北京市西城区2009-2010学年九年级第一学期期末考试题及答案
北京市西城区2010—2011学年度第一学期期末九年级物理试卷(北区)

北京市西城区2010—2011学年度第一学期期末九年级物理试卷(北区)2011.1一、单项选择题(下列各小题均有四个选项,其中只有一个选项符合题意.共24分,每小题2分) 1.在国际单位制中,电压的单位是A .安培(A )B .伏特(V )C .欧姆(Ω)D .瓦特(W )2.下列物品中,在通常情况下属于绝缘体的是 A .橡皮B .铅笔芯C .食盐水D .钢勺3.图1所示的家用电器中,利用电热效应工作的是4.下列关于电流和电压的说法中,正确的是 A .正、负电荷定向移动都会形成电流 B .电路中的电流是形成电压的原因 C .自由电荷定向移动的方向为电流方向 D .电路两端有电压,电路中就一定有电流5.由同种材料制成的AB 和BC 两段导体,它们的长度相同,AB 的横截面积比BC 的小,将它们按照图2所示的方式串联在电路中,不计温度的影响,下列判断正确的是 A .两段导体的电阻值:R AB =R BCB.两段导体的电阻值:R AB<R BCC.两段导体两端的电压:U AB>U BCD.通过两段导体的电流:I AB<I BC6.下列有关温度、内能和热量的说法中,正确的是A.物体吸收了热量,温度一定升高B.物体的温度升高,一定吸收了热量C.物体的内能增加,温度一定升高D.内能是物体内所有分子动能和势能的总和7.下列事例中,利用做功的方式使物体(加“·”的字)内能增加的是A.捂热水袋的手.变暖B.用锯子锯木头,锯条..的温度升高C.放进热汤中的金属汤勺....变得烫手D.炽热的金属片插入水中后,水.温升高8.图3为四冲程式汽油机工作过程中各冲程的示意图,其中表示做功冲程的是9.下列有关家庭电路和安全用电的说法中,正确的是A.家庭电路中的空气开关与插座是并联的B.使用试电笔测火线时,手指千万不能碰到笔尖C.经验证明,只有36 V的电压对人体才是安全的D.家庭电路中只有发生短路,才会使电路中的电流过大10.有一种带开关指示灯的插座,当开关断开时,指示灯不亮,插座不带电;当开关闭合时,指示灯亮,插座有电.小明画出四种电路连接方式如图4所示.其中既能控制且显示插座O是否有电,又符合安全用电要求的是11.如图5所示电路,电源两端电压保持不变,图中①、②、③是电流表或电压表.当开关S闭合后,两灯均发光,三个表均有示数.下列说法正确的是A.①、②可能同是电压表B.②、③可能同是电流表C.①、③不可能同是一种表D.②、③不可能同是一种表12.如图6所示电路,电源两端电压不变,三个定值电阻R1、R2和R3的阻值之比为1∶2∶3.当开关S1闭合、开关S接1时,电流表的示数为1.2 A.下列判断正确的是A.开关S1闭合、开关S接1时,通过电阻R1的电流为0.4 AB.开关S1断开、开关S接2时,通过电阻R1的电流为0.3 AC.开关S1闭合时,开关S接1与接2,电路消耗的总电功率之比为3∶2D.开关S1闭合时,开关S接1与接2,电阻R1消耗的电功率之比为16∶1二、多项选择题(下列各小题均有四个选项,其中符合题意的选项均多于一个.共12分,每小题3分.每小题全部选对的得3分,选对但不全的得2分,有错选的不得分)13.关于导体的电阻,下列说法中正确的是A.导体的电阻跟它两端的电压成正比B.导体的电阻跟通过它的电流成反比C.导体的电阻是导体本身的一种性质D.导体的电阻等于导体两端的电压与通过它的电流的比值14.小莉根据下表中的数据,得出以下四个结论,其中正确的是A.不同物质的比热容可能相等B.同种物质在不同状态下比热容一定相等C.质量相等的铜块和铅块,降低相同的温度,铝块放出的热量一定多D.初温相等的酒精和砂石,吸收相等的热量后,酒精的末温可能比砂石的末温高15.在图7所示电路中,开关S闭合后,电流表A1的示数大于A2的示数.下列说法正确的是A.若只将R1与R2的位置对调,电流表A1的示数一定不变,A2的示数可能变大B.若只将R1与R3的位置对调,电流表A1的示数一定变小,A2的示数一定变大C.若只用电压表V1替换电流表A1,电压表V1无示数,电流表A2的示数变大D.若用电压表V1、V2分别替换电流表A1、A2,电压表V1的示数比V2的大16.如图8所示电路,电源两端电压U保持不变,闭合开关S.当开关S1闭合时,电路消耗的电功率为P,电压请V1、V2的示数分别为U1和U2;开关S1断开时,电路消耗的电功率为P',电压表V1、V2的示数分别为U1'和U2',电阻R3消耗的电功率为6 W.已知电阻R1=2Ω,U1∶U1'=3∶2,U2∶U2'=15∶16.则下列判断正确的是A.R3=6Ω,R1∶R2=1∶5B.R2=10Ω,R2∶R3=3∶5C.U=18 V,P'=18 WD.P=27 W,P∶P'=3∶1三、填空题(共14分,每小题2分)17.家庭电路中输电线进户经过电能表后,总开关接在保险装置之________.(选填“前”或“后”)18.三孔插座有一孔是接________线的,其目的是以防家用电器外壳带电时发生触电事故.(选填“火”、“零”或“地”)19.将五个阻值均为20Ω的电阻并联在电路中,其总电阻为________Ω.20.酒精的热值是3×107 J / kg,要放出1.5×107 J的热量,需要安全燃烧_______kg酒精.21.将一根阻值为100Ω的电阻丝接入电路,通过它的电流为2 A,则通电10 s电流产生的热量为________J. 22.如图9所示电路中,电源两端电压不变,电流表和电压表选择的量程分别为0~0.6 A和0~3 V,闭合开关S.在滑动变阻器滑片P从一端移动到另一端的过程中,电压表和电流表的示数均可达到各自的最大测量值(且不超过量程),在上述过程中,定值电阻R所消耗的最大电功率是它最小电功率的4倍.则当滑片P移至滑动变阻器的中点时,电路消耗的电功率为________W.23.如图10所示电路中,电源两端电压不变,闭合开关S.当滑动变阻器的滑片P位于A点时,电压表V1的示数为11 V,电压表V2的示数为6 V;当滑动变阻器的滑片P位于B点时,电压表V1的示数为10 V,电压表V2的示数为9 V.则电源两端电压是________V.四、实验与探究题(共34分.27题、32题2分、34题3分、35题2分、36题7分.其他小题每空1分,每图1分)24.如图11所示,电阻箱的示数为________Ω.25.如图12所示,电能表的读数是________kW·h.26.小鹏同学做“探究改变物体内能”的实验,如图13所示.他用气筒向装有少量酒精的瓶内用力打气的过程中,瓶内气体的内能会________(选填“增大”或“减小”).当他向瓶中继续打气,瓶塞从瓶口处跳出时,观察到瓶内有白雾产生.这是由于瓶内的气体对外做功使其内能________,温度降低而液化(填填“增大”或“减小”).27.下列关于图14所示现象的说法,正确的是________A.甲图:抽去玻璃隔板后,两瓶中的气体逐渐混合,这是气体的扩散现象B.乙图:试管内的水沸腾后,软木塞从试管口飞出时,软木塞的机械能转化为内能C.丙图:缓慢向上提拉与水面接触的玻璃板,弹簧测力计示数变大,说明分子间存在引力D.丁图:迅速拉动绕在金属管外的皮绳,橡皮塞从金属管口飞出,说明分子永不停息的运动28.核电站利用核能发电,目前核电站主要是利用重核________(选填“裂变”或“聚变”)反应释放的核能. 29.小亮同学想通过实验探究“电阻的大小与哪些因素有关”.他利用四根如图15所示的金属丝进行实验.已知图中A为锰铜丝,B、C、D为镍铬合金丝,S表示金属丝的横截面积.(1)若要探究导体电阻的大小跟材料的关系,应选用金属丝B和金属丝________进行实验.(2)若要探究导体电阻跟________的关系,应选用金属丝B、D进行实验.30.小刚同学在实验室测得标有“2.5 V”字样的小灯泡的额定功率.(1)请你帮助小刚同学画出实验电路图.(2)小刚同学连接的部分实验电路如图16所示.请你用笔画线代替导体,帮助他完成电路连接.(3)开关S闭合前,应把图16中滑动变阻器的滑片P置于________(选填“A”或“B”)端.(4)开关S闭合后,发现灯泡L不发光,电流表指针不偏转,电压表的示数如图17甲所示.若电路只有一处故障,则产生此现象的原因可能是下列情况中的________.(选填序号)A.滑动变阻器断路B.电流表断路C.灯泡L断路D.灯泡L短路(5)排除故障后,闭合开关S,发现电压表和电流表的示数都比较小,灯泡L不发光.这时应该进行的操作是________,使电压表________,灯泡L正常发光.此时,电流表的示数如图17乙所示,灯泡的额定功率为________W.31.为探究“电流通过导体产生的热量跟哪些因素有关”,小焦设计了图18所示的实验电路.他用电阻丝(其中R甲=R丙<R乙)给烧瓶中的煤油(煤油质量相同)加热,观察并记录烧瓶中温度计示数的变化情况,就可以比较电阻丝放热的多少.请你观察图18所示实验电路,应用所学知识分析回答下列问题:(1)若要研究电热的多少与电阻大小的关系,应比较烧瓶甲和烧瓶________中温度计示数变化的情况;(2)若要研究电热的多少与电流大小的关系,应比较烧瓶甲和烧瓶________中温度计示数变化的情况.32.定值电阻R消耗的电功率P随R两端电压U变化的图像如图19所示.请根据图像和已有知识判断:当电阻R两端电压U为2 V时,电阻R消耗的电功率P为____W.33.为了比较水和煤油吸热本领的大小,小丽做了如图20所示的实验:在两个相同的烧杯中,分别装有质量、初温都相同的水和煤油,分别用两个相同的酒精灯对其加热相同的时间.(1)在此实验中分别用两个相同的酒精灯对水和煤油加热相同的时间,说明水吸收的热量________煤油吸热的热量(选填“大于”、“小于”或“等于”);(2)对质量相同水和煤油加热相同的时间后,可以观察到水升高的温度________煤油升高的温度(选填“大于”、“小于”或“等于”).34.小伟连接两灯并联电路的情况如图21所示.当他“试触”时,发现电压表的指针不动、电流表的指针很快向右偏转,两灯都不发光.小敏指出他在电路连接中有错误.若闭合开关S,可能造成的后果是________;现在请你只改接图21电路中的一根导线,使电路连接完全正确.(在错接的导线上画×,然后画出正确的接线位置)35.下表是小华同学在探究“通过导体的电流与导体两端电压之间的关系”时记录的实验数据.请你对表格中数据进行分析,归纳出通过导体的电流与导体两端电压的关系式为________.36.实验桌上有如下实验器材:满足实验要求(两端电压合适且不变)的电源一个、阻值已知的定值电阻一个,电阻箱(电路图符号)一个,已调零的电流表一块,开关两个,导线若干.请选用上述实验器材,设计一个实验证明“两个电阻R1与R2串联时,如果R1的电阻保持不变,则电阻R1与R2串联的总电阻R跟电阻R2的关系为R=R1+R2”.请你(1)画出实验电路图;(2)写出实验步骤;(3)画出实验数据记录表.五、计算题(共16分,36题3分,37题6分,38题7分)37.质量为0.5 kg的热水,温度从90℃降低到50℃,放出的热量是多少?[水的比热容为4.2×103 J / (kg·℃)] 38.小晨家的电热砂锅在炖汤时能够自动调节炖汤的“火力”,因此炖汤味道香醇,而且节约能源.小晨根据电热砂锅的工作特点,设计出如图22所示的模拟电路图.此电热砂锅工作时有“大火”和“小火”两个档位.开始热砂锅“大火”炖煮;当汤的温度达到沸点时,电热砂锅的开关S2会自动断开,此后维持“小火”炖煮.两个发热电阻分别为R1=66Ω,R2=44Ω.请按此模拟电路求:(1)在汤沸腾之前,电热砂锅消耗的电功率;(2)在维持“小火”炖煮时,电路中的电流;(3)在汤沸腾之后,电热砂锅通电30 min消耗多少度电?39.如图23所示的电路图中,把端点A、B接在电压U不变的电源两端,当闭合开关S1,断开开关S2时,电压表的示数为U1,电流表A1的示数为I1.把端点C、D接在电压U不变的电源两端,当断开开关S1,闭合开关S2时,电压表的示数为U2,电流表A2的示数为I2.把端点C、B接在电压U不变的电源两端,当闭合开关S1、S2时,电流表A1的示数为I3,电流表A2的示数为I4.把端点A、D接在电压U不变的电源两端,当断开开关S1、闭合开关S2时,电流表A2的示数为I5.已知:U1∶U2=3∶4,I3∶I4=5∶3,R1=R2,U2=10 V.求:(1)电流I1与I2的比值;(2)电流I2与I5的比值;(3)电源两端电压U.北京市西城区2010—2011学年度第一学期期末试卷(北区)九年级物理参考答案及评分标准2011.1一、单项选择题(共24分,每小题2分)二、多项选择题(共12分,每小题3分.全对得3分,不全得2分,错选不得分)三、填空题(共14分,每空2分)四、实验与探究题(共34分.27题、32题2分、34题3分、35题2分、36题7分.其他小题每空1分,每图1分)24.2011(1分)25.6208.3(1分)26.增大;减小(2分)27.AC(2分)28.裂变(1分)29.A;长度(2分)30.(1)见图1(1分)(2)见图2(1分)(3)A(1分)(4)C(1分)(5)调节滑动变阻器;示数为2.5 V;0.75(3分)31.(1)乙(1分)(2)丙(1分)32.4(2分)33.(1)等于(1分)(2)小于(1分)34.烧毁电流表(1分)见图3(2分)35.5U I =Ω36.(1)见图4(1分) (2)实验步骤:(4分)①按电路图连接电路.②只闭合开关S ,调节电阻箱R 2的阻值.用电流表测量电路中的电流I ,将I 、R 1、R 2的测量数据记录在实验数据记录表中. ③再将开关S 1闭合,调节电阻箱,直到电流表A 的示数仍为I 为止.将此时电阻箱的阻值R 的数据记录在实验数据记录表中.④仿照步骤②和③,再进行5次实验,并分别将相应的I 、R 1、R 2、R 测量数据记录在实验数据记录表中.五、计算题(36题3分、37题6分、38题7分,共16分) 37.解:Q 放=cm (t 0-t ) …… 1分=4.2×103 J / (kg ·℃)×0.5 kg ×(90℃-40℃) …… 1分 =8.4×104 J …… 1分38.解:(1)在汤沸腾之前,“大火”炖煮,开关S 1、S 2都闭合,只有电阻R 2接入电路.电热砂锅的“大火”功率:212220V 220V1100W 44U P R ⨯===Ω…… 2分(2)在维护“小火”炖煮时,开关S 1仍闭合,S 2自动断开,电阻R 1和R 2串联.12220V2A (6644)U I R R ===+Ω+Ω…… 2分(3)在汤沸腾之后,维护“小火”炖煮.开关S 1闭合,S 2断开,电阻R 1和R 2串联,电热砂锅的“小火”功率:2212220V 220V 440W (6644)U P R R ⨯===+Ω+Ω…… 1分通电30 min ,消耗的电能为:W =P 2t =0.44 kW ×0.5 h=0.22 kW ·h=0.22度 …… 1分39.解:电压U 接在A 、B 两端,当闭合开关S 1,断开开关S 2时,电路连接如图5甲; 电压U 接在C 、D 两端,当断开开关S 1,闭合开关S 2时,电路连接如图5乙; 电压U 接在B 、C 两端,当闭合开关S 1、S 2时,电路连接如图5丙;电压U 接在A 、D 两端,当断开开关S 1、闭合开关S 2时,电路连接如图5丁.…… 1分丙图中:并联电压U 相等,343453I R R I == ① …… 1分甲、乙两图中:13122434I R U U I R == 可得1254I I =…… 1分电源两端电压U 不变,12421354I R R I R R +==+ ② …… 1分 由R 1=R 2,及①式②式可得,R 1=R 2=R 4…… 1分乙、丁两图中:电源两端电压U 不变,214252432I R R R I R R ++==+ …… 1分乙图中: 电压2424210V 20V R R U U R +==⨯= …… 1分解题过程中缺少必要的文字说明的扣1分;计算过程中缺少单位的扣1分.。
北京市西城区2010 - 2011学年度九年级物理第一学期期末试卷 人教新课标版

北京市西城区2010 — 2011学年度第一学期期末试卷(北区)2011.1一、单项选择题(下列各小题均有四个选项,其中只有一个选项符合题意。
共24分,每小题2分)1.在国际单位制中,电压的单位是A .安培(A )B .伏特(V )C .欧姆( )D .瓦特(W) 2.下列物品中,在通常情况下属于绝缘体的是A .橡皮B .铅笔芯C .食盐水D .钢勺 3.图1所示的家用电器中,利用电流热效应工作的是4.下列关于电流和电压的说法中,正确的是 A .正、负电荷定向移动都会形成电流 B .电路中的电流是形成电压的原因 C .自由电荷定向移动的方向为电流方向 D .电路两端有电压,电路中就一定有电流5.由同种材料制成的AB 和BC 两段导体,它们的长度相同,AB 的横截面积比BC 的小,将它们按照图2所示的方式串联在电路中,不计温度的影响,下列判断正确的是 A .两段导体的电阻值:R AB =R BC B .两段导体的电阻值:R AB <R BC C .两段导体两端的电压:U AB >U BC D .通过两段导体的电流:I AB <I BC6.下列有关温度、内能和热量的说法中,正确的是A .物体吸收了热量,温度一定升高B .物体的温度升高,一定吸收了热量C .物体的内能增加,温度一定升高D .内能是物体内所有分子动能和势能的总和图17.下列事例中,利用做功的方式使物体(加“ ”的字)内能增加的是A.捂热水袋的手.变暖B.用锯子锯木头,锯条..的温度升高C.放进热汤中的金属汤勺....变得烫手 D.炽热的金属片插入水中后,水.温升高8.图3为四冲程汽油机工作过程中各冲程的示意图,其中表示做功冲程的是9.下列有关家庭电路和安全用电的说法中,正确的是A.家庭电路中的空气开关与插座是并联的B.使用试电笔测火线时,手指千万不能碰到笔尖C.经验证明,只有36V的电压对人体才是安全的D.家庭电路中只有发生短路,才会使电路中的电流过大10.有一种带开关指示灯的插座,当开关断开时,指示灯不亮,插座不带电;当开关闭合时,指示灯亮,插座有电。
2009年北京市西城区第一学期期末测试初三数学

北京市西城区2008—2009学年度第一学期期末测试初三数学试卷2009.1第I卷(机读卷,共32分)一、选择题(共8道小题,每小题4分,共32分)1.若方程x2-5x=0的一个根是a,则a2-5a+2的值为( ).A.-2 B.0 C.2 D.42.如图,⊙O的半径OA等于5,半径OC与弦AB垂直,垂足为D,若OD=3,则弦AB的长为( ).A.10 B.8 C.6 D.43.将抛物线y=2x2经过怎样的平移可得到抛物线y=2(x+3)2+4?答:( ).A.先向左平移3个单位,再向上平移4个单位B.先向左平移3个单位,再向下平移4个单位C.先向右平移3个单位,再向上平移4个单位D.先向右平移3个单位,再向下平移4个单位4.小莉站在离一棵树水平距离为a米的地方,用一块含30°的直角三角板按如图所示的方式测量这棵树的高度,已知小莉的眼睛离地面的高度是1.5米,那么她测得这棵树的高度为( ).A.(33a)米B.(3a)米C.(1.5+33a)米D.(1.5+3a)米5.如图,以某点为位似中心,将△AOB进行位似变换得到△CDE,记△AOB与△CDE对应边的比为k,则位似中心的坐标和k的值分别为( ).A.(0,0),2B.(2,2),1 2C.(2,2),2D.(2,2),3初三数学第1页(共4页)6.将抛物线y=x2+1绕原点O旋转180°,则旋转后的抛物线的解析式为( ).A .y =-x 2B .y =-x 2+1C .y =x 2-1D .y =x 2-17.如图,PA 、PB 与⊙O 相切,切点分别为A 、B ,PA =3,∠P =60°,若AC 为⊙O 的直径,则图中阴影部分的面积为( ).A .2πB .36πC .33πD .π 8.已知b >0时,二次函数y =ax 2+bx +a 2-1的图象如下列四个图之一所示.根据图象分析,a .的值等于....( ). A .-2 B .-1 C .1 D .2第Ⅱ卷(非机读卷,共88分)二、填空题(共4道小题,每小题4分,共16分)9.若△ABC ∽△DEF ,且对应边BC 与EF 的比为2∶3,则△ABC 与△DEF 的面积比等于 .10.如图,⊙O 的直径是AB ,CD 是⊙O 的弦,若∠D =70°,则∠ABC 等于 .11.如图,∠ABC =90°,O 为射线BC 上一点,以点O为圆心,12OB 长为半径作⊙O ,将射线BA 绕点B 按顺时针方向旋转至BA ',若BA '与⊙O 相切,则旋转的角度α(0°<α<180°)等于 .12.等腰△ABC 中,BC =8,若AB 、AC 的长是关于x的方程x 2-10x +m =0的根,则m 的值等于 .初三数学 第2页(共4页)三、解答题(本题共29分,13~17题每小题5分,第18题4分)13.解方程:2x 2-6x +1=0.14.计算:cos60sin 30︒︒-tan45°+sin 245°. 15.已知:关于x 的方程x 2+2x =3-4k 有两个不相等的实数根(其中k 为实数).(1)求k 的取值范围;(2)若k为非负整数,求此时方程的根.16.已知:如图,AB是⊙O的直径,BC是弦,∠B=30°,延长BA到D,使∠BDC=30°.(1)求证:DC是⊙O的切线;(2)若AB=2,求DC的长.17.已知:如图,△ABC中,AB=2,BC=4,D为BC边上一点,BD=1.(1)求证:△ABD∽△CBA;(2)若DE∥AB交AC于点E,请再写出另一个与△ABD相似的三角形,并直接写出DE的长.18.已知:如图,∠MAN=45°,B为AM上的一个定点.若点P在射线AN上,以P为圆心,PA为半径的圆与射线AN的另一个交点为C.请确定⊙P的位置,使BC恰与⊙P相切.(1)画出⊙P;(不要求尺规作图,不要求写画法)(2)连接BC、BP并填空:①∠ABC=°;②比较大小:∠ABP∠CBP.(用“>”“<”或“=”连接)四、解答题(本题共21分,第19题6分,第20题4分,第21题6分,第22题5分) 19.已知抛物线y=ax2+bx+c经过点A(0,3)、B(4,3)、C(1,0).(1)填空:抛物线的对称轴为直线x= ,抛物线与x轴的另一个交点D的坐标为;(2)求该抛物线的解析式.20.已知:如图,等腰△ABC中,AB=BC,AE⊥BC于E,EF⊥AB于F,若CE=2,cos∠AEF=45,求EF的长.初三数学第3页(共4页)21.某水果批发市场经销一种水果,如果每千克盈利10元,每天可售出500千克.经市场调查发现,在进货价不变的情况下,若每千克这种水果在原售价的基础上每涨价1元,日销售量将减少20千克.(1)如果市场某天销售这种水果盈利了6 000元,同时顾客又得到了实惠..........,那么每千克这种水果涨了多少元?(2)设每千克这种水果涨价x元时(0<x≤25),市场每天销售这种水果所获利润为y元.若不考虑其他因素,单纯从经济角度看,每千克这种水果涨价多少元时,市场每天销售这种水果盈利最多?最多盈利多少元?22.已知:如图,△ABC中,AB=3,∠BAC=120°,AC=1,D为AB延长线上一点,BD=1,点P在∠BAC的平分线上,且满足△PAD是等边三角形.(1)求证:BC=BP;(2)求点C到BP的距离.五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.已知关于x的方程x2-2ax-a+2b=0,其中a、b为实数.(1)若此方程有一个根为2a(a<0),判断a与b的大小关系并说明理由;(2)若对于任何实数a,此方程都有实数根,求b的取值范围.24.已知:如图,⊙O的内接△ABC中,∠BAC=45°,∠ABC=15°,AD∥OC并交BC的延长线于D,OC交AB于E.(1)求∠D的度数;(2)求证:AC2=AD·CE;(3)求BCCD的值.25.已知:抛物线y=-3x2-23(a-1)x-3(a2-2a)与x轴交于点A(x1,0)、B(x2,0),且x1<1<x2.(1)求A、B两点的坐标(用a表示);(2)设抛物线的顶点为C,求△ABC的面积;(3)若a是整数,P为线段AB上的一个动点(P点与A、B两点不重合),在x轴上方作等边△APM和等边△BPN,记线段MN的中点为Q,求抛物线的解析式及线段PQ的长的取值范围.初三数学第4页(共4页)北京市西城区2008-2009学年度第一学期期末测试初三数学试卷答案及评分参考2009.1第I卷(机读卷共32分)一、选择题(共8道小题,每小题4分,共32分)题号 1 2 3 4 5 6 7 8答案 C B A C C D A B第Ⅱ卷(非机读卷共88分)二、填空题(共4道小题,每小题4分,共16分) 题号 9 10 11 12 答案 4∶9 20° 60°或120°(各2分) 16或25(或2分)三、解答题(本题共29分,13~17题每小题5分,第18题4分)13.解:因为a =2,b =-6,c =1,……………………………………………………………1分 所以b 2-4ac =(-6)2-4×2×1=28.………………………………………………2分代入公式,得x =24b b ac -±-…………………………………………………3分 =62822±⨯=6274±=372±. 所以 原方程的根为 x 1=37+,x 2=37-.(每个根各1分)……………5分 14.解:cos60sin 30︒︒-tan45°+sin 245°. =21221()122-+………………………………………………………………………4分 =12.…………………………………………………………………………………5分 15.(1)解一:原方程可化为(x +1)2=4-4k .…………………………………………1分 ∵该方程有两个不相等的实数根,∴4-4k >0.………………………………………………………………2分 解得k <1.∴k 的取值范围是k <1.…………………………………………………2分解二:原方程可化为 x 2+2x +4k -3=0.…………………………………………………1分 Δ=22-4(4 k -3)=4(4-k ).以下同解法一.西城区初三数学试卷答案及评分参考第1页(共6页)(2)解:∵k 为非负整数,k <1,∴k= 0.………………………………………………………………………4分此时方程为x 2+2x =3,它的根为x 1=-3,x 2=1.…………………………5分16.(1)证明:连结OC .∵OB=OC ,∠B =30°,∴∠OCB =∠B =30°.∴∠COD =∠B +∠OCB =60°.………………1分∵∠BDC =30°,∴∠BDC+∠COD =90°,DC ⊥OC .…………………………………………2分∵BC 是弦,∴点C 是⊙O 的切线.………………………………………………………3分∴点C 是⊙O 上,∴点BC 是⊙O 的切线.(2)解:∵AB =2,∴OC=OB =2AB =1.……………………………………………………………4分 ∵在Rt △COD 中,∠OCD=90°,∠D=30°,∴DC =3OC =3.……………………………………………………………5分17.(1)证明:∵AB =2,BC =4,BD =1,∴AB BD CB BA=.………………1分 ∵∠ABD=∠CBA ,…………2分∴△ABD ∽△CBA .…………3分(2)答:△ABD ∽ △CDE ;……………4分DE= 1.5 .…………………5分18.解:(1)图形见右.…………………2分(2)①∠ABC= 45 °;…………3分②∠ABP < ∠CBP .……4分四、解答题(本题共21分,第19题6分,第20题4分,第21题6分,第22题5分)19.解:(1)拋物线的对称轴为直线x = 2 拋物线与x 轴的另一个交点D 的坐标为(3,0); ………………………………………2分(2) ∵拋物线经过点C (1,0)、D (3,0),∴设拋物线的解析式为y =a (x -1)( x -3) .……4分由拋物线经过点A (0,3),得a =1.……………5分∴拋物线的解析式为 y = x 2-4 x +3. (6)分20.∵AE ⊥BC ,EF ⊥AB ,∴∠1+∠2=90°,∠B+∠2=90°西城区初三数学试卷答案及评分参考第2页(共6页)∴∠1=∠B .………………………………………………………………………………1分 ∵cos ∠AEF=45, ∴Rt △ABE 中,cos B=45BE AB =.…………………………2分 设BE=4k, 则AB=BC=5k ,EC=BC -BE=k=2.∴BE=8,………………………………………………………3分∴Rt △BEF 中,EF=BE ·sin B=8×35=245.…………………………………………4分 21.解:(1)设市场某天销售这种水果盈利了6 000元,同时顾客又得到了实惠时,每千克这种水果涨了x 元.由题意得(10+x )(500-20x )=6 000.………………………………………………1分整理,得x 2-15x +50=0.解得 x 1=5,x 2=10.……………………………………………………………2分 因为顾客得到了实惠,应取x =5.………………………………………………3分 答:市场某天销售这种水果盈利6 000元,同时顾客又得到了实惠时,每千克这种水果涨了5元.(2)因为每千克这种水果涨价x 元时,市场每天销售这种水果所获利润为y 元, y 关于x 的函数解析式为y =(10+x )(500-20 x ) (0< x ≤25).……………………4分而y =(10+x )(500-20x )=-20x 2+300x +5 000=-20(x -7.5)2+6 125.所以,当x =7.5时(0<7.5≤25),y 取得最大值,最大值为6 125.……6分答:不考虑其他因素,单纯从经济角度看,每千克这种水果涨价7.5元时,市场每天销售这种水果盈利最多,最多盈利6 125元.22.(1)证明:如图1,连结PC .……………………………………………………………1分∵AC =1,BD =1,∴AC =BD .∵∠BAC =120°,AP 平分∠BAC ,∴∠1=12∠BAC ,∠D =60°. ∵△PAD 是等边三角形,∴PA=PD ,∠D =60°.∴∠1=∠D .∴△PAC ≌△PDB ………………………………………………………………2分∴PC =PB ,∠2=∠3.∴∠2+∠4=∠3+∠4, ∠BPC =∠DPA =60°.∴△PBC 是等边三角形, BC =BP ………3分证法二:作BM ∥PA 交.PD 于M ,证明△PBM ≌△BCA .(2)解法一:如图2,作CE ⊥PB 于E , PF ⊥AB 于F .∵AB =3,BD =1, ∴AD =4.∴△PAD 是等边三角形,PF ⊥AB ,西城区初三数学试卷答案及评分参考第3页(共6页)∴DF=12AD=2,PF=PD ·sin 60°=23. ∴BF=DF -BD=1, BP=2213BF PF +=………………………………4分∴CE=BC ·sin 60°=BP ·sin 60°=13×3=39.…………………5分 即点C 至BP 的距离等于39.解法二:作BN ⊥DP 于N ,DN =12,NP =DP -DN =72,BN =32,BP =22BN NP +=13 以下同解法一.五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.解:(1)∵方程x 2-2ax -a +2b =0有一个根为2a ,∴4a 2-4 a 2-a +2 b =0. (1)分整理,得b =2a .………………………………………………………………2分 ∵a <0,∴a <2a ,即a <b .…………………………………………………3分 (2)Δ=4a 2-4(-a+2 b )=4a 2+4a -8b .………………………………………4分∵对于任何实数a ,此方程都有实数根,∴对于作何实数a ,都有4a 2+4a -8b ≥0,即a 2+a -2b ≥0,……………5分∴对于任何实数a ,都有b ≤22a a +. ∵22a a +=12(a +12)2-18, 当a=-12时,22a a +有最小值-18.……………………………………6分 ∴b 的取值范围是b ≤-18.…………………7分 24.(1)解:如图3,连结OB .……………………………1分∵⊙O 的内接△ABC 中,∠BAC =45°,∴∠BOC =2∠BAC =90°.∵OB=OC ,∴∠OBC =∠OCB =45°.∵AD ∥OC ,∴∠D =∠OCB =45°.……………………………………………………2分(2)证明:∵∠BAC =45°,∠D =45°,∴∠BAC =∠D .…………………………………………………………3分∵AD ∥OC ,西城区初三数学试卷答案及评分参考第4页(共6页)∴∠ACE=∠DAC .………………………………………………………………4分∴△ACE ∽△DAC .∴AC CE DA AC=. ∴AC 2=AD ·CE …………………………………………………………………5分(3)解法一:如图4,延长BO 交DA 的延长线于F ,连结OA .∵AD ∥OC ,∴∠F=∠BOC=90°.∵∠ABC=15°,∴∠OBA=∠OBC -∠ABC=30°.∵OA=OB ,∴∠FOA=∠OBA +∠OAB=60°,∠OAF=30°.∴OF=12 OA . ∵AD ∥OC , ∴△BOC ∽△BFD . ∴BC BO BD BF =.∴BC BO OA CD OF OF ===2,即BC CD的值为2.………………………………7分 解法二:作OM ⊥BA 于M ,设⊙O 的半径为r ,可得BM =3r ,OM =2r ,∠MOE=30°, ME =OM ·tan 30°=36r ,BE=233r ,AE =33r ,所以BC BE CD EA==2. 25.解:(1) ∵拋物线与x 轴交于点A (x 1,0)、B (x 2,0),∴x 1、x 2是关于x 的方程-22323(1)3(2)0x a x a a ----=的解.方程可化简为x 2+2(a -1) x +(a 2-2a )=0.解方程,得x=-a 或x =-a +2.∵x 1<x 2,-a <-a +2,……………………………………………………………1分 ∴x 1=-a ,x 2=- a+2∴A 、B 两点的坐标分别为A (-a ,0),B (-a+2,0)……………………………2分(2) ∵AB =2,顶点C 的纵坐标为3,……………………………………………3分 ∴△ABC 的面积等于3.………………………………………………………4分(3) ∵x 1<1<x 2, ∴-a <1<-a +2.∴-1<a <1.…………………………………………………………………5分∵a 是整数,∴a=0,所求拋物线的解析式为y=-3x 2+23x .………………………6分西城区初三数学试卷答案及评分参考第5页(共6页)解一:此时顶点C 的坐标为C(1,3).如图5,作CD ⊥AB 于D ,连结CQ . 则AD =1,CD =3,tan ∠BAC 3.∴∠BAC=60°.由拋物线的对称性可知△ABC 是等边三角形.由△APM 和△BPN 是等边三角形,线段MN的中点为Q 可得,点M 、N 分别在AC 和BC边上,四边形PMCN 的平行四边形,C 、Q 、P 三点共线,且PQ =12PC .…………………………7分 ∵点P 线段AB 上运动的过程中, P 与A 、B 两点不重合, DC ≤PC <AC ,DC =3, AC =2,∴3≤PQ <1.……………………………………………………………8分 解二:设点P 的坐标为P (x ,0)(0<x <2).如图6,作MM 1⊥AB 于M 1,NN 1⊥AB 于N 1.∵△APM 和△BPN 是等边三角形,且都在x 轴上方,∴AM =AP =x ,BN =BP =2-x ,∠MAP=60°,∠NBP=60°.∴AM 1=AM ·cos ∠MAB=2x , MM 1=AM ·sin ∠MAB=32x , BN 1=BN ·cos ∠NBP=22x -, NN 1=BN ·sin ∠NBP=2332x -. ∴AN 1=AB -BN 1=22222x x -+-=. ∴M 、N 两点的坐标分别为M (2x ,32x ),N (22x +,2332x -). 可得线段MN 的中点Q 的坐标为Q (12x +,3). 由勾股定理得PQ=222131()()(1)3222x x x +-+=-+.……………7分 ∵点P 在线段AB 上运动的过程中,P 与A 、B 两点不重合,0<x <2, ∴3≤(x -1)2+3<4. ∴32≤PQ <1.……………………………………8分 西城区初三数学试卷答案及评分参考第6页(共6页)。
2010-2011学年北京市西城区九年级(上)期末数学试卷

2010-2011学年北京市西城区九年级(上)期末数学试卷一、选择题(共8小题,每小题4分,满分32分)1.(4分)已知两个圆的半径分别是5和3,圆心距是2,则这两个圆的位置关系是()A.内切B.相交C.外切D.外离2.(4分)关于x的一元二次方程(a﹣1)x2+x+|a|﹣1=0的一个根是0,则实数a的值为()A.﹣1B.0C.1D.﹣1或1 3.(4分)抛物线y=a(x+1)(x﹣3)(a≠0)的对称轴是直线()A.x=1B.x=﹣1C.x=﹣3D.x=34.(4分)如图,在平面直角坐标系中,以P(4,6)为位似中心,把△ABC缩小得到△DEF,若变换后,点A、B的对应点分别为点D、E,则点C的对应点F的坐标应为()A.(4,2)B.(4,4)C.(4,5)D.(5,4)5.(4分)某汽车销售公司2007年盈利1500万元,2009年盈利2160万元,且从2007年到2009年,每年盈利的年增长率相同.设每年盈利的年增长率为x,根据题意,下面所列方程正确的是()A.1500(1+x)2=2160B.1500x+1500x2=2160C.1500x2=2160D.1500(1+x)+1500(1+x)2=21606.(4分)如图,在Rt△ABC中,∠ACB=90°,M为AB边的中点,将Rt△ABC 绕点M旋转,使点A与点C重合得到△CED,连接MD.若∠B=25°,则∠BMD等于()A.50°B.80°C.90°D.100°7.(4分)AB是⊙O的直径,以AB为一边作等边△ABC,交⊙O于点E、F,连接AF,若AB=2,则图中阴影部分的面积为()A.B.C.D.8.(4分)已知:a>b>c,且a+b+c=0,则二次函数y=ax2+bx+c的图象可能是下列图象中的()A.B.C.D.二、填空题(共4小题,每小题4分,满16分)9.(4分)如图,在△ABC中,DE∥BC分别交AB、AC于点D、E,若DE=1,BC=3,那么△ADE与△ABC面积的比为.10.(4分)如图,AB为⊙O的直径,弦CD⊥AB,E为弧AD上一点,若∠BOC=70°,则∠BED的度数为°.11.(4分)如图,平面直角坐标系中,⊙O的圆心在坐标原点,半径为2,点A的坐标为,直线AB为⊙O的切线,B为切点.则B点的坐标为.12.(4分)如图,在平面直角坐标系中,二次函数的图象经过正方形ABOC的三个顶点A、B、C,则m的值为.三、解答题(共13小题,满分102分)13.(5分)计算:2sin45°+sin60°﹣cos30°+tan260°.14.(5分)已知关于x的方程.(1)如果此方程有两个不相等的实数根,求m的取值范围;(2)在(1)中,若m为符合条件的最大整数,求此时方程的根.15.(5分)已知二次函数y=x2+4x+3.(1)用配方法将y=x2+4x+3化成y=a(x﹣h)2+k的形式;(2)在平面直角坐标系中,画出这个二次函数的图象;(3)写出当x为何值时,y>0.16.(5分)已知:如图,在Rt△ABC中,∠C=90°,D、E分别为AB、AC边上的点,且,连接DE.若AC=3,AB=5,猜想DE与AB有怎样的位置关系?并证明你的结论.17.(5分)已知:如图,AB是⊙O的弦,∠OAB=45°,C是优弧AB上的一点,BD∥OA,交CA延长线于点D,连接BC.(1)求证:BD是⊙O的切线;(2)若AC=,∠CAB=75°,求⊙O的半径.18.(5分)为了鼓励居民节约用电,某地区规定:如果每户居民一个月的用电量不超过a度时,每度电按0.40元交费;如果每户居民一个月的用电量超出a度时,则该户居民的电费将使用二级电费计费方式,即其中有a度仍按每度电0.40元交费,超出a度部分则按每度电元交费.下表是该地区一户居民10月份、11月份的用电情况.根据表中的数据,求在该地区规定的电费计费方式中,a度用电量为多少?月份用电量所交电费总数(元)10月803211月1004219.(6分)已知:抛物线C1:y=ax2+bx+c经过点A(﹣1,0)、B(3,0)、C(0,﹣3).(1)求抛物线C1的解析式;(2)将抛物线C1向左平移几个单位长度,可使所得的抛物线C2经过坐标原点,并写出C2的解析式;(3)把抛物线C1绕点A(﹣1,O)旋转180°,写出所得抛物线C3顶点D的坐标.20.(4分)已知:如图,一座商场大楼的顶部竖直立有一个矩形广告牌,小红同学在地面上选择了在一条直线上的三点A(A为楼底)、D、E,她在D处测得广告牌顶端C的仰角为60°,在E两处测得商场大楼楼顶B的仰角为45°,DE=5米.已知,广告牌的高度BC=2.35米,求这座商场大楼的高度AB(取1.73,取1.41,小红的身高不计,结果保留整数).21.(4分)阅读下列材料:李老师提出一个问题:“已知:如图1,AB=m(m>0),∠BAC=α(α为锐角),在射线AC上取一点D,使构成的△ABD唯一确定,试确定线段BD的取值范围.”小明同学说出了自己的解题思路:以点B为圆心,以m为半径画圆(如图2所示),D为⊙B与射线AC的交点(不与点A重合),连结BD,所以,当BD=m 时,构成的△ABD是唯一确定的.李老师说:“小明同学画出的三角形是正确的,但是他的解答不够全面.”对于李老师所提出的问题,请给出你认为正确的解答(写出BD的取值范围,并在备用图中画出对应的图形,不写作法,保留作图痕迹).22.(6分)已知:如图,△ABC是等边三角形,D是AB边上的点,将DB绕点D 顺时针旋转60°得到线段DE,延长ED交AC于点F,连接DC、AE.(1)求证:△ADE≌△DFC;(2)过点E作EH∥DC交DB于点G,交BC于点H,连接AH.求∠AHE的度数;(3)若BG=,CH=2,求BC的长.23.(7分)已知关于x的一元二次方程ax2+2bx+c=0(a>0)①.(1)若方程①有一个正实根c,且2ac+b<0.求b的取值范围;(2)当a=1时,方程①与关于x的方程4x2+4bx+c=0②有一个相同的非零实根,求的值.24.(8分)已知:如图,AB是⊙O的直径,C是⊙O上一点,过C点的切线与AB的延长线交于点D,CE∥AB交⊙O于点E,连接AC、BC、AE.(1)求证:①∠DCB=∠CAB;②CD•CE=CB•CA;(2)作CG⊥AB于点G.若(k>1),求的值(用含k的式子表示).25.(7分)已知:抛物线y=x2﹣(m+1)x+m与x轴交于点A(x1,0)、B(x2,0)(A在B的左侧),与y轴交于点C.(1)若m>1,△ABC的面积为6,求抛物线的解析式;(2)点D在x轴下方,是(1)中的抛物线上的一个动点,且在该抛物线对称轴的左侧,作DE∥x轴与抛物线交于另一点E,作DF⊥x轴于F,作EG⊥x轴于点G,求矩形DEGF周长的最大值;(3)若m<0,以AB为一边在x轴上方做菱形ABMN(∠NAB为锐角),P是AB 边的中点,Q是对角线AM上一点,若,QB+PQ=6,当菱形ABMN 的面积最大时,求点A的坐标.2010-2011学年北京市西城区九年级(上)期末数学试卷参考答案与试题解析一、选择题(共8小题,每小题4分,满分32分)1.(4分)已知两个圆的半径分别是5和3,圆心距是2,则这两个圆的位置关系是()A.内切B.相交C.外切D.外离【分析】根据圆心距与半径之间的数量关系可知两圆的位置关系是内切.【解答】解:∵两个圆的半径分别是5和3,圆心距是2,5﹣3=2,∴两圆的位置关系是内切.故选:A.【点评】本题考查了由数量关系来判断两圆位置关系的方法.设两圆的半径分别为R和r,且R≥r,圆心距为P,则外离:P>R+r;外切:P=R+r;相交:R﹣r<P<R+r;内切:P=R﹣r;内含:P<R﹣r.2.(4分)关于x的一元二次方程(a﹣1)x2+x+|a|﹣1=0的一个根是0,则实数a的值为()A.﹣1B.0C.1D.﹣1或1【分析】先把x=0代入方程求出a的值,然后根据二次项系数不能为0,把a=1舍去.【解答】解:把x=0代入方程得:|a|﹣1=0,∴a=±1,∵a﹣1≠0,∴a=﹣1.故选:A.【点评】本题考查的是一元二次方程的解,把方程的解代入方程得到a的值,再由二次项系数不为0,确定正确的选项.3.(4分)抛物线y=a(x+1)(x﹣3)(a≠0)的对称轴是直线()A.x=1B.x=﹣1C.x=﹣3D.x=3【分析】已知抛物线解析式为交点式,通过解析式可求抛物线与x轴的两交点坐标;两交点的横坐标的平均数就是对称轴.【解答】解:∵﹣1,3是方程a(x+1)(x﹣3)=0的两根,∴抛物线y=a(x+1)(x﹣3)与x轴交点横坐标是﹣1,3,∵这两个点关于对称轴对称,∴对称轴是x==1.故选:A.【点评】此题考查对称轴的性质:抛物线上的两点纵坐标相同时,对称轴是两点横坐标的平均数.4.(4分)如图,在平面直角坐标系中,以P(4,6)为位似中心,把△ABC缩小得到△DEF,若变换后,点A、B的对应点分别为点D、E,则点C的对应点F的坐标应为()A.(4,2)B.(4,4)C.(4,5)D.(5,4)【分析】根据两个图形必须是相似形;②对应点的连线都经过同一点,即可得出F点的坐标.【解答】解:∵△DEF∽△ABC,且F点在CP的连线上,∴可得F点位置如图所示:故P点坐标为(4,4).故选:B.【点评】本题考查位似的定义,难度不大,注意掌握两位似图形的对应点的连线都经过同一点,这一点即是位似中心.5.(4分)某汽车销售公司2007年盈利1500万元,2009年盈利2160万元,且从2007年到2009年,每年盈利的年增长率相同.设每年盈利的年增长率为x,根据题意,下面所列方程正确的是()A.1500(1+x)2=2160B.1500x+1500x2=2160C.1500x2=2160D.1500(1+x)+1500(1+x)2=2160【分析】设每年盈利的年增长率为x,第一年的增长率为(1+x),第二年增长率为(1+x)2,据此列出等量关系.【解答】解:设每年盈利的年增长率为x,第一年的增长率为(1+x),第二年增长率为(1+x)2,又知2007年盈利1500万元,2009年盈利2160万元,故可得1500(1+x)2=2160,故选:A.【点评】本题主要考查由实际问题抽象出一元二次方程的知识点,读懂题意,找到等量关系是解答本题的关键.6.(4分)如图,在Rt△ABC中,∠ACB=90°,M为AB边的中点,将Rt△ABC 绕点M旋转,使点A与点C重合得到△CED,连接MD.若∠B=25°,则∠BMD 等于()A.50°B.80°C.90°D.100°【分析】由∠B=25°,则∠A=65°,根据旋转的性质得MA=MC,则∠AMC=50°,从而得出∠BMD的度数.【解答】解:∵∠B=25°,∴∠A=65°,∵∠ACB=90°,M 为AB 边的中点,∴MA=MC ,∴∠ACM=65°,∴∠AMC=50°,∴∠AMD=100°,∴∠BMD=80°,故选:B .【点评】本题考查了旋转的性质,以及直角三角形斜边上的中线等于斜边的一半.7.(4分)AB 是⊙O 的直径,以AB 为一边作等边△ABC ,交⊙O 于点E 、F ,连接AF ,若AB=2,则图中阴影部分的面积为()A .B .C .D .【分析】根据等腰三角形的性质和等弧对等弦得弧AE=弧BF ,从而得出阴影部分的面积即为弓形AEF 的面积.【解答】解:连接OF ,∵等边△ABC ,∴∠ABC=∠BAC=60°,∴,∴=,AE=BF ,∠AOF=120°,∵AB 是直径,AB=2,∴AF=,点O 到AF 的距离,∴S 阴影=S 扇形AOF ﹣S △AOF =﹣×=﹣,故选:D .【点评】本题考查了扇形面积的计算和等边三角形的性质,是基础知识要熟练掌握.8.(4分)已知:a>b>c,且a+b+c=0,则二次函数y=ax2+bx+c的图象可能是下列图象中的()A.B.C.D.【分析】由a>b>c,且a+b+c=0,确定a>0,c<0,与x轴交点一个是(1,0),采取排除法即可选出所选答案.【解答】解:A、由图知a>0,﹣=1,c>0,即b<0,∵已知a>b>c,故本选项错误;B、由图知a<0,而已知a>b>c,且a+b+c=0,必须a>0,故本选项错误;C、图C中条件满足a>b>c,且a+b+c=0,故本选项正确;D、∵a+b+c=0,即当x=1时a+b+c=0,与图中与x轴的交点不符,故本选项错误.故选:C.【点评】本题主要考查了二次函数的性质,点的坐标特点等知识点,灵活运用性质进行说理是解此题的关键.题型较好.二、填空题(共4小题,每小题4分,满16分)9.(4分)如图,在△ABC中,DE∥BC分别交AB、AC于点D、E,若DE=1,BC=3,那么△ADE与△ABC面积的比为1:9.【分析】由DE∥BC判定两三角形相似,而面积的比等于对应线段DE与BC的比的平方.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∴相似比等于DE与BC的比,即:=,△ADE与△ABC面积的比为1:9.故答案为:1:9.【点评】本题考查了相似三角形的判定及相似三角形面积的比等于相似比的平方的相关知识,次知识点也是中考的高频考点之一.10.(4分)如图,AB为⊙O的直径,弦CD⊥AB,E为弧AD上一点,若∠BOC=70°,则∠BED的度数为35°.【分析】由于直径AB⊥CD,由垂径定理知B是的中点,进而可根据等弧所对的圆心角和圆周角的数量关系求得∠BED的度数.【解答】解:∵直径AB⊥CD,∴B是的中点;∴∠BED=∠BOC=35°;故答案为35°.【点评】此题主要考查的是垂径定理和圆周角定理的综合应用,理解等弧所对的圆周角是圆心角的一半是解决问题的关键.11.(4分)如图,平面直角坐标系中,⊙O的圆心在坐标原点,半径为2,点A 的坐标为,直线AB为⊙O的切线,B为切点.则B点的坐标为(2,0)、(﹣1,).【分析】由直线AB为⊙O的切线,根据从圆外一点可以作圆的两条切线,所以我们可以画出大致图形,结合图形,作出辅助线,利用三角形相似可以得出.【解答】解:过点A作圆的两条切线,AB,AC,切点分别为点B,C,连接OC,作CD⊥AB于点D,∴AB⊥OB,CD⊥AB,OC⊥AC∵圆半径为2,点A的坐标为(2,2),∴B点坐标为(2,0)又∵∠ACD+∠DCO=90°,∠ACD+∠A=90°,∴∠DCO=∠A,∠ADC=∠CEO∴△OEC∽△CDA∴假设CE=x,OE=y,∵AD=AB﹣BD=2﹣y,CD=2+x,CO=2,AC=2解以上方程可以求出:x=1,y=所以C点的坐标为(﹣1,),故答案为:(2,0),(﹣1,)【点评】此题主要考查了切线长定理,相似三角形的判定,以及利用相似求对应线段的长度,题目综合性较强,质量挺高.12.(4分)如图,在平面直角坐标系中,二次函数的图象经过正方形ABOC的三个顶点A、B、C,则m的值为﹣1.【分析】先根据二次函数的解析式求出点A的坐标,再用m表示出点C的坐标,代入二次函数的解析式即可求出m的值.【解答】解:∵抛物线的解析式为(a≠0),∴点A的坐标为(0,),∴OA=,连接BC与AO交于点M,∵四边形ABOC是正方形,∴,∴点C的坐标为(,),把点C的坐标为(,)代入二次函数得,,m=m2+2m,m2+m=0,m1=0,m2=﹣1,∵m1=0时,点A与点O重合,∴m1=0舍去,∴m的值为﹣1.故答案为:﹣1.【点评】本题考查了学生如何根据函数的解析式求点的坐标,需要综合运用二次函数和正方形的性质解出此题.三、解答题(共13小题,满分102分)13.(5分)计算:2sin45°+sin60°﹣cos30°+tan260°.【分析】先把各角的三角函数值代入,再根据实数混合运算的法则进行计算即可.【解答】解:2sin45°+sin60°﹣cos30°+tan260°.=,=.故答案为:+3.【点评】本题考查的是特殊角的三角函数值,熟记各特殊角的三角函数值是解答此题的关键.14.(5分)已知关于x的方程.(1)如果此方程有两个不相等的实数根,求m的取值范围;(2)在(1)中,若m为符合条件的最大整数,求此时方程的根.【分析】(1)先根据方程有两个不相等的实数根可知△>0,由△>0可得到关于m的不等式,求出m的取值范围即可;(2)由(1)中m的取值范围得出符合条件的m的最大整数值,代入原方程,利用求根公式即可求出x的值.【解答】解:(1)∵该方程有两个不相等的实数根,∴△=32﹣4×1×=9﹣3m>0.解得m<3.∴m的取值范围是m<3;(2)∵m<3,∴符合条件的最大整数是m=2.此时方程为x2+3x+=0,解得x==.∴方程的根为x1=,x2=.故答案为:m<3,x1=,x2=.【点评】本题考查的是一元二次方程ax2+bx+c=0(a≠0)的根与△的关系及求根公式,是一个综合性的题目,难度适中.15.(5分)已知二次函数y=x2+4x+3.(1)用配方法将y=x2+4x+3化成y=a(x﹣h)2+k的形式;(2)在平面直角坐标系中,画出这个二次函数的图象;(3)写出当x为何值时,y>0.【分析】(1)根据配方法先提出二次项系数,再加上一次项系数的一半的平方来凑完全平方式,把一般式转化为顶点式.(2)画图象的步骤:列表、描点、连线;(3)当y>0时,即图象在x轴上方的部分,再写出x的取值范围.【解答】解:(1)y=x2+4x+3,y=x2+4x+4﹣4+3,y=x2+4x+4﹣1,y=(x+2)2﹣1;(2)列表:x…﹣4﹣3﹣2﹣10…y…30﹣103…图象见图.(3)由图象可知,当x<﹣3或x>﹣1时,y>0.【点评】本题考查了二次函数的解析式的形式及抛物线的画法,注意:二次函数的解析式的三种形式:(1)一般式:y=ax2+bx+c(a≠0,a、b、c为常数);(2)顶点式:y=a(x﹣h)2+k;(3)交点式(与x轴):y=a(x﹣x1)(x﹣x2).16.(5分)已知:如图,在Rt△ABC中,∠C=90°,D、E分别为AB、AC边上的点,且,连接DE.若AC=3,AB=5,猜想DE与AB有怎样的位置关系?并证明你的结论.【分析】根据△ADE与△ACB两边对应成比例及一夹角相等,证明两三角形相似,然后利用相似三角形的性质即可得到∠ADE=∠C=90°,从而得到DE与AB的位置关系是互相垂直.【解答】猜想:DE与AB的位置关系是互相垂直.证明:∵AC=3,AB=5,,∴.∵∠A=∠A,∴△ADE∽△ACB.∵∠C=90°,∴∠ADE=∠C=90°.∴DE⊥AB.【点评】此题考查了垂直定义及相似三角形的性质,根据图形的特点找到公共角,并根据各边的比得到相似比是解题的关键.17.(5分)已知:如图,AB是⊙O的弦,∠OAB=45°,C是优弧AB上的一点,BD∥OA,交CA延长线于点D,连接BC.(1)求证:BD是⊙O的切线;(2)若AC=,∠CAB=75°,求⊙O的半径.【分析】(1)连接OB,如图.根据题意得,∠1=∠OAB=45°.由AO∥DB,得∠2=∠OAB=45°.则∠1+∠2=90°.即BD⊥OB于B.从而得出CD是⊙O的切线.(2)作OE⊥AC于点E.由OE⊥AC,AC=,求得AE,由∠BAC=75°,∠OAB=45°,得出∠3.在Rt△OAE中,求得OA即可.【解答】(1)证明:连接OB,如图.∵OA=OB,∠OAB=45°,∴∠1=∠OAB=45°.∵AO∥DB,∴∠2=∠OAB=45°.∴∠1+∠2=90°.∴BD⊥OB于B.又∵点B在⊙O上.∴BD是⊙O的切线.(2)解:作OE⊥AC于点E.∵OE⊥AC,AC=,∴AE==.∵∠BAC=75°,∠OAB=45°,∴∠3=∠BAC﹣∠OAB=30°.∴在Rt△OAE中,解法二:如图延长AO与⊙O交于点F,连接FC.∴∠ACF=90°.在Rt△ACF中,.∴AO==4.【点评】本以考查了切线的判定和性质,以及解直角三角形,是基础知识要熟练掌握.18.(5分)为了鼓励居民节约用电,某地区规定:如果每户居民一个月的用电量不超过a度时,每度电按0.40元交费;如果每户居民一个月的用电量超出a度时,则该户居民的电费将使用二级电费计费方式,即其中有a度仍按每度电0.40元交费,超出a度部分则按每度电元交费.下表是该地区一户居民10月份、11月份的用电情况.根据表中的数据,求在该地区规定的电费计费方式中,a度用电量为多少?月份用电量所交电费总数(元)10月803211月10042【分析】不超过a度,无论用电多少,都是0.4a元;超出部分的用电量为(100﹣a)度,超出部分缴电费是(100﹣a)•(0.4+)元,合计起来,就是这个月这户居民要缴用电费.【解答】解:因为80×0.4=32,100×0.4=40<42,所以80≤a<100.由题意得.去分母,得60a+(100﹣a)a=42×150.整理,得a2﹣160a+6300=0.解得a1=90,a2=70.因为a≥80,所以a2=70不合题意,舍去.所以a=90.答:在该地区规定的电费计费方式中,a度用电量为90度.【点评】考查了一元二次方程的应用,本题要采用分段收费的方式,根据题意找到数量关系,列出代数式.19.(6分)已知:抛物线C1:y=ax2+bx+c经过点A(﹣1,0)、B(3,0)、C(0,﹣3).(1)求抛物线C1的解析式;(2)将抛物线C1向左平移几个单位长度,可使所得的抛物线C2经过坐标原点,并写出C2的解析式;(3)把抛物线C1绕点A(﹣1,O)旋转180°,写出所得抛物线C3顶点D的坐标.【分析】(1)根据y=ax2+bx+c经过点A(﹣1,0)、B(3,0)、C(0,﹣3)列出三元一次方程,解得a、b、c;(2)求出原函数的图象对称轴,然后运用平移知识解答;(3)根据旋转的知识点,求出D点坐标.【解答】解:(1)∵y=ax2+bx+c经过点A(﹣1,0)、B(3,0)、C(0,﹣3).∴解得∴所求抛物线C1的解析式为:y=x2﹣2x﹣3;(2)抛物线C1向左平移3个单位长度,可使得到的抛物线C2经过坐标原点所求抛物线C2的解析式为:y=x(x+4)=x2+4x;(3)D点的坐标为(﹣3,4).【点评】本题主要考查待定系数求二次函数的解析式的知识点,根据题干条件解出函数解析式是解答本题的关键,此题难度不是很大.20.(4分)已知:如图,一座商场大楼的顶部竖直立有一个矩形广告牌,小红同学在地面上选择了在一条直线上的三点A(A为楼底)、D、E,她在D处测得广告牌顶端C的仰角为60°,在E两处测得商场大楼楼顶B的仰角为45°,DE=5米.已知,广告牌的高度BC=2.35米,求这座商场大楼的高度AB(取1.73,取1.41,小红的身高不计,结果保留整数).【分析】由于在E出的仰角是45°,所以可得AE=AB,可设其值为x,再结合D 出的仰角60°以及题中的条件,进而求解直角三角形即可.【解答】解:设AB为x米.依题意,在Rt△ABE中,∠BEA=45°,∴AE=AB=x.∴AD=AE﹣DE=x﹣5,AC=BC+AB=2.35+x.在Rt△ADC中,∠CDA=60°,∴AC=AD•tan∠CDA=AD.∴x+2.35=(x﹣5).∴(﹣1)x=2.35+5.解得.∴x≈15.答:商场大楼的高度AB约为15米.【点评】本题主要考查了生活中仰角俯角的问题,其中解题关键还是解直角三角形的问题,应熟练掌握.21.(4分)阅读下列材料:李老师提出一个问题:“已知:如图1,AB=m(m>0),∠BAC=α(α为锐角),在射线AC上取一点D,使构成的△ABD唯一确定,试确定线段BD的取值范围.”小明同学说出了自己的解题思路:以点B为圆心,以m为半径画圆(如图2所示),D为⊙B与射线AC的交点(不与点A重合),连结BD,所以,当BD=m 时,构成的△ABD是唯一确定的.李老师说:“小明同学画出的三角形是正确的,但是他的解答不够全面.”对于李老师所提出的问题,请给出你认为正确的解答(写出BD的取值范围,并在备用图中画出对应的图形,不写作法,保留作图痕迹).【分析】使△ABD唯一确定,就是使满足条件的三角形全等,根据三角形全等的判定定理,若两个三角形有一个角和夹这个角的一边对应相等,只要再加上另外的一个边对应相等,即可利用SAS证明两个三角形全等,或令HL定理,作∠α所对的直角边即可.【解答】解:BD=msinα或BD≥m.见图1、图2;【点评】本题考查了全等三角形的判定定理的应用,理解使△ABD唯一确定,就是使满足条件的三角形全等是关键.22.(6分)已知:如图,△ABC是等边三角形,D是AB边上的点,将DB绕点D 顺时针旋转60°得到线段DE,延长ED交AC于点F,连接DC、AE.(1)求证:△ADE≌△DFC;(2)过点E作EH∥DC交DB于点G,交BC于点H,连接AH.求∠AHE的度数;(3)若BG=,CH=2,求BC的长.【分析】(1)由旋转的性质,可得△ADE是等边三角形,由等边三角形的性质,易得DE=DB=FC,∠ADE=∠DFC=120°,AD=DF,可得△ADE≌△DFC;(2)由△ADE≌△DFC,易得ED∥BC,EH∥DC,即可得四边形EHCD是平行四边形,易得△AEH是等边三角形,即可求得∠AHE的度数;(3)由平行四边形的性质,易得△BGH∽△BDC,又由相似三角形的对应边成比例,易得BC的长.【解答】(1)证明:如图,∵线段DB顺时针旋转60°得线段DE,∴∠EDB=60°,DE=DB.∵△ABC是等边三角形,∴∠B=∠ACB=60°.∴∠EDB=∠B.∴EF∥BC.∴DB=FC,∠ADF=∠AFD=60°.∴DE=DB=FC,∠ADE=∠DFC=120°,△ADF是等边三角形.∴AD=DF.∴△ADE≌△DFC.(2)解:由△ADE≌△DFC,得AE=DC,∠1=∠2.∵ED∥BC,EH∥DC,∴四边形EHCD是平行四边形.∴EH=DC,∠3=∠4.∴AE=EH.∴∠AEH=∠1+∠3=∠2+∠4=∠ACB=60°.∴△AEH是等边三角形.∴∠AHE=60°.(3)解:设BH=x,则AC=BC=BH+HC=x+2,由(2)四边形EHCD是平行四边形,∴ED=HC.∴DE=DB=HC=FC=2.∵EH∥DC,∴△BGH∽△BDC.∴.即.解得x=1.∴BC=3.【点评】此题考查了全等三角形的性质与判定,以及相似三角形的判定与性质和平行四边形的性质与判定.此题属于综合性题目,比较难,解题时要注意仔细识图.23.(7分)已知关于x的一元二次方程ax2+2bx+c=0(a>0)①.(1)若方程①有一个正实根c,且2ac+b<0.求b的取值范围;(2)当a=1时,方程①与关于x的方程4x2+4bx+c=0②有一个相同的非零实根,求的值.【分析】(1)先根据c是一元二次方程ax2+2bx+c=0的实数根,把c代入此方程可得到关于a、b、c的方程,根据c>0可得到ac+2b+1=0,再由不等式的基本性质即可求出b的取值范围;(2)把a=1代入方程4x2+4bx+c=0中,设方程①与方程②的相同实根为m,把m 分别代入两方程得到关于m的方程组,求出m的值,把此值代入一个方程便可得到b、c的关系式,代入即可求出其答案.【解答】解:(1)∵c为方程的一个正实根(c>0),∴ac2+2bc+c=0.∵c>0,∴ac+2b+1=0,即ac=﹣2b﹣1.∵2ac+b<0,∴2(﹣2b﹣1)+b<0.解得.又∵ac>0(由a>0,c>0).∴﹣2b﹣1>0.解得.∴;(2)当a=1时,此时方程①为x2+2bx+c=0.设方程①与方程②的相同实根为m,∴m2+2bm+c=0③∴4m2+4bm+c=0④④﹣③得3m2+2bm=0.整理,得m(3m+2b)=0.∵m≠0,∴3m+2b=0.解得.把代入方程③得.∴,即8b2=9c.当8b2=9c时,.故答案为:,.【点评】本题考查的是一元二次方程的解及根的判别式,解答此题的关键是熟知根的判别式与方程的根之间的关系.24.(8分)已知:如图,AB是⊙O的直径,C是⊙O上一点,过C点的切线与AB的延长线交于点D,CE∥AB交⊙O于点E,连接AC、BC、AE.(1)求证:①∠DCB=∠CAB;②CD•CE=CB•CA;(2)作CG⊥AB于点G.若(k>1),求的值(用含k的式子表示).【分析】(1)①过点C作直径CF,连接BF,即可得∠A=∠F,又由直径所对的圆周角等于直角,可得∠CBF是直角,又由切线的性质,可得∠FCD是直角,即可证得∠BCD=∠CAB;②由CE∥AB,易证得∠ECA=∠DCB,有圆的内接四边形的对角互补,可得∠E=∠CBD,即可证得△ACE∽△DCB,则得到CD•CE=CB•CA;(2)在Rt△HGB与Rt△BCG中,利用三角函数的性质,即可求得的值.【解答】(1)证明:①如图1解法一:作直径CF,连接BF.∴∠CBF=90°,则∠CAB=∠F=90°﹣∠1.∵CD切⊙O于C,∴OC⊥CD,则∠BCD=90°﹣∠1.∴∠BCD=∠CAB.解法二:如图2连接OC.∵AB是直径,∴∠ACB=90°.则∠2=90°﹣∠OCB.∵CD切⊙O于C,∴OC⊥CD.则∠BCD=90°﹣∠OCB.∴∠BCD=∠2.∵OA=OC,∴∠2=∠CAB.∴∠BCD=∠CAB.②∵EC∥AB,∠BCD=∠3,∴∠4=∠3=∠BCD.∵∠CBD+∠ABC=180°,∵∠AEC+∠ABC=180°,∴∠CBD=∠AEC.∴△ACE∽△DCB.∴.∴CD•CE=CB•CA.(2)解:如图3,连接EB,交OC于点H,∵CG⊥AB于点G,∠ACB=90°.∴∠3=∠BCG.∴AE=BC,∵∠3=∠4.∴∠3=∠EBG.∴∠BCG=∠EBG.∵(k>1),∴在Rt△HGB中,.在Rt△BCG中,.设HG=a,则BG=ka,CG=k2a.CH=CG﹣HG=(k2﹣1)a.∵EC∥AB,∴△ECH∽△BGH.∴.解法二:如图4,作直径FC,连接FB、EF,则∠CEF=90°.∵CG⊥AB于点G,在Rt△ACG中,设CG=a,则AG=ka,,CF=AB=AG+BF=(k)a.∵EC∥AB,∠CEF=90°,∴直径AB⊥EF.∴EF=2CG=2a.EC=)=(k)a.∴=k2﹣1.解法三:如图5,作EP⊥AB于点P在Rt△ACG中,,设CG=a,则AG=ka,,可证△AEP≌△BCG,则有AP=.EC=AG﹣AP=(k)a.∴==k2﹣1.【点评】此题考查了圆的切线的性质与圆的同弧所对的圆周角相等,以及相似三角形的性质与判定和三角函数的性质等.此题综合性较强,属于中档题,解题时要注意数形结合思想的应用.25.(7分)已知:抛物线y=x2﹣(m+1)x+m与x轴交于点A(x1,0)、B(x2,0)(A在B的左侧),与y轴交于点C.(1)若m>1,△ABC的面积为6,求抛物线的解析式;(2)点D在x轴下方,是(1)中的抛物线上的一个动点,且在该抛物线对称轴的左侧,作DE∥x轴与抛物线交于另一点E,作DF⊥x轴于F,作EG⊥x轴于点G,求矩形DEGF周长的最大值;(3)若m<0,以AB为一边在x轴上方做菱形ABMN(∠NAB为锐角),P是AB 边的中点,Q是对角线AM上一点,若,QB+PQ=6,当菱形ABMN 的面积最大时,求点A的坐标.【分析】(1)由抛物线y=x2﹣(m+1)x+m与x轴交于点A(x1,0)、B(x2,0),得出x2﹣(m+1)x+m=0的解,再利用m>1,△ABC的面积为6,即△ABC的面积S==,求出m,从而得出解析式;(2)作出矩形,用t表示出矩形的周长,利用二次函数的最值求出即可;(3)首先表示出AB的长度,再利用=,QB+PQ=6,得出S菱形=AB•NH=15k2≤48,当菱形面积取得最大值48时,k=,由AB=5k=1 ABMN﹣m=.解出m的值,得出A点坐标.【解答】解:(1)∵抛物线与x轴交于点A(x1,0)、B(x2,0),∴x1、x2是关于x的方程x2﹣(m+1)x+m=0的解.解方程,得x=1或x=m.(1)∵A在B的左侧,m>1,∴x1=1,x2=m.∴AB=m﹣1.抛物线与y轴交于C(0,m)点.∴OC=m.△ABC的面积S==.解得m1=4,m2=﹣3(不合题意,舍去).∴抛物线解析式为y=x2﹣5x+4;(2)∵点D在(1)中的抛物线上,∴设D(t,t2﹣5t+4)().∴F(t,0),DF=﹣t2+5t﹣4.又抛物线对称轴是直线,DE与抛物线对称轴交点记为R(如图),∴DR=,DE=5﹣2t.设矩形DEGF的周长为L,则L=2(DF+DE).∴L=2(﹣t2+5t﹣4+5﹣2t)=﹣2t2+6t+2=.∵,∴当且仅当时,L有最大值.=.当时,L最大∴矩形周长的最大值为.(3)∵A在B的左侧,m<0,∴x1=m,x2=1.∴AB=1﹣m.如图,作NH⊥AB于H,连接QN.在Rt△AHN中,=.设AH=4k(k>0),则AN=5k,NH=3k.∴AP===,PH=AH﹣AP==,PN==.∵菱形ABMN是轴对称图形,∴QN=QB.∴PQ+QN=PQ+QB=6.∵PQ+QN≥PN(当且仅当P、Q、N三点共线时,等号成立).∴6≥,解得k≤.=AB•NH=15k2≤48.∵S菱形ABMN∴当菱形面积取得最大值48时,k=.此时AB=5k=1﹣m=.解得m=1﹣.∴A点的坐标为(1﹣,0).【点评】此题主要考查了一元二次方程的解法,以及二次函数的最值问题,锐角三角函数问题和矩形菱形等知识,题目综合性较强.。
2010-2011学年北京市西城区九年级(上)期末数学练习试卷

2010-2011学年北京市西城区九年级(上)期末数学练习试卷一、填空题(共10小题,每小题5分,满分50分)1.(5分)已知a<2,则=.2.(5分)计算:=.3.(5分)一元二次方程x2﹣2x﹣1=0的根是.4.(5分)方程x2=2x的解是.5.(5分)在掷一枚硬币的试验中,着地时反面向上的概率为.如果掷一枚硬币150次,则着地时正面向上约次.6.(5分)五张标有1,2,3,4,5的卡片,除数字外其它没有任何区别.现将它们背面朝上,从中任取一张得到卡片的数字为偶数的概率是.7.(5分)如图,正方形ABCD内接于⊙O,点E在上,则∠BEC=度.8.(5分)已知扇形的圆心角为120°,弧长为10πcm,则扇形的半径为cm.9.(5分)如图,AB是⊙O的直径,弦CD⊥AB,垂足为P,若AP:PB=1:4,CD=8,则AB=.10.(5分)如图,△ABC是等腰直角三角形,BC是斜边,P为△ABC内一点,将△ABP绕点A逆时针旋转后与△ACP′重合,如果AP=3,那么线段PP′的长等于.二、选择题(共10小题,每小题4分,满分40分)11.(4分)已知xy>0,化简二次根式x的正确结果为()A.B.C.﹣D.﹣12.(4分)代数式的值()A.当x=0时最大B.当x=0时最小C.当x=﹣4时最大D.当x=﹣4时最小13.(4分)若关于x的方程x2+2(k﹣1)x+k2=0有实数根,则k的取值范围是()A.k<B.k≤C.k>D.k≥14.(4分)用配方法解关于x的方程x2+px+q=0时,此方程可变形为()A.B.C.D.15.(4分)在一个不透明的袋中装有2个黄球和2个红球,它们除颜色外没有其他区别,从袋中任意摸出一个球,然后放回搅匀,再从袋中任意摸一个球,那么两次都摸到黄球的概率是()A.B.C.D.16.(4分)从一副牌中抽出5张红桃、4张梅花、3张黑桃放在一起洗匀后,从中一次随机抽出10张,恰好红桃,梅花,黑桃3种牌都抽到,这件事情()A.可能发生B.不可能发生C.很可能发生D.必然发生17.(4分)李刚同学设计了四种正多边形的瓷砖图案,如图,在这四种瓷砖中,用一种瓷砖可以密铺平面的是()A.①,②,④B.②,③,④C.①,③,④D.①,②,③18.(4分)一个圆锥的底面半径为,母线长为6,则此圆锥的侧面展开图的圆心角是()A.180°B.150°C.120°D.90°19.(4分)在下列图形中,既是中心对称图形又是轴对称图形的是()A.等腰三角形B.圆C.梯形D.平行四边形20.(4分)如图,ABCD是一张矩形纸片,点O为矩形对角线的交点,直线MN 经过点O交AD于M,交BC于N.操作:先沿直线MN剪开,并将直角梯形MNCD绕O点旋转180°后,恰好与直角梯形NMAB完全重合,再将重合后的直角梯形MNCD以直线MN为轴翻转180°后所得的图形可能是()A.B.C.D.三、解答题(共7小题,满分0分)21.不使用计算器,计算:22.已知关于x的一元二次方程x2﹣6x+k=0有两个实数根.(1)求k的取值范围;(2)如果k取符合条件的最大整数,且一元二次方程x2﹣6x+k=0与x2+mx﹣1=0有一个相同的根,求常数m的值.23.已知:如图,CA=CB=CD,过三点A,C,D的⊙O交AB于点F.求证:CF平分∠BCD.24.某电脑公司现有A、B、C三种型号的甲品牌电脑和D,E两种型号的乙品牌电脑.希望中学要从甲、乙两种品牌电脑中各选购一种型号的电脑.(1)写出所有选购方案(利用树状图或列表方法表示);(2)如果(1)中各种选购方案被选中的可能性相同,那么A型号电脑被选中的概率是多少?(3)现知希望中学购买甲、乙两种品牌电脑共36台(价格如图所示),恰好用了10万元人民币,其中甲品牌电脑为A型号电脑,求购买的A型号电脑有几台.25.某农户种植花生,原来种植的花生亩产量为200千克,出油率为50%(即每100千克花生可加工成花生油50千克).现在种植新品种花生后,每亩收获的花生可加工成花生油132千克,其中花生出油率的增长率是亩产量增长率的,求新品种花生亩产量的增长率.26.如图,点P是圆上的一个动点,弦AB=.PC是∠APB的平分线,∠BAC=30°.(1)当∠PAC等于多少度时,四边形PACB有最大面积,最大面积是多少?(2)当∠PAC等于多少度时,四边形PACB是梯形,说明你的理由.27.已知,点P是正方形ABCD内的一点,连PA、PB、PC.(1)将△PAB绕点B顺时针旋转90°到△P′CB的位置(如图1).①设AB的长为a,PB的长为b(b<a),求△PAB旋转到△P′CB的过程中边PA所扫过区域(图1中阴影部分)的面积;②若PA=2,PB=4,∠APB=135°,求PC的长;(2)如图2,若PA2+PC2=2PB2,请说明点P必在对角线AC上.2010-2011学年北京市西城区九年级(上)期末数学练习试卷参考答案与试题解析一、填空题(共10小题,每小题5分,满分50分)1.(5分)已知a<2,则=2﹣a.【分析】根据二次根式的性质解答.【解答】解:因为a<2,所以a﹣2<0,故=|a﹣2|=2﹣a.【点评】开方时应当先判断a﹣2的符号,然后再进行开方运算.解答此题,要弄清性质:=|a|.2.(5分)计算:=5.【分析】二次根式的加减运算,先化为最简二次根式,再将被开方数相同的二次根式进行合并.【解答】解:原式=6﹣=5.【点评】同类二次根式是指几个二次根式化简成最简二次根式后,被开方数相同的二次根式.合并同类二次根式的实质是合并同类二次根式的系数,根指数与被开方数不变.3.(5分)一元二次方程x2﹣2x﹣1=0的根是1±.【分析】先将方程两边加2,再根据完全平方公式,将方程左边转化为完全平方的形式,再利用数的开方直接求解.【解答】解:两边同时加1,得,x2﹣2x+1=2,整理得,(x﹣1)2=2,开方得x﹣1=±,即x1=1﹣,x2=1+.【点评】本题先将方程转化为完全平方的形式,再开方.要注意(1)用直接开方法求一元二次方程的解的类型有:x2=a(a≥0);ax2=b(a,b 同号且a≠0);(x+a)2=b(b≥0);a(x+b)2=c(a,c同号且a≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”;(2)运用整体思想,会把被开方数看成整体;(3)用直接开方法求一元二次方程的解,要仔细观察方程的特点.4.(5分)方程x2=2x的解是x1=0,x2=2.【分析】先移项得到x2﹣2x=0,再把方程左边进行因式分解得到x(x﹣2)=0,方程转化为两个一元一次方程:x=0或x﹣2=0,即可得到原方程的解为x1=0,x2=2.【解答】解:∵x2﹣2x=0,∴x(x﹣2)=0,∴x=0或x﹣2=0,∴x1=0,x2=2.故答案为x1=0,x2=2.【点评】本题考查了解一元二次方程﹣因式分解法:把一元二次方程变形为一般式,再把方程左边进行因式分解,然后把方程转化为两个一元一次方程,解这两个一元一次方程得到原方程的解.5.(5分)在掷一枚硬币的试验中,着地时反面向上的概率为.如果掷一枚硬币150次,则着地时正面向上约75次.【分析】掷一枚硬币的试验中,着地时反面向上的概率为,则正面向上的概率也为.【解答】解:如果掷一枚硬币150次,则着地时正面向上约150×=75.答:着地时正面向上约75次.【点评】部分数目=总体数目乘以相应概率.6.(5分)五张标有1,2,3,4,5的卡片,除数字外其它没有任何区别.现将它们背面朝上,从中任取一张得到卡片的数字为偶数的概率是.【分析】让偶数的个数除以卡片的总数即为所求的概率.【解答】解:因为五张标有1,2,3,4,5的卡片,其中有2张为偶数,所以从中任取一张得到卡片的数字为偶数的概率是.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.7.(5分)如图,正方形ABCD内接于⊙O,点E在上,则∠BEC=45度.【分析】连接OB、OC,根据正方形的性质,易得出∠BOC=90°,根据圆周角定理,可求出∠BEC=45°.【解答】解:连接OB、OC,则∠E=∠BOC,∵O是正方形外接圆的圆心,∴∠BOC=90°,∴∠BEC=∠BOC=45°.【点评】正确理解圆心角与圆周角的关系是解决本题的关键.8.(5分)已知扇形的圆心角为120°,弧长为10πcm,则扇形的半径为15cm.【分析】运用弧长计算公式,将其变形即可求出扇形的半径.【解答】解:扇形的弧长公式是L==,解得:r=15.故答案为:15.【点评】此题主要考查了扇形的弧长公式的变形,难度不大,计算应认真.9.(5分)如图,AB是⊙O的直径,弦CD⊥AB,垂足为P,若AP:PB=1:4,CD=8,则AB=10.【分析】根据相交弦定理“圆内两弦相交于圆内一点,各弦被这点所分得的两线段的长的乘积相等”的应用.【解答】解:∵AB是⊙O的直径,弦CD⊥AB,CD=8,∴CP=4,根据相交弦定理得,16=AP×4AP,解得AP=2,∴AB=10.【点评】本题主要考查了垂径定理及相交弦定理.10.(5分)如图,△ABC是等腰直角三角形,BC是斜边,P为△ABC内一点,将△ABP绕点A逆时针旋转后与△ACP′重合,如果AP=3,那么线段PP′的长等于.【分析】根据旋转的性质,知:旋转角度是90°,根据旋转的性质得出AP=AP′=3,即△PAP′是等腰直角三角形,腰长AP=3,则可用勾股定理求出斜边PP′的长.【解答】解:∵△ABP绕点A逆时针旋转后与△ACP′重合,∴△ABP≌△ACP′,即线段AB旋转后到AC,∴旋转了90°,∴∠PAP′=∠BAC=90°,AP=AP′=3,∴PP′=3.【点评】本题考查旋转的性质和直角三角形的性质.旋转变化前后,对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等.二、选择题(共10小题,每小题4分,满分40分)11.(4分)已知xy>0,化简二次根式x的正确结果为()A.B.C.﹣D.﹣【分析】二次根式有意义,y<0,结合已知条件得y<0,化简即可得出最简形式.【解答】解:∵xy>0,∴x和y同号,∵x的中,≥0,∴y<0,∴x<0,y<0,∴x=﹣=﹣,故选:D.【点评】此题主要考查了二次根式的化简,关键是掌握二次根式的被开方数为非负数.12.(4分)代数式的值()A.当x=0时最大B.当x=0时最小C.当x=﹣4时最大D.当x=﹣4时最小【分析】被减数是常数,当减数最小时,结果最大.【解答】解:∵被减数是6,减数是被开方数含有字母的二次根式,二次根式的最小值为0,∴x+4=0时,代数式的值最大,解得x=﹣4时,代数式是值最大,故选:C.【点评】考查关于二次根式的最值的计算;用到的知识点为:二次根式的结果的最小值为0.13.(4分)若关于x的方程x2+2(k﹣1)x+k2=0有实数根,则k的取值范围是()A.k<B.k≤C.k>D.k≥【分析】根据一元二次方程的根的判别式与根的关系,建立关于k的不等式,然后就可以求出k的取值范围.【解答】解:∵a=1,b=2(k﹣1),c=k2,而方程有实数根,∴△=b2﹣4ac=4(k﹣1)2﹣4k2=4﹣8k≥0,∴k≤.故选:B.【点评】总结一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.14.(4分)用配方法解关于x的方程x2+px+q=0时,此方程可变形为()A.B.C.D.【分析】此题考查了配方法解一元二次方程,要注意解题步骤,把左边配成完全平方式,右边化为常数.【解答】解:∵x2+px+q=0∴x2+px=﹣q∴x2+px+=﹣q+∴(x+)2=故选:B.【点评】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.15.(4分)在一个不透明的袋中装有2个黄球和2个红球,它们除颜色外没有其他区别,从袋中任意摸出一个球,然后放回搅匀,再从袋中任意摸一个球,那么两次都摸到黄球的概率是()A.B.C.D.【分析】列举出所有情况,看两次都摸到黄球的情况数占总情况数的多少即可.【解答】解:共有16种情况,两次都摸到黄球的情况数是4种,所以概率为,故选B.【点评】考查列树状图解决概率问题;找到两次都摸到黄球的情况数是解决本题的关键;用到的知识点为:概率等于所求情况数与总情况数之比.16.(4分)从一副牌中抽出5张红桃、4张梅花、3张黑桃放在一起洗匀后,从中一次随机抽出10张,恰好红桃,梅花,黑桃3种牌都抽到,这件事情()A.可能发生B.不可能发生C.很可能发生D.必然发生【分析】因为一副牌中共有5张红桃、4张梅花、3张黑桃,从中一次随机抽出10张,恰好红桃,梅花,黑桃3种牌都抽到,这个事件一定发生,是必然事件.【解答】解:∵若这10张牌中抽出了全部的红桃与梅花共9张,一定还有1张黑桃;若抽出了全部的梅花与黑桃共7张,则还会有3张红桃;若抽出了全部的红桃与黑桃共8张,则还会有2张梅花;∴这个事件一定发生,是必然事件.故选:D.【点评】本题考查的是可能性大小的判断,解决这类题目要注意具体情况具体对待.一般地必然事件的可能性大小为1,不可能事件发生的可能性大小为0,随机事件发生的可能性大小在0至1之间.17.(4分)李刚同学设计了四种正多边形的瓷砖图案,如图,在这四种瓷砖中,用一种瓷砖可以密铺平面的是()A.①,②,④B.②,③,④C.①,③,④D.①,②,③【分析】分别求出各个正多边形的每个内角的度数,结合镶嵌的条件即可作出判断.【解答】解:①正三角形的每个内角是60°,能整除360°,能密铺;②正四边形的每个内角是90°,4个能密铺;③正五边形的每个内角是108°,不能整除360°,不能密铺;④正六边形的每个内角是120°,能整除360°,能密铺.故用一种瓷砖可以密铺平面的是:①,②,④.故选:A.【点评】本题考查了平面镶嵌(密铺),用一种正多边形镶嵌,只有正三角形,正四边形,正六边形三种正多边形能镶嵌成一个平面图案.18.(4分)一个圆锥的底面半径为,母线长为6,则此圆锥的侧面展开图的圆心角是()A.180°B.150°C.120°D.90°【分析】利用底面周长=展开图的弧长可得.【解答】解:2π×=,解得n=150°.故选:B.【点评】解答本题的关键是有确定底面周长=展开图的弧长这个等量关系,然后由扇形的弧长公式和圆的周长公式求值.19.(4分)在下列图形中,既是中心对称图形又是轴对称图形的是()A.等腰三角形B.圆C.梯形D.平行四边形【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形.故错误;B、是轴对称图形,也是中心对称图形.故正确;C、是轴对称图形,不是中心对称图形.故错误;D、不是轴对称图形,是中心对称图形.故错误.故选:B.【点评】掌握中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.20.(4分)如图,ABCD是一张矩形纸片,点O为矩形对角线的交点,直线MN 经过点O交AD于M,交BC于N.操作:先沿直线MN剪开,并将直角梯形MNCD绕O点旋转180°后,恰好与直角梯形NMAB完全重合,再将重合后的直角梯形MNCD以直线MN为轴翻转180°后所得的图形可能是()A.B.C.D.【分析】根据旋转的性质得到AM,CN都不与MN垂直,BN,DM也不与MN垂直,由此判断D满足条件.【解答】解:直角梯形MNCD绕O点旋转180°后,恰好与直角梯形NMAB完全重合,再将重合后的直角梯形MNCD以直线MN为轴翻转180°后所得的图形中AM,CN都不与MN垂直,BN,DM也不与MN垂直,所以D满足条件.故选:D.【点评】本题考查了旋转的性质:旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等.三、解答题(共7小题,满分0分)21.不使用计算器,计算:【分析】本题涉及负整数指数幂、二次根式化简两个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=3×2+﹣+1=3﹣1.【点评】(1)化简二次根式要注意观察被开方数,若被开方数是整式或整数形式,要用分解因式或因数.然后把能开的尽方的因数或因式开出来.(2)注意负整数指数幂的运算,2﹣1=.22.已知关于x的一元二次方程x2﹣6x+k=0有两个实数根.(1)求k的取值范围;(2)如果k取符合条件的最大整数,且一元二次方程x2﹣6x+k=0与x2+mx﹣1=0有一个相同的根,求常数m的值.【分析】(1)根据题意知△=b2﹣4ac≥0,从而求出k的取值;(2)根据题意和(1)知当k=9时,方程有相同的根,然后求出两根,再求m的值即可.【解答】解:(1)∵b2﹣4ac=(﹣6)2﹣4×1×k=36﹣4k≥0∴k≤9(2)∵k是符合条件的最大整数且k≤9∴k=9当k=9时,方程x2﹣6x+9=0的根为x1=x2=3;把x=3代入方程x2+mx﹣1=0得9+3m﹣1=0∴m=【点评】本题考查了一元二次方程根的判别式的应用.切记不要忽略一元二次方程二次项系数不为零这一隐含条件.23.已知:如图,CA=CB=CD,过三点A,C,D的⊙O交AB于点F.求证:CF平分∠BCD.【分析】连接AD,先由CA=CD可求出∠D=∠CAD,再由圆周角定理可求出∠D=∠CFA,由三角形内角与外角的性质可知∠CFA=∠B+∠FCB,进而可求出∠FCB=∠FAD,再由圆周角定理即可求解.【解答】证明:连接AD,∵CA=CD,∴∠D=∠CAD.∵∠D=∠CFA,∴∠CAD=∠CFA.∵∠CFA=∠B+∠FCB,∴∠CAF+∠FAD=∠B+∠FCB.∵CA=CB,∴∠CAF=∠B,∴∠FAD=∠FCB,∵∠FAD=∠FCD,∴∠FCB=∠FCD,∴CF平分∠BCD.【点评】本题考查的是圆周角定理及等腰三角形的性质,三角形内角与外角的性质,比较简单.24.某电脑公司现有A、B、C三种型号的甲品牌电脑和D,E两种型号的乙品牌电脑.希望中学要从甲、乙两种品牌电脑中各选购一种型号的电脑.(1)写出所有选购方案(利用树状图或列表方法表示);(2)如果(1)中各种选购方案被选中的可能性相同,那么A 型号电脑被选中的概率是多少?(3)现知希望中学购买甲、乙两种品牌电脑共36台(价格如图所示),恰好用了10万元人民币,其中甲品牌电脑为A 型号电脑,求购买的A 型号电脑有几台.【分析】(1)依据题意先用列表法或画树状图法,列出所有可能的结果,然后根据概率公式求出该事件的概率;(2)(3)根据题意列出方程求解则可.【解答】解:(1)列表如图:甲乙A B CD(D ,A )(D ,B )(D ,C )E (E ,A )(E ,B )(E ,C )有6种可能结果:(A ,D ),(A ,E),(B ,D ),(B ,E ),(C ,D ),(C ,E );(2)因为选中A 型号电脑有2种方案,即(A ,D )(A ,E ),所以A 型号电脑被选中的概率是;(3)由(2)可知,当选用方案(A ,D )时,设购买A 型号、D 型号电脑分别为x ,y 台,根据题意,得解得,经检验不符合实际,舍去;当选用方案(A,E)时,设购买A型号、E型号电脑分别为a,b台,根据题意,得解得.所以希望中学购买了7台A型号电脑.【点评】本题考查的是用列表法或画树状图法求概率,同时考查了二元一次方程组的应用,综合性比较强.用到的知识点为:概率=所求情况数与总情况数之比.25.某农户种植花生,原来种植的花生亩产量为200千克,出油率为50%(即每100千克花生可加工成花生油50千克).现在种植新品种花生后,每亩收获的花生可加工成花生油132千克,其中花生出油率的增长率是亩产量增长率的,求新品种花生亩产量的增长率.【分析】本题为增长率问题,增长后的量=增长前的量×(1+增长率).则每亩收获的花生可加工成花生油的质量是200(1+x)•50%(1+x),即可列方程求解.【解答】解:设新品种花生亩产量的增长率为x,根据题意得200(1+x)•50%(1+x)=132,解得x1=0.2=20%,x2=﹣3.2(不合题意,舍去),答:新品种花生亩产量的增长率为20%.【点评】本题为一般的增长率问题,可根据题意列出方程,判断所求的解是否符合题意,舍去不合题意的解.找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.26.如图,点P是圆上的一个动点,弦AB=.PC是∠APB的平分线,∠BAC=30°.(1)当∠PAC等于多少度时,四边形PACB有最大面积,最大面积是多少?(2)当∠PAC 等于多少度时,四边形PACB 是梯形,说明你的理由.【分析】(1)由PC 是∠APB 的平分线,可知=,根据直径所对的圆周角是直角,根据特殊角的三角函数值求出PC 的值,即可求出四边形PACB 的面积.(2)当∠PAC=120°时,根据PC 是∠APB 的平分线,求出∠PAC 与∠APB 互补,即AC ∥PB 且AP 与BC 不平行,四边形PACB 是梯形;当∠PAC=60°时,由=可知,AC=BC ,又因为∠BAC=30°,所以∠ACB=120°,∠PAC 与∠ACB 互补,故BC ∥AP 且AC 与PB 不平行,四边形PACB 是梯形.【解答】解:(1)∵PC 是∠APB 的平分线,∴=.(1分)当PC 是圆的直径,即∠PAC=90°时,四边形PACB 面积最大.(3分)在Rt △PAC 中,∠APC=30°,AP=PB=AB=,∴PC==•=2.(4分)∴S 四边形PACB =2S △ACP (5分)=PC•AB=×2×=.(6分)(2)当∠PAC=120°时,四边形PACB 是梯形.(7分)∵PC 是∠APB 的平分线,∴∠APC=∠BPC=∠CAB=30°.∴∠APB=60°.∴∠PAC +∠APB=180°.∴AC ∥PB 且AP 与BC 不平行.∴四边形PACB是梯形.(8分)当∠PAC=60°时,四边形PACB是梯形.(9分)∵=,∴AC=BC.又∵∠BAC=30°,∴∠ACB=120°.∴∠PAC+∠ACB=180°.∴BC∥AP且AC与PB不平行.∴四边形PACB是梯形.(10分)【点评】本题属动态性题目,考查的是角平分线的性质,梯形,圆心角、弧、弦的关系及解直角三角形的关系,是一道综合性较好的题目的题目.27.已知,点P是正方形ABCD内的一点,连PA、PB、PC.(1)将△PAB绕点B顺时针旋转90°到△P′CB的位置(如图1).①设AB的长为a,PB的长为b(b<a),求△PAB旋转到△P′CB的过程中边PA所扫过区域(图1中阴影部分)的面积;②若PA=2,PB=4,∠APB=135°,求PC的长;(2)如图2,若PA2+PC2=2PB2,请说明点P必在对角线AC上.【分析】(1)△PAB旋转到△P′CB的过程中边PA所扫过区域(图1中阴影部分)的面积实际是大扇形BAC与小扇形BPP′的面积差,且这两个扇形的圆心角同为90度;(2)连接PP′,证△PBP′为等腰直角三角形,从而可在Rt△PP′C中,用勾股定理求得PC=6;(3)将△PAB绕点B顺时针旋转90°到△P′CB的位置,由勾股逆定理证出∠P ′CP=90°,再证∠BPC +∠APB=180°,即点P 在对角线AC 上.【解答】解:(1)①S 阴影=S 扇形ABC +S △BP ′C ﹣S 扇形PBP ′﹣S △ABP=S 扇形ABC ﹣S 扇形PBP ′=,=(a 2﹣b 2);②连接PP ′,根据旋转的性质可知:BP=BP ′,∠PBP ′=90°;即:△PBP ′为等腰直角三角形,∴∠BPP ′=45°,∵∠BPA=∠BP ′C=135°,∠BP ′P=45°,∴∠BPA +∠BPP ′=180°,即A 、P 、P ′共线,∴∠PP ′C=135°﹣45°=90°;在Rt △PP ′C 中,PP ′=4,P ′C=PA=2,根据勾股定理可得PC=6.(2)将△PAB 绕点B 顺时针旋转90°到△P ′CB 的位置,连接PP ′.同(1)①可知:△BPP ′是等腰直角三角形,即PP ′2=2PB 2;∵PA 2+PC 2=2PB 2=PP ′2,∴PC 2+P ′C 2=PP ′2,∴∠P ′CP=90°;∵∠PBP ′=∠PCP ′=90°,在四边形BPCP ′中,∠BP ′C +∠BPC=180°;∵∠BPA=∠BP ′C ,∴∠BPC +∠APB=180°,即点P 在对角线AC 上.【点评】本题是一道综合性很强的题,不但考查了扇形的面积公式,还综合了旋转及三角形、正方形等相关知识,难度较大.。
北京市西城区2009-2010学年第一学期期末测试初三化学试(精)

制冷剂干冰D .芦荟酸奶 C .北京米醋B . 红星二锅头酒 A . 北京市西城区2009-2010学年第一学期期末测试初三化学试卷2010.1可能用到的相对原子质量:H 1 C 12 N 14 O 16 Ca 40 Fe 56 Cu 64 I 127一、选择题(每小题只有一个选项符合题意。
本题包括25小题,每小题1分,共25分。
1.下列物质中,属于纯净物的是2.下列是生活中常见的一些变化,其中属于化学变化的是A .夏天雪糕慢慢融化B .潮湿的衣服在空气中变干C .洗净的铁锅出现锈迹D .夏天从冰箱取出的瓶子外壁附着一层水珠3.决定元素种类的是原子的A .质子数B .中子数C .电子数D .最外层电子数4.“金、银、铜、铁、锡”俗称五金。
在这五种金属中,金属活动性最强的是A .铁B .金C .银D .铜5.下列物质的用途主要不是..由其化学性质决定的是 A .氮气用作保护气 B .活性炭用于除去冰箱中的异味C .天然气作清洁燃料D .氧气用于炼钢6.元素周期表中钠元素的信息如右图所示,对图中信息理解不正确...的是 A .质子数为11 B .元素名称为钠C .元素符号为NaD .核外电子数为22.997.五氧化二碘(化学式为I 2O 5常用来测定空气中一氧化碳的含量,I 2O 5中碘元素(I的化合价为A .-5B .+5C .+3D .+28.下列物质的化学式正确的是A .碳酸钠NaCO 3B .氢氧化钾K(OH2C .氧化铁O 3Fe 2D .硫酸H 2SO 49.下图所示的一组实验可用于研究燃烧条件。
下列说法正确的是A .此组实验烧杯中的热水只起提高温度的作用B .若将图2中白磷换成红磷,也能观察到燃烧现象C .图1实验不能比较白磷和红磷的着火点高低D .图1中水下白磷未燃烧是由于没有与氧气接触10.氯的原子结构示意图如右图所示,下列关于Cl ―和Cl两种粒子的说法不正确...的是 A .它们的质子数相同 B .它们的核外电子数不相同C .它们的电子层数不相同D .它们都是构成物质的粒子11.下列图示实验操作中,正确的是12.雄伟壮观的国家大剧院主体建筑表面安装了近2万块钛(Ti 金属板。
2011-2012学年北京市西城区初三数学第一学期期末数学试题(南区)(含答案)
北京市西城区2011—2012学年度第一学期期末试卷(南区)九年级数学 2012.1考生须知1.本试卷共6页,共五道大题,25道小题,满分120分。
考试时间120分钟。
2.试题答案一律填涂或书写在答题纸上,在试卷上作答无效。
3.在答题纸上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答。
一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.抛物线2(1)1y x =-+的顶点坐标为A .(1,1)B .(1,1)-C .(1,1)-D .(1,1)--2.若相交两圆的半径分别为4和7,则它们的圆心距可能是A .2B .3C . 6D .113.在Rt △ABC 中,∠ C =90°,若BC =1,AB 5tan A 的值为A 5B 25C .12D .24. 如图,在⊙O 中,直径AB ⊥弦CD 于E ,连接BD ,若∠D =30°, BD =2,则AE 的长为 A .2 B .3 C .4 D .55.下列图形中,中心对称图形有A .4个B .3个C .2个D .1个6.抛掷一枚质地均匀的正方体骰子,出现大于3点的概率为 A .21 B .31 C .41 D .617.如图,抛物线2y ax bx c =++经过点(-1,0),对称轴为x =1,则下列结论中正确的是A .0>aB .当1>x 时,y 随x 的增大而增大C .0<cD .3x =是一元二次方程20ax bx c ++=的一个根8.如图,在平面直角坐标系xOy 中,(2,0)A ,(0,2)B ,⊙C 的圆心为点(1,0)C -,半径为1.若D 是⊙C 上的一个动点,线段DA 与y 轴交于E 点,则△ABE 面积的最大值是 A .2 B . 83C .2+D . 2-二、填空题(本题共16分,每小题4分)9.如图,⊙O 是△ABC 的外接圆,若∠OCB =40°,则∠A= °.10.将抛物线2y x =先向下平移1个单位长度后,再向右平移1个单位长度,所得抛物线的解析式是 .11.如图,在Rt △ABC 中,∠ACB =90°,∠B =30°,AB =4.以斜边AB 的中点D 为旋转中心,把△ABC 按逆时针方向旋转 α角(0120α︒<<︒),当点A 的对应点与点C 重合时,B ,C 两点的对应点分别记为E ,F ,EF 与AB 的交点为G ,此时 α等于 ° ,△DEG 的面积为 .12.已知二次函数212y x x =-+,(1)它的最大值为 ;(2)若存在实数m , n 使得当自变量x 的取值范围是m ≤x ≤n 时,函数值y 的取值范围恰好是3m ≤y ≤3n ,则m= ,n= .13.计算:2cos30602sin 45︒+︒-︒.14.如图,网格中每个小正方形的边长均为1,且点A ,B ,C ,P 均为格点.(1) 在网格中作图:以点P 为位似中心,将△ABC 的各边长放大为原来的两倍,A ,B ,C 的对应点分别为A 1 ,B 1 ,C 1;(2) 若点A 的坐标为(1,1),点B 的坐标为(3,2),则(1)中点C 1的坐标为 .15.已知抛物线245y x x =+-.(1)直接写出它与x 轴、y 轴的交点的坐标;(2)用配方法将245y x x =+-化成2()y a x h k =-+的形式.16.如图,三角形纸片ABC 中,∠BCA =90°,∠A =30°,AB =6, 在AC 上取一点 E ,沿BE 将该纸片折叠,使AB 的一部分 与BC 重合,点A 与BC 延长线上的点D 重合,求DE 的长.17.学校要围一个矩形花圃,花圃的一边利用足够长的墙,另三边用总长为36米的篱笆恰好围成(如图所示). 设矩形的一边AB 的长为x 米(要求AB <AD ),矩形 ABCD 的面积为S 平方米.(1)求S 与x 之间的函数关系式,并直接写出自变量x 的取值范围; (2)要想使花圃的面积最大,AB 边的长应为多少米?18.如图,在Rt △ABC 中,90C ∠=︒,AB 的垂直平分线与BC ,AB 的交点分别为D ,E . (1)若AD =10,4sin 5ADC ∠=,求AC 的长和tan B 的值;(2)若AD=1,ADC ∠=α,参考(1)的计算过程直接写 出tan 2α的值(用sin α和cos α的值表示).19.如图所示,在平面直角坐标系xOy 中,正方形PABC 的边长为1,将其沿x 轴的正方向连续滚动,即先以顶点A 为旋转中心将正方形PABC 顺时针旋转90°得到第二个正方形,再以顶点D 为旋转中心将第二个正方形顺时针旋转90°得到第三个正方形,依此方法继续滚动下去得到第四个正方形,…,第n 个正方形.设滚动过程中的点P 的坐标为(,)x y .(1)画出第三个和第四个正方形的位置,并直接写出第三个正方形中的点P 的坐标; (2)画出点(,)P x y 运动的曲线(0≤x ≤4),并直接写出该曲线与x 轴所围成区域的面积.20.已知函数2y x bx c =++(x ≥ 0),满足当x =1时,1y =-,且当x = 0与x =4时的函数值相等. (1) 求函数2y x bx c =++(x ≥ 0)的解析式并 画出它的图象(不要求列表);(2)若()f x 表示自变量x 相对应的函数值,且2 (0),() 2 (0),x bx c x f x x ⎧++≥=⎨-<⎩ 又已知关于x 的 方程()f x x k =+有三个不相等的实数根,请利用图象直接写出实数k 的取值范围.21.已知:如图,AB 是⊙O 的直径,AC 是弦,∠BAC 的平分线与⊙O 的交点为D ,DE ⊥AC ,与AC 的延长线交于 点E .(1)求证:直线DE 是⊙O 的切线; (2)若OE 与AD 交于点F ,4cos 5BAC ∠=,求DF AF 的值.22.阅读下列材料:题目:已知实数a ,x 满足a >2且x >2,试判断ax 与a x +的大小关系,并加以说明. 思路:可用“求差法”比较两个数的大小,列出ax 与a x +的差()y ax a x =-+再说明y 的符号即可.现给出如下利用函数解决问题的方法:简解:可将y 的代数式整理成(1)y a x a =--,要判断y 的符号可借助函数(1)y a x a =--的图象和性质解决.参考以上解题思路解决以下问题:已知a ,b ,c 都是非负数,a <5,且 2220a a b c ---=,2230a b c +-+=. (1)分别用含a 的代数式表示4b ,4c ; (2)说明a ,b ,c 之间的大小关系.五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23.已知抛物线2(2)2y kx k x =+--(其中0k >).(1)求该抛物线与x 轴的交点及顶点的坐标(可以用含k 的代数式表示); (2)若记该抛物线顶点的坐标为(,)P m n ,直接写出n 的最小值; (3)将该抛物线先向右平移12个单位长度,再向上平移1k个单位长度,随着k 的变化,平移后的抛物线的顶点都在某个新函数的图象上,求新函数的解析式(不要求写自变量的取值范围).24.已知:⊙O 是△ABC 的外接圆,点M 为⊙O 上一点.(1)如图,若△ABC 为等边三角形,BM =1,CM =2, 求AM 的长;(2) 若△ABC 为等腰直角三角形,∠BAC =90︒,BM a =,CM b =(其中b a >),直接写出AM 的长(用含有a ,b 的代数式表示).25. 已知:在如图1所示的平面直角坐标系xOy 中,A ,C 两点的坐标分别为(2,3)A ,(,3)C n -(其中n >0),点B 在x 轴的正半轴上.动点P 从点O 出发,在四边形OABC 的边上依次沿O —A —B —C 的顺序向点C 移动,当点P 与点C 重合时停止运动.设点P 移动的路径的长为l ,△POC 的面积为S ,S 与l 的函数关系的图象如图2所示,其中四边形ODEF 是等腰梯形.(1)结合以上信息及图2填空:图2中的m = ; (2)求B ,C 两点的坐标及图2中OF 的长;(3)在图1中,当动点P 恰为经过O ,B 两点的抛物线W 的顶点时, ① 求此抛物线W 的解析式;② 若点Q 在直线1y =-上方的抛物线W 上,坐标平面内另有一点R ,满足以B ,P ,Q ,R 四点为顶点的四边形是菱形,求点Q 的坐标.北京市西城区2011 — 2012学年度第一学期期末试卷(南区)九年级数学参考答案及评分标准2012.1 一、选择题(本题共32分,每小题4分)阅卷说明:第10题写成2(1)1y x=--不扣分;第11题每空各2分;第12题第(1)问2分, 第(2)问每空各1分.三、解答题(本题共30分,每小题5分)13.解:原式= 222⨯…………………………………………………3分= 22+.……………………………………………………………………5分14.解:(1)…………………………………………3分(2)点C1的坐标为(2,8). ……………………………………………………5分图115.解:(1)抛物线与x 轴的交点的坐标为(5,0) (1,0)-和. …………………………2分抛物线与y 轴的交点的坐标为(05)-,. …………………………………3分 (2)245y x x =+-2(44)9x x =++-…………………………………………………………4分2(2)9x =+-. …………………………………………………………5分 16.解: 在RtΔACB 中,∠ACB =90°,AB =6, ∠A =30°,(如图2) ∴ 362121=⨯==AB BC . ………………………1分 ∵ 沿BE 将ΔABC 折叠后,点A 与BC 延长线上的点D∴ BD=AB=6,∠D =∠A =30°.……………………3分∴CD=BD -BC =6-3=3. ……………………………4分在RtΔDCE 中,∠DCE =90°,CD =3, ∠D =30°,∴3223330cos ===CD DE . ………………………………………………5分17.解:(1)∵ 四边形ABCD 是矩形,AB 的长为x 米, ∴ CD=AB=x (米).∵ 矩形除AD 边外的三边总长为36米,∴ 362BC x =-(米).………………………………………………………1分 ∴ 2(362)236S x x x x =-=-+. ……………………………………………3分 自变量x 的取值范围是012x <<. …………………………………………4分 ( 说明:由0<x <36-2x 可得012x <<.)(2)∵222362(9)162S x x x =-+=--+,且9x =在012x <<的范围内 ,∴ 当9x =时,S 取最大值.即AB 边的长为9米时,花圃的面积最大.…………………………………5分18.解:(1)在Rt △ACD 中,90C ∠=︒, AD =10,4sin 5ADC ∠=,(如图3) ∴ 4sin 1085AC AD ADC =⋅∠=⨯=.……1分3cos 1065CD AD ADC =⋅∠=⨯=. ∵ DE 垂直平分AB ,∴ 10BD AD ==.……………………………2分 ∴ 16BC CD BD =+=. ……………………3分 在Rt △ABC 中,90C ∠=︒,∴ 81tan 162AC B BC ===.……………………………………………………4分 (2)sin tan 21cos ααα=+.(写成1cos sin αα-也可) ……………………………………5分四、解答题(本题共20分,每小题5分) 19.解:(1)第三个和第四个正方形的位置 如图4所示.……………………2分 第三个正方形中的点P 的坐标为 (3,1). …………………………3分(2)点(,)P x y 运动的曲线(0≤x ≤4)如图4所示. …………………………4分它与x 轴所围成区域的面积等于1π+. ……………………………………5分20.解:(1)∵ 函数2y x bx c =++(x ≥0)满足当x =1时,1y =-, 且当x = 0与x =4时的函数值相等,∴ 11,2.2b c b ++=-⎧⎪⎨-=⎪⎩解得 4b =-,2c =.…………………………………………………………2分 ∴ 所求的函数解析式为242y x x =-+(x ≥0). …………………………3分 它的函数图象如图5所示.……………………………………………………4分(2)k 的取值范围是22k -<≤.(如图6)……………………………………………5分 21.(1)证明:连接OD .(如图7) ∵ AD 平分∠BAC ,∴ ∠1=∠2.…………………………………………………………………1分 ∵ OA =OD , ∴ ∠1=∠3. ∴ ∠2=∠3.∴ OD ∥AE .∵ DE ⊥AC , ∴ ∠AED =90°.∴ 18090ODE AED ∠=︒-∠=︒.∴ DE ⊥OD . ……………………………2分 ∵ OD 是⊙O 的半径,∴ 直线DE 是⊙O 的切线. ………………………………………………3分(2)解:作OG ⊥AE 于点G .(如图7) ∴ ∠OGE =90°.∴ ∠ODE =∠DEG =∠OGE =90°. ∴ 四边形OGED 是矩形.∴ OD =GE .……………………………………………………………………4分 在Rt △OAG 中, ∠OGA =90°,4cos 5BAC ∠=,设AG =4k ,则OA =5k . ∴ GE =OD =5k . ∴ AE =AG +GE =9k . ∵ OD ∥GE , ∴ △ODF ∽△EAF . ∴59DF OD AF AE ==.……………………………………………………………5分 22.解:(1)∵ 2220a a b c ---=,2230a b c +-+=,∴ ⎪⎩⎪⎨⎧+=--=+.322,222a b c a a c b消去b 并整理,得243c a =+.………………………1分消去c 并整理,得2423b a a =--. ………………2分(2)∵ ()()()411332422--=+-=--=a a a a a b , 将4b 看成a 的函数,由函数24(1)4b a =--的性质结合它的图象(如图8所示),以及a ,b 均为非负数得a ≥3.又 ∵ a <5,∴ 3≤a <5.……………………………………………………………………3分∵ 224()63(3)12b a a a a -=--=--,将4()b a -看成a 的函数,由函数24()(3)12b a a -=--的性质结合它的图象(如图9所示)可知,当3≤a <5时,4()0b a -<.∴ b <a . ……………………………………………4分∵ 24()43(1)(3)c a a a a a -=-+=--,a ≥3,∴ 4()c a -≥0.∴ c ≥a .∴ b <a ≤c . ………………………………………5分阅卷说明:“b <a ,b <c ,a ≤c ”三者中,先得出其中任何一个结论即可得到第4分,全写对得到5分.五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.解:(1)令0y =,得方程 2(2)20kx k x +--=.整理,得 (1)(2)0x kx +-=.解得 11x =-,22x k= . ∴ 该抛物线与x 轴的交点坐标为(1,0)-,2(,0)k. ………………………2分 抛物线2(2)2y kx k x =+--的顶点坐标为2244(,)24k k k k k-++-. ………3分 (2)|n |的最小值为 2 . …………………………………………………………4分 (3)平移后抛物线的顶点坐标为214(,)4k k k k+-.…………………………………5分由1,14x k k y ⎧=⎪⎪⎨⎪=--⎪⎩可得 114y x =-- . ∴ 所求新函数的解析式为114y x=--. …………………………………7分 24.解:(1)因AB =AC 且∠BAC=60°,故将△ABM 绕点A 逆时针旋转60︒得△ACN ,则△ABM ≌△ACN ,(如图10)………………………………………………1分∴ ∠BAM =∠CAN ,∠ABM =∠ACN ,AM =AN ,BM =CN .∵ 四边形ABMC 内接于⊙O ,∴ ∠ABM +∠ACM =180︒.∴ ∠ACN +∠ACM =180︒.∴ M ,C ,N 三点共线.……………………2分∵ ∠BAM =∠CAN ,∴ ∠BAM +∠MAC =∠CAN +∠MAC =60︒, 即∠MAN =60︒. ………………………………………………………………3分∵ AM =AN ,∴ △AMN 是等边三角形.……………………………………………………4分 ∴ AM =MN =MC +CN =MC +BM =2+1=3. ……………………………………5分(2)AM)b a -)b a +.……………………………………………7分 25.解:(1)图2中的m1分(2)∵ 图11(原题图2)中四边形ODEF 是等腰梯形,点D 的坐标为(,12)D m ,∴ 12E D y y ==,此时原题图1中的点P 运动到与点B 重合,∴ 1131222BOC C S OB y OB ∆=⨯⨯=⨯⨯=. 解得 8OB =,点B 的坐标为(8,0). ……………………………………2分此时作AM ⊥OB 于点M ,CN ⊥OB 于点N .(如图12).∵ 点C 的坐标为(,3)C n -,∴ 点C 在直线3y =-上.又由图11(原题图2)中四边形ODEF 是等腰梯形可知图12中的点C 在过点O 与AB 平行的直线l 上,∴ 点C 是直线3y =-与直线l 的交点,且ABM CON ∠=∠.又∵ 3A C y y ==,即AM= CN ,可得△ABM ≌△CON .∴ ON=BM=6,点C 的坐标为(6,3)C -.……………………………………3分 ∵ 图12中AB ==∴ 图11中DE =,2D OF x DE =+= …………………4分(3)①当点P 恰为经过O ,B 两点的抛物线W 的顶点时,作PG ⊥OB 于点G .(如图13)∵ O ,B 两点的坐标分别为(0,0)O ,(8,0)B ,∴ 由抛物线的对称性可知P 点的横坐标为4,即OG=BG=4.由3tan 6AM PG ABM BM BG∠===可得PG=2. ∴ 点P 的坐标为(4,2)P .………………5分设抛物线W 的解析式为(8)y ax x =-(a ≠0).∵ 抛物线过点(4,2)P ,∴ 4(48)2a -=. 解得 18a =-. ∴ 抛物线W 的解析式为218y x x =-+.…………………………………6分 ②如图14.i )当BP 为以B ,P ,Q ,R 四点为顶点的菱形的边时,∵ 点Q 在直线1y =-上方的抛物线W 上, 点P 为抛物线W 的顶点,结合抛物线的对称性可知点Q 只有一种情况,点Q 与原点重合,其坐标为1(0,0)Q .……………………………………………………………………7分 ii )当BP 为以B ,P ,Q ,R 四点为顶点的菱形的对角线时,可知BP 的中点的坐标为(6,1),BP 的中垂线的解析式为211y x =-.∴ 2Q 点的横坐标是方程212118x x x -+=-的解.将该方程整理得28880x x +-=.解得4x =-± 由点Q 在直线1y =-上方的抛物线W 上,结合图14可知2Q 点的横坐标为4.∴ 点2Q 的坐标是219)Q . …………………………8分综上所述,符合题意的点Q 的坐标是1(0,0)Q ,219)Q .。
西城区2010-2011学年九年级第一学期期末考试物理试题 精品
北京市西城区2010~2011学年度第一学期期末试卷(北区)九年级物理 2011.1一、单项选择题(下列各小题均有四个选项,其中只有一个选项符合题意。
共24分,每小题2分) 1.在国际单位制中,电压的单位是 A.安培(A) B.伏特(V) C .欧姆(Ω) D.瓦特(W) 2.下列物品中,在通常情况下属于绝缘体的是 A .橡皮 B.铅笔芯 C .食盐水 D.钢勺 3.图1所示的家用电器中,利用电流热效应工作的是4.下列关于电流和电压的说法中,正确的是 A .正、负电荷定向移动都会形成电流 B .电路中的电流是形成电压的原因 C .自由电荷定向移动的方向为电流方向 D .电路两端有电压,电路中就一定有电流5.由同种材料制成的AB 和BC 两段导体,它们的长度相同,AB 的横截面积比BC 的小,将它们按照图2所示的方式串联在电路中,不计温度的影响,下列判断正确的是 A.两段导体的电阻值:AB BC R R = B.两段导体的电阻值:AB BC R R > C .两段导体两端的电压:AB BC U U > D.通过两段导体的电流:AB BC I I <6.下列有关温度、内能和热量的说法中,正确的是 A.物体吸收了热量,温度一定升高 B.物体的温度升高,一定吸收了热量 C .物体的内能增加,温度一定升高 D.内能是物体内所有分子动能和势能的总和 7.下列事例中,利用做功的方式使物体(加“.”的字)内能增加的是 A.捂热水袋的手.变暖 B.用锯子锯木头,锯条..的温度升高 C.放进热汤中的金属汤勺....变得烫手D.炽热的金属片插入水中后,水.温升高 8.图3为四冲程汽油机工作过程中各冲程的示意图,其中表示做功冲程的是9.下列有关家庭电路和安全用电的说法中,正确的是 A.家庭电路中的空气开关与插座是并联的B.使用试电笔测火线时,手指千万不能碰到笔尖C.经验证明,只有36V的电压对人体才是安全的D.家庭电路中只有发生短路,才会使电路中的电流过大10.有一种带开关指示灯的插座,当开关断开时,指示灯不亮,插座不带电;当开关闭合时,指示灯亮,插座有电。
北京市西城区10—11上学期初三数学期末考试试卷
2
16.右图为抛物线 y=― x +bx+c 的一部分,它经过 A(― 1, 0), B( 0, 3)两点 . ( 1)求抛物线的解析式; ( 2)将此抛物线向左平移 3 个单位,再向下平移 1 个单位,求平移后的抛物线的解析式 .
( 1)反之,如果 M( x1,y1),N( x2,y2)是抛物线 y=ax2+bx+c( a≠ 0)上不同的两点, 直线 x
x1 x2 2
为该抛物线的对称轴,那么 y1, y2 相等吗?写出你的猜想,并参考..上述方法写出证明过程;
(2)利用以上结论解答下列问题: 已知二次函数 y=x2+bx- 1 当 x=4 时的函数值与 x=2007 时的函数值相等,求 x=2012 时的函
17.如图, 热气球的探测器显示, 从热气球看一栋高楼的顶部 B 的仰角 看这栋高楼底部 C 的俯角为 60°,热气球与高楼的水平距离 AD
求这栋楼的高度 . ( 2 取 1. 414, 3 取 1. 732)
为 45°, 为 50 m,
18.对于抛物线 y=x2― 4x+3. (1)它与 x 轴交点的坐标为 ______,与 y 轴交点的坐标为 _____,顶点坐标为 ______ ; (2)在坐标系中利用描点法画出此抛物线;
西城区 2010—2011 学年度九年级数学第一学期期末试卷
一、选择题(本题共 32 分,每小题 4 分)
1.抛物线 y=(x― 1)2+2 的对称轴为(
)
A .直线 x=1
B.直线 x=― 1 C.直线 x=2
D.直线 x=― 2
2.如图, AB 为⊙ O 的直径,点 C 在⊙ O 上,若∠ C=15 °,则∠ BOC =( )
北京市西城区九年级上期末考试数学试题及答案.doc
北京市西城区2013-2014学年度第一学期期末试卷九年级数学 2014.1作图题用一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.抛物线2(2)1y x =-+的顶点坐标是 A .(21),B .(21)-,C .(21)-,D .(21)--,2.如图,⊙O 是△ABC 的外接圆,若o 100AOB ∠=,则∠ACB 的度数是 A .40° B .50° C .60°D .80°3.若两个圆的半径分别为2和1,圆心距为3,则这两个圆的位置关系是 A .内含B .内切C .相交D .外切4.下列图形中,既是轴对称图形又是中心对称图形的是A B C D 5.在Rt △ABC 中,∠C =90°,若BC =1,AC =2,则sin A 的值为 A B C .12D .26.如图,抛物线2y ax bx c =++(0)a ≠的对称轴为直线12x =-.下列结论中,正确的是A .a <0B .当12x <-时,y 随x C .0a b c ++>D .当12x =-时,y7.如图,在平面直角坐标系xOy 纵坐标都是整数.若将△ABC 则旋转中心的坐标是A .(00),B .(10),C .(11)-,D .(2.50.5),8.若抛物线()2231y x m m =-+-(m 是常数)与直线1y x =+有两个交点,且这两个交点分别在抛物线对称轴的两侧,则m 的取值范围是 A .2m < B .2m >C .94m <D .94m >二、填空题(本题共16分,每小题4分)9.如图,△A BC 中,点D ,E 分别在AB ,AC 边上,DE ∥BC ,若2AD =,3DB =,1DE =,则BC 的长是 .10.把抛物线2=y x 向右平移1个单位,再向下平移3个单位,得到抛物线=y .11.如图,在△ABC 中,∠ACB =90°,∠ABC =30°,BC =2.将△ABC 绕点C 逆时针旋转α角后得到△A ′B ′C ,当点A 的对应点A' 落在AB 边上时,旋转角α的度数是 度,阴影部分的面积为 .12.在平面直角坐标系xOy 中,过点(65)A ,作AB ⊥x 轴于点B .半径为(05)r r <<的⊙A与AB 交于点C ,过B 点作⊙A 的切线BD ,切点为D ,连接DC 并延长交x 轴于点E .(1)当52r =时,EB 的长等于 ;(2)点E 的坐标为 (用含r 的代数式表示).三、解答题(本题共30分,每小题5分) 13.计算:2sin603tan302tan60cos45︒+︒-︒⋅︒.14.已知:二次函数23y x bx =+-的图象经过点(25)A ,. (1)求二次函数的解析式;(2)求二次函数的图象与x 轴的交点坐标;(3)将(1)中求得的函数解析式用配方法化成2()y x h k =-+的形式.15.如图,在梯形ABCD 中,AB ∥DC ,∠A =90°,点P 在AD 边上,且PC PB ⊥.若AB =6,DC =4,PD =2,求PB 的长.16.列方程或方程组解应用题:“美化城市,改善人民居住环境”是城市建设的一项重要内容.某市近年来,通过植草、栽树、修建公园等措施,使城区绿地面积不断增加,2011年底该市城区绿地总面积约为75公顷,截止到2013年底,该市城区绿地总面积约为108公顷,求从2011年底至2013年底该市城区绿地总面积的年平均增长率.17.如图,为了估算某河的宽度,在河对岸边选定一个目标点A ,在近岸取点B ,C ,D ,使得AB ⊥BD ,∠ACB =45°,∠ADB =30°,并且点B ,C ,D 在同一条直线上.若测得CD =30米,求河宽AB (结果精确到11.73 1.41).18.如图,AB 是⊙O 的弦,OC ⊥AB 于点C ,连接OA ,AB =12,cos A (1)求OC 的长;(2)点E ,F 在⊙O 上,EF ∥AB .若EF =16,直接写出EF 与AB 之间的距离.四、解答题(本题共20分,每小题5分)19.设二次函数2143y x x =-+的图象为C 1.二次函数22(0)y ax bx c a =++≠的图象与C 1关于y 轴对称.(1)求二次函数22y ax bx c =++的解析式; (2)当3x -<≤0时,直接写出2y 的取值范围; (3)设二次函数22(0)y ax bx c a =++≠图象的顶点为点A ,与y 轴的交点为点B ,一次函数3y kx m =+( k ,m 为常数,k ≠0)的图象经过A ,B 两点,当23y y <时,直接写出x 的取值范围.ABCO20.如图,在矩形ABCD 中,E 是CD 边上任意一点(不与点C ,D 重合),作AF ⊥AE 交CB 的延长线于点F . (1)求证:△ADE ∽△ABF ;(2)连接EF ,M 为EF 的中点,AB =4,AD =2,设DE =x ,①求点M 到FC 的距离(用含x 的代数式表示);②连接BM ,设2BM y =,求y 与x 之间的函数关系式,并直接写出BM 的长度的最小值.21.如图,AB 是⊙O 的直径,点C 在⊙O 上,连接BC ,AC ,作OD ∥BC 与过点A 的切线交于点D ,连接DC 并延长交AB 的延长线于点E . (1)求证:DE 是⊙O 的切线;(2)若23CE DE =,求cos ABC ∠的值.22.阅读下面材料:定义:与圆的所有切线和割线.......都有公共点的几何图形叫做这个圆的关联图形. 问题:⊙O的半径为1,画一个⊙O 的关联图形.在解决这个问题时,小明以O 为原点建立平面直角坐标系xOy 进行探究,他发现能画出很多⊙O 的关联图形,例如:⊙O 本身和图1中的△ABC (它们都是封闭的图形),以及图2中以O 为圆心的 (它是非封闭的图形),它们都是⊙O 的关联图形.而图2中以P ,Q 为端点的一条曲线就不是⊙O 的关联图形.参考小明的发现,解决问题:(1)在下列几何图形中,⊙O 的关联图形是 (填序号);(DmE① ⊙O 的外切正多边形 ② ⊙O 的内接正多边形③ ⊙O 的一个半径大于1的同心圆(2)若图形G 是⊙O 的关联图形,并且它是封闭的,则图形G 的周长的最小值是____; (3)在图2中,当⊙O 的关联图形 的弧长最小时,经过D ,E 两点的直线为y =__; (4)请你在备用图中画出一个⊙O 的关联图形,所画图形的长度l 小于(2)中图形G的周长的最小值,并写出l 的值(直接画出图形,不写作法).五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.已知:二次函数2314y x mx m =-++(m 为常数).(1)若这个二次函数的图象与x 轴只有一个公共点A ,且A 点在x 轴的正半轴上. ①求m 的值;②四边形AOBC 是正方形,且点B 在y 轴的负半轴上,现将这个二次函数的图象平移,使平移后的函数图象恰好经过B ,C 两点,求平移后的图象对应的函数解析式;(2) 当0≤x ≤2时,求函数2314y x mx m =-++的最小值(用含m 的代数式表示).24.已知:△ABC ,△DEF 都是等边三角形,M 是BC 与EF 的中点,连接AD ,BE . (1)如图1,当EF 与BC 在同一条直线上时,直接写出AD 与BE 的数量关系和位置关系;(2)△ABC 固定不动,将图1中的△DEF 绕点M 顺时针旋转α(o 0≤α≤o 90)角,如图2所示,判断(1)中的结论是否仍然成立,若成立,请加以证明;若不成立,说明理由;(3)△ABC 固定不动,将图1中的△DEF 绕点M 旋转α(o 0≤α≤o 90)角,作DH ⊥BC于点H .设BH =x ,线段AB ,BE ,ED ,DA 所围成的图形面积为S .当A B =6,DE =2时,求S 关于x 的函数关系式,并写出相应的x 的取值范围.图2备用图图1(DmE25.已知:二次函数224y ax ax =+-(0)a ≠的图象与x 轴交于点A ,B (A 点在B 点的左侧),与y 轴交于点C ,△ABC 的面积为12. (1)①填空:二次函数图象的对称轴为 ; ②求二次函数的解析式;(2) 点D 的坐标为(-2,1),点P 在二次函数图象上,∠ADP 为锐角,且tan 2ADP ∠=,求点P 的横坐标;(3)点E 在x 轴的正半轴上,o 45OCE ∠>,点O 与点O '关于EC 所在直线对称.作ON ⊥EO '于点N ,交EC 于点M .若EM ·EC =32,求点E 的坐标.北京市西城区2013-2014学年度第一学期期末九年级数学试卷参考答案及评分标准 2014.1三、解答题(本题共30分,每小题5分) 13.解:2sin603tan302tan60cos45︒+︒-︒⋅︒.2322=- ................................................................................... 4分= ............................................................................................................... 5分14.解:(1)∵ 二次函数23y x bx =+-的图象经过点A (2,5),∴ 4235b +-=. .......................................................................................... 1分 ∴ 2b =.∴ 二次函数的解析式为223y x x =+-. ................................................... 2分 (2)令0y =,则有2230x x +-=.解得13x =-,21x =.∴ 二次函数的图象与x 轴的交点坐标为(3,0)-和(1,0). .......................... 4分 (3)223y x x =+-2(21)4x x =++-2(1)4x =+-. ............................................................................................. 5分15.解:∵ 在梯形ABCD 中,AB ∥CD ,∠A =90°,∴ ∠D =90°.∴ 90DCP DPC ∠+∠=︒. ∵PC PB ⊥,∴∠BPC =90°,90DPC APB ∠+∠=︒.∴∠DCP =∠APB . ................................................. 2分 ∴t an an t DCP APB =∠∠. 在Rt △PCD 中, CD =2,PD =4, ∴1tan 2PD DCP CD ∠==.在Rt △PBA 中,AB =6, ∴tan AB APB PA∠=.∴162PA=. ∴12PA =. ............................................................................................................... 4分∴PB .................................................................................. 5分16.解:设从2011年底至2013年底该市城区绿地总面积的年平均增长率是x . ......... 1分依题意,得275(1)108x +=. ................................................................................. 2分整理,得236(1)25x +=. .......................................................................................... 3分615x +=±.解得x 1=0.2=20%,x 2=-2.2(舍去). ................................................................... 4分 答:从2011年底至2013年底该市城区绿地总面积的年平均增长率是20%. ........ 5分 17.解:设河宽AB 为x 米. ............................................................................................... 1分AC B (2)2或14. ....................................................................................................... 5分四、解答题(本题共20分,每小题5分)19.解:(1)二次函数2143y x x =-+图象的顶点(2,1)-关于y 轴的对称点坐标为(2,1)--,········································································· 1分∴ 所求的二次函数的解析式为22(2)1y x =+-, ································ 2分即2243y x x =++.(2)1-≤2y ≤3. ·················································································· 4分(3)20x -<<. ··················································································· 5分20.(1)证明:∵ 在矩形ABCD 中,∠DAB =∠ABC =∠C =∠D =90°.∴ 90ABF D ∠=∠=︒. ∵ AF ⊥AE ,∴ ∠EAF =90DAE EAB DAB ∠+∠=∠=︒. ∴ 90BAE BAF ∠+∠=︒. ∴ ∠DAE =∠BAF .∴ △ADE ∽△ABF . ······························································ 2分(2)解:①如图,取FC 的中点H ,连接MH .∵ M 为EF 的中点,∴ MH ∥DC ,12MH EC =. ∵ 在矩形ABCD 中,∠C =90°, ∴ MH ⊥FC ,即MH 是点M 到FC 的距离. ∵ DE =x ,DC =AB =4. ∴ EC =4x -,∴ 12MH EC =122x =-.即点M 到FC 的距离为MH 122x =-. .................................................. 3分 ②∵△ADE ∽△ABF ,∴ DE BF AD AB =. ∴ 24x BF =. ∴ 2BF x =,FC =22x +,FH = CH =1x +. ∴ 1HB BF HF x =-=-. ∵ 122MH x =-, ∴ 在Rt △MHB 中,222221(2)(1)2MB BH MH x x =+=-+-25454x x =-+. ∴ 25454y x x =-+(04x <<), ............................................................ 4分当85x =时,BM 长的最小值是. ................................................... 5分21.(1)证明:如图,连接OC .∵ AD 是过点A 的切线,AB 是⊙O 的直径, ∴ AD ⊥AB , ∴ ∠DAB =90°. ∵ OD ∥BC ,HMDFAECB∴ ∠DOC =∠OCB ,∠AOD =∠ABC . ∵ OC =OB , ∴ ∠OCB =∠ABC . ∴ ∠DOC =∠AOD . 在△COD 和△AOD 中,OC = OA , ∠DOC =∠AOD ,OD=OD ,∴ △COD ≌△AOD . .................................................................................................. 1分 ∴ ∠OCD=∠DAB = 90°. ∴ OC ⊥DE 于点C . ∵ OC 是⊙O 的半径,∴ DE 是⊙O 的切线. ............................................................................................. 2分(2)解:由23CE DE =,可设2(0)CE k k =>,则3DE k =... ........................................ 3分∴ AD DC k ==. ∴ 在Rt △DAE 中,AE =.∴ tan E =AD AE =∵ 在Rt △OCE 中,tan 2OC OCE CE k==. ∴ 2OC k=, ∴ OC OA ==∴ 在Rt △AOD 中,OD ... ................................................ 4分 ∴ cos cos OA ABC AOD OD ∠=∠=... ............................................................... 5分 22.解:(1)①③; .......... 2分(2)2π; ............ 3分 (3)x -- ... 4分(4)答案不唯一,所画图形是非封闭的,长度l 满足2π+≤ l <2π. 例如:在图1中l 2=π+,在图2中l =6. .......... 5分阅卷说明:在(1)中,只填写一个结果得1分,有错误结果不得分;在(4)中画图正确且图形长度都正确得1分,否则得0分.五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)图1 图223.解:(1)①∵ 二次函数2314y x mx m =-++的图象与x 轴只有一个公共点A , ∴ ∆2341(1)04m m =-⨯⨯+=. .................................................................... 1分 整理,得2340m m --=.解得,14m =,21m =-.又点A 在x 轴的正半轴上,∴ 0m >.∴ m =4. ............................................................................................................ 2分②由①得点A 的坐标为(20),.∵ 四边形AOBC 是正方形,点B 在y 轴的负半轴上,∴ 点B 的坐标为(02)-,,点C 的坐标为(22)-,. ...................................... 3分 设平移后的图象对应的函数解析式为2y x bx c =++(b ,c 为常数).∴ 2,42 2.c b c =-⎧⎨++=-⎩解得2,2.b c =-⎧⎨=-⎩ ∴平移后的图象对应的函数解析式为222y x x =--...................................... 4分 (2)函数2314y x mx m =-++的图象是顶点为23(,1)244m m m -++,且开口向上的抛物线.分三种情况:(ⅰ)当02m <,即0m <时,函数在0≤x ≤2内y 随x 的增大而增大,此时函数的最小值为314m +; (ⅱ)当0≤2m ≤2,即0≤m ≤4时,函数的最小值为23144m m -++; (ⅲ)当22m >,即4m >时,函数在0≤x ≤2内y 随x 的增大而减小,此时函数的最小值为554m -+. 综上,当0m <时,函数2314y x mx m =-++的最小值为314m +; 当04m ≤≤时,函数2314y x mx m =-++的最小值为23144m m -++; 当4m >时,函数2314y x mx m =-++的最小值为554m -+. ............... 7分24.(1)AD BE=,AD BE ⊥. ........................................................................................ 2分(2)证明:连接DM ,AM . 在等边三角形ABC 中,M 为BC 的中点,∴ AM BC ⊥,1302BAM BAC ∠=∠=︒,AM BM∴ 90BME EMA ∠+∠=︒.同理,DM EM90AMD EMA ∠+∠=︒. ∴ AM DM BM EM=,AMD BME ∠=∠. ······· 3分 ∴ △ADM ∽△BEM .∴AD DM BE EM= ................................................................................ 4分 延长BE 交AM 于点G ,交AD 于点K . ∴ MAD MBE ∠=∠,BGM AGK ∠=∠.∴ 90GKA AMB ∠=∠=︒.∴ AD BE ⊥. ............................................................................................ 5分(3)解:(ⅰ)当△DEF 绕点M 顺时针旋转α(o 0≤α≤o 90∵ △ADM ∽△BEM ,∴ 2()3ADM BEM S AD S BE∆∆==. ∴ 13BEM ADM S S ∆∆= ∴ ABM ADM BEM DEM S S S S S ∆∆∆∆=+--23ABM ADM DEM S S S ∆∆∆=+- 121133)12322x =⨯⨯⨯⨯--⨯ =+∴ S = (3≤x ≤3+. ........................................................... 6分(ⅱ) 当△DEF 绕点M 逆时针旋转α(o 0≤α≤o 90)角时,可证△ADM ∽△BEM ,∴ 21()3BEM ADM S BM S AM ∆∆==. ∴ 13BEM ADM S S ∆∆=. ∴ ABM BEM ADM DEM S S S S S ∆∆∆∆=+--23ABM ADM DEM S S S ∆∆∆=-- 21)32x =⨯⨯-=∴ S =+(3x ≤3).综上,S +(3≤x ≤3+). ......................................................... 7分25.解:(1)①该二次函数图象的对称轴为直线1x =-; ................................................ 1分②∵∴∵ ∴..................................... 2分 (2)如图,作(ⅰ)∴在Rt △ADF 中,o 90AFD ∠=,得tan 2ADF DF∠==.延长DF 与抛物线交于点P 1,则P 1点为所求. ∴点P 1的坐标为(24)--,. ....................................................................... 3分 (ⅱ)当点P 在直线AD 的上方时,延长P 1A 至点G 使得AG =AP 1,连接DG ,作GH ⊥x 轴于点H ,如图所示.可证 △GHA ≌△1PFA . ∴ HA =AF ,GH = P 1 F ,GA =P 1A .又∵ (40)A -,,1(2P --,∴ 点G 的坐标是(64)-,在△ADP 1中, DA =DP 1=5,1AP =,∴ 22211DA AP DP +=.∴ 1o 90DAP ∠=.∴ DA ⊥1GP .∴ 1DG DP =.∴ 1ADG ADP ∠=∠.∴ 1tan tan ADG ADP ∠=∠P 2,则P 2点为所求.作DK2S ∥GK 交DK 于点S .设P 4)x -, 则22241522S x x x x P =+--=+-,2DS x =--. 由2P S DS =,3GK =,4DK =,得2152234x x x +---=. 140x -=.∵ P 2点在第二象限,∴ P 2点的横坐标为71614x --=(舍正). 综上,P 点的横坐标为-2或71614--. ..................................................... 5分 (3)如图,连接O O ',交CE 于T .连接O 'C . ∵ 点O 与点O '关于EC 所在直线对称,∴ O O '⊥CE ,OCE ∠=∠O 'CE ,∠C O 'E o 90COE =∠=.∴ O 'C ⊥O 'E .∵ ON ⊥O 'E ,∴ O 'C ∥O N .∴ OMC ∠=∠O 'C E OCE =∠.分 ∴ CT MT =.∵ 在Rt △ETO 中,o 90ETO ∠=,cos ET OEC OE∠=, 在Rt △COE 中,o 90COE ∠=,cos OE OEC EC∠=, ∴ OE ET EC OE=. ∴ 2OE ET EC =⋅()EM TM EC =+⋅EM EC TM EC =⋅+⋅ 32TM EC =+⋅.同理 2OC CT EC =⋅TM EC =⋅16=.∴ 2321648OE =+=.∵ 0OE >,∴ 43OE =.∵ 点E 在x 轴的正半轴上,∴ E 点的坐标为(43,0). ............................................................................... 8分。