如何判断空压机中间冷却器泄漏故障

合集下载

空分车间岗位练兵知识问答(补充)

空分车间岗位练兵知识问答(补充)

空分车间岗位练兵知识问答(补充)第一部分:机组部分1、如何判断空压机中间冷却器泄露?答:为了降低压缩机功率消耗和保证压缩机的可靠运行,各级之间均设置有中间冷却器。

在中间冷却器,通过对流换热的方式,由冷却水将气体冷却。

如果中间冷却器泄露,则气体通道与冷却水通道相通,其泄露的方向视气体与冷却水的压力而定。

空压机第一级后面的中间冷却器,冷却水压力通常高于气体压力。

因此,如果第一级中间冷却器发生泄露,则冷却水会进入气体侧,气体中将夹带有水,使第一级油水分离器吹除的水量明显增加。

空压机第二级以及以后各级中间冷却器中,冷却水压通常低于气体的压力。

因此,如果发生泄露,则气体会漏往冷却水中。

这样在冷却水收集槽里就会发现有大量气泡溢出。

根据以上两种现象即可作出中间冷却器泄露的判断。

2、简述离心式压缩机的构造及各部分的作用?答:笼统讲可分为旋转部件和静止部件。

(1)旋转部件主要有叶轮(工作叶轮)叶轮是最重要的部件,气体在叶轮作用下跟着叶轮高速旋转。

气体由于受到离心力的作用而被挤压。

以及在叶轮里的扩压流动,使气体通过叶轮后的压力得以升高,并获得一定的流速,因此叶轮是使气体获得能量的唯一部件。

叶轮通常组装在主轴上称为转子。

转子是依靠支撑轴承和止推轴承转子上的止推盘进行定位的,其旋转动力是通过联轴器与动力装置相连来传递的。

叶轮的数量是根据出口压力的大小设定的,一般为多级叶轮。

(2)静止固定部件①、吸气室:用来把需要压缩的气体,由进气管或中间冷却器出口均匀地吸入工作轮中。

②、扩压器:气体从工作轮流出时,具有较高的流速,为了充分利用这部分速度能,在工作轮后设置了流通截面积逐渐扩大的扩压器,用以把速度能转化为压力能,以提高气体压力。

③、弯道与回流器:为了把扩压器后的气体引导到下一级工作叶轮继续提高压力,在扩压器后常设置了使气体拐弯的弯道,以及把气体均匀的引入下一级叶轮的回流器。

一般回流器中带有弯曲的叶片,对进入下一级叶轮入口时有预旋作用。

新型空调器制冷系统泄漏制冷剂造成管路系统内氧化使压缩机油色变质的5种维修判断方法

新型空调器制冷系统泄漏制冷剂造成管路系统内氧化使压缩机油色变质的5种维修判断方法

新型空调器制冷系统泄漏制冷剂造成管路系统内氧化使压缩机油色变质的5种维修判断方法
新型空调器的制冷系统是空调运行的核心部分,一旦出现制冷剂泄漏导致管路系统内氧化,可能会影响压缩机内部的油质,进而引发油色变质。

本文将为您介绍五种针对此类问题的维修判断方法。

一、观察压缩机油色变化
首先,可以通过观察压缩机的油色来判断是否存在问题。

正常的压缩机机油颜色应为透明黄色,若发现油色变深、变浑浊,甚至出现乳白色,则可能是制冷剂泄漏导致的氧化现象。

二、检查制冷系统压力
制冷系统压力异常也是判断泄漏的一种方法。

使用压力表检测系统的高压和低压值,若压力值低于正常范围,说明制冷剂可能泄漏,导致管路系统内氧化,进而影响压缩机机油。

三、检测系统含水量
制冷剂泄漏后,空气中的水分可能会进入系统,导致管路内氧化。

使用专业的检测仪器(如水分检测仪)检测系统内的含水量,若含水量超过标准值,说明系统可能存在泄漏。

四、分析系统内气体成分
通过收集系统内的气体样本,并使用气体分析仪进行分析,可以判断气体成分是否发生改变。

若发现氧气含量增加,说明系统内可能发生了氧化反应,制冷剂泄漏的可能性较大。

五、查看系统外观及连接部位
对制冷系统的外观及连接部位进行仔细检查,看是否有明显的油渍、锈蚀等痕迹。

若发现此类现象,说明制冷剂可能已经泄漏,导致管路系统内氧化,使压缩机油色变质。

总结:以上五种方法可以帮助维修人员判断新型空调器制冷系统泄漏制冷剂造成管路系统内氧化使压缩机油色变质的问题。

在实际维修过程中,还需结合具体情况,综合分析,找出问题所在,并采取相应的措施进行修复。

氨水冷却器内漏的判断及预防

氨水冷却器内漏的判断及预防

氨水冷却器内漏的判断及预防氨水冷却器是工业生产中常用的设备,用于降低工艺中产生的热量。

然而,由于冷却器操作环境复杂,工作条件苛刻,很容易出现内漏现象。

内漏不仅会影响冷却效果,还可能对设备和工作人员的安全造成威胁。

因此,判断氨水冷却器内漏并采取相应的预防措施是非常重要的。

以下是有关判断氨水冷却器内漏及预防的一些建议。

一、判断氨水冷却器内漏的方法1. 观察气体泄漏:如果冷却器内部有气体泄漏,通常会产生一些表现。

例如,冷却器周围会出现白色的雾状气体,有时候还会有氨水的刺激性气味。

此外,还可以通过听觉来判断,如果冷却器有内漏现象,可能会听到气体的喷射声或漏气声。

2. 检测热效率:氨水冷却器的主要功能是降低工艺中产生的热量。

如果发现冷却效果明显下降,可能是由于内部漏气造成的。

可以通过测量冷却器进出口的温度差来评估热效率,如果温差减小,可能是由于内部漏气导致的。

3. 检查压力变化:内部漏气会导致冷却器的工作压力变化。

可以通过安装压力传感器来监测冷却器的压力变化。

如果发现压力经常波动或逐渐减低,可能是由于内部漏气导致的。

4. 检查冷却器外观:有时候内部漏气会造成冷却器外壳的变形或破损。

可以通过观察冷却器外壳的变化来判断是否有内漏现象。

常见的变化包括外壳凹陷、裂纹、腐蚀等。

二、预防氨水冷却器内漏的方法1. 定期检查设备:定期对冷却器进行检查是预防内漏的有效方法。

可以检查冷却器的压力表、温度表、压力传感器等设备是否正常工作。

此外,还可以检查冷却器的连接件、阀门和管路是否松动或损坏。

2. 注意维护和修理:冷却器的维护和修理也是预防内漏的重要措施。

可以定期清洗和检查冷却器内部的管路和换热器,清除污秽和堵塞物。

如果发现冷却器有漏气或渗漏现象,应及时修理或更换相关部件。

3. 加强培训和管理:提高操作人员的安全意识和技能是预防内漏的关键。

应定期对操作人员进行培训,教授正确的操作方法和安全规范。

此外,还应建立健全的安全管理体系,加强对操作人员的监督和管理。

空 分 知 识 问 答

空 分 知 识 问 答

空分知识问答1.空分设备对冷却水水质有什么要求?答:空分设备一般用江河湖泊或地下水作为冷却水.这种水通常为硬水.一般水温在45℃以上就开始形成水垢,附着在冷却器的管壁、氮水预冷器的填料、喷头或筛孔等处, 易堵塞冷却器的通道、过滤网及阀门等,不仅影响换热,降低冷却效果,而且有碍冷却水或空气的流通,严重时会造成设备故障.因此,冷却水最好经过软化处理,冷却水循环使用有利于水质的软化.对压缩机冷却水,温度一般要求不高于28℃,排水温度小于40℃.2.什么叫临界温度、临界压力?答:对同一种物质,在一定温度下,提高压力可以提高液化温度.但对每一种物质,当温度超过某一数值时,无论压力提得多高,也不可能再使它液化,这个温度叫“临界温度”.临界温度是该物质可能被液化的最高温度.与临界温度对应的液化压力叫临界压力.3.进下塔的加工空气状态是如何确定的?答:当进出精馏塔的各股物料的量及状态完全符合整个精馏塔的物料平衡、组分平衡以及能量平衡时,精馏工况才能维持稳定运行.通常,从精馏塔引出的氧气、氮气产品处于干饱和蒸气状态,因而进精馏塔加工空气状态也应是在其压力下的干饱和蒸气状态.但由于精馏塔存在冷损,加之膨胀后的空气为过热气体,为了补偿冷量,导至加工空气进入下塔的状态不仅要达到饱和,而且必须含有少量的液体,即加工空气进下塔的状态应该是气液混合物.在全低压分子筛纯化流程中,入下塔加工空气中的少量液空,由主换热器冷端正流空气被冷却后,部分被液化而产生.4.为什么空分设备在运行时要向保冷箱内充惰性气体?答:在空分装置保冷箱内充填了保冷材料,而保冷材料颗粒之间的空隙中充满空气.空分设备运行后,塔内处于低温状态,保冷材料的温度也随之降低,内部的气体体积缩小,保冷箱内将会形成负压.若保冷箱密封很严,在内外压差作用下箱体容易被吸瘪.若密封不严,则外界湿空气很容易侵入,是保冷材料变潮,冷损失增加.因此充惰性气体,保持冷箱微正压,约为200~500Pa.5.为什么空分塔中最低温度比膨胀机出口温度还要低?答:空分装置在启动阶段出现液体前,最低温度是靠膨胀机产生的,精馏塔内的温度也不能低于膨胀后温度.但当下塔出现液体,饱和液体节过冷流到上塔时,压力降低,部分气化,温度也降到上塔压力对应的饱和温度.此外,上塔底部液氧温度为-180℃左右,在气化上升过程中,与塔板上的液体进行热、质交换,氮组分蒸发,气体温度降低,待气体经过数段塔板达到塔顶时气体已达到纯氮,温度也降到与该处的液体温度(-193℃)相等.因此,塔内最低温度的形成是液体节流膨胀和气液热、质交换的结果.6.空分设备内部产生泄漏如何判断?答:空分塔冷箱内产生泄漏时,维持正常生产的制冷量显得不足,因此,主要的标志是主冷液面持续下降.若是大量气体泄漏,可以观察到冷箱内压力升高.若冷箱不严,就会从缝隙中冒出大量冷气.而低温液体泄漏时,观察不到明显的压力升高和气体逸出,常常可以测出基础温度大幅度下降.为了在停机检修前能对泄漏部位和泄漏物有一步初步判断,以缩短停机时间:(1)是化验从冷箱逸出的气体纯度.当氮气或液氮泄漏时,氮的纯度达80%以上;氧气或液氧泄漏时,氧的纯度明显增高(2)观察冷箱壁上“出汗”或“结霜”部位.这时要注意低温液体泄漏时,“结霜”部位偏泄漏点下方;(3)观察逸出气体外冒时有无规律性.以上方法综合使用.7.液空调节阀的液体通过能力不够时,对精馏工况有何影响?答:原因(1)调节阀堵塞;(2)过冷器堵塞;(3)气源压力不足或执行机构故障;(4)调节阀选择不当.影响:为了维持下塔液面稳定,采取开大液氮调节阀减少下塔回流液的方法,但由于液氮取出量过大,液氮纯度下降,氧的提取率降低,氧产量减少.虽然液空纯度有所提高,但在上塔精馏段的液体中由于回流比增大二氧含量降低,使产品氧纯度降低.8.怎样控制液空、液氮纯度?答:下塔液空、液氮是提供给上塔作为精馏的原料液,因此,下塔精馏是上塔精馏的基础.控制好液空、液氮纯度的目的在于保证氧氮产品纯度和产量.液空纯度高时,氧气纯度才可能提高.下塔的操作要点在于控制液氮节流阀的开度,要在液氮的纯度合乎上塔精馏的要求下,尽量加大其导出量.为上塔提供更多的回流液,使出上塔的氮气纯度得到保证.同时下塔回流比减少,液空纯度得到提高.根据氧气、氮气、污氮气、液空纯度对液氮节流阀进行调节.9.如何判断空压机中间冷却器泄漏?答:如果中间冷却器泄漏,则气体通道与液体通道相通,空压机第一级后面的中间冷却器,冷却水压力通常高于气体压力,则冷却水会进入气体侧,气体中夹带有水,冷却器气侧排放阀排出水量明显增加;空压机第二级及以后各级冷却器中,冷却水压力通常低于气体压力,若发生泄漏,则气体进入冷却水中,冷却器水侧排气阀排出大量气体.10.什么叫离心式液氧泵的“气堵”和“气蚀”现象?有何危害?答:在全低压制氧机中,离心式液氧泵有时会发生排不出液氧,出口压力升不上去或发生很大的波动,泵内有液体冲击声,甚至泵体发生振动,使泵无法继续工作,这种现象称为“气堵”.它是由于泵内液氧大量气化而堵塞流道造成的. “气蚀”不同于“气堵”,它是一种对泵的损害过程.离心泵在运转时,叶轮内的压力是不同的,进口处压力较低,出口处压力较高.而液体的气化温度是与压力有关系的.如果液体进入泵里的温度高于进口压力所对应的气化温度,则部分液体会产生气化,形成气泡。

空调器运行时出现制冷剂泄漏的故障排查及修复方法

空调器运行时出现制冷剂泄漏的故障排查及修复方法

空调器运行时出现制冷剂泄漏的故障排查及修复方法空调器作为现代生活中不可或缺的电器之一,为我们提供了舒适的室内环境。

然而,有时我们可能会遇到空调器运行时出现制冷剂泄漏的故障。

本文将探讨制冷剂泄漏故障的排查方法以及相应的修复方法。

一、制冷剂泄漏的故障排查方法当我们发现空调器运行时制冷效果变差,甚至完全失去制冷能力时,首先要怀疑可能存在制冷剂泄漏的问题。

下面是一些常见的制冷剂泄漏的故障排查方法:1. 观察冷凝器和蒸发器:制冷剂泄漏通常会导致冷凝器和蒸发器出现油迹或污渍。

通过仔细观察这两个部件,可以获得一些线索。

2. 检查连接管道:管道连接处是制冷剂泄漏的一个常见位置。

检查连接处是否存在气体泄漏或气体浓度异常。

3. 使用检测工具:专门的制冷剂泄漏检测工具可以帮助我们精确地确定泄漏位置。

这些工具通常使用紫外线或气体探测剂来检测制冷剂的泄漏情况。

二、制冷剂泄漏的修复方法一旦发现制冷剂泄漏,我们可以按照以下方法进行修复。

1. 封堵泄漏点:如果泄漏点较小且位置容易访问,可以使用专门的封堵剂来封堵泄漏点。

这些封堵剂可以在制冷剂接触到空气时形成固态密封。

2. 更换密封件:如果发现泄漏点是由于密封件老化或损坏引起的,可以将其更换为新的密封件。

确保选择适配的密封件,以保证密封效果。

3. 焊接修复:对于较大的泄漏点,可能需要使用焊接的方式进行修复。

这一过程应由专业的技术人员进行操作,以确保修复效果和安全性。

4. 泄漏点清洗:在进行任何封堵或修复操作之前,必须彻底清洗泄漏点及附近区域。

使用相应的清洁剂和工具,可有效去除杂质和油污。

三、预防制冷剂泄漏的措施除了及时发现和修复制冷剂泄漏外,我们还可以采取一些预防措施来减少此类故障的发生。

1. 定期检查和维护:定期检查空调器的冷凝器、蒸发器和管道连接,确保它们没有泄漏现象。

同时,清洁这些部件并更换老化的密封件。

2. 谨慎操作和维修:在使用空调器时,避免过度调节温度,以减少对制冷循环的负荷。

空分知识问答

空分知识问答

空分知识问答空分知识问答1.空分设备对冷却水水质有什么要求?答:空分设备一般用江河湖泊或地下水作为冷却水.这种水通常为硬水.一般水温在45℃以上就开始形成水垢,附着在冷却器的管壁、氮水预冷器的填料、喷头或筛孔等处, 易堵塞冷却器的通道、过滤网及阀门等,不仅影响换热,降低冷却效果,而且有碍冷却水或空气的流通,严重时会造成设备故障.因此,冷却水最好经过软化处理,冷却水循环使用有利于水质的软化.对压缩机冷却水,温度一般要求不高于28℃,排水温度小于40℃.2.什么叫临界温度、临界压力?答:对同一种物质,在一定温度下,提高压力可以提高液化温度.但对每一种物质,当温度超过某一数值时,无论压力提得多高,也不可能再使它液化,这个温度叫“临界温度”.临界温度是该物质可能被液化的最高温度.与临界温度对应的液化压力叫临界压力.3.进下塔的加工空气状态是如何确定的?答:当进出精馏塔的各股物料的量及状态完全符合整个精馏塔的物料平衡、组分平衡以及能量平衡时,精馏工况才能维持稳定运行.通常,从精馏塔引出的氧气、氮气产品处于干饱和蒸气状态,因而进精馏塔加工空气状态也应是在其压力下的干饱和蒸气状态.但由于精馏塔存在冷损,加之膨胀后的空气为过热气体,为了补偿冷量,导至加工空气进入下塔的状态不仅要达到饱和,而且必须含有少量的液体,即加工空气进下塔的状态应该是气液混合物.在全低压分子筛纯化流程中,入下塔加工空气中的少量液空,由主换热器冷端正流空气被冷却后,部分被液化而产生.4.为什么空分设备在运行时要向保冷箱内充惰性气体?答:在空分装置保冷箱内充填了保冷材料,而保冷材料颗粒之间的空隙中充满空气.空分设备运行后,塔内处于低温状态,保冷材料的温度也随之降低,内部的气体体积缩小,保冷箱内将会形成负压.若保冷箱密封很严,在内外压差作用下箱体容易被吸瘪.若密封不严,则外界湿空气很容易侵入,是保冷材料变潮,冷损失增加.因此充惰性气体,保持冷箱微正压,约为200~500Pa.5.为什么空分塔中最低温度比膨胀机出口温度还要低?答:空分装置在启动阶段出现液体前,最低温度是靠膨胀机产生的,精馏塔内的温度也不能低于膨胀后温度.但当下塔出现液体,饱和液体节过冷流到上塔时,压力降低,部分气化,温度也降到上塔压力对应的饱和温度.此外,上塔底部液氧温度为-180℃左右,在气化上升过程中,与塔板上的液体进行热、质交换,氮组分蒸发,气体温度降低,待气体经过数段塔板达到塔顶时气体已达到纯氮,温度也降到与该处的液体温度(-193℃)相等.因此,塔内最低温度的形成是液体节流膨胀和气液热、质交换的结果.6.空分设备内部产生泄漏如何判断?答:空分塔冷箱内产生泄漏时,维持正常生产的制冷量显得不足,因此,主要的标志是主冷液面持续下降.若是大量气体泄漏,可以观察到冷箱内压力升高.若冷箱不严,就会从缝隙中冒出大量冷气.而低温液体泄漏时,观察不到明显的压力升高和气体逸出,常常可以测出基础温度大幅度下降.为了在停机检修前能对泄漏部位和泄漏物有一步初步判断,以缩短停机时间:(1)是化验从冷箱逸出的气体纯度.当氮气或液氮泄漏时,氮的纯度达80%以上;氧气或液氧泄漏时,氧的纯度明显增高(2)观察冷箱壁上“出汗”或“结霜”部位.这时要注意低温液体泄漏时,“结霜”部位偏泄漏点下方;(3)观察逸出气体外冒时有无规律性.以上方法综合使用.7.液空调节阀的液体通过能力不够时,对精馏工况有何影响?答:原因(1)调节阀堵塞;(2)过冷器堵塞;(3)气源压力不足或执行机构故障;(4)调节阀选择不当.影响:为了维持下塔液面稳定,采取开大液氮调节阀减少下塔回流液的方法,但由于液氮取出量过大,液氮纯度下降,氧的提取率降低,氧产量减少.虽然液空纯度有所提高,但在上塔精馏段的液体中由于回流比增大二氧含量降低,使产品氧纯度降低.8.怎样控制液空、液氮纯度?答:下塔液空、液氮是提供给上塔作为精馏的原料液,因此,下塔精馏是上塔精馏的基础.控制好液空、液氮纯度的目的在于保证氧氮产品纯度和产量.液空纯度高时,氧气纯度才可能提高.下塔的操作要点在于控制液氮节流阀的开度,要在液氮的纯度合乎上塔精馏的要求下,尽量加大其导出量.为上塔提供更多的回流液,使出上塔的氮气纯度得到保证.同时下塔回流比减少,液空纯度得到提高.根据氧气、氮气、污氮气、液空纯度对液氮节流阀进行调节.9.如何判断空压机中间冷却器泄漏?答:如果中间冷却器泄漏,则气体通道与液体通道相通,空压机第一级后面的中间冷却器,冷却水压力通常高于气体压力,则冷却水会进入气体侧,气体中夹带有水,冷却器气侧排放阀排出水量明显增加;空压机第二级及以后各级冷却器中,冷却水压力通常低于气体压力,若发生泄漏,则气体进入冷却水中,冷却器水侧排气阀排出大量气体.10.什么叫离心式液氧泵的“气堵”和“气蚀”现象?有何危害?答:在全低压制氧机中,离心式液氧泵有时会发生排不出液氧,出口压力升不上去或发生很大的波动,泵内有液体冲击声,甚至泵体发生振动,使泵无法继续工作,这种现象称为“气堵”.它是由于泵内液氧大量气化而堵塞流道造成的. “气蚀”不同于“气堵”,它是一种对泵的损害过程.离心泵在运转时,叶轮内的压力是不同的,进口处压力较低,出口处压力较高.而液体的气化温度是与压力有关系的.如果液体进入泵里的温度高于进口压力所对应的气化温度,则部分液体会产生气化,形成气泡。

空调常规泄露的判定步骤图解

空调常规泄露的判定步骤图解

空调常规泄露的判定步骤图解第一步:关机并拔下空调器电源(防止检查过程中发生危险),在大阀门处接上压力表。

观察静态压力。

①0-0.5MPa,无氟故障,此时应向系统中加注气态冷媒,使静态压力达到0.6MPa,以便查漏。

②0.6MPa以上压力,缺氟故障,此时可以直接检漏。

第二步:R22与压缩机润滑油能互溶,故当R22的系统出现漏点时会将润滑油带出,也就是说制冷系统有油迹的部位,应重点检查。

第三步:漏氟故障重点检查部位:①新装机(或移机):室内机和室外机连接管的4个接头,大小阀门的螺帽,以及加长管道焊接部位。

②正常使用的空调器突然不制冷:压缩机吸气管和排气管、系统管路焊点、毛细管、四通阀连接管道和根部。

③逐渐缺氟故障:室内机和室外机连接管道的4个接头。

更换过系统元器件或补焊过管道的空调器还应检查焊点。

④系统中有油迹的位置。

第四步:检漏方法:用水将毛巾(或海绵)淋湿,以不向下滴水为宜,倒上洗洁精,轻揉至丰富泡沫,涂在需要检查的部位,观察是否向外冒泡,冒泡说明检查部位有漏氟故障,没有冒泡说明检查部位正常。

第五步:漏点处理方法①系统焊点漏:补焊漏点。

②四通阀根部漏:更换四通阀。

③喇叭口管壁变薄或脱落:重新扩口。

④接头螺母未拧紧:拧紧接头螺母。

⑤大小阀门或室内机快速接头螺纹损坏:更换大小阀门或快速接头。

⑥接头螺母有裂纹或螺纹损坏:更换连接螺母。

第六步:微漏故障检修方法:制冷系统微漏故障,如果因漏点太小或比较隐蔽,使用上述方法未检查出漏点时,可以使用以下步骤来检查。

①区分故障部位:当系统为平衡压力时,接上压力表并记录此时的系统压力值后取下,关闭大小阀门的阀芯,将室内机和室外机的系统分开保压。

等待一段时间后(根据漏点大小决定),再接上压力表,慢慢打开大阀门阀芯,查看压力表表针是上升还是下降:如果是上升,说明室外机的压力高于室内机,故障在室内机,重点检查蒸发器和连接管道;如果是下降,说明室内机的压力高于室外机,故障在室外机,重点检查冷凝器和室外机内管道。

制冷系统泄漏故障的判断及排除方法

制冷系统泄漏故障的判断及排除方法

制冷系统泄漏故障的判断及排除方法空调机制冷系统泄漏故障在空调机的整个故障中占有很高的比例,其主要原因是,空调机在长期工作中,制冷剂对蒸发器和各密封管路的腐蚀,以及管路受振动及相互摩擦造成裂缝、密封件失效而产生泄漏。

另外,分体式空调机制冷系统各部件的连接方式既有焊接,又有螺纹连接,而螺纹连接处普遍存在不同程度的泄漏。

(1)制冷系统“泄漏”后的现象。

空调机制冷系统一旦出现泄漏故障,即会导致“缺氟”。

检查时,将压缩机连续运转30min后,会出现下述现象:●回气管不结露,用手触摸没有明显凉的感觉。

其原因是制冷剂不能使蒸发器内制冷剂提前到达沸腾终结点,制冷剂过热度增大,使管内温度高于室外露点温度。

●供液管结霜。

其原因是“缺氟”导致管内压力下降、沸点降低,使管温低于冰点。

●蒸发器只有小部分结露或结霜。

其原因是制冷剂不足,仅仅使蒸发器的小部分结露或结霜,使制冷面积相应减少。

●排水软管无水流出。

其原因是蒸发器制冷面积减少,结露面积也减少,凝结水量降低。

●室外机排风没有热感。

其原因是制冷剂不足导致冷凝压力、冷凝温度都降低,排风温度也随之降低。

●室外机的气、液阀门有油污。

●空调机工作电流小于额定电流。

●室外机充氟口压力低于0.45MPa。

(2)制冷系统泄漏故障的检查。

在确定制冷系统故障后,为了确定故障的具体部位,可采用以下方法进行检查:加压检漏。

加压检漏是判断制冷系统是否泄漏的有效方法。

通过加压后来观察蒸发器、冷凝器及连接管路是否有油迹,有油迹则为泄漏。

常用的加压方法有氮气加压和制冷剂加压两种。

氮气加压,是给制冷系统充入一定量的高压氮气增加系统压力,配合检漏方法来进行检漏。

空调机的充氮量一般为1~ 1.5MPa,其操作方法如图6-3所示。

对于采用往复式压缩机的空调机,先将氮气瓶(瓶内压力为1.5MPa左右)接上减压阀,再断开压缩机工艺管,在工艺管上焊接或用快速接头连接一只带真空压力表的三通阀,三通阀的一端与氮气瓶的减压阀连接。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

如何判断空压机中间冷却器泄漏故障
本文由苏州艾迪克整理为了降低压缩机功率消耗和保证压缩机的可靠运行,各级之间均设置有中间冷却器。

在中间冷却器中,通过对流换热的方式,由冷却水将气体冷却。

如果中间冷却器泄漏,则气体通道与冷却水通道相通,其泄漏的方向视气体与冷却水的压力而定。

空压机第一级后面的中间冷却器,冷却水压力通常高于气体压力。

因此,如果第一级中间冷却器发生泄漏,则冷却水会进入气体侧,气体中将夹带有水,使第一级油水分离器吹除的水量明显增加。

空压机第二级以及以后各级中间冷却器中,冷却水压通常低于气体的压力。

因此,如果发生泄漏,则气体会漏往冷却水中。

这样在冷却水收集槽里就会发现有大量气泡溢出。

根据以上两种现象即可作出中间冷却器泄漏的判断。

相关文档
最新文档