导出,散热和温度控制比本体聚合、溶液聚合容易得多;产品相对分子质量及分布比较稳定,聚合速率及相对分子质量比溶液聚合要高一些。
杂质含量比乳液聚合低;后处理比溶液聚合和乳液聚合简单,生产成本较低,三废较少;产物可直接用于加工。
不足是聚合物中附有少量悬浮剂残余物,影响了制品的透明性和电绝缘性。
(4)乳液聚合:体系主要由单体、引发剂、乳化剂和分散介质组成。
优点是可以通过增加乳胶粒的方法同时提高聚合反应速率和聚合度,聚合反应速率快、聚合度高是乳液聚合不同于其它聚合方法的一个显著特征。
不足是聚合物中附有乳化剂残余,影响了制品的透明性和电绝缘性;后处理工艺复杂等。
3.甲基丙烯酸甲酯和苯乙烯的本体聚合均采用了二段法聚合工艺(表8-2),简述理由。
解答:本体聚合的最大不足是反应热不易排除。
烯类单体聚合为放热反应,聚合热约为55~95 kJ/mol。
聚合初期体系粘度不大,反应热可由小分子单体导出。
转化率提高后,体系粘度增大,出现自动加速效应,仅靠单体已不能有效地导出反应热,这时体系容易出现局部过热,使副反应加剧,导致相对分子质量分布变宽、支化度加大、局部交联等;严重时会导致聚合反应失控,引起爆聚。
针对本体聚合的这一特点,PMMA和PS的工业生产中采用了分段聚合法。
第一段保持较低的转化率,一般在自动加速出现之前,如10~40%。
此时体系粘度不大,散热不是很困难,可在正常的装置中进行反应。
第二段体系粘度明显加大,反应进入自动加速,为解决散热问题和成型问题,可采用薄层聚合、注模聚合等;在反应后期可进一步实施高温聚合,使转化率尽快达100%。
4.表8-3中给出丙烯腈、醋酸乙烯和丁二烯溶液聚合常用的溶剂,简述理由。
解答:PAN的溶液聚合选用AIBN为引发剂,硫氰化钠水溶液为溶剂,AIBN为油溶性,PAN的溶度参数为30,水为47.3,硫氰化钠水溶液可有效构成均相聚合体系,反应完后聚合溶液可直接进行纺丝。
PVAc的溶液聚合选用AIBN为引发剂,甲醇为溶剂。
从溶解性看,PVAc的溶度参数为19.2,AIBN为油溶性,甲醇的溶度参数为29.7,对单体、聚合物和引发剂均有一定的溶解性;另一作用是甲醇有一定的链转移作用,可保证产物聚合度。
BR的溶液聚合选用Z-N催化剂,正己烷为溶剂,从溶解性看,BR的溶度参数为17,己烷的溶度参数为15,可形成均相聚合体系,己烷的链转移小,可保证BR对高相对分子质量的要求。
5.悬浮聚合与乳液聚合的根本差别是什么?悬浮剂与乳化剂有何差别?解答:(1)两者的主要区别在引发剂、单体所处的位置和聚合场所。
悬浮聚合:引发剂和单体互溶,处于一相单体液滴内;聚合也发生在单体液滴内。
乳液聚合:引发剂和单体不在一相,引发剂在分散相,单体在单体液滴、增溶胶束和乳胶粒内;引发剂在分散相形成活性中心,活性中心再扩散进乳胶粒内引发聚合,聚合场所为乳胶粒。
(2)乳化剂比悬浮剂表面活化作用更强,可形成更小、更稳定的胶束。
6.简述乳液聚合机理。
单体、乳化剂和引发剂所在场所。
引发、增长和终止的情况和场所。
在聚合过程中胶束、乳胶粒和单体液滴的变化情况。
解答:(1)聚合机理:单体为乳化剂分散为增溶胶束和单体液滴,溶于分散介质中的引发剂形成活性中心后扩散进入增溶胶束进行引发增长,形成聚合物。
(2)单体:微量溶于分散介质,部分形成增溶胶束,多数形成单体液滴。
乳化剂:CMC以下溶于分散介质中,大部分形成胶束和增溶胶束,少量在单体液滴外部。
引发剂:溶于分散介质中,形成活性中心后扩散进增溶胶束,或吸附单体、乳化剂成核。
(3) 引发:溶于分散介质中,形成活性中心后扩散进增溶胶束引发聚合。
增长:在乳胶粒(扩散进活性中心的增溶胶束)中进行终止:第二个活性中心扩散进行乳胶粒后和乳胶粒内的活性中心发生双基终止。
(4) 胶束:随反应进行,因不断补充到数量和体积加大的乳胶粒上而不断减少。
乳胶粒:在引发阶段,数目不断增多,在恒速阶段数目不变但体积加大。
单体液滴:因不断向主要聚合场所乳胶粒补充单体,体积不断减小,最后消失。
7.采用乳液聚合,为什么可以同时提高聚合反应速率和相对分子质量?解答:对乳液聚合而言,存在:A 3p p p 2N 10[M]N k ][M][M k R ⨯=⋅= i p n R [M]Nk X =二者均与乳胶粒数目:N 成正比,故采用乳液聚合,可同时提高聚合反应速率和相对分子质量。
8.乳液聚合理想配方如下:苯乙烯100克,水200克,过硫酸钾0.3克,硬酯酸钠5克。
试计算:(1)溶于水中的苯乙烯分子数(分子/ml)。
(20O C苯乙烯溶解度0.02g/100g水。
N=6.023×A1023mol-1)(2)单体液滴数(个/ml水)。
条件:液谪直径1000nm,苯乙烯溶解和增溶量共2克,苯乙烯密度为0.9g/cm3。
(3)水中溶解的钠皂分子数(分子/ml)。
条件:硬酯酸钠的CMC为0.3克/L,相对分子质量为306.5。
(4)水中胶束数(个/ml)。
条件:每个胶束由100个钠皂分子组成。
(5)过硫酸钾在水中分子数(分子/ml)。
相对分子质量=270。
(分子/ml·s)。
(6)初级自由基形成速率r1=9.5×10-7s-1。
条件:50 O C,过硫酸钾的kd(7)乳胶粒数(个/ml)。
条件:乳胶粒直径100nm,无单体液滴存在。
苯乙烯相对密度0.9,聚苯乙烯相对密度1.05。
解答:(1)由:20O C苯乙烯溶解度0.02g/100g水。
=6.023×1023mol-1NA则:溶于水中的苯乙烯分子数 = {[(200×0.02÷100)÷104]×6.023×1023}÷200= 1.16×1018 分子/ml(2)由: 液谪直径1000nm,苯乙烯溶解和增溶量共2克,苯乙烯密度为0.9g/cm3= (3/4)πr3= (1/6)πd3= (1/6)则: V球π(10-4)3 = 5.23×10-18 ml一个单体液滴重:5.23×10-18×0.9 = 4.71×10-18 g单体液滴数 = [(100-2)÷4.71×10-18]÷200= 1.04×1012个/ml水(3)由:硬酯酸钠的CMC为0.3克/L,相对分子质量为306.5则:水中溶解的钠皂分子数 = [(0.13÷1000)×6.023×1023]÷306.5= 2.55×1017分子/ml(4)由:每个胶束由100个钠皂分子组成则:水中胶束数 = [(5÷200)-(0.13÷1000)]÷306.5×6.023×1023÷1000= 4.89×1017个/ml (5)由:过硫酸钾相对分子质量为270则:过硫酸钾在水中分子数 = (0.3÷270÷200)×6.023×1023= 3.346×1018分子/ml(6)由:过硫酸钾的kd=9.5×10-7s-1则:初级自由基形成速率r1 = 2kd[I] = 2×9.5×10-7×3.346×1018= 6.36×1012分子/ml·s(7)由:乳胶粒直径100nm,无单体液滴存在。
苯乙烯相对密度0.9,聚苯乙烯相对密度1.0则:可以形成乳胶粒的单体、聚合物总量(除去溶于水中的单体)为100-(0.02÷100×200) = 99.96 g其中聚合物为50g,单体为49.96 g总体积为:(50÷1.05)+(49.96÷0.9)=103.13 ml一个乳胶粒体积为:(1/6)π(103×10-8)3=5.23×10-16ml体系中乳胶粒数:103.13÷(5.23×10-16×200) = 9.86×1014个/ml 水9.计算苯乙烯乳液聚合速率和聚合度。
60 O C ,k p =176L/mol ·s ,[M]=5mol/L ,N=3.2×1014个/ml ,r 1 =1.1×1012个/ml ·s 。
解答:(1)由:Rp = kp[M][M ·] [M ·]=103N/2N A 则:Rp = 176×5.0×3.2×1014×103÷(2×6.023×1023)= 2.34×10-4Mol/L·s(2) 51214ip n1056.2101.10.5132.3176R [M]Nk X ⨯=⨯⨯⨯⨯==10.定量比较苯乙烯在60 O C 下本体聚合和乳液聚合的速率和聚合度。