中心对称图形的证明题

合集下载

中心对称与中心对称图形中档题30道解答题附答案

中心对称与中心对称图形中档题30道解答题附答案

9.2 中心对称与中心对称图形中档题汇编(3)相等两部分的直线.9.2 中心对称与中心对称图形中档题汇编(3)参考答案与试题解析一.解答题(共30小题)1.(2013•江西模拟)物体受重力作用的作用点叫做这个物体的重心.例如一根均匀的棒,重心是棒的中点,一块均匀的三角形木板,重心就是这个三角形三条中线的交点,等等.(1)你认为平行四边形的重心位置在哪里?请说明理由;(2)现有如图的一块均匀模板,请只用直尺和铅笔,画出它的重心(直尺上没有刻度,而且不允许用铅笔在直尺上做记号).2.(2010•沙河口区一模)在14×9的方格纸中,每个小正方形的边长都为1,△ABC与△A′B′C′的位置如图所示;(1)请说明△ABC与△A′B′C′的位置关系;(2)若点C的坐标为(0,0),则点B′的坐标为(7,﹣2);(3)求线段CC′的长.的长为:=23.(2006•陕西)观察下面网格中的图形,解答下列问题:(1)将网格中左图沿水平方向向右平移,使点A移至点A′处,作出平移后的图形:(2)(1)中作出的图形与右边原有的图形,组成一个新的图形,这个新图形是中心对称图形,还是轴对称图形?4.如图,AC与BD互相平分且相交于点O,点E、F分别在AB、CD上,且AE=CF,试利用“中心对称”的有关知识,说明点E、O、F在同一直线上且OE=OF.5.如图,在△ABC中,D为BC上任一点,DE∥AC交AB与E,DF∥AB交AC于F,求证:点E,F关于AD的中心对称.6.如图所示,过▱ABCD的对角线的交点O任意画一条直线l,分别交AD、BC于点E、F,l将平行四边形分成两个四边形,这两个四边形是否关于点O成中心对称?请说明理由.7.将两个大小相等的圆部分重合,其中重叠的部分(如图1中的阴影部分)我们称之为一个“花瓣”,由一个“花瓣”及圆组成的图形称之为花瓣图形,下面是一些由“花瓣”和圆组成的图形.(1)以上5个图形中是轴对称图形的有A,B,C,D,E,是中心对称图形有A,C,E.(分别用图形的代号A、B、C、D、E填空).(2)若“花瓣”在圆中是均匀分布的,试根据上题的结果总结“花瓣”的个数与花瓣图形的对称性(轴对称或中心对称)之间的规律.当花瓣是偶数个,则即是中心对称图形也是轴对称图形,若花瓣是奇数个,则是轴对称图形.(3)根据上面的结论,试判断下列花瓣图形的对称性:①九瓣图形是是轴对称图形;②十二瓣图形是既是轴对称图形也是中心对称图形;③十五瓣图形是是轴对称图形;④二十六瓣图形是既是轴对称图形也是中心对称图形.8.(2011•芜湖县校级模拟)一天,上九年级的聪聪和明明在一起下棋,这时聪聪灵机一动,象棋中也有很多数学知识,如图,我们给中国象棋棋盘建立一个平面直角坐标系(每个小正方形的边长均为1),根据象棋中“马”走“日”的规定,若“马”的位置在图中的点P.(1)写出下一步“马”可能到达的点的坐标(0,0),(0,2),(1,3),(3,3),(4,2),(4,0);(2)明明想了想,我还有两个问题呢:①如果顺次连接(1)中的所有点,你知道得到的图形是轴对称图形(填“中心对称”、“旋转对称”、“轴对称”);②指出(1)中关于点P成中心对称的点(0,0)点和(4,2)点;(0,2)点和(4,0)点.9.(2011•垫江县校级模拟)有一块方角形钢板如图所示,如何用一条直线将其分为面积相等的两部分.10.(2012•钦州模拟)如图,线段AC、BD相交于点O,AB∥CD,AB=CD.线段AC上的两点E、F关于点O中心对称.求证:BF=DE.中,11.已知△ABC,∠ACB=90°,把△ABC用直线分割成两部分,可以拼成与△ABC等面积的一些四边形.比如图①,把△ABC用直线EF分割后,利用中心对称知识,拼成了与它等面积的矩形GBCF.请你也利用中心对称知识,按下列要求进行操作:(1)把图②中的直角△ABC用适当的直线分割成两部分,拼成与△ABC等面积的一个平行四边形;(2)把图③中的直角△ABC用适当的直线分割成两部分,拼成与△ABC等面积的一个梯形.(图中需作必要的标记,不要求说明理由)12.(2014春•宜春期末)如图,矩形ABCD在平面直角坐标系的位置如图,A(0,0)、B(6,0)、D(0,4).(1)根据图形直接写出点C的坐标:(6,4);(2)已知直线m经过点P(0,6)且把矩形ABCD分成面积相等的两部分,请只用直尺准确地画出直线m,并求该直线m的解析式.x+613.(2009秋•苏州期末)如图,在矩形ABCD中,点E在AD上,EC平分∠BED.(1)试判断△BEC是否为等腰三角形,请说明理由?(2)若AB=1,∠ABE=45°,求BC的长.(3)在原图中画△FCE,使它与△BEC关于CE的中点O成中心对称,此时四边形BCFE是什么特殊平行四边形,请说明理由.∴∴14.(2011春•武胜县校级期末)如图,点O是平行四边形ABCD的对称中心,将直线DB绕点O顺时针方向旋转,交DC、AB于点E、F.(1)证明:△DEO≌△BFO;(2)若DB=2,AD=1,AB=,当DB绕点O顺时针方向旋转45°时,判断四边形AECF的形状,并说明理由.OD=OB=DB=115.(2012秋•简阳市期末)如图,矩形ABCD和矩形AEFG关于点A中心对称,(1)四边形BDEG是菱形吗?请说明理由.(2)若矩形ABCD面积为2,求四边形BDEG的面积.16.(2010秋•庄浪县校级期末)如图所示:两个五角星关于某一点成中心对称,指出哪一点是对称中心?并指出图中A,B,C,D的对称点.17.(2014秋•东西湖区校级期末)如图是一个中心对称图形,A为对称中心,若∠C=90°,∠B=30°,BC=,求BB′的长为8.cosB==,18.阅读下面操作过程,回答后面的问题:在一次数学实践探究活动中,李小明同学如图1,过AB、CD的中点画直线EF,把矩形ABCD分割成a,b两部分;而王小刚同学如图2,过A、C两点画直线AC,把矩形ABCD分割成c,d两部分.(1)a,b,c,d的面积关系是Sa=Sb=Sc=Sd.(2)根据这两位同学的分割原理,你能探索出多少种分割方法?请写出你的推理结果或猜想,并任意画出一种;(3)由上述的实验操作过程,你能发现什么规律?Sa=Sb=Sc=Sd=S19.(1)能把平行四边形分成面积相等的两部分的直线有无数条,它们的共同特点是均经过两条对角线的交点.(2)如图,已知:AB∥CD∥FE,AF∥BC∥DE、求作一条直线,将这个图形分成面积相等的两部分、要求:对分法的合理性进行说明,并在图中作出分法的示意图(保留作图痕迹).(3)自己设计一个图形A(由至少两个基本的中心对称图形B、C组成),并作出可以将图形A面积分成相等两部分的直线.20.(2014春•定陶县期末)如图,在△ABC中,AB=AC,△ABC与△DEC关于点C成中心对称,连接AE、BD.(1)线段AE、BD具有怎样的位置关系和大小关系?说明你的理由.(2)如果△ABC的面积为5cm2,求四边形ABDE的面积.(3)当∠ACB为多少度时,四边形ABDE为矩形?说明你的理由.21.(2011秋•庄浪县校级期末)如图,正方形ABCD与正方形A′B′C′D′关于点O中心对称,若正方形ABCD的边长为1,设图形重合部分的面积为y,线段OB的长为x,求y与x之间的函数关系式.BD==OB=DE=(﹣﹣x﹣22.(2009秋•和县期末)用六根一样长的小棒搭成如图所示的图形,试移动AC、BC这两根小棒,使六根小棒成为中心对称图形;若移动AC、DE这两根,能不能也达到要求呢?(画出图形)23.(2009秋•泗阳县校级期中)如图,AC=BD,∠A=∠B,点E、F在AB上,且DE∥CF,试说明这是中心对称图形.24.(2010秋•白下区校级期中)如图,已知△ABC和点O.(1)在图中画出△A′B′C′,使△A′B′C′与△ABC关于O点中心对称;(2)点A、B、C、A′、B′、C′能组成哪几个平行四边形?请用符号表示出来▱ABA′B′,▱BCB′C′,▱CA′C′A.25.(2009秋•琼海期中)如图,已知AD是△ABC的中线,画出以点D为对称中心、与△ABD成中心对称的三角形.26.(2011秋•克拉玛依区校级期中)关于点E成中心对称的图形.27.(2014秋•宜春期末)如图是4×4正方形网格,请在其中选取一个白色的单位正方形并涂黑,使图中黑色部分是一个中心对称图形.28.(2010秋•苏州期中)如图,由4个全等的正方形组成的L形图案,请按下列要求画图:(1)在图案①中添加1个正方形,使它成轴对称图形(不能是中心对称图形);(2)在图案②中添画1个正方形,使它成中心对称图形(不能是轴对称图形);(3)在图案中改变1个正方形的位置,画成图案③,使它既成中心对称图形,又成轴对称图形.29.(2010秋•宿豫区期中)如图,已知△ABC与△A′B′C′成中心对称图形,求出它的对称中心O.30.如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.(1)在图1中,画一个三角形,使它的三边长都是无理数;(2)在图2中,画出一个直角三角形,使它的三边长都是整数;(3)在图3中,画出一个中心对称图形.、、。

中心对称图形(较难)

中心对称图形(较难)

2016-2017学年度???学校4月月考卷1.下列图形中,既是轴对称图形又是中心对称图形的共有( )A .1个B .2个C .3个D .4个2.若点P (1,-n ),Q (m ,3)关于原点对称,则P ,Q 两点的距离为( )A 、8B 、22C 、10D 、1023.在如图所示的平面直角坐标系中,△OA 1B 1是边长为2的等边三角形,作△B 2A 2B 1与△OA 1B 1关于点B 1成中心对称,再作△B 2A 3B 3与△B 2A 2B 1关于点B 2成中心对称,如此作下去,则△B 2n A 2n+1B 2n+1(n 是正整数)的顶点A 2n+1的坐标是 .4.如图,第(1)个多边形由正三角形"扩展"而来,边数记3a ,第(2)个多边形由正方形"扩展"而来,边数记为4a ,…,依此类推,由正n 边形"扩展"而来的多边形的边数记为n a (n≥3).则8a 的值是 .5.二次函数y = x 2-2x-2的图象在坐标平面内绕顶点旋转180°,再向左平移3个单位,向上平移5个单位后图象对应的二次函数解析式为___________.6.在数轴上点A ,B 对应的数分别为2,15+-x x ,且A ,B 两点关于原点对称,则x 的值为____.7.一个正方体的每个面都写有一个汉字.其平面展开图如图所示,那么在该正方体中,和“您”相对的字是________________。

8.【本小题满分8分】如图,在方格网中已知格点△ABC 和点C .(1)画C B A '''∆和△ABC 关于点O 成中心对称;(2)请在方格网中标出所有使以点A 、O 、C '、D 为顶点的四边形是平行四边形的D 点.9.如图,正方形ABCD 与正方形A 1B 1C 1D 1关于某点中心对称.已知A ,D 1,D 三点的坐标分别是(0,4),(0,3),(0,2).(1)求对称中心的坐标;(2)写出顶点B ,C ,B 1,C 1的坐标.10.(本题满分8分)△ABC 在平面直角坐标系xOy 中的位置如图所示.(1)作△ABC 关于点C 成中心对称的△A 1B 1C 1.(2)将△A 1B 1C 1向右平移3个单位,作出平移后的△A 2B 2C 2.(3)在x 轴上求作一点P ,使PA 1+PC 2的值最小,并写出点P 的坐标.(不写解答过程,直接写出结果).11.按下列要求正确画出图形:(1)已知ABC ∆和直线MN ,画出ABC ∆关于直线MN 对称的C B A '''∆;(2)已知ABCD 和点O ,画出ABCD 关于点O 成中心对称的四边形D C B A ''''.12.如图,有四块全等的直角三角形纸片,直角边长分别是1,2,请利用这四块纸片按下列要求在6×6方格纸中各拼一个图形(四块纸片都要用上,无缝隙且无重叠部分),直角顶点在格点上.(1)图甲中作出是轴对称图形而不是中心对称图形;(2)图乙中作出是中心对称图形而不是轴对称图形;(3)图丙中作出既是轴对称图形又是中心对称图形.13.如图,公园里有一块平行四边形的草坪,草坪里有一个圆形花坛,有关部门计划在草坪上修一条小路,这条小路要把草坪和花坛的面积同时平分,请在图中画出这条小路。

初中数学专题训练--四边形--中心对称和中心对称图形

初中数学专题训练--四边形--中心对称和中心对称图形

典型例题一例01. 下列几组几何图形中,既是轴对称图形,又是中心对称图形,完全正确的一组是( ).A .正方形、菱形、矩形、平行四边形B .正三角形、正方形、菱形、矩形C .正方形、矩形、菱形D .平行四边形、正方形、等腰三角形 分析 A 中平行四边形不是轴对称图形,B 中正三角形不是中心对称图形,D 中平行四 边形不是轴对称图形.正选C .解答 本题主要考查轴对称和中心对称图形的判定,易错点是弄错图形的对称性,解题关键是要熟悉所学过的图形的对称性.典型例题二例02.如图,已知:四边形ABCD 关于O 点成中心对称图形. 求证:四边形ABCD 是平行四边形.分析:因为四边形ABCD 是中心对称图形,所以A 点与C 点,B 点与D 点是对称点. 所以线段AC 过O 点,线段BD 也过O 点,且两条线段都被O 点平分,故四边形ABCD 是平行四边形.证明:连结AC 、BD .∵ 四边形ABCD 关于O 点成中心对称图形,∴ O 点在AC 上,也在BD 上,并且OD OB OC OA ==,∴ 四边形ABCD 是平行四边形.说明:要应用轴对称或中心对称解决问题,应该判断清楚图形的对称的特点,找到对称点.典型例题三例03.如图,已知:矩形ABCD 和D C B A '''关于点A 对称. 求证:四边形D B BD ''是菱形.分析:根据题意知点B 与B '关于点A 对称,点D 和点D '关于点A 对称,又四边形ABCD 和D C B A '''是矩形,由中心对称的性质及矩形的性质即可证明.证明:∵矩形ABCD 和D C B A '''关于点A 成中心对称图形.∴ D A AD '=,B A AB '=(关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分).∴ 四边形D B BD ''是平行四边形.又∵四边形ABCD 是矩形,∴︒=∠90DAB ∴四边形D B BD ''是菱形.典型例题四例04.(西安市,2000)已知:如图,AD 是ABC ∆中A ∠的平分线,AC DE //交AB 于E ,AB DF //交AC 于F .求证:点E ,F 关于直线AD 对称.证明:∵AE DF AF DE //,//,∴四边形AEDF 是平行四边形.∵DAF DAE ∠=∠,EDA DAF ∠=∠, ∴EDA DAE ∠=∠. ∴ED AE = ∴AEDF 是菱形.∴点E ,F 关于直线AD 对称. 说明 证明菱形是关键典型例题五例05.(南昌市,1999)按要求画一个图形:所画图形中同时要有正方形和圆,并且这个图形既是中心对称图形又是轴对称图形.分析 这是一道具有开放特色的考题,题中给定的两个图形都既是轴对称图形,也是中心对称图形,故按要求画出的图形只要让两个图形的对称中心重合即可.这样的图形观出很多.解答 具体作法是:先作出正方形,连结对角线找出对角线交点,再以对角线交点为圆心,以任意长为半径画图,所得图形都满足题设要求.举例如下:说明 本题考查轴对称图形和中心对称图形的应用,解题关键是要探索出两个图形的对称中心重合.选择题1.(四川省,2000)下列图形中,既是轴对称图形又是中心对称图形的是( )A .角B .等边三角形C .线段D .平行四边形 2.下列多边形中,是中心对称图形而不是轴对称图形的是( )A .平行四边形B .矩形C .菱形D .正方形 3.已知下列命题:(1)关于中心对称的两个图形一个不全等;(2)关于中心对称的两个图形是全等的图形;(3)两个全等的图形一定关于中心对称,其中真命题的个数是( )A .0B .1C .2D .34.在平面上一个菱形绕它的中心旋转,使它与原来的菱形重合,那么旋转角度至少是( )A .︒180B .︒90C .︒270D .︒3605.下列命题:(1)如果ABC ∆与C B A '''∆关于中心对称,则C B A ABC '''∆≅∆;(2)如果C B A ABC '''∆≅∆,则ABC ∆与C B A '''∆关于中心对称;(3)相交的两条直线是中心对称图形;(4)等边三角形是中心对称图形;(5)菱形是中心对称图形. 其中正确的命题的个数是()A .1B .2C .3D .4 6.(威海市,2001;北京市东城区,2002)下列四个图形中,既是轴对称图形又是中心对称图形的是()A .①②③④B .①②③C .①③D .③ 7.下列图形中,是中心对称图形而不是轴对称图形的是(). A .平行四边形 B .矩形 C .菱形 D .正方形8.下列图形中,既是轴对称图形,又是中心对称图形的是().A .等腰三角形B .等边三角形C .平行四边形D .矩形9.下列说法中正确的是().A .矩形的每一条对角线都是矩形的对称轴B .平行四边形对角线的交点是平行四边形的对称中心C .菱形是轴对称图形,但不是中心对称图形D .中心对称图形就是中心对称参考答案:1.C 2.A 3.B 4. A 5.C 6.D 7.A 8.D 9.B填空题1.在平行四边形,菱形,等边三角形中,轴对称图形有_____种,中心对称图形有______种.2.既是中心对称图形,又是轴对称图形,且只有两条对称轴的四边形是_______. 3.关于中心对称的两个图形,对应线段_______. 4.(徐州市,2000)在下面四个图形中,图形①与图形_______成轴对称;图形①与图形________成中心对称(填写符合要求的图形所对应的序号)参考答案: 1.3,32.矩形或菱形 3.平行且相等 4.④,③解答题1.如图,已知线段AB 及AB 外一点P ,求作线段B A '',使B A ''与AB 关于点P 对称.2.如图,已知ABC ∆及点P ,求作C B A '''∆,使C B A '''∆与ABC ∆关于点P 对称.3.如图,已知ABC ∆及其内部一点O ,求作C B A '''∆,使C B A '''∆与ABC ∆关于点O 对称.4.如图,已知:矩形ABCD 和矩形D C B A '''关于A 点对称. 求证:四边形D B BD ''是菱形.5.已知ABCD ,作四边形D C B A '''',使它与已知平行四边形关于顶点A 对称,并证明四边形C B BC ''是平行四边形.6.如图,四边形ABCD 关于O 点成中心对称图形, 求证:四边形ABCD 是平行四边形.7.(山西省,2000)如图,矩形ABCD 是篮球场地简图,请你画图找出它们的对称中心O .8.(南昌市,2001)如图,将标号为A 、B 、C 、D 的正方形沿图中的虚线剪开后得到标号为P 、Q 、M 、N 的四组图形. 试按照“哪个正方形剪开后得到哪组图形”的对应关系,填空:A 与______对应;B 与______对应;C 与______对应;D 与______对应.9.(遵义市,2000)如图,请画出把下列矩形的面积两等分的直线,并填空. (一个矩形只画一条直线,不写画法)在一个矩形中,把此矩形面积两等分的直线最多有______条,这些直线都必须经过该矩形______点.10.(聊城市,2000)如图,已知矩形ABCD 中,3=AB ,4=BC ,将矩形折叠使C 点与A 点重合.(1)作出折痕EF ,并写出作法(E 点在BC 边上,F 点在AD 边上);(2)翻折后点D 落在D '上,求此时B 、D '之间的距离.11.(济南市,2001)如图是未完成的上海大众汽车的标志图案. 该图案应该是以直线l 为对称轴的轴对称图形,现已完成对称轴左边的部分,请你补全标志图案,画出对称轴右边的部分(要求用尺规作图,保留痕迹,不写作法).12.(荆州市,2002)有一块方角形钢板如图所示,请你用一条直线将其分为面积相等的两部分(不写作法,保留作图痕迹,在图中直接画出).13.(盐城市,2002)已知:如图,矩形ABCD . (1)作出点C 关于BD 所在直线的对称点C '(用尺规作图,不写作法,保留作图痕迹) (2)连结B C ',D C ',若BD C '∆与ABD ∆重叠部分的面积等于ABD ∆面积的32,求CBD ∠的度数.14.(福州市,2002)已知:图(1),图(2)分别是66⨯正方形网格上的两个轴对称图形(阴影部分),其面积分别为A S ,B S (网格中最小的正方形面积为一个平方单位),请观察图形并解答下列问题.(1)填空:B A S S :的值是_______;(2)请在图(3)的网格上画出一个面积为8个平方单位的中心对称图形.参考答案:1.略 2.略 3.略4.因矩形ABCD 和矩形D C B A '''关于A 点对称,∴ B A AB '=,D A DA '= ∴ 四边形D B BD ''是平行四边形. ∵ B B D D '⊥',∴D B BD ''是菱形 5. 图略,证法同第4题. 6.证明:连结AC ,BD .∵ 四边形ABCD 关于O 点成中心对称图形,∴ O 点在AC 和BD 上,且OD OB OC OA ==,. ∴ 四边形ABCD 是平行四边形. 7.连结AC ,BD 交于O 8.M ,P ,Q ,N9.略 10.略 11.图略 12.略13.(1)略;(2)连结C B ',C D ',设C B '与AD 相交于E . 证AE BE EB ED 2,==,求得︒=∠30ABE ,∴ ︒=∠30CBD14.(1)119:=B A S S ;(2)略。

苏教版八年级下册 第9章:中心对称图形~平行四边形重难点题型训练 【含答案】

苏教版八年级下册 第9章:中心对称图形~平行四边形重难点题型训练 【含答案】

苏教版八年级下册第9章:中心对称图形——平行四边形重难点题型训练1.如图1,菱形ABCD的对角线AC、BD相交于点O,过点D作DE∥AC,且DE=AC,连接CE、OE,连接AE交OD于点F.(1)求证:OE=CD;(2)如图2,延长BC和DE相交于点G,不添加任何辅助线的情况下,直接写出图中所有的平行四边形.(除四边形ABCD和四边形OCED外)2.如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DE∥AC,且2DE=AC,连接AE交OD于点F,连接DE、OE.(1)求证:AF=EF;(2)已知AB=2,若AB=2DE,求AE的长.3.如图,四边形ABCD为平行四边形,延长BC到点E,使BE=CD,连接AE交CD 于点F.(1)求证:AE平分∠BAD;(2)连接BF,若BF⊥AE,∠E=60°,AB=4,求平行四边形ABCD的面积.4.如图,在△ABC中,点D是BC边的中点,点E,F分别在AC,AB上,且DE∥AB,EF∥BC.(1)求证:CD=EF;(2)已知∠ABC=60°,连接BE,若BE平分∠ABC,CD=6,求四边形BDEF 的周长.5.(1)如图①,点E、F分别在正方形ABCD的边AB、BC上,∠EDF=45°,连接EF,求证:EF=AE+FC.(2)如图②,点E,F在正方形ABCD的对角线AC上,∠EDF=45°,猜想EF、AE、FC的数量关系,并说明理由.6.如图,在▱ABCD中,∠BAD的平分线交BC于点E,∠ABC的平分线交AD于点F,AE与BF相交于点O,连接EF.(1)求证:四边形ABEF是菱形;(2)若AE=6,BF=8,CE=,求▱ABCD的面积.7.如图,在平面直角坐标系中,正方形ABCD的顶点C、A分别在x、y轴上,A(0,6),E(0,2),点H、F分别在边AB、OC上,以H、E、F为顶点作菱形EFGH.(1)当H(﹣2,6)时,求证:四边形EFGH是正方形;(2)若F(﹣5,0),求点G的坐标.8.如图,过四边形ABCD的四个顶点分别作对角线AC,BD的平行线,所围成的四边形EFGH显然是平行四边形.(1)当四边形ABCD分别是菱形、矩形、平行四边形时,相应的四边形EFGH一定是“平行四边形、菱形、矩形、正方形”中的哪一种?请将你的结论填入下表:四边形ABCD菱形矩形平行四边形四边形EFGH (2)反之,当用上述方法所围成的平行四边形EFGH分别是矩形、菱形时,相应的原四边形ABCD必须满足怎样的条件?当 时,四边形EFGH是矩形;当 时四边形EFGH是菱形.9.如图,E是正方形ABCD对角线BD上一点,EM⊥BC,EN⊥CD垂足分别是点M、N(1)求证:AE=MN;(2)若AE=2,∠DAE=30°,求正方形的边长.10.如图,△ABC≌△DBC,AD平分∠BAC,AD交BC于点O.(1)如图1,求证:四边形ABDC是菱形;(2)如图2,点E为BD边的中点,连接AE交BC于点F,若∠AFO=∠ADC,在不添加任何辅助线和字母的条件下,请直接写出图2中所有长度是线段EF长度的偶数倍的线段.11.如图,在△ABC中,∠BAC=90°,∠B=45°,BC=10,过点A作AD∥BC,且点D在点A的右侧.点P从点A出发沿射线AD方向以每秒1个单位的速度运动,同时点Q从点C出发沿射线CB方向以每秒2个单位的速度运动,在线段QC上取点E,使得QE=2,连接PE,设点P的运动时间为t秒.(1)若PE⊥BC,求BQ的长;(2)请问是否存在t的值,使以A,B,E,P为顶点的四边形为平行四边形?若存在,求出t的值;若不存在,请说明理由.12.已知:正方形ABCD,E是BC的中点,连接AE,过点B作射线BM交正方形的一边于点F,交AE于点O.(1)若BF⊥AE,①求证:BF=AE;②连接OD,确定OD与AB的数量关系,并证明;(2)若正方形的边长为4,且BF=AE,求BO的长.13.如图,在四边形ABCD中,AB∥CD,AB=CD,∠A=∠ADC,E,F分别为AD,CD的中点,连接BE,BF,延长BE交CD的延长线于点M.(1)求证:四边形ABCD为矩形;(2)若MD=6,BC=12,求BF的长度.(结果可保留根号)14.在矩形ABCD中,点E,点F为对角线BD上两点,DE=EF=FB.(1)求证:四边形AFCE是平行四边形;(2)若AE⊥BD,AF=2,AB=4,求BF的长度.15.如图,在△ABC中,D是BC边上的一点,E是AD的中点,过点A作BC的平行线交CE的延长线于点F,且AF=BD,连接BF.(1)求证:△AEF≌△DEC;(2)当△ABC满足什么条件时,四边形AFBD是矩形?请说明理由.参考答案1.(1)证明:∵四边形ABCD是菱形,∴∠COD=90°,OC=AC,∵DE=AC,∴OC=DE,∵DE∥AC,∴四边形OCED是平行四边形,∴四边形OCED是矩形,∴OE=CD;(2)图中所有的平行四边形有:四边形AOED,四边形ACGD,四边形OBCE.由AO DE可得四边形AOED是平行四边形;由AC∥DG,AD∥CG可得四边形ACGD是平行四边形;由OE∥BC,OB∥CE可得四边形OBCE是平行四边形.2.(1)证明:∵四边形ABCD是菱形,∴OA=OC=AC,∵2DE=AC,∴DE=OA,又∵DE∥AC,∴四边形OADE是平行四边形,∴AF=EF;(2)解:连接CE,∵DE∥OC,DE=OC,∴四边形OCED是平行四边形,又∵菱形ABCD,∴AC⊥BD,∴四边形OCED是矩形,∴∠OCE=90°,又∵AB=2DE=AC,∴△ABC为等边三角形,∵在菱形ABCD中,∠ABC=60°,∴AC=AB=2,AO=AC=1,∴在矩形OCED中,CE=OD==,∴在Rt△ACE中,AE==.3.(1)证明:∵四边形ABCD为平行四边形,∴AB=CD,AD∥BE,∴∠DAE=∠E,∵AE平分∠BAD,∴∠DAE=∠BAE,∴∠BAE=∠E,∴AB=BE,∴∠BAE=∠E,∴∠BAE=∠DAE,∴AE平分∠BAD;(2)解:由BE=AB,∠BEA=60°,∴△ABE为等边三角形,∴AB=AE=4,又∵BF⊥AE,∴AF=EF=2,∴BF==2,∵∠DAE=∠E,AF=EF,∠AFD=∠CFE,∴△ADF≌△ECF(ASA),∴平行四边形ABCD的面积=△ABE的面积=×4×2=4.4.(1)证明:∵DE∥AB,EF∥BC,∴四边形BDEF是平行四边形,∴EF=BD,∵点D是BC边的中点,∴BD=CD,∴CD=EF;(2)解:∵BE平分∠ABC,∴∠FBE=∠DBE,又∵四边形BDEF是平行四边形,∴BD=EF,BF=ED,EF∥BD,∴∠FEB=∠DBE,∴∠FBE=∠BEF,∴BF=EF,∴BD=EF=BF=ED,又∵BD=CD=6,∴BD=EF=BF=ED=6,∴四边形BDEF的周长=6×4=24.5.证明:(1)∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠B=∠C=∠ADC=∠DAB=90°,如图①:延长BA,使AM=CF,连接MD,在△AMD和△CFD中,,∴△AMD≌△CFD(SAS),∴∠MDA=∠CDF,MD=DF,∵∠EDF=45°,∴∠ADE+∠FDC=45°,∴∠ADM+∠ADE=45°=∠MDE,∴∠MDE=∠EDF,在△EDF和△EDM中,,∴△EDF≌△EDM(SAS),∴EF=EM,∵EM=AM+AE=AE+CF,∴EF=AE+CF;(2)EF2=AE2+CF2,理由如下:如图②,将△CDF绕点D顺时针旋转90°,可得△ADN,由旋转的性质可得DN=DF,AN=CF,∠DAN=∠DCF=45°,∠CDF=∠ADN,∴∠CAN=∠CAD+∠DAN=90°,∴EN2=AE2+AN2,∵∠EDF=45°,∴∠CDF+∠ADE=45°,∴∠ADE+∠ADN=45°=∠NDE=∠EDF,在△EDF和△EDN中,,∴△EDF≌△EDN(SAS),∴EF=EN,∴EF2=AE2+CF2.6.解:(1)∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAE=∠AEB,∵∠BAD的平分线交BC于点E,∴∠DAE=∠BEA,∴∠BAE=∠BEA,∴AB=BE,同理可得AB=AF,∴AF=BE,∴四边形ABEF是平行四边形,∵AB=AF.∴四边形ABEF是菱形.(2)作FG⊥BC于G,∵四边形ABEF是菱形,AE=6,BF=8,∴AE⊥BF,OE=AE=3,OB=BF=4,∴BE==5,∵S菱形ABEF=•AE•BF=BE•FG,∴GF=,∴S平行四边形ABCD=BC•FG=(BE+EC)•GF=(5+)×=36.7.解:(1)∵四边形ABCD是正方形,∴∠BAO=∠AOC=90°,∵E(0,2),H(﹣2,6),∴AH=OE=2,∵四边形EFGH是菱形,∴EH=EF,在Rt△AHE和Rt△OEF中,,∴Rt△AHE≌Rt△OEF,∴∠AEH=∠EFO,∵∠EFO+∠FEO=90°,∴∠AEH+∠FEO=90°,∴∠HEF=90°,∵四边形EFGH是菱形,∴四边形EFGH是正方形.(2)连接EG交FH于K.∵HE=EF,∴AH2+AE2=EO2+OF2,∴AH2+16=4+25,∴AH=,∴H(﹣,6),∵KH=KF,∴K(﹣,3),∵GK=KE,∴G(﹣5﹣,4).8.解:(1)四边形ABCD是菱形时,平行四边形EFGH是矩形,四边形ABCD是矩形时,平行四边形EFGH是菱形,四边形ABCD是平行四边形时,四边形EFGH是平行四边形;故答案为:矩形;菱形;平行四边形;(2)当平行四边形是矩形时,原四边形ABCD必须满足的条件是对角线互相垂直,当平行四边形是菱形时,原四边形ABCD必须满足的条件是对角线相等.故答案为:对角线互相垂直(AC⊥BD);对角线相等(A C=BD).9.(1)证明:连接EC.∵四边形ABCD是正方形,EM⊥BC,EN⊥CD,∴∠NCM=∠CME=∠CNE=90°,∴四边形EMCN为矩形.∴MN=CE.又∵BD为正方形ABCD的对角线,∴∠ABE=∠CBE.在△ABE和△CBE中∵,∴△ABE≌△CBE(SAS).∴AE=EC.∴AE=MN.(2)解:过点E作EF⊥AD于点F,∵AE=2,∠DAE=30°,∴EF=AE=1,AF=AE•cos30°=2×=.∵BD是正方形ABCD的对角线,∴∠EDF=45°,∴DF=EF=1,∴AD=AF+DF=+1,即正方形的边长为+1.10.(1)证明:∵△ABC≌△DBC,∴AB=BD,AC=CD,∴∠BAD=∠BDA,∠CAD=∠CDA,∵AD平分∠BAC,∴∠DAB=∠DAC,∠ADC=∠ADC,在△ADB和△ADC中,,∴△ADB≌△ADC,∴AB=AC,∴AB=BD=CD=AC,∴四边形ABCD是菱形.(2)解:∵∠AFO=∠ADC=∠ADB,又∵∠AFO+∠EFO=180°,∴∠EFO+∠EDO=180°,∴∠FED+∠FOD=90°,∵四边形ABCD是菱形,∴AD⊥BC,∴∠FEO=∠FOD=90°,∵BE=ED,∴AB=AD,∴AB=AD=BD,∴△ABD是等边三角形,∴∠EBF=∠ABD=30°,在Rt△BEF中,BF=2EF,∵∠FBA=∠FAB=30°,∴FA=FB,在Rt△AFC中,CF=2AF=4EF,综上所述,长度是线段EF长度的偶数倍的线段有BF,AF,CF.11.解:(1)作AM⊥BC于M,设AC交PE于N.如图所示:∵∠BAC=90°,∠B=45°,∴∠C=45°=∠B,∴AB=AC,∴BM=CM,∴AM=BC=5,∵AD∥BC,∴∠PAN=∠C=45°,∵PE⊥BC,∴PE=AM=5,PE⊥AD,∴△APN和△CEN是等腰直角三角形,∴PN=AP=t,CE=NE=5﹣t,∵CE=CQ﹣QE=2t﹣2,∴5﹣t=2t﹣2,解得:t=,所以BQ=BC﹣CQ=10﹣2×=;(2)存在,t=4或12;理由如下:若以A,B,E,P为顶点的四边形为平行四边形,则AP=BE,∴t=10﹣2t+2或t=2t﹣2﹣10解得:t=4或12∴存在t的值,使以A,B,E,P为顶点的四边形为平行四边形,t=4或12.12.解:(1)①如图1①,∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠ABE=∠C=90°,∴∠BAE+∠AEB=90°,∵BF⊥AE,∴∠CBF+∠AEB=90°,∴∠BAE=∠CBF,在△ABE和△BCF中,,∴△ABE≌△BCF(ASA),∴BF=AE;②OD=AB.证明:延长AD,交射线BM于点G,如图1②,∵△ABE≌△BCF,∴BE=CF.∵E为BC的中点,∴CF=BE=BC=DC,∴CF=DF.∵DG∥BC,∴∠DGF=∠CBF.在△DGF和△CBF中,,∴△DGF≌△CBF,∴DG=BC,∴DG=AD.∵BF⊥AE,∴OD=AG=AD=AB;(2)①若点F在CD上,如图2①,在Rt△ABE和Rt△BCF中,,∴Rt△ABE≌Rt△BCF(HL),∴∠BAE=∠CBF,∵∠BAE+∠AEB=90°,∴∠CBF+∠AEB=90°,∴∠AOB=90°.∵∠ABE=90°,AB=4,BE=2,∴AE==2.∵S△ABE=AB•BE=AE•BO,∴BO===.②若点F在AD上,如图2②,在Rt△ABE和Rt△BAF中,,∴Rt△ABE≌Rt△BAF(HL),∴∠BAE=∠ABF,∴OB=OA.∵∠BAE+∠AEB=90°,∠ABF+∠EBF=90°,∴∠AEB=∠EBF,∴OB=OE,∴OA=OB=OE.∵∠ABE=90°,AB=4,BE=2,∴AE==2,∴OB=AE=.综上所述:BO的长为或.13.(1)证明:∵在四边形ABCD中,AB∥CD,AB=CD,∴四边形ABCD是平行四边形,∴AB∥CD,∴∠A+∠ADC=180°,∵∠A=∠ADC,∴∠A=90°,∴四边形ABCD是矩形;(2)解:∵AB∥CD,∴∠ABE=∠M,∵E为AD的中点,∴AE=DE.在△ABE和△DME中,∴△ABE≌△DME(AAS),∴AB=DM=6,∵四边形ABCD是矩形,∴DC=AB=DM=6,∠C=90°,∵F为CD的中点,∴CF=CD=3,在Rt△BCF中,由勾股定理得:BF===3.14.(1)证明:连接AC,交BD于O,如图所示:∵四边形ABCD是矩形,∴∠BAD=90°,OA=OC,OB=OD,∵DE=FB,∴OE=OF,∴四边形AFCE是平行四边形;(2)解:∵DE=EF=BF,AE⊥BD,∴AD=AF=2,∴BD===2,∴BF=BD=.15.证明:(1)∵AF∥BC,∴∠AFE=∠DCE,∵点E为AD的中点,∴AE=DE,在△AEF和△DEC中,∴△AEF≌△DEC(AAS);(2)当△ABC满足:AB=AC时,四边形AFBD是矩形;∵△AEF≌△DEC,∴AF=CD,∵AF=BD,∴CD=BD;∵AF∥BD,AF=BD,∴四边形AFBD是平行四边形,∵AB=AC,BD=CD,∴∠ADB=90°,∴平行四边形AFBD是矩形.。

23.2.2中心对称图形

23.2.2中心对称图形
A O B
分析:延长AO使OC=AO,延长BO使OD=BO, 连结CD
则△COD为所求的,如图所示.

A
D
O
B C 把一个图形绕着某一个点旋转180°,如果旋 转后的图形能够与原来的图形互相重合,那么这 个图形叫做中心对称图形;这个点叫做它的对称 中心;互相重合的点叫做对称点.
融会贯通
(2)填空:下列图形中是旋转对称图形,且有一 ①③ 个旋转角为120°是_____.(• 出所有正确结论 写 的序号) ①正三角形;②正方形;③正六边形;④正 八边形. (3)写出两个多边形,它们都是旋转对称图形, 却有一个旋转角为72°,并且分别满足下列条件: ①是轴对称图形,但不是中心对称图形;②既是 轴对称图形,又是中心对称图形.
融会贯通
3.如图,直线y=2x+2与x轴、y轴分别交于A、B 两点,将△AOB绕点O• 时针旋转90°得到 顺 △A1OB1. (1)在图中画出△A1OB1; (2)设过A、A1、B三点的函数解析式为 y y=ax2+bx+c,求这个解析式.
2
B
A
-1
ቤተ መጻሕፍቲ ባይዱ
O
x

谢谢!再见!
ABCD 点O 图中_________是中心对称图形 对称中心是______ 点B 点C 点A的对称点是______ 点D的对称点是______
例1:从刚才讲的线段、平行四边形都是中心对称 图形外,每一位同学举出三个图形,它们也是中心 对称图形.
例2:请说出中心对称图形具有什么特点? 中心对称图形具有匀称美观、平稳

融会贯通
2.如图,将矩形A1B1C1D1沿EF折叠,使B1点落在 A1D1边上的B处;沿BG折叠,使D1点落在D处且BD 过F点. (1)求证:四边形BEFG是平行四边形; (2)连接BB,判断△B1BG的形状,并写出判断过 A 程.

专题02 中心对称图形(解析版)

专题02 中心对称图形(解析版)

1专题02 中心对称图形学校:___________姓名:___________班级:___________考号:___________ 一、单选题1.下面四个图形,是中心对称图形的是( )A .B .C .D .【答案】D【解析】解:A 、不是中心对称图形,故本选项不合题意;B 、不是中心对称图形,故本选项不合题意;C 、不是中心对称图形,故本选项不合题意;D 、是中心对称图形,故本选项符合题意.故选:D .2.如图,在ABCD 中,若110A C ∠+∠=︒,则B 的度数是( )A .70︒B .105︒C .125︒D .135︒【答案】C【解析】解:∵平行四边形ABCD , ∵AD//BC ,∵A=∵C ,∵∵A +∵B =180°,∵∵A +∵C =110°,∵∵A =∵C =55°,∵∵B =125°.故选:C .3.如图,菱形ABCD 的对角线AC 、BD 相交于点O ,过点D 作DH ∵AB 于点H ,连接OH ,若OA =6,S 菱形ABCD =48,则OH 的长为( )A .4B .8CD .6【答案】A【解析】解:∵四边形ABCD 是菱形,∵OA =OC =6,OB =OD ,AC ∵BD ,∵AC =12,∵DH ∵AB ,∵∵BHD =90°,∵12OH BD =,∵菱形ABCD 的面积11124822AC BD BD =⨯⨯=⨯⨯=, ∵BD =8,∵142OH BD ==;故选:A . 4.如图,在ABC 中,∵CAB =70°,在同一平面内,将ABC 绕点A 旋转到AB C ''△的位置.使得//CC AB ',则旋转角为( )A .30°B .40°C .50°D .80°【答案】B【解析】解:∵CC ′∵AB ,∵CAB =70°,∵∵C ′CA =∵CAB =70°,又∵C 、C ′为对应点,点A 为旋转中心,∵AC =AC ′,即∵ACC ′为等腰三角形,∵∵ACC ′=∵AC ′C ,∵∵BAB ′=∵CAC ′=180°﹣2∵C ′CA =40°.即旋转角为40°.故选:B .5.如图,在∵ABC 中,D 是AB 上一点,AD =AC ,AE ∵CD ,垂足为点E ,F 是BC 的中点,若BD =16,则EF 的长为( )A .32B .16C .8D .4【答案】C【解析】∵AD =AC∴ACD △是等腰三角形∵AE ∵CD ∵CE DE =∵E 是CD 的中点 ∵F 是BC 的中点∵EF 是∵BCD 的中位线∵1116822EF BD ==⨯=故答案为:C . 6.如图,在四边形ABCD 中,AC=BD=6,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点,则EG 2+FH 2的值为( )A .9B .18C .36D .48【答案】C【解析】解:连接EF、FG、GH、EH,设EG和FH交于点O,∵E、F、G、H分别是AB、BC、CD、DA的中点,∵EF∵AC,HG∵AC,EF=12 AC,FG=12BD,∵EF∵HG,同理EH∵FG,∵四边形EFGH为平行四边形,∵AC=BD,∵EF=FG,∵平行四边形EFGH为菱形,∵EG∵FH,EG=2OG,FH=2OH,∵EG2+FH2=(2OE)2+(2OH)2=4(OE2+OH2)=4EH2=4×(12BD)2=62=36;故选:C.7.如图,∵ABC中,∵B=90°,过点C作AB的平行线,与∵BAC的平分线交于点D,若AB=6,BC=8.E,F分别是BC,AD的中点,则EF的长为()A.1B.1.5C.2D.4【答案】C【解析】解:在Rt∵ABC中,∵B=90°,AB=6,BC=8∵10AC==∵AD平分∵BAC∵∵BAD=∵CAD∵AB//CD∵∵BAD=∵CDA∵∵CDA=∵CAD∵DC =AC=10延长EF交AC于点G,如图,∵EG是∵ADC的中位线,FG是∵ABC的中位线,∵1111105,63 2222EF DC FG AB==⨯===⨯=3∵532EF EG FG =-=-= 故选:C .8.如图.正方形ABCD 和正方形CEFG 中,点D 在CG 上,1BC =,H 是AF 的中点,CH =3,那么CE 的长是( )A .3B .4C D【答案】D【解析】解:连接AC 、CF ,如图,∵四边形ABCD 和四边形CEFG 都是正方形,设CE 的长为x∵∵ACD =45°,∵FCG =45°,AC BC ,CF CE x , ∵∵ACF =45°+45°=90°,在Rt∵ACF 中,AF∵H 是AF 的中点,∵CH =12AF =3.,解得x ,故选:D .9.如图,有一张矩形纸条ABCD ,AB =5cm ,BC =2cm ,点M ,N 分别在边AB ,CD 上,CN =1cm .现将四边形BCNM 沿MN 折叠,使点B ,C 分别落在点B ′,C ′上.在点M 从点A 运动到点B 的过程中,若边MB '与边CD 交于点E ,则点E 相应运动的路径长为( )cm .A32B.52CD.32【答案】A【解析】解:如图1中,∵四边形ABCD是矩形,∵AB∵CD,∵∵1=∵3,由翻折的性质可知:∵1=∵2,BM=MB′,∵∵2=∵3,∵MB′=NB′,∵NB'===cm),∵BM NB'==(cm).如图2中,当点M与A重合时,同理可得:AE=EN,设AE=EN=x cm,在Rt∵ADE中,则有2222(4)=+-x x,解得x=52,∵53422DE=-=(cm),如图3中,当点M运动到MB′∵AB时,DE′的值最大,DE′=5-1-2=2(cm),如图4中,当点M运动到点B′落在CD时,DB′(即DE″)51(4=--=(cm),5∵点E 的运动轨迹E →E ′→E ″,运动路径3322(4)22EE E B '''=+=-+-=(cm ).故选:A . 10.如图,在正方形ABCD 中,E 是对角线BD 上一点,且满足BE BC =.连接CE 并延长交AD 于点F ,连接AE ,过B 点作BG AE ⊥于点G ,延长BG 交AD 于点H .在下列结论中:∵AH DF =;∵45AEF ∠=︒;∵AH DE =;∵DEFAGHEFHG S SS=+四边形,其中正确的结论有( )个A .1B .2C .3D .4【答案】C【解析】解:∵BD 是正方形ABCD 的对角线,∵∵ABE =∵ADE =∵CDE =45°,AB =BC ,∵BE =BC ,∵AB =BE ,∵BG ∵AE ,∵BH 是线段AE 的垂直平分线,∵ABH =∵DBH =22.5°,在Rt∵ABH 中,∵AHB =90°﹣∵ABH =67.5°,∵∵AGH =90°, ∵∵DAE =∵ABH =22.5°, 在∵ADE 和∵CDE 中,45DE DEADE CDE AD CD =⎧⎪∠=∠=︒⎨⎪=⎩, ∵∵ADE ∵∵CDE (SAS ),∵∵DAE =∵DCE =22.5°,∵∵ABH =∵DCF , 在∵ABH 和∵DCF 中,BAH CDF AB CDABH DCF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∵∵ABH ∵∵DCF (ASA ),∵AH =DF ,∵CFD =∵AHB =67.5°,7∵∵CFD =∵EAF +∵AEF ,∵67.5°=22.5°+∵AEF ,∵∵AEF =45°,故∵∵正确; ∵∵FDE =45°,∵DFE =∵F AE +∵AEF =22.5°+45°=67.5°,∵∵DEF =180°﹣45°﹣67.5°=67.5°,∵DF =DE ,∵AH =DF ,∵AH =DE ,故∵正确; 如图,连接HE ,∵BH 是AE 垂直平分线,∵AG =EG ,∵S ∵AGH =S ∵HEG ,∵AH =HE ,∵∵AHG =∵EHG =67.5°,∵∵DHE =45°,∵∵ADE =45°,∵∵DEH =90°,∵DHE =∵HDE =45°, ∵EH =ED ,∵∵DEH 是等腰直角三角形,∵EF 不垂直DH ,∵FH ≠FD ,∵S ∵EFH ≠S ∵EFD ,∵S 四边形EFHG =S ∵HEG +S ∵EFH =S ∵AHG +S ∵EFH ≠S ∵DEF +S ∵AGH ,故∵错误, ∵正确的是∵∵∵.故选:C 二、填空题11.在平面直角坐标系中,点6(4,)P -与点(,1)Q m n +关于原点对称,那么m n +=________. 【答案】1.【解析】由点6(4,)P -与点(,1)Q m n +关于原点对称,得4,16m n =-+=,所以5n =.则451m n +=-+=,故答案为:1.12.如图,ABCD ,E 是BA 延长线上一点,AB AE =,连接CE 交AD 于点F ,若CF 平分BCD ∠,6AB =,则BC 的长为______.【答案】12【解析】解:∵四边形ABCD 是平行四边形,6AB =,AB AE =, ∵//,//AB CD AD BC ,6AB CD AE ===,AD =BC ,∵DFC ECB ∠=∠,E ECD ∠=∠,∵CF 平分BCD ∠,∵BCE DCE ∠=∠,∵DFC DCE ∠=∠,∵DF=DC =6,∵EFA DFC ∠=∠,∵EFA E ∠=∠,∵AF =AE =6∵12BC AD AF DF ==+=.13.如图,在平行四边形ABCD 中,//AB CD ,按以下步骤作图:∵以A 为圆心,任意长为半径作弧,分别交AB ,AD 于点M ,N ;∵分别以M ,N 为圆心,以大于12MN 长为半径作弧,两弧相交于点P ;∵作射线AP ,交边CD 于点Q ,若110D ∠=︒,则AQD ∠的度数为__________.【答案】35° 【解析】由作图可知,AQ 平分DAB ∠,根据角平分线的定义及平行四边形的性质证明DAQ AQD ∠=∠即可解决问题.解:由作图可知,AQ 平分DAB ∠,DAQ QAB ∴∠=∠,∵四边形ABCD 是平行四边形,//CD AB ∴,QAB AQD ∴∠=∠, DAQ AQD ∴∠=∠,110D ∠=︒,()1180110352AQD DAQ ∴∠=∠=︒-︒=︒, 故答案为35︒.14.如图,在边长为10的菱形ABCD 中,对角线BD =16,点O 是线段BD 上的动点,OE ∵AB 于E ,OF ∵AD 于F .则OE +OF =___.【答案】485【解析】如图所示,连接AC 交BD 于P 点,延长EO 交CD 于G 点,根据菱形的性质得:AB =10,BP =8,∵APB =90°,∵在Rt ∵APB 中,根据勾股定理得:AP =6,∵AC =2AP =12,又根据菱形的对称性得:OF =OG ,∵OE +OF =EG ,9根据菱形的面积公式:12AC BD AB EG =,∵11216102EG ⨯⨯=, 解得:485EG =,即:485OE OF +=,故答案为:485.15.如图,矩形ABCD 的对角线AC 、BD 相交于点O ,∵ABO =60°,若矩形的对角线长为2,则线段AD 的长是______.【解析】解:∵四边形ABCD 是矩形,∵AC =2AO ,BD =2BO ,AC =BD =2, ∵AO =OB =1,∵∵ABO =60°,∵∵AOB 是等边三角形,∵AB =1=OA , ∵AD==16.如图,∵ABC 中,BD 平分∵ABC ,CD ∵BD ,垂足为D ,E 为AC 中点.若AB =10,BC =6,则DE 的长为___.【答案】2【解析】解:延长CD 交AB 于F ,在∵BDC 和∵BDF 中,90DBC DBFBD BD BDC BDF ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩,∵∵BDC ∵∵BDF (ASA ),∵BF =BC =6,CD =DF ,∵AF =AB ﹣BF =4, ∵CD =DF ,CE =EA ,∵DE =12AF =2,故答案为:2.三、解答题17.如图,在平行四边形ABCD中,AD=6,点E在边AD上,且AE=2(1)若直线l经过点E,将该平行四边形的面积平分,并与平行四边形的另一边交于点F,用无刻度的直尺画出点F;(2)连接AF,CE,判断四边形AFCE的形状,并说明理由.【答案】(1)见解析;(2)四边形AFCE是平行四边形,理由见解析.【解析】解:(1)如图所示,点F即为所求作的点.(2)四边形AFCE是平行四边形,理由是:∵四边形ABCD是平行四边形,∵OA=OC,AD∵BC.∵∵OAE=∵OCF.∵∵AOE=∵COF,∵∵AOE∵∵COF.∵OE=OF.∵四边形AFCE是平行四边形.18.如图,在四边形ABCD中,AB=AD,CB=CD,点F是AC上一点,连接BF、DF.11(1)证明:∵ABF ∵∵ADF ;(2)若AB //CD ,试证明四边形ABCD 是菱形.【答案】(1)见解析;(2)见解析.【解析】(1)证明:在∵ABC 和∵ADC 中,∵AB ADAC AC BC DC=⎧⎪=⎨⎪=⎩,∵∵ABC ∵∵ADC (SSS ),∵∵BAC =∵DAC ,在∵ABF 和∵ADF 中,∵AB ADBAF DAF AF AF=⎧⎪∠=∠⎨⎪=⎩,∵∵ABF ∵∵ADF (SAS );(2)解:∵AB ∵CD ,∵∵BAC =∵DCA ,∵∵ABF∵∵ADF,∵∵BAF =∵DAC ,∵∵DAC =∵DCA ,∵AD =DC ,∵AB =AD ,∵AB =DC ,又AB ∵CD ,∵四边形ABCD 是平行四边形,∵AB =AD ,∵平行四边形ABCD 是菱形.19.如图,在四边形ABCD 中,90ABC ADC ∠=∠=︒,M 、N 分别是AC 、BD 的中点.(1)求证:BM DM =;(2)求证:MN BD ⊥.【答案】(1)见解析;(2)见解析.【解析】证明:(1)如图,连接BM 、DM ,∵90ABC ADC ∠=∠=︒,M 是AC 的中点, ∵12BM AC =,12DM AC =,∵BM DM =; (2)∵BMDM =,点N 是BD 的中点, ∵MN BD ⊥.20.[阅读] 材料1:如图1,在透明纸上画一个角,把这个角对折,使角的两边重合,再展平纸片,折痕把这个角分成两个相等的角.我们称这条折痕所在直线l 平分这个角.材料2:如图2中,三角板OAB 绕点O 顺时针旋转60°到三角板OCD 的位置,这时,三角板的边OA 、OB 绕点O 顺时针旋转60°到OC 、OD 的位置;如图3中,三角板OAB绕点 O 逆时针旋转90°到三角板OCD 的位置,这时,三角板的边OA 、OB 绕点O 逆时针旋转90°到OC 、OD 的位置.[问题解决](1)将两个大小一样的含30°角的直角三角板按图3的方式摆放(顶点A 、C 重合).现在将三角板OCD 固定不动,从起始位置(图4)开始,将三角板OAB 绕点O 顺时针匀速转动一周,转动速度为每秒5°.设三角板OAB 转动的时间为t 秒.∵当三角板OAB 转动到图5的位置时,它的一边OA 平分∵COD ,求t 的值; ∵当三角板OAB 的一边OB 所在直线平分∵COD 时,t = 秒;(直接写出结果) (2)将两个大小一样的含30°角的直角三角板按图6的方式摆放(顶点A 、O 、C 在一条直线上).在三角板OAB 绕点O 以每秒5°的速度顺时针匀速转动的同时,三角板OCD 绕点O 以每秒3°的速度逆时针匀速转动,当三角板OAB 转动一周时停止转动,此时三角板 OCD 也停止转动.两块三角板同时从起始位置(图6)开始转动,设三角板OAB转动的时间为t 秒.当三角板OAB 的一边OB 所在直线平分∵COD 时,t = 秒.(直接写出结果)【答案】(1)∵t的值是6;∵60;(2)15或37.5.【解析】解:(1)∵由三角板可知∵DOC=60°,∵三角板OAB绕点O顺时针匀速转动一周,转动速度为每秒5°,∵t秒后,∵AOC=5t.当OA平分∵DOC时,∵AOC=30°,∵5t=30°,解得t=6.答:t的值是6.∵∵OB平分∵DOC时,∵∵BOC=30°,∵AOC=90°﹣30°=60°,∵5t=360°﹣60°=300°,解得t=60.故答案为:60.(2)设三角板OAB和三角板OCD旋转后分别为三角板OA′B′和三角板OC′D′,∵线段OB平分∵DOC时,如图:∵AOA′=5t,∵COC′=3t,∵∵B′OC′=30°,∵∵A′OC′=60°,∵5t+3t+60°=180°,解得t=15;∵直线OB平分∵DOC时,如图:13∵AOA′=5t,∵COC′=3t,∵AOA′=90°∵∵B′OC′=30°,∵∵A′OC′=90°+30°=120°,∵5t+3t﹣120°=180°,解得t=37.5;故答案为:15或37.5.。

【精编版】中考数学轴对称与中心对称专题复习讲义

苏科版中考数学轴对称与中心对称专题一、选择题1.如图,将△AOB 绕点O 按逆时针方向旋转45°后得到△A ′OB ′,若∠AOB =15°,则∠AOB ′的度数是( )A .25°B .30°C .35°D .40°2.(2022湖北黄石一模)如图,在矩形纸片ABCD 中,AB =6 cm ,BC =8 cm ,现将其沿EF 对折,使得点C 与点A 重合,则AF 长为( )A.258 cmB.254 cmC.252 cm D .8 cm3.如图,把一个长方形纸片沿EF 折叠后,点D 、C 分别落在D ′、C ′的位置,若∠EFB =65°,则∠AED′等于( ).A.︒50 B 、︒55 C 、︒60 D 、︒654.如图,在△ABC 中,∠C =90°,将△ABC 沿直线MN 翻折后,顶点C 恰好落在AB 边上的点D 处,已知MN ∥AB ,MC =6,NC =2 3,则四边形MABN 的面积是( )A .6 3B .12 3C .18 3D .24 3二、填空5.如图,将Rt △ABC 绕直角顶点C 顺时针旋转90°,得到△C B A 11,连结1AA ,若11B AA ∠=15°,则∠B 的度数是6.已知二次函数c bx ax y ++=2的图象与x 轴交于点(-2,0)、),(01x ,且1<1x <2,与y轴交于的正半轴的交点在(0,2)的下方。

下列结论:①a <b <0;②2a+c >0;③4a-2b+c >0;④2a -b+1>0,其中正确结论个数是A .1个B .2个C .3个D .4个填空题1.如图,在Rt △ABC 中,∠ACB =90°,AC =BC =1,将Rt △ABC 绕A 点逆时针旋转30°后得到Rt △ADE ,点B 经过的路径为BD ,则图中阴影部分的面积是__________.2.如图,△ABC 的三个顶点都在5×5的网格(每个小正方形的边长均为1个单位长度)的格点上,将△ABC 绕点B 顺时针旋转到△A ′BC ′的位置,且点A ,C 仍落在格点上,则线段AB 扫过的图形的面积是 __________平方单位(结果保留π).3如图,矩形纸片ABCD ,AB =2,∠ADB =30°,沿对角线BD 折叠(使△ABD 和△EBD •落在同一平面内),则A 、E 两点间的距离为________.4 如图,正方形ABCD 和正方形AEFG ,边AE 在边AB 上,AB =2AE =2.将正方形AEFG 绕点A 逆时针旋转60°,BE 的延长线交直线DG 于点P ,旋转过程中点P 运动的路线长为 .5 如图,在正方形ABCD 中,E 是AB 上一点,BE =2,AE =3BE ,P 是AC 上一动点,则PB +PE 的最小值是_______.C BA EG D F6.如图,在Rt△ABC中,∠B=90°,AB=BC=2,将△ABC绕点C顺时针旋转60°,得到△DEC,则AE的长是.三、解答:1、如图,在∠ABC内有一点P,问:(1)能否在BA,BC边上各找到一点M,N,使△PMN的周长最短?若能,请画图说明;若不能,请说明理由;(2)若∠ABC=40°,在(1)问的条件下,能否求出∠MPN的度数?若能,请求出它的数值;若不能,请说明理由.2去冬今春,济宁市遭遇了200年不遇的大旱,某乡镇为了解决抗旱问题,要在某河道建一座水泵站,分别向河同一侧的张村A和李村B送水.经实地勘查后,工程人员设计图纸时,以河道上的大桥O为坐标原点,以河道所在的直线为x轴,建立平面直角坐标系(如图6-1-20),两村的坐标分别为A(2,3),B(12,7).(1)若从节约经费考虑,水泵站建在距离大桥O多远的地方,可使所用输水管最短?(2)水泵站建在距离大桥O多远的地方,可使它到张村、李村的距离相等?3、如图,AB、CD为⊙O的直径,弦AE∥CD,连接BE交CD于点F,过点E作直线EP 与CD的延长线交于点P,使∠PED=∠C.(1)求证:PE是⊙O的切线;(2)求证:ED平分∠BEP;(3)若⊙O的半径为5,CF=2EF,求PD的长.4.如图,抛物线y=x2﹣2mx﹣3m2(m为常数,m>0),与x轴相交于点A、B,与y轴相交于点C,(1)用m的代数式表示:点C坐标为,AB的长度为;(2)过点C作CD∥x轴,交抛物线于点D,将△ACD沿x轴翻折得到△AEM,延长AM 交抛物线于点N,①求的值;②若AB=4,直线x=t交线段AN于点P,交抛物线于点Q,连接AQ、NQ,是否存在实数t,使△AQN的面积最大?如果存在,求t的值;如果不存在,请说明理由.5.如图,已知抛物线y=ax2+bx+c与x轴的一个交点为A(3,0),与y轴的交点为B(0,3),其顶点为C,对称轴为x=1.(1)求抛物线的解析式;(2)已知点M为y轴上的一个动点,当△ABM为等腰三角形时,求点M的坐标.6、在数学兴趣小组活动中,小明进行数学探究活动,将边长为2的正方形ABCD与边长为22的正方形AEFG按图1位置放置,AD与AE在同一直线上,AB与A G在同一直线上.(1)小明发现DG⊥BE,请你帮他说明理由.(2)如图2,小明将正方形ABCD绕点A逆时针旋转,当点B恰好落在线段DG上时,请你帮他求出此时BE的长.(3)如图3,小明将正方形ABCD绕点A继续逆时针旋转,将线段DG与线段BE相交,交点为H,写出△GHE与△BHD面积之和的最大值,并简要说明理由.答案:选择题:1、B2、B3、4、、605、︒6、C填空题π1、613π2、4 34、2 35、6、作M关于OB的对称点M′,作N关于OA的对称点N′,连接M′N′,即为MP+PQ+QN的最小值,根据轴对称的定义可知:∠N′OQ=∠M′OB=30°,∠ONN′=60°,∴△ONN′为等边三角形,△OMM′为等边三角形,∴∠N′OM′=90°,∴在Rt△M′ON ′中,M′N′=32+12=10,故答案为107、解答题:1、解:(1)如图D27,作P点关于AB,BC两边的对称点E,F,连接E,F;与AB,BC交于点M,N,连接PM,PN,△PMN的周长最短.因为EM=PM,PN=FN,NM=NM,PM +PN+MN=EM+FN+MN=EF的长(两点之间,线段最短).(2)能.∵∠ABC=40°,∴∠EPF=140°.又∵∠PMN=∠EPM+∠MEP=2∠EPM,∠PNM=∠FPN+∠NFP=2∠FPN,∴∠PMN+∠PNM=2(∠EPM+∠FPN).∴180°-∠MPN=2(140°-∠MPN).∴∠MPN=100°.2.解:(1)如图D28,作点B关于x轴的对称点E,连接AE,则点E为(12,-7).设直线AE 的函数关系式为y =kx +b ,则⎩⎪⎨⎪⎧ 2k +b =3,12k +b =-7.解得⎩⎪⎨⎪⎧k =-1,b =5. ∴直线AE 的解析式为y =-x +5.当y =0时,x =5.所以,当水泵站应建在距离大桥5千米的地方时,可使所用输水管道最短.图D28(2)如图D28作线段AB 的垂直平分线GF ,交AB 于点F ,交x 轴于点G ,设点G 的坐标为(x,0).在Rt △AGD 中,AG 2=AD 2+DG 2=9+(x -2)2.在Rt △BCG 中,BG 2=BC 2+GC 2=49+(12-x )2.∵AG =BG ,∴9+(x -2)2=49+(12-x )2.解得x =9.∴水泵站建在距离大桥9千米的地方,可使它到张村、李村的距离相等.3、(1)证明:如图,连接OE .∵CD 是圆O 的直径,∴∠CED=90°.∵OC=OE ,∴∠1=∠2.又∵∠PED=∠C ,即∠PED=∠1,∴∠PED=∠2,∴∠PED+∠OED=∠2+∠OED=90°,即∠OEP=90°,∴OE ⊥EP ,又∵点E 在圆上,∴PE 是⊙O 的切线;(2)证明:∵AB 、CD 为⊙O 的直径,∴∠AEB=∠CED=90°,∴∠3=∠4(同角的余角相等).又∵∠PED=∠1,∴∠PED=∠4,即ED 平分∠BEP ;(3)解:设EF=x ,则CF=2x ,∵⊙O 的半径为5,∴OF=2x ﹣5,在RT △OEF 中,OE 2=OF 2+EF 2,即52=x 2+(2x ﹣5)2, 解得x=4,∴EF=4,∴BE=2EF=8,CF=2EF=8, ∴DF=CD ﹣CF=10﹣8=2,∵AB 为⊙O 的直径,∴∠AEB=90°,∵AB=10,BE=8,∴A E =6 ∵∠BEP=∠A ,∠EFP=∠AEB=90°,∴△AEB ∽△EFP , ∴=,即=,∴PF=,∴PD=PF ﹣DF=﹣2=.4、解:(1)令x=0,则y=﹣3m 2,即C 点的坐标为(0,﹣3m 2), ∵y=x 2﹣2mx ﹣3m 2=(x ﹣3m )(x+m ),∴A (﹣m ,0),B (3m ,0),∴AB=3m ﹣(﹣m )=4m ,故答案为:(0,﹣3m 2),4m ;(2)①令y=x 2﹣2mx ﹣3m 2=﹣3m 2,则x=0(舍)或x=2m ,∴D(2m,﹣3m2),∵将△ACD沿x轴翻折得到△AEM,∴D、M关于x轴对称,∴M(2m,3m2),设直线AM的解析式为y=kx+b,将A、M两点的坐标代入y=kx+b得:,解得:,∴直线AM的解析式为:y=mx+m2,联立方程组:,解得:(舍)或,∴N(4m,5m2),∴;②如图:∵AB=4,∴m=1,∴抛物线的解析式为y=x2﹣2x﹣3,直线AM的解析式为y=x+1,∴P(t,t+1),Q(t,t2﹣2t,﹣3),N(4,5),A(﹣1,0),B(3,0)设△AQN的面积为S,则:S===,∴t=,S最大.5、解:(1)由题意得:,解该方程组得:a=﹣1,b=2,c=3,∴抛物线的解析式为y=﹣x2+2x+3.(2)由题意得:OA=3,OB=3;由勾股定理得:AB2=32+32,∴AB=3.当△ABM为等腰三角形时,①若AB为底,∵OA=OB,∴此时点O即为所求的点M,故点M的坐标为M(0,0);②若AB为腰,以点B为圆心,以长为半径画弧,交y轴于两点,此时两点坐标为M(0,3﹣3)或M(0,3+3),以点A为圆心,以长为半径画弧,交y轴于点(0,﹣3);综上所述,当△ABM为等腰三角形时,点M的坐标分别为(0,0)、(0,3﹣3)、(0,3+3)、(0,﹣3).6、(1)∵四边形ABCD和四边形AEFG都为正方形,∴AD=AB,∠DAG=∠BAE=90∘,AG=AE,在△ADG和△ABE中,AD=AB ∠DAG=∠BAE AG=AE,∴△ADG≌△ABE(SAS),∴∠AGD=∠AEB,如图1所示,延长EB交DG于点H,在△ADG中,∠AGD+∠ADG=90∘,∴∠AEB+∠ADG=90∘,在△EDH中,∠AEB+∠ADG+∠DHE=180∘,∴∠DHE=90∘,则DG⊥BE;(2)∵四边形ABCD和四边形AEFG都为正方形,∴AD=AB,∠DAB=∠GAE=90∘,AG=AE,∴∠DAB+∠BAG=∠GAE+∠BAG,即∠DAG=∠BAE,在△ADG和△ABE中,AD=AB ∠DAG=∠BAE AG=AE∴△ADG≌△ABE(SAS),∴DG=BE,如图2,过点A作AM⊥DG交DG于点M,∠AMD=∠AMG=90∘,∵BD为正方形ABCD的对角线,∴∠MDA=45∘,在Rt△AMD中,∠MDA=45∘,∴cos45∘=DMAD,∵AD=2,∴DM=AM=2√,在Rt△AMG中,根据勾股定理得:GM=AG2−AM2−−−−−−−−−−√=6√,∵DG=DM+GM=2√+6√,∴BE=DG=2√+6√;(3)△GHE和△BHD面积之和的最大值为6,理由为:对于△EGH,点H在以EG为直径的圆上,∴当点H与点A重合时,△EGH的高最大;对于△BDH,点H在以BD为直径的圆上,∴当点H与点A重合时,△BDH的高最大,则△GHE和△BHD面积之和的最大值为2+4=6.轴对称知识点总结:【知识脉络】【基础知识】Ⅰ. 轴对称(1)轴对称图形如果一个图形沿着某一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴.轴对称图形的性质:轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线. (2)轴对称定义:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴.成轴对称的两个图形的性质:①关于某条直线对称的两个图形形状相同,大小相等,是全等形;②如果两个图形关于某条直线对称,则对称轴是任何一对对应点所连线段的垂直平分线;③两个图形关于某条直线对称,如果它们的对应线段或延长线相交,那么它们的交点在对称轴上.(3)轴对称图形与轴对称的区别和联系区别:轴对称是指两个图形的位置关系,轴对称图形是指具有特殊形状的一个图形;轴对称涉及两个图形,而轴对称图形是对一个图形来说的.联系:如果把一个轴对称图形沿对称轴分成两个图形,那么这两个图形关于这条轴对称;如果把成轴对称的两个图形看成一个整体,那么它就是一个轴对称图形.(4)线段的垂直平分线线段的垂直平分线的性质:线段垂直平分线上的点与这条线段两个端点的距离相等.反过来,与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.Ⅱ. 作轴对称图形1.作轴对称图形(1)几何图形都可以看作由点组成,我们只要分别作出这些点关于对称轴的对应点,再连接这些点,就可以得到原图形的轴对称图形;(2)对于一些由直线、线段或射线组成的图形,只要作出图形中的一些特殊点(如线段端点)的对称点,连接这些对称点,就可以得到原图形的轴对称图形.2.用坐标表示轴对称点(x,y)关于x轴对称的点的坐标为(x,-y);点(x,y)关于y轴对称的点的坐标为(-x,y);点(x,y)关于原点对称的点的坐标为(-x,-y).Ⅲ. 等腰三角形1.等腰三角形(1)定义:有两边相等的三角形,叫做等腰三角形.(2)等腰三角形性质①等腰三角形的两个底角相等,即“等边对等角”;②等腰三角形顶角的平分线、底边上的中线与底边上的高线互相重合(简称“三线合一”).特别地,等腰直角三角形的每个底角都等于45°.(3)等腰三角形的判定如果一个三角形有两个角相等,那么这两个角所对的边也相等(即“等角对等边”).2.等边三角形(1)定义:三条边都相等的三角形,叫做等边三角形.(2)等边三角形性质:等边三角形的三个角相等,并且每个角都等于60°.(3)等边三角形的判定:①三条边都相等的三角形是等边三角形;②三个角都相等的三角形是等边三角形;③有一个角为60°的等腰三角形是等边三角形.3.直角三角形的性质定理:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半. Ⅳ. 最短路径一.图形旋转1.图形旋转的有关概念:图形的旋转、旋转中心、旋转角;在平面内,将一个图形一个定点转动一定的角度,这样的图形运动称为图形的旋转。

中心对称与中心对称图形中档题30道解答题附规范标准答案

9.2 中心对称与中心对称图形中档题汇编(3)一.解答题(共30小题)1.(2013•江西模拟)物体受重力作用的作用点叫做这个物体的重心.例如一根均匀的棒,重心是棒的中点,一块均匀的三角形木板,重心就是这个三角形三条中线的交点,等等.(1)你认为平行四边形的重心位置在哪里?请说明理由;(2)现有如图的一块均匀模板,请只用直尺和铅笔,画出它的重心(直尺上没有刻度,而且不允许用铅笔在直尺上做记号).2.(2010•沙河口区一模)在14×9的方格纸中,每个小正方形的边长都为1,△ABC与△A′B′C′的位置如图所示;(1)请说明△ABC与△A′B′C′的位置关系;(2)若点C的坐标为(0,0),则点B′的坐标为_________ ;(3)求线段CC′的长.3.(2006•陕西)观察下面网格中的图形,解答下列问题:(1)将网格中左图沿水平方向向右平移,使点A移至点A′处,作出平移后的图形:(2)(1)中作出的图形与右边原有的图形,组成一个新的图形,这个新图形是中心对称图形,还是轴对称图形?4.如图,AC与BD互相平分且相交于点O,点E、F分别在AB、CD上,且AE=CF,试利用“中心对称”的有关知识,说明点E 、O、F在同一直线上且OE=OF.5.如图,在△ABC中,D为BC上任一点,DE∥AC交AB与E,DF∥AB交AC于F ,求证:点E,F关于AD的中心对称.6.如图所示,过▱ABCD的对角线的交点O任意画一条直线l,分别交AD、BC于点E、F,l将平行四边形分成两个四边形,这两个四边形是否关于点O成中心对称?请说明理由.7.将两个大小相等的圆部分重合,其中重叠的部分(如图1中的阴影部分)我们称之为一个“花瓣”,由一个“花瓣”及圆组成的图形称之为花瓣图形,下面是一些由“花瓣”和圆组成的图形.(1)以上5个图形中是轴对称图形的有_________,是中心对称图形有_________ .(分别用图形的代号A、B、C、D、E填空).(2)若“花瓣”在圆中是均匀分布的,试根据上题的结果总结“花瓣”的个数与花瓣图形的对称性(轴对称或中心对称)之间的规律._________ .(3)根据上面的结论,试判断下列花瓣图形的对称性:①九瓣图形是_________ ;②十二瓣图形是_________ ;③十五瓣图形是_________ ;④二十六瓣图形是_________ .8.(2011•芜湖县校级模拟)一天,上九年级的聪聪和明明在一起下棋,这时聪聪灵机一动,象棋中也有很多数学知识,如图,我们给中国象棋棋盘建立一个平面直角坐标系(每个小正方形的边长均为1),根据象棋中“马”走“日”的规定,若“马”的位置在图中的点P.(1)写出下一步“马”可能到达的点的坐标_________ ;(2)明明想了想,我还有两个问题呢:①如果顺次连接(1)中的所有点,你知道得到的图形是_________ 图形(填“中心对称”、“旋转对称”、“轴对称”);②指出(1)中关于点P成中心对称的点_________ .9.(2011•垫江县校级模拟)有一块方角形钢板如图所示,如何用一条直线将其分为面积相等的两部分.10.(2012•钦州模拟)如图,线段AC、BD相交于点O,AB∥CD,AB=CD.线段AC上的两点E、F关于点O中心对称.求证:BF=DE.11.已知△ABC,∠ACB=90°,把△ABC用直线分割成两部分,可以拼成与△ABC等面积的一些四边形.比如图①,把△ABC用直线EF分割后,利用中心对称知识,拼成了与它等面积的矩形GBCF.请你也利用中心对称知识,按下列要求进行操作:(1)把图②中的直角△ABC用适当的直线分割成两部分,拼成与△ABC等面积的一个平行四边形;(2)把图③中的直角△ABC用适当的直线分割成两部分,拼成与△ABC等面积的一个梯形.(图中需作必要的标记,不要求说明理由)12.(2014春•宜春期末)如图,矩形ABCD在平面直角坐标系的位置如图,A(0,0)、B(6,0)、D (0,4).(1)根据图形直接写出点C的坐标:_________ ;(2)已知直线m经过点P(0,6)且把矩形ABCD分成面积相等的两部分,请只用直尺准确地画出直线m,并求该直线m的解析式.13.(2009秋•苏州期末)如图,在矩形ABCD中,点E在AD上,EC平分∠BED.(1)试判断△BEC是否为等腰三角形,请说明理由?(2)若AB=1,∠ABE=45°,求BC的长.(3)在原图中画△FCE,使它与△BEC关于CE的中点O成中心对称,此时四边形BCFE是什么特殊平行四边形,请说明理由.14.(2011春•武胜县校级期末)如图,点O是平行四边形ABCD的对称中心,将直线DB绕点O顺时针方向旋转,交DC、AB于点E、F.(1)证明:△DEO≌△BFO;(2)若DB=2,AD=1,AB=,当DB绕点O顺时针方向旋转45°时,判断四边形AECF的形状,并说明理由.15.(2012秋•简阳市期末)如图,矩形ABCD和矩形AEFG关于点A中心对称,(1)四边形BDEG是菱形吗?请说明理由.(2)若矩形ABCD面积为2,求四边形BDEG的面积.16.(2010秋•庄浪县校级期末)如图所示:两个五角星关于某一点成中心对称,指出哪一点是对称中心?并指出图中A,B,C,D的对称点.17.(2014秋•东西湖区校级期末)如图是一个中心对称图形,A为对称中心,若∠C=90°,∠B=30°,BC=,求BB′的长为_________ .18.阅读下面操作过程,回答后面的问题:在一次数学实践探究活动中,李小明同学如图1,过AB、CD的中点画直线EF,把矩形ABCD分割成a,b两部分;而王小刚同学如图2,过A、C两点画直线AC,把矩形ABCD分割成c,d两部分.(1)a,b,c,d的面积关系是Sa _________ Sb _________ Sc _________ Sd.(2)根据这两位同学的分割原理,你能探索出多少种分割方法?请写出你的推理结果或猜想,并任意画出一种;(3)由上述的实验操作过程,你能发现什么规律?19.(1)能把平行四边形分成面积相等的两部分的直线有_________ 条,它们的共同特点是_________ .(2)如图,已知:AB∥CD∥FE,AF∥BC∥DE、求作一条直线,将这个图形分成面积相等的两部分、要求:对分法的合理性进行说明,并在图中作出分法的示意图(保留作图痕迹).(3)自己设计一个图形A(由至少两个基本的中心对称图形B、C组成),并作出可以将图形A面积分成相等两部分的直线.20.(2014春•定陶县期末)如图,在△ABC中,AB=AC,△ABC与△DEC关于点C成中心对称,连接AE、BD.(1)线段AE、BD具有怎样的位置关系和大小关系?说明你的理由.(2)如果△ABC的面积为5cm2,求四边形ABDE的面积.(3)当∠ACB为多少度时,四边形ABDE为矩形?说明你的理由.21.(2011秋•庄浪县校级期末)如图,正方形ABCD与正方形A′B′C′D′关于点O中心对称,若正方形ABCD的边长为1,设图形重合部分的面积为y,线段OB的长为x,求y与x之间的函数关系式.22.(2009秋•和县期末)用六根一样长的小棒搭成如图所示的图形,试移动AC、BC这两根小棒,使六根小棒成为中心对称图形;若移动AC、DE这两根,能不能也达到要求呢?(画出图形)23.(2009秋•泗阳县校级期中)如图,AC=BD,∠A=∠B,点E、F在AB上,且DE∥CF,试说明这是中心对称图形.24.(2010秋•白下区校级期中)如图,已知△ABC和点O.(1)在图中画出△A′B′C′,使△A′B′C′与△ABC关于O点中心对称;(2)点A、B、C、A′、B′、C′能组成哪几个平行四边形?请用符号表示出来_________ .25.(2009秋•琼海期中)如图,已知AD是△ABC的中线,画出以点D为对称中心、与△ABD成中心对称的三角形.26.(2011秋•克拉玛依区校级期中)关于点E成中心对称的图形.27.(2014秋•宜春期末)如图是4×4正方形网格,请在其中选取一个白色的单位正方形并涂黑,使图中黑色部分是一个中心对称图形.28.(2010秋•苏州期中)如图,由4个全等的正方形组成的L形图案,请按下列要求画图:(1)在图案①中添加1个正方形,使它成轴对称图形(不能是中心对称图形);(2)在图案②中添画1个正方形,使它成中心对称图形(不能是轴对称图形);(3)在图案中改变1个正方形的位置,画成图案③,使它既成中心对称图形,又成轴对称图形.29.(2010秋•宿豫区期中)如图,已知△ABC与△A′B′C′成中心对称图形,求出它的对称中心O.30.如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.(1)在图1中,画一个三角形,使它的三边长都是无理数;(2)在图2中,画出一个直角三角形,使它的三边长都是整数;(3)在图3中,画出一个中心对称图形.9.2 中心对称与中心对称图形中档题汇编(3)参考答案与试题解析一.解答题(共30小题)1.(2013•江西模拟)物体受重力作用的作用点叫做这个物体的重心.例如一根均匀的棒,重心是棒的中点,一块均匀的三角形木板,重心就是这个三角形三条中线的交点,等等.(1)你认为平行四边形的重心位置在哪里?请说明理由;(2)现有如图的一块均匀模板,请只用直尺和铅笔,画出它的重心(直尺上没有刻度,而且不允许用铅笔在直尺上做记号).考点:中心对称;三角形的重心.专题:作图题.分析:(1)根据平行四边形的性质可知:重心是两条对角线的交点.(2)两模块分成两个矩形,得到连接各自中心的第二条线段,指出重心.解答:(1)平行四边形的重心是两条对角线的交点.(1分)如图,平行四边形ABCD是中心对称图形,对角线的交点O是对称中心,经过点O与对边相交的任何一条线段都以点O为中点(如图中线段PQ),因此点O是各条线段的公共重心,也是▱ABCD的重心.(2)把模板分成两个矩形,连接各自的中心;把模板重新分成两个矩形,得到连接各自中心的第二条线段,指出重心.点评:本题考查了中心对称与重心之间的关系,有一定难度,注意掌握一些特殊图形的性质.2.(2010•沙河口区一模)在14×9的方格纸中,每个小正方形的边长都为1,△ABC与△A′B′C′的位置如图所示;(1)请说明△ABC与△A′B′C′的位置关系;(2)若点C的坐标为(0,0),则点B′的坐标为(7,﹣2);(3)求线段CC′的长.考点:中心对称;勾股定理.分析:(1)根据中心对称的性质直接就得出答案即可;(2)利用点C的坐标为(0,0),即可得出点B′的坐标;(3)利用勾股定理求出即可.解答:解:(1)△ABC与△A′B′C′成中心对称;(2)根据点C的坐标为(0,0),则点B′的坐标为:(7,﹣2);(3)线段CC′的长为:=2.点评:此题主要考查了勾股定理以及中心对称图形的定义以及点的坐标特点等知识,中心对称图形的性质是初中阶段考查重点应熟练掌握.3.(2006•陕西)观察下面网格中的图形,解答下列问题:(1)将网格中左图沿水平方向向右平移,使点A移至点A′处,作出平移后的图形:(2)(1)中作出的图形与右边原有的图形,组成一个新的图形,这个新图形是中心对称图形,还是轴对称图形?考点:中心对称图形;轴对称图形;作图-平移变换.专题:网格型.分析:(1)从A和A′的位置,确定平移方法,然后按平移条件找出其他顶点的对应点,顺次连接,即得到平移后的图形;(2)观察图形即可.解答:解:(1)如图所示.(作图正确3分)(2)新图形是轴对称图形.(6分)点评:本题的关键是作各个关键点的对应点,从而做出正确判断.4.如图,AC与BD互相平分且相交于点O,点E、F分别在AB、CD上,且AE=CF,试利用“中心对称”的有关知识,说明点E、O、F在同一直线上且OE=OF.考点:中心对称.分析:连接AD、BC,根据对角线互相平分的四边形是平行四边形求出四边形ABCD是平行四边形,再根据平行四边形的中心对称性判断出E、F是对称点,然后根据轴对称性解答.解答:证明:如图,连接AD、BC,∵AC与BD互相平分且相交于点O,∴四边形ABCD是平行四边形,∴点O是平行四边形ABCD的对称中心,∵AE=CF,∴点E、F是对称点,∴点E、O、F在同一直线上且OE=OF.点评:本题考查了中心对称,主要利用了平行四边形的判定与中心对称性,对称点的连线比过对称中心并且被对称中心平分,熟记性质并作辅助线构造出平行四边形是解题的关键.5.如图,在△ABC中,D为BC上任一点,DE∥AC交AB与E,DF∥AB交AC于F,求证:点E,F关于AD的中心对称.考点:中心对称.专题:证明题.分析:根据题意推知四边形AEDF是平行四边形,则该四边形关于点O对称.解答:证明:如图,连接EF交于点O.∵DE∥AC交AB与E,DF∥AB交AC于F,∴四边形AEDF是平行四边形,∴点E,F关于AD的中心对称.点评:本题考查了中心对称.平行四边形是中心对称图形,对称中心是对角线的交点.6.如图所示,过▱ABCD的对角线的交点O任意画一条直线l,分别交AD、BC于点E、F,l将平行四边形分成两个四边形,这两个四边形是否关于点O成中心对称?请说明理由.考点:中心对称.分析:判断两个四边形是否关于点O中心对称可以转换为判断两个四边形的顶点是否关于点O对称即可.解答:解:这两个四边形关于点O成中心对称.∵四边形ABCD是平行四边形,∴AO=CO,BO=DO,∵EF、AC、BD都经过点O,∴EO=FO,∴点A与点C,点B与点D,点E与点F均关于点O成中心对称,∴这两个四边形关于点O成中心对称.点评:本题考查了中心对称的知识,解题的关键是判断对应的顶点关于O点中心对称,难度不大.7.将两个大小相等的圆部分重合,其中重叠的部分(如图1中的阴影部分)我们称之为一个“花瓣”,由一个“花瓣”及圆组成的图形称之为花瓣图形,下面是一些由“花瓣”和圆组成的图形.(1)以上5个图形中是轴对称图形的有A,B,C,D,E ,是中心对称图形有A,C,E .(分别用图形的代号A、B、C、D、E填空).(2)若“花瓣”在圆中是均匀分布的,试根据上题的结果总结“花瓣”的个数与花瓣图形的对称性(轴对称或中心对称)之间的规律.当花瓣是偶数个,则即是中心对称图形也是轴对称图形,若花瓣是奇数个,则是轴对称图形.(3)根据上面的结论,试判断下列花瓣图形的对称性:①九瓣图形是是轴对称图形;②十二瓣图形是既是轴对称图形也是中心对称图形;③十五瓣图形是是轴对称图形;④二十六瓣图形是既是轴对称图形也是中心对称图形.考点:中心对称图形;轴对称图形.专题:规律型.分析:(1)根据轴对称图形和中心对称图形的性质可知三个图形中轴对称的为A,B,C,D,E.是中心对称的为A,C,E;(2)利用轴对称图形和中心对称图形的性质得出规律即可;(3)利用(2)中规律直接判断得出即可.解答:解:(1)以上5个图形中是轴对称图形的有A,B,C,D,E,是中心对称图形有A,C,E.故答案为:A,B,C,D,E;A,C,E;(2)若“花瓣”在圆中是均匀分布的,试根据上题的结果总结“花瓣”的个数与花瓣图形的对称性(轴对称或中心对称)之间的规律.当花瓣是偶数个,则即是中心对称图形也是轴对称图形,若花瓣是奇数个,则是轴对称图形.故答案为:当花瓣是偶数个,则即是中心对称图形也是轴对称图形,若花瓣是奇数个,则是轴对称图形;(3)根据上面的结论,试判断下列花瓣图形的对称性:①九瓣图形是轴对称图形;②十二瓣图形是轴对称图形也是中心对称图形;③十五瓣图形是轴对称图形;④二十六瓣图形是轴对称图形也是中心对称图形.故答案为:①轴对称图形;②轴对称图形也是中心对称图形;③轴对称图形;④轴对称图形也是中心对称图形.点评:本题主要考查了中心对称和轴对称的关键,做这些题时,掌握他们的性质是关键.所以学生对一些定义,性质类的知识一定要牢记.8.(2011•芜湖县校级模拟)一天,上九年级的聪聪和明明在一起下棋,这时聪聪灵机一动,象棋中也有很多数学知识,如图,我们给中国象棋棋盘建立一个平面直角坐标系(每个小正方形的边长均为1),根据象棋中“马”走“日”的规定,若“马”的位置在图中的点P.(1)写出下一步“马”可能到达的点的坐标(0,0),(0,2),(1,3),(3,3),(4,2),(4,0);(2)明明想了想,我还有两个问题呢:①如果顺次连接(1)中的所有点,你知道得到的图形是轴对称图形(填“中心对称”、“旋转对称”、“轴对称”);②指出(1)中关于点P成中心对称的点(0,0)点和(4,2)点;(0,2)点和(4,0)点.考点:中心对称;轴对称图形.专题:压轴题;数形结合.分析:(1)马走日,就是说在平面直角坐标系中要走到与P相邻正方形的对角位置,(2)连线可以看出是轴对称图形.解答:解:(1)根据分析可得,下一步“马”可能到达的点的坐标:(0,0),(0,2),(1,3),(3,3),(4,2),(4,0);(2)连线可以看出得的图形为轴对称;根据中心对称的定义可得,(1)中关于点P成中心对称的点为:(0,0)点和(4,2)点;(0,2)点和(4,0)点.点评:本题主要考查轴对称的性质和坐标确定位置等知识点,不是很难,做题要细心.9.(2011•垫江县校级模拟)有一块方角形钢板如图所示,如何用一条直线将其分为面积相等的两部分.考点:中心对称.专题:作图题.分析:思路1:先将图形分割成两个矩形,找出各自的对称中心,过两个对称中心做直线即可;思路2:先将图形补充成一个大矩形,分别找出图中两个矩形各自的对称中心,过两个对称中心做直线即可.解答:解:如图所示,有三种思路:点评:本题需利用矩形的中心对称性解决问题.10.(2012•钦州模拟)如图,线段AC、BD相交于点O,AB∥CD,AB=CD.线段AC上的两点E、F关于点O 中心对称.求证:BF=DE.考点:中心对称;全等三角形的判定与性质;平行四边形的判定与性质.专题:证明题.分析:连接AD、BC,根据一组对边平行且相等的四边形是平行四边形证明四边形ABCD是平行四边形,再根据平行四边形的对角线互相平分可得BO=DO,根据E、F关于点O中心对称可得OE=OF,然后利用“边角边”证明△BOF和△DOE全等,根据全等三角形对应边相等即可得证.解答:证明:如图,连接AD、BC,∵AB∥CD,AB=CD,∴四边形ABCD是平行四边形,∴BO=DO,∵点E、F关于点O中心对称,∴OF=OE,在△BOF和△DOE中,,∴△BOF≌△DOE(SAS),∴BF=DE.点评:本题考查了中心对称的性质,全等三角形的判定与性质,平行四边形的判定与性质,作辅助线构造出平行四边形,然后证明得到BO=DO是证明三角形全等的关键,也是解决本题的难点.11.已知△ABC,∠ACB=90°,把△ABC用直线分割成两部分,可以拼成与△ABC等面积的一些四边形.比如图①,把△ABC用直线EF分割后,利用中心对称知识,拼成了与它等面积的矩形GBCF.请你也利用中心对称知识,按下列要求进行操作:(1)把图②中的直角△ABC用适当的直线分割成两部分,拼成与△ABC等面积的一个平行四边形;(2)把图③中的直角△ABC用适当的直线分割成两部分,拼成与△ABC等面积的一个梯形.(图中需作必要的标记,不要求说明理由)考点:中心对称.分析:(1)根据中心对称的定义和性质,找直角△ABC两条边的中点作图是解题的关键;(2)根据中心对称的定义和性质,找直角△ABC一条边的中点,另一条边非中点作图是解题的关键.解答:解:(说明:两图各(2分);图中没有标记点中点,累计扣(1分),未利用中心对称扣1分.)参考图:点评:中心对称的定义:把一个图形绕着某个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称点.中心对称的性质:①关于中心对称的两个图形能够完全重合;②关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分.12.(2014春•宜春期末)如图,矩形ABCD在平面直角坐标系的位置如图,A(0,0)、B(6,0)、D(0,4).(1)根据图形直接写出点C的坐标:(6,4);(2)已知直线m经过点P(0,6)且把矩形ABCD分成面积相等的两部分,请只用直尺准确地画出直线m,并求该直线m的解析式.考点:中心对称;待定系数法求一次函数解析式;矩形的性质.分析:(1)根据点B、D的坐标求出点C的横坐标与纵坐标,然后写出即可;(2)连接OC、BD得到矩形的中心,然后根据平分矩形面积的直线比过中心作出直线m即可,再利用待定系数法求一次函数解析式解答.解答:解:(1)∵B(6,0)、D(0,4),∴点C的横坐标是6,纵坐标是4,∴点C的坐标为(6,4);故答案为:(6,4);(2)直线m如图所示,对角线OC、BD的交点坐标为(3,2),设直线m的解析式为y=kx+b(k≠0),则,解得,所以,直线m的解析式为y=﹣x+6.点评:本题考查了中心对称,矩形的性质,待定系数法求一次函数解析式,熟记过矩形的中心的直线把矩形的面积分成面积相等的两份是解题的关键.13.(2009秋•苏州期末)如图,在矩形ABCD中,点E在AD上,EC平分∠BED.(1)试判断△BEC是否为等腰三角形,请说明理由?(2)若AB=1,∠ABE=45°,求BC的长.(3)在原图中画△FCE,使它与△BEC关于CE的中点O成中心对称,此时四边形BCFE是什么特殊平行四边形,请说明理由.考点:中心对称;等腰三角形的判定;菱形的判定;矩形的性质.分析:(1)易证∠BEC=∠BCE,从而判定△BCE是等腰三角形.(2)由(1)知BC=BE,而BC是等腰直角△ABE的斜边,AB=BE,运用勾股定理可求.(3)根据中心对称的性质,可知四边形BCFE是平行四边形,又BC=BE,得出▱BCFE是菱形.解答:解:(1)∵AD∥BC,∴∠DEC=∠BCE,∵∠DEC=∠BEC,∴∠BEC=∠BCE,∴△BCE是等腰三角形.(2)∵在Rt△ABE中,∠ABE=45°,∴∠AEB=∠ABE=45°,∴AB=AE=1.∴,∴.(3)如图,∵△FCE与△BEC关于CE的中点O成中心对称,∴OB=OF,OE=OC,∴四边形BCFE是平行四边形,又∵BC=BE,∴四边形BCFE是菱形.点评:本题考查了矩形的性质,等腰三角形的判定、性质,勾股定理,中心对称的性质以及平行四边形和菱形的判定,知识点较多,需熟练掌握.14.(2011春•武胜县校级期末)如图,点O是平行四边形ABCD的对称中心,将直线DB绕点O顺时针方向旋转,交DC、AB于点E、F.(1)证明:△DEO≌△BFO;(2)若DB=2,AD=1,AB=,当DB绕点O顺时针方向旋转45°时,判断四边形AECF的形状,并说明理由.考点:中心对称;全等三角形的判定;平行四边形的性质;旋转的性质.分析:(1)根据已知条件证出∠CDO=∠ABO,∠DEO=∠BFO.,再根据点O是平行四边形的对称中心,得出OD=OB,即可证出△DEO≌△BFO.(2)首先要判断四边形是什么形状,然后根据题意首先证明△OAD是等腰直角三角形,然后证明OE=OF,再根据已知条件即可证出四边形AECF的形状.解答:(1)证明:在平行四边形ABCD中,CD∥AB,∴∠CDO=∠ABO,∠DEO=∠BFO.又∵点O是平行四边形的对称中心,∴OD=OB.∴△DEO≌△BFO.(2)解:∵在△ABD中,DB=2,AD=1,AB=,∴DB2+AD2=AB2.∴△ABD是直角三角形,且∠ADB=90°∵OD=OB=DB=1,∴AD=OD=1.∴△OAD是等腰直角三角形,∴∠AOD=45°.当直线DB绕点O顺时针旋转45°时,即∠DOE=45°,∴∠AOE=90°∵△DEO≌△BFO,∴OE=OF又∵点O是平行四边形的对称中心,∴OA=OC∴四边形AECF是平行四边形∴四边形AECF是菱形.点评:此题考查了中心对称,是一道综合型试题,比较难,证明三角形全等必须要找出三个条件相等,按照判定四边形形状的定义证明该四边形为何形状.15.(2012秋•简阳市期末)如图,矩形ABCD和矩形AEFG关于点A中心对称,(1)四边形BDEG是菱形吗?请说明理由.(2)若矩形ABCD面积为2,求四边形BDEG的面积.考点:中心对称;菱形的判定;矩形的性质.分析:(1)根据菱形的判定以及中心对称图形的性质得出即可;(2)利用中心对称图形的性质得出四边形BDEG的面积=2×矩形ABCD面积,即可得出答案.解答:解:(1)是菱形,∵矩形ABCD和矩形AEFG关于点A中心对称,∴AD=AG,AB=AE,BE⊥DG,∴四边形BDEG是菱形;(2)∵矩形ABCD和矩形AEFG关于点A中心对称,∴AD=AG,AB=AE,BE⊥DG,∴四边形BDEG的面积=2×矩形ABCD面积=2×2=4.点评:此题主要考查了矩形的性质、菱形的判定和中心对称的性质,利用中心对称的性质得出是解题关键.16.(2010秋•庄浪县校级期末)如图所示:两个五角星关于某一点成中心对称,指出哪一点是对称中心?并指出图中A,B,C,D的对称点.考点:中心对称.分析:由中心对称的特征可知点A是对称中心,将点B,C,D分别绕A点旋转180°后,B与G重合,C与H重合,D与E重合.解答:解:点A是对称中心.图中A,B,C,D的对称点分别是A、G、H、E.点评:本题实际考查了中心对称的性质,关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分,由此可以得出对称中心A的位置.17.(2014秋•东西湖区校级期末)如图是一个中心对称图形,A为对称中心,若∠C=90°,∠B=30°,BC=,求BB′的长为8 .考点:中心对称.分析:在直角三角形ABC中,根据30°的余弦求出AB的长,再根据中心对称的性质得到BB′的长.解答:解:在直角三角形中,根据cosB===,解得:AB=4.再根据中心对称图形的性质得到:BB′=2AB=8.故答案为:8.点评:此题主要考查了解直角三角形的知识和中心对称图形的性质,根据题意得出AB的长是解题关键.18.阅读下面操作过程,回答后面的问题:在一次数学实践探究活动中,李小明同学如图1,过AB、CD的中点画直线EF,把矩形ABCD分割成a,b两部分;而王小刚同学如图2,过A、C两点画直线AC,把矩形ABCD分割成c,d两部分.(1)a,b,c,d的面积关系是Sa = Sb = Sc = Sd.(2)根据这两位同学的分割原理,你能探索出多少种分割方法?请写出你的推理结果或猜想,并任意画出一种;(3)由上述的实验操作过程,你能发现什么规律?考点:中心对称.专题:探究型.分析:(1)由于四边形AEFD≌四边形BEFC,则Sa=Sb=S矩形ABCD,同样,△ACD≌△CAD,∴Sc=Sd=S矩形ABCD.从而得出结果.(2)只要过矩形中心的任意一条直线,都可把矩形分割成面积相等的两部分.(3)过中心对称图形的对称中心的任意一条直线,都可把图形分割成面积相等的两部分.解答:解:(1)a,b,c,d的面积关系是S a=S b=S c=S d;(2)无数种.如图,DE=BF,直线EF把矩形分割成面积相等的两部分.(3)过中心对称图形的对称中心的任意一条直线,都可把图形分割成面积相等的两部分.点评:中心对称的性质:①关于中心对称的两个图形能够完全重合;②关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分.。

2020-2021学年 苏科版八年级数学下册 中心对称图形平行四边形压轴题复习(二)

中心对称图形——平行四边形压轴题复习(二)1.如图,四边形ABCD是平行四边形,E、F分别为边AB、CD的中点,连接DE、DB、BF.(1)求证:∠DEB=∠BFD;(2)若∠ADB=90°,证明:四边形BFDE是菱形.2.如图,矩形ABCD中,AB=8,AD=6,点O是对角线BD的中点,过点O的直线分别交AB、CD边于点E、F.(1)求证:四边形DEBF是平行四边形;(2)当DE=DF时,求四边形DEBF的面积S四边形DEBF.3.如图1,在正方形ABCD中,点E在AD的延长线上,P是对角线BD上的一点,且点P位于AE的垂直平分线上,PE交CD于点F.(1)猜测PC和PE有什么大小及位置关系,并给出证明.(2)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系.并说明理由.4.如图,在Rt△ABC中,∠BAC=90°,AD是边BC上的中线,过点A作AE∥BC,过点D作DE∥AB,DE与AC,AE分别交于点O,E,连接EC.(1)求证:四边形ADCE是菱形;(2)若AB=AO,OD=1,则菱形ADCE的周长为.5.如图,四边形ABCD是平行四边形,AC,BD相交于点O,∠1=∠2.它是一个矩形吗?为什么?6.如图,在矩形ABCD中,F是CD的中点,连接AF交BC延长线于点E.求证:BC=EC.7.如图,四边形ABCD为矩形,连接对角线AC,分别作∠BAC、∠BCA、∠ACD、∠DAC的角平分线AE、CE、CF、AF.(1)当AB=BC时,求证:四边形AECF是菱形;(2)设AB=4,BC=3,分别作EM⊥AC于点M,FN⊥AC于点N,求MN的长;(3)分别作EG⊥BC于点G,FH⊥CD于点H,当GC=3,HC=4时,求矩形ABCD的面积.8.如图,矩形ABCD中,AB=6,BC=4,过对角线BD中点O的直线分别交AB,CD 边于点E,F.(1)求证:四边形BEDF是平行四边形;(2)当四边形BEDF是菱形时,求DF的长.9.已知P是正方形ABCD边BC上一点,连接AP,作PE⊥AP,且∠DCE=45°.若PE 和CE交于E点,连接AE交CD于F.(1)求证:EP=AP;(2)若正方形的边长为4,CF=3,求CE的长.10.已知在△ABC中,AD平分∠BAC,交BC于点D,点E在边AC上AB=AE,过点E 作EF∥BC,交AD于点F,连接BF.(1)如图1,求证:四边形BDEF是菱形;(2)如图2,当AB=BC时,在不添加辅助线的情况下,请直接写出图中度数等于∠BAD 的2倍的所有的角.11.如图,菱形ABCD的对角线AC,BD相交于点O,E是AD的中点,点F,G在AB 上,EF⊥AB,OG∥EF.(1)OE AE(填<、=、>);(2)求证:四边形OEFG是矩形;(3)若AD=10,EF=4,求OE和BG的长.12.已知,如图,在平行四边形ABCD中,BF平分∠ABC交AD于点F,AE⊥BF于点O,交BC于点E,连接EF.(1)求证:四边形ABEF是菱形;(2)若AE=12,BF=16,CE=5,求四边形ABCD的面积.13.如图,菱形ABCD中,E为AB边上的一点,F为BC延长线上的一点,且∠BED+∠F =180°求证:DE=DF.14.矩形ABCD中,AB=3,BC=4.点E,F在对角线AC上,点M,N分别在边AD,BC上.(1)如图1,若AE=CF=1,M,N分别是AD,BC的中点.求证:四边形EMFN为矩形.(2)如图2,若AE=CF=0.5,AM=CN=x(0<x<2),且四边形EMFN为矩形,求x的值.15.如图,在平行四边形ABCD中,线段AC的垂直平分线交AC于O,分别交BC,AD 于E,F,连接AE,CF.(1)证明:四边形AECF是菱形;(2)在(1)的条件下,如果AC⊥AB,∠B=30°,AE=2,求四边形AECF的面积.参考答案1.(1)证明:∵四边形ABCD是平行四边形,∴DC=AB且DC∥AB,∵E,F分别为边AB、CD上的中点,∴DF=DC,BE=AB,且DF∥BE,∴DF=BE且DF∥BE,∴四边形BFDE是平行四边形,∴∠DEB=∠BFD;(2)证明:∵E为边AB的中点,∴AE=BE,∵∠ADB=90°,∴△ADB为直角三角形∴DE=AB=BE,由(1)得,四边形BFDE是平行四边形,∴平行四边形BFDE是菱形.2.(1)证明:∵四边形ABCD是矩形,∴DC∥AB,∴∠FDO=∠EBO,∵O是BD的中点,∴DO=BO,在△DFO和△BEO中,,∴△DFO≌△BEO(ASA),∴DF=BE,∵DC∥AB(即DF∥BE),∴四边形DEBF是平行四边形;(2)解:∵四边形ABCD是矩形,∴∠A=90°,∵AB=8,AD=6,∴BD===10,∵四边形DEBF是平行四边形,DE=DF,∴四边形DEBF是菱形,∴DE=BE,设DE=BE=x,在Rt△DAE中,AD2+AE2=DE2,即62+(8﹣x)2=x2,解得:x=,即BE=,∴四边形DEBF的面积S四边形DEBF=BE×AD=×6=.3.解:(1)PC=PE,PC⊥PE证明∵点P位于AE的垂直平分线上,∴PA=PE,∵四边形ABCD是正方形,∴AB=AC,∠ADB=∠CDB,∵PD=PD,∴△ABP≌△CBP(SAS)∴PA=PC,∴PC=PE,∵四边形ABCD是正方形,∴AD=CD,∠ADP=∠CBP,∵PB=PB,∴△ADP≌△CDP(SAS),∴∠PAD=∠PCD,∵PA=PE,∴∠PAD=∠E,∴∠PCD=∠E,∵∠PFC=∠DFE,∴△CPF∽△EDF,∴∠CPF=∠FDE,∵四边形ABCD是正方形,,∴∠ADC=90°,∴∠FDE=90°,∴∠CPF=90°,∴PC⊥PE.(2)PA=CE.理由如下:证明:∵点P位于AE的垂直平分线上,∴PA=PE,∵四边形ABCD是菱形,∴AB=AC,∠ADB=∠CDB,∵PD=PD,∴△ABP≌△CBP,∴PA=PC∴PC=PE,∵四边形ABCD是菱形,∴AD=CD,∠ADP=∠CBP,∵PB=PB,∴△ADP≌△CDP,∴∠PAD=∠PCD,∵PA=PE,∴∠PAD=∠PED,∴∠PCD=∠PED,∵∠PFC=∠DFE,∴△CPF∽△EDF,∴∠CPF=∠EDF,∵四边形ABCD是菱形,∠ABC=120°∴∠ADC=∠ABC=120°∴∠EDF=180°﹣∠ADC=60°∴∠CPF=60°∵PE=PC∴△PCE是等边三角形∴CE=PE∴AP=CE.4.(1)证明:∵AE∥BC,DE∥AB,∴四边形ABDE为平行四边形,∴AE=BD,∵AD是边BC上的中线,∴BD=CD,∴AE=CD,∴四边形ADCE是平行四边形,又∵∠BAC=90°,AD是边BC上的中线,∴AD=BC=CD,∴平行四边形ADCE是菱形;(2)解:∵四边形ADCE是菱形,∴AD=AE=CE=CD,AC⊥DE,OA=OC,∵BD=CD,∴OD是△ABC的中位线,∴AB=2OD=2,∴AO=AB=2,∴AD===,∴菱形ADCE的周长=4AD=4,故答案为:4.5.解:四边形ABCD是矩形.理由如下:证明:如图,∵四边形ABCD是平行四边形,∴OC=AC,OB=BD.又∵∠1=∠2,∴OB=OC,∴BD=AC,∴▱ABCD是矩形.6.证明:∵四边形ABCD是矩形,∴AD∥BE,AD=BC,∴∠ADF=∠ECF,∠DAF=∠CEF,∵F是CD的中点,∴DF=CF,∴在△ADF和△ECF中,∴△ADF≌△ECF(AAS).∴AD=EC,而AD=BC∴BC=EC.7.解:(1)∵四边形ABCD为矩形,∴AB∥CD,∴∠BAC=∠DCA,∵AE平分∠BAC,CF平分∠ACD,∴∠EAC=∠FCA,∴AE∥CF,同理,AF∥CE,∴四边形AECF是平行四边形,∵AB=BC,∴∠BAC=∠ACB,∵AE平分∠BAC,CE平分∠ACB,∴∠EAC=∠ECA,∴AE=CE,∴四边形AECF是菱形;(2)过E作EH⊥BC于点H,EG⊥AB于点G,∵∠B=90°,∴四边形BHEG为矩形,∵AE平分∠BAC,CE平分∠ACB,∴EM=EG=EH,∴四边形BHEG是正方形,∴BG=BH,∵EM=EG=EH,AE=AE,CE=CE,∴Rt△AEG≌Rt△AEM(HL),Rt△CEH≌Rt△CEM(HL),∴AM=AG,CM=CH,∵AB=4,BC=3,∴AC=5,设AM=AG=x,CM=CH=y,BH=BG=z,则,解得,,∴AM=3,CM=2,∵由(1)知四边形AECF是平行四边形,∴AF=CE,AF∥CE,∴∠FAN=∠ECM,∵∠ANF=∠CME=90°,∴△ANF≌△CME(AAS),∴AN=CM=2,∴MN=AM﹣AN=3﹣2=1;(3)过E作EK⊥AB于点K,EL⊥AC于点L,如图,∵矩形ABCD中AB∥CD,∴∠BAC=∠ACD,∵AE、CF分别平分∠BAC和∠ACD,∴∠KAE=∠HCF,∵四边形AECF是平行四边形,∴AE=CF,∵∠AKE=∠CHF=90°,∴△AEK≌△CHF(AAS),∴AK=CH=4,∵AE平分∠BAC,CE平分∠ACB,∴EK=EL=EG,∵AE=AE,CE=CE,∴Rt△AEK≌Rt△AEL(HL),Rt△CEG≌Rt△CEL(HL),∴AK=AL=4,CG=CL=3,∴AC=AL+CL=4+3=7,∵EK=EG,∠EKB=∠B=∠EGB=90°,∴四边形BGEK为正方形,∴BG=BK,∴矩形ABCD的面积=AB•BC=24.8.(1)证明:∵四边形ABCD是矩形,O是BD的中点,∴∠A=90°,AD=BC=4,AB∥DC,OB=OD,∴∠OBE=∠ODF,∴△BOE≌△DOF(ASA),∴EO=FO,∴四边形BEDF是平行四边形;(2)解:当四边形BEDF是菱形时,BD⊥EF,设BE=x,则DE=x,AE=6﹣x,在Rt△ADE中,DE2=AD2+AE2,∴x2=42+(6﹣x)2,解得:x=,∵DF=.9(1)证明:连接AC,过P点作PG⊥BC交AC于G点,∵四边形ABCD是正方形,∴∠ACB=45°,∠BCD=90°,∵PG⊥BC,∴∠GPC=90°,∴∠PGC=45°,∴PG=PC,∵∠DCE=45°,∴∠AGP=∠ECP=90°+45°=135°,∵AP⊥PE,∴∠APE=∠GPC=90°,∴∠APG=∠EPC=90°﹣∠GPE,在△PAG和△PEC中∴△PAG≌△PEC(ASA),∴PE=PA;(2)解:延长CB到Q,使BQ=DF,过E作EH⊥BC,EH交BC延长线于H,连接AQ,PF,∵四边形ABCD是正方形,∴∠D=∠DAB=∠ABC=90°,AD=AB,∴∠ABQ=∠D=90°,在△ABQ和△ADF中∴△ABQ≌△ADF(SAS),∴AQ=AF,∠DAF=∠QAB,∵∠APE=90°,AP=PE,∴∠PAE=∠AEP=45°,∴∠AQP=∠QAB+∠BAP=∠DAF+∠BAP=∠DAB﹣∠PAE=90°﹣45°=45°=∠PAE,在△QAP和△FAP中∴△QAP≌△FAP(SAS),∴QP=PE,∵EH⊥BC,∠ABP=90°,∠APE=90°,∴∠ABP=∠H=90°,∠APB=∠PEH=90°﹣∠EPH,在△PEH和△APB中∴△PEH≌△APB(AAS),∴BP=EH,∵∠H=90°,∠DCE=45°,∴∠ECH=45°=∠CEH,∴CH=EH=BP,设EH=CH=BP=x,∴PC=4﹣x,PF=BQ+BP=DF+BP=4﹣3+x=1+x,在Rt△PCF中,由勾股定理得:(1+x)2=(4﹣x)2+32,解之得:x=,即CH=EH=,∴在Rt△CHE中,由勾股定理得:CE=CH=.10.解:(1)证明:∵AD平分∠BAC,∴∠BAD=∠EAD,∵AB=AE,AD=AD,∴△ABD≌△AED(SAS),∴DB=DE,∠BDA=∠EDA.∵EF∥BC,∴∠EFD=∠BDA,∴∠EFD=∠EDF,∴EF=ED,∴EF=BD,∵EF∥BD,∴四边形BDEF为菱形.(2)∵AD平分∠BAC,∴∠BAC=2∠BAD,∵AB=BC,∴∠BAC=∠BCA=2∠BAD,∵EF∥BC,∴∠FEC=∠BCA=2∠BAD,∵∠ABF=∠AEF,∴∠ABF=2∠BAD.所以图中度数等于∠BAD的2倍的所有的角:∠BAC,∠BCA,∠ABF,∠AEF.11.(1)解:∵四边形ABCD是菱形,∴AC⊥BD,∵E是AD的中点,∴OE=AD=AE,故答案为:=;(2)证明:∵四边形ABCD是菱形,∴OB=OD,∵E是AD的中点,∴OE是△ABD的中位线,∴OE∥FG,∵OG∥EF,∴四边形OEFG是平行四边形,∵EF⊥AB,∴∠EFG=90°,∴平行四边形OEFG是矩形;(3)解:∵四边形ABCD是菱形,∴BD⊥AC,AB=AD=10,∴∠AOD=90°,∵E是AD的中点,∴OE=AE=AD=5;由(1)知,四边形OEFG是矩形,∴FG=OE=5,∵AE=5,EF=4,∴AF===3,∴BG=AB﹣AF﹣FG=10﹣3﹣5=2.12.解:(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AFB=∠FBE,∵BF平分∠ABC,∴∠ABF=∠EBF,∴∠AFB=∠ABF,∴AF=AB,∵AE⊥BF,∴∠AOB=∠EOB=90°,OB=OB,∠ABO=∠EBO,∴△ABO≌△EBO(ASA),∴AB=BE,∴AF=BE,又AF∥BE,∴四边形ABEF是平行四边形,∵AB=BE,∴平行四边形ABEF是菱形.(2)如图,作AG⊥BC于点G,∵四边形ABEF是菱形,OA=OE=AE=6,OB=OF=BF=8,∴AB==10,BE=10,设BG=x,则EG=BE﹣BG=10﹣x,∴在Rt△ABG和Rt△AEG中,根据勾股定理,得AG2=AB2﹣BG2=AE2﹣EG2即102﹣x2=122﹣(10﹣x)2解得x=,∴AG==.∴四边形ABCD的面积为:BC•AG=15×=144.13.解:如图,过点D作DN⊥AB于N,DM⊥BC于F,∵四边形ABCD是菱形,∴AB=BC,∵S菱形ABCD=AB×DN=BC×DM,∴DN=DM,∵∠BED+∠F=180°,∠BED+∠AED=180°,∴∠F=∠AED,又∵∠DNE=∠DMF,∴△DNE≌△DMF(AAS)∴DE=DF.14.(1)证明:连接MN,如图1所示:∵四边形ABCD是矩形,∴AD∥BC,AD=BC,∠B=90°,∴∠EAM=∠FCN,AC===5,∵M,N分别是AD,BC的中点,∴AM=DM=BN=CN,AM∥BN,∴四边形ABNM是平行四边形,又∵∠B=90°,∴四边形ABNM是矩形,∴MN=AB=3,在△AME和△CNF中,,∴△AME≌△CNF(SAS),∴EM=FN,∠AEM=∠CFN,∴∠MEF=∠NFE,∴EM∥FN,∴四边形EMFN是平行四边形,又∵AE=CF=1,∴EF=AC﹣AE﹣CF=3,∴MN=EF,∴四边形EMFN为矩形.(2)解:连接MN,作MH⊥BC于H,如图2所示:则四边形ABHM是矩形,∴MH=AB=3,BH=AM=x,∴HN=BC﹣BH﹣CN=4﹣2x,∵四边形EMFN为矩形,AE=CF=0.5,∴MN=EF=AC﹣AE﹣CF=4,在Rt△MHN中,由勾股定理得:32+(4﹣2x)2=42,∴x=2﹣.15.(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠OAF=∠OCE,∵EF是线段AC的垂直平分线,∴OA=OC,EF⊥AC,在△AOF和△COE中,,∴△AOF≌△COE(ASA),∴AF=CE,∴四边形AECF是平行四边形,又∵EF⊥AC,∴四边形AECF是菱形;(2)解:由(1)得:四边形AECF是菱形,EF⊥AC,∴CE=AE=2,OA=OC,OB=OD,∵AC⊥AB,∴EF∥AB,∴∠OEC=∠B=30°,∴OC=CE=1,OE=OC=,∴AC=2OC=2,EF=2OE=2,∴四边形AECF的面积=AC×EF=×2×2=2.。

初中数学中心对称图形专题训练50题(含参考答案)

初中数学中心对称图形专题训练50题含参考答案一、单选题1.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.2.下列图形中,是轴对称图形的是()A.B.C.D.3.下列四边形中,是中心对称但不是轴对称的图形是()A.矩形B.等腰梯形C.正方形D.平行四边形4.下列选项中的垃圾分类图标,属于中心对称图形的是()A.B.C.D.5.下列图形中,一定既是轴对称图形又是中心对称图形的是()A.等腰三角形B.矩形C.平行四边形D.正五边形6.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.7.下列图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.8.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.9.下列汽车车标中,既是轴对称图形,又是中心对称图形的是()A.B.C.D .10.如图,将ABC ∆绕点()1,1C 旋转180︒得到''.A B C ∆设点A 的坐标为(,)a b , 则点'A 的坐标为( )A .()1,1a b -+-+B .()1,1a b ----C .()2,2a b -+-+D .2,2()a b ----11.下列命题中,正确的是( )A .菱形的对角线相等B .平行四边形既是轴对称图形,又是中心对称图形C .正方形的对角线相等且互相垂直D .矩形的对角线不能相等12.下列图案中,既是中心对称又是轴对称图形的个数有( )A .1个B .2个C .3个D .4个 13.对于等边三角形,下列说法正确的为( )A .既是中心对称图形,又是轴对称图形B .是轴对称图形,但不是中心对称图形C .是中心对称图形,但不是轴对称图形D .既不是中心对称图形,又不是轴对称图形14.在平面直角坐标系中,点(2,1)-关于原点对称的点的坐标是( )A .(2,1)B .(2,1)-C .(1,2)-D .(2,1)-- 15.下列图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .16.下列图形中,是轴对称图形不是中心对称图形的有( )A .1个B .2个C .3个D .4个 17.下列图形中,既是轴对称又是中心对称图形的是( )A .B .C .D .18.如图,菱形ABCD 对角线交点与坐标原点O 重合,点()2,5A -,则点C 的坐标为( )A .()5,2-B .()2,5-C .()2,5D .()2,5-- 19.如图,四边形ABCD 与四边形FGHE 关于点O 成中心对称,下列说法中错误的是( )A .//AD EF =,//AB GF =B .BO GO =C .B 、O 、G 三点在一条直线上D .DO HO =20.下列图形中既是轴对称图形又是中心对称图形的是( )A .AB .BC .CD .D二、填空题21.圆不仅是轴对称图形,而且是______图形,它的对称中心是______.22.请写出一个是轴对称图形但不一定是中心对称图形的几何图形名称:____________________.23.已知点()4,3P -和点(),Q x y 关于原点对称,则x y +=______.24.下列图形:①平行四边形;①菱形;①等边三角形;①正方形,其中既是轴对称图形,又是中心对称图形的有_____(填序号).25.在平面直角坐标系中,点(-1,2)关于x 轴对称的点的坐标是____________,关于y 轴对称的点的坐标是____________,关于原点对称的点的坐标是_____________.26.已知点A (a ,1)与点B (﹣3,b )关于原点对称,则ab 的值为_____. 27.在平面直角坐标系中,以原点为中心,把点A (3,﹣5)逆时针旋转180°,得到的点B 的坐标为 _________.28.数轴上A B 点表示-2,则A 点关于B 点的对称点A '表示的数为_______________.29.成中心对称的两个图形________,对应点的连线都经过________,并且被对称中心________.30.如果点P(-3,1),那么点P(-3,1)关于原点的对称点P '的坐标是P '___.31.直线2y x =+上有一点()1,,P m 则P 点关于原点的对称点为P'________________(不含字母m ).32.阅读下面材料,并解决相应的问题:在数学课上,老师给出如下问题,已知线段AB ,求作线段AB 的垂直平分线.小明的作法如下:(1)分别以A ,B 为圆心,大于12AB 长为半径作弧,两弧交于点C ; (2)再分别以A 、B 为圆心,大于12AB 长为半径作弧,两弧交于点D ; (3)作直线CD ,直线CD 即为所求的垂直平分线.同学们对小明的作法提出质疑,小明给出了这个作法的证明如下:连接AC ,BC ,AD ,BD由作图可知:AC BC =,AD BD =①点C ,点D 在线段的垂直平分线上(依据1:______)①直线就是线段的垂直平分线(依据2:______)(1)请你将小明证明的依据写在横线上;(2)将小明所作图形放在如图的正方形网格中,点A ,B ,C ,D 恰好均在格点上,依次连接A ,C ,B ,D ,A 各点,得到如图所示的“箭头状”的基本图形,请在网格中添加若干个此基本图形,使其各顶点也均在格点上,且与原图形组成的新图形是中心对称图形.33.若某函数图象上至少存在不同的两点关于原点对称,则把该函数称之为“H 函数”,其图象上关于原点对称的两点叫做一对“H 点”.根据该约定,下列关于x 的函数:①2y x =;①()0m y m x =≠;①31y x =-;①2y x .其中是“H 函数”的为________.(填上序号即可)34.旋转对称图形______________(填“一定是”、“一定不是”或“不一定是”)中心对称图形;中心对称图形________(填“一定是”、“一定不是”或“不一定是”)旋转对称图形.35.给出下列5种图形:①平行四边形①菱形①正五边形、①正六边形、①等腰梯形中,既是轴对称又是中心对称的图形有________个.36.若点P (﹣m ,3﹣m )关于原点的对称点在第四象限,则m 满足_____. 37.在下列字型的数字中,既是轴对称图形又是中心对称图形的有______________.38.在平面直角坐标中,点()1,2P -关于原对称的点的坐标为_______________________.39.在方格纸中,选择标有序号的一个小正方形涂黑,与图中阴影构成中心对称图形,涂黑的小正方形序号为__________;若与图中阴影构成轴对称图形,涂黑的小正方形序号为__________.三、解答题40.(1)如图①所示,图中的两个三角形关于某点对称,请找出它们的对称中心O . (2)如图①所示,已知①ABC 的三个顶点的坐标分别为A (4,﹣1),B (1,1),C (3,﹣2).将①ABC 绕原点O 旋转180°得到①A 1B 1C 1,请画出①A 1B 1C 1,并写出点A 1的坐标.41.如图,ABC 的三个顶点都在正方形网格的格点上,其中点A 的坐标为()1,0-.(1)在网格中作A B C ''',使A B C '''与ABC 关于原点O 成中心对称.(2)如果四边形BCDE 是以BC 为一边,且两条对角线相交于原点O 的平行四边形,请你直接写出点D 和点E 的坐标.42.如图,在85⨯的正方形网格中,每个小正方形的边长均为1,ABC 的三个顶点均在小正方形的顶点上.(1)在图1中画ABD △(点D 在小正方形的顶点上),使ABD △与ABC 全等,且点D 在直线AB 的下方(点D 不与点C 重合);(2)在图2中画ABE △(点E 在小正方形的顶点上),使ABE △与ABC 全等,且//AC BE ;(3)请直接写出ABC 的面积.43.如图,有三张背面相同的纸牌A B C 、、,其正面分别画有三个不同的图形,将这三张纸牌背面朝上洗匀后随机摸出一张,记下图案放回洗匀后再随机摸出一张.求两次摸出的纸牌正面图形都是中心对称图形的概率,(纸牌用A B C 、、表示)44.如图,在平面直角坐标系内,已知①ABC 的三个顶点坐标分别为A (1,3)、B (4,2)、C (3,4).(1)将①ABC 沿水平方向向左平移4个单位得①A 1B 1C 1,请画出①A 1B 1C 1; (2)画出①ABC 关于原点O 成中心对称的①A 2B 2C 2;(3)若①A 1B 1C 1与①A 2B 2C 2关于点P 成中心对称,则点P 的坐标是45.如图,D 是△ABC 边BC 的中点,连接AD 并延长到点E,使DE=AD ,连接BE .(1)图中哪两个图形成中心对称;(2)若△ADC 的面积为4,求△ABE 的面积.46.如图所示的正方形网格中,ABC ∆的顶点均在格点上,在所给直角坐标系中解答下列问题;(1)作出ABC ∆关于坐标原点成中心对称的111A B C ∆;(2)分别写出点11,A B 两点的坐标;47.作出下列图形的对称中心.48.如图,在ABC 中,D 为BC 上任一点,//DE AC 交AB 于点//E DF AB ,交AC 于点F ,求证:点E F ,关于AD 的中点对称.49.由16个边长相等的小正方形组成的图形如图所示,请你用一条割线(可以是折线)将它分割成两个图形,使之关于某一点成中心对称,要求给出两种不同的方法.参考答案:1.D【分析】根据轴对称图形与中心对称图形的概念判断即可.【详解】解:A、不是轴对称图形,是中心对称图形;B、是轴对称图形,但不是中心对称图形;C、既不是轴对称图形,也不是中心对称图形;D、既是轴对称图形,又是中心对称图形.故选:D.【点睛】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.B【分析】根据轴对称图形的定义判断即可.【详解】A是中心对称图形,B是轴对称图形,C是中心对称图形,D即不是中心对称图形也不是轴对称图形.故选B.【点睛】本题考查对称轴图形的判断,关键在于牢记对称轴图形的定义.3.D【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形;中心对称图形的概念:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合的图形,依次进行判定即可.【详解】A、既是轴对称图形,也是中心对称图形,故不符题意;B、是轴对称图形,不是中心对称图形,故不符题意;C、既是轴对称图形,也是中心对称图形,故不符题意;D、是中心对称图形,不是轴对称图形,故符合题意;故选:D.【点睛】本题考查轴对称图形和中心对称图形,解题的关键是熟练掌握轴对称和中心对称图形的概念.4.C【分析】一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.根据中心对称图形的概念对各选项分析判断即可得解.【详解】解:A.不是中心对称图形,故选项错误,不符合题意;B.不是中心对称图形,故选项错误,不符合题意;C.是中心对称图形,故选项正确,符合题意;D.不是中心对称图形,故选项错误,不符合题意.故选:C.【点睛】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后与原图重合.5.B【分析】根据在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形;在平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形叫做轴对称图形对各选项进行判断即可.【详解】解:①等腰三角形,正五边形均为轴对称图形,但不是中心对称图形;平行四边形是中心对称图形,但不是轴对称图形;故A,C,D不符合题意;矩形既是轴对称图形又是中心对称图形故B符合题意;故选B.【点睛】本题考查了轴对称图形与中心对称图形.解题的关键在于熟练掌握轴对称图形与中心对称图形的定义.6.B【分析】根据轴对称图形与中心对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴,如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.【详解】解:A是轴对称图形,不是中心对称图形.不符合题意;B既是轴对称图形,又是中心对称图形,符合题意;C是轴对称图形,不是中心对称图形,不符合题意;D既不是轴对称图形,又不是中心对称图形,符合题意;故选:B.【点睛】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形沿对称轴折叠后可重合;中心对称图形关键是要寻找对称中心,图形旋转180°后与原图重合.7.C【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、不是轴对称图形,是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项错误;C、是轴对称图形,是中心对称图形,故此选项正确;D、是轴对称图形,不是中心对称图形,故此选项错误,故选:C.【点睛】本题考查两种对称图形,掌握轴对称图形与中心对称图形的概念是解决问题的关键.8.A【分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行解答.【详解】解:A.既是轴对称图形,又是中心对称图形,故此选项符合题意;B.是轴对称图形,不是中心对称图形,故此选项不合题意;C.不是轴对称图形,是中心对称图形,故此选项不合题意;D.是轴对称图形,不是中心对称图形,故此选项不合题意;故选:A.【点睛】此题主要考查了中心对称图形和轴对称图形,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.9.B【分析】中心对称图形定义:把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形;轴对称图形定义:如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,根据定义逐项判定即可得出结论.【详解】解:A、是轴对称图形,不是中心对称图形,故选项不符合题意;B、是轴对称图形,也是中心对称图形,故选项符合题意;C 、是轴对称图形,不是中心对称图形,故选项不符合题意;D 、不是轴对称图形,是中心对称图形,故选项不符合题意;故选:B .【点睛】本题考查中心对称图形与轴对称图形的定义,熟练掌握中心对称图形与轴对称图形的定义是解决问题的关键.10.C【分析】根据旋转变换的对应点关于旋转中心对称,再根据中点公式列式求解即可.【详解】根据题意,点A 、A′关于点C 对称,设点A’的坐标是(x ,y ), 则12a x +=,12b y +=, 解得x =−a+2,y =−b+2,①点A’的坐标是()2,2a b -+-+.故选:C .【点睛】本题考查了利用旋转进行坐标与图形的变化,根据旋转的性质得出点A 、A′关于点C 成中心对称是解题的关键,还需注意中点公式的利用,也是容易出错的地方. 11.C【分析】根据菱形、平行四边形、正方形、矩形的性质逐项判断即可得出答案.【详解】解:菱形的对角线互相垂直,但不一定相等,故选项A 说法错误,不合题意; 平行四边形不是轴对称图形,是中心对称图形,故选项B 说法错误,不合题意; 正方形的对角线相等且互相垂直,故选项C 说法正确,符合题意;矩形的对角线一定相等,故选项D 说法错误,不合题意;故选C .【点睛】本题考查菱形、平行四边形、正方形、矩形的性质,以及轴对称、中心对称图形的识别,属于基础题,熟练掌握特殊平行四边形的特点是解题的关键.12.B【分析】根据轴对称图形与中心对称图形的概念对各图形分析判断后利用排除法求解.【详解】解:第一个图形是轴对称图形,又是中心对称图形,第二个图形既是轴对称图形,不是中心对称图形,第三个图形是中心对称图形,不是轴对称图形,第四个图形是轴对称图形,又是中心对称图形,综上所述,既是轴对称图形又是中心对称图形的是第二个图形共2个.故选B .【点睛】本题考查了轴对称图形,中心对称图形的识别,解题的关键是掌握轴对称图形,中心对称图形的定义.13.B【分析】根据中心对称图形与轴对称图形的概念分析即可.【详解】等边三角形是轴对称图形,不是中心对称图形.故选:B .【点睛】本题考查判断轴对称图形与中心对称图形.掌握轴对称图形和中心对称图形的概念是解答本题的关键.14.B【分析】根据两个点关于原点对称时,它们的坐标符号相反可得答案.【详解】解:点(2,1)-关于原点对称的点的坐标是(2,1)-,故选:B .【点睛】本题考查了关于原点对称的点的坐标,掌握两个点关于原点对称时,它们的坐标符号相反是解题的关键.15.D【分析】根据轴对称图形和中心对称图形的定义判断即可.【详解】①不是中心称图形,①不符合题意;①不是对称图形,①不符合题意;①不是轴对称图形,①不符合题意;①是轴对称图形,也是中心对称图形,①符合题意;故选D.【点睛】本题考查了轴对称图形即沿着某条直线折叠,直线两旁的部分完全重合;中心对称图形绕某点旋转180°与原图形完全重合;熟练掌握定义是解题的关键.16.A【分析】利用轴对称图形和中心对称图形的定义即可求解.【详解】解:等腰三角形是轴对称图形,不是中心对称图形,符合题意;菱形既是轴对称图形,又是中心对称图形,不符合题意;圆既是轴对称图形,又是中心对称图形,不符合题意;平行四边形不是轴对称图形,是中心对称图形,不符合题意;故选:A.【点睛】本题考查识别轴对称图形和中心对称图形,掌握轴对称图形和中心对称图形的定义是解题的关键.17.B【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A、是轴对称图形,不是中心对称图形,故错误;B、是轴对称图形,是中心对称图形,故正确;C、不是轴对称图形,是中心对称图形,故错误;D、是轴对称图形,不是中心对称图形,故错误.故选B.【点睛】本题考查的是中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.18.B【分析】根据菱形的中心对称性,A、C坐标关于原点对称,利用横反纵也反的口诀求解即可.【详解】①菱形是中心对称图形,且对称中心为原点,①A、C坐标关于原点对称,2,5-,①C的坐标为()故选C.【点睛】本题考查了菱形的中心对称性质,原点对称,熟练掌握菱形的性质,关于原点对称点的坐标特点是解题的关键.19.D【分析】根据中心对称的性质即“中心对称的两个图形全等,对称点到对称中心的距离相等”可得到结论.【详解】解:①四边形ABCD与四边形FGHE关于点O成中心对称,=,B、O、G三点在一条直线① AD与EF、AB GF与的关系是相等并且平行,BO GO=,上,DO EO①A、B、C选项正确,D选项错误.故选D.【点睛】本题考查中心对称的图形性质,得出对应顶点、对应边是解题关键.20.D【详解】根据轴对称图形又和中心对称图形的定义,易得D.21.中心对称圆心【分析】圆是一种比较特殊的几何图形,圆既是轴对称图形,又是中心对称图形,对称中心是圆心.【详解】解:圆是轴对称图形,圆也是中心对称图形,圆心是其对称中心,故答案为中心对称,圆心.【点睛】此题考查的知识点是中心对称图形,关键是结合中心对称图形和轴对称图形的概念对圆的认识.22.等腰三角形(答案不唯一)【分析】根据轴对称图形与中心对称图形的概念求解.如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心. 如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【详解】解:是轴对称,但不是中心对称的几何图形名称:如等腰三角形或正三角形(答案不唯一).故答案为:等腰三角形(答案不唯一).【点睛】本题考查的是中心对称图形与轴对称图形的含义.掌握“轴对称图形与中心对称图形的概念”是解本题的关键.23.1-【分析】直接利用两个点关于原点对称时,它们的坐标符号相反,即点P (x ,y )关于原点O 的对称点是P ′(﹣x ,﹣y ),进而得出答案.【详解】解:①点()4,3P -和点(),Q x y 关于原点对称,①4,3x y =-=,则1x y +=-.故答案为:1-.【点睛】此题主要考查了关于原点对称点的性质,解题的关键是正确掌握横纵坐标的符号关系.24.①①【分析】根据中心对称图形及轴对称图形的定义即可解答.【详解】①只是中心对称图形;①、①两者都既是中心对称图形又是轴对称图形,①只是轴对称图形.故答案为①①.【点睛】本题主要考查了中心对称与轴对称的概念.轴对称的关键是寻找对称轴,图象沿对称轴折叠后可重合,中心对称是要寻找对称中心,旋转180°后与原图重合.25. (-1,-2) (1,2) (1,-2)【详解】试题分析:根据关于x 轴、y 轴、原点对称的点的坐标的特征即可得到结果. 点(-1,2)关于x 轴对称的点的坐标是(-1,-2),关于y 轴对称的点的坐标是(1,2),关于原点对称的点的坐标是(1,-2).考点:本题考查的是关于x 轴、y 轴、原点对称的点的坐标的特征点评:解答本题的关键是熟练掌握关于x 轴对称的点的横坐标不变,纵坐标变为相反数;关于y 轴对称的点的纵坐标不变,横坐标变为相反数;关于原点对称的点的横、纵坐标均变为相反数.26.-3【分析】根据关于原点对称的两个点横纵坐标互为相反数得出,a b 的值,代入计算即可.【详解】解:①点A (a ,1)与点B (﹣3,b )关于原点对称,①a =3,b =﹣1,故ab =﹣3.故答案为:﹣3.【点睛】此题主要考查了关于原点对称点的性质,正确记忆关于原点对称点的性质是解题关键.27.(-3,5)【分析】根据旋转180°后的对应点与点A 关于原点对称进行求解即可.【详解】解:①将点A 绕原点逆时针旋转180°后,点A 的对应点B 与点A 关于原点对称, ①点B 的坐标为(-3,5),故答案为:(-3,5).【点睛】本题主要考查了绕原点旋转一定角度的点的坐标特征,熟知绕原点旋转180度对应点关于原点对称是解题的关键.28.4-【分析】根据对称中心是对应点的中点,可得答案.【详解】①点A 和点A '关于点B 对称,①B 是A 与A '连线的中点,设A '表示的数是x ,则)122x =-,解得:4x =-故答案为:4-.【点睛】本题考查了实数与数轴,利用对称中心是对应点的中点得出方程是解答本题的关键.29. 全等 对称中心 平分【分析】根据中心对称的性质直接填空得出即可.【详解】成中心对称的两个图形全等,对应点的连线都经过对称中心,并且被对称中心平分.故填:全等,对称中心,平分.【点睛】此题主要考查了中心对称的定义,熟练掌握中心对称的定义是解题关键.30.(3,-1)【详解】试题分析:根据中心对称的性质,得点P(﹣3,1)关于原点对称的点的坐标是(3,﹣1).故答案为(3,-1).考点:关于原点对称的点的坐标.31.(-1,-3).【分析】根据一次函数图象上点的坐标性质得出P点坐标,再利用关于原点的对称点的性质得出答案.【详解】解:①直线y=x+2上有一点P(1,m),①x=1,y=1+2=3,①P(1,3),①P点关于原点的对称点P′的坐标为:(-1,-3).故答案为:(-1,-3).【点睛】此题主要考查了一次函数图象上点的坐标性质以及关于原点的对称点的性质,正确把握相关定义是解题关键.32.(1)到一条线段两个端点距离相等的点在这条线段的垂直平分线上;两点确定一条直线;(2)见解析【分析】(1)根据线段的垂直平分线的判定进行解题即可.(2)根据题意用基本图形设计中心图案即可.【详解】解:(1)连接AC,CB,AD,DB.由作图可知:AC=BC,AD=BD.①点C,点D在线段的垂直平分线上(到一条线段两个端点距离相等的点在这条线段的垂直平分线上).①直线就是线段的垂直平分线(两点确定一条直线).故答案为:到一条线段两个端点距离相等的点在这条线段的垂直平分线上;两点确定一条直线;(2)如图所示:【点睛】本题考查利用旋转设计图案,线段的垂直平分线的判定和性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.33.①①【分析】设函数上一个点的坐标为(,)a b ,先根据关于原点对称的点坐标变换规律可得对称点的坐标为(,)a b --,再代入函数的解析式逐个检验即可得.【详解】解:设函数上一个点的坐标为(,)a b ,则其关于原点对称的点坐标为(,)a b --, ①将点(,)a b 代入2y x =得:2b a =,当x a =-时,2y a b =-=-,即点(,)a b --在函数2y x =上,则函数2y x =是“H 函数”;①将点(,)a b 代入()0m y m x =≠得:m b a =, 当x a =-时,m y b a ==--,即点(,)a b --在函数()0m y m x =≠上, 则函数()0m y m x=≠是“H 函数”; ①将点(,)a b 代入31y x =-得:31b a =-,即31a b =+,当x a =-时,312y a b =--=--,则点(,)a b --不在函数31y x =-上,此函数不是“H 函数”;①将点(,)a b 代入2y x 得:2b a =,当x a =-时,22()y a a b =-==,则点(,)a b --不在函数2y x 上,此函数不是“H 函数”;综上,是“H 函数”的为①①,故答案为:①①.【点睛】本题考查了关于原点对称的点坐标变换规律,理解“H 函数”的定义是解题关键. 34. 不一定是; 一定是【分析】根据中心对称的定义及旋转对称的定义:如果某一个图形围绕某一点旋转一定的角度(小于360°)后能与原图形重合,那么这个图形就叫做旋转对称图形;把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;即可得出答案.【详解】旋转对称图形不一定是中心对称图形,中心对称图形一定是旋转对称图形. 故答案为:不一定是;一定是。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中心对称图形-----证明题
例1、如图,在梯形ABCD 中,AD ∥BC ,E 是BC 的中点,AD =5,BC =12,CD
C =045,点P 是BC 边上一动点,设PB 长为x.
(1)当x 的值为 时,以点P 、A 、D 、E 为顶点的四边形为直角梯形. (2)当x 的值为 时,以点P 、A 、D 、E 为顶点的四边形为等腰梯形. (2)当x 的值为 时,以点P 、A 、D 、E 为顶点的四边形为平行四边形.
(3)点P 在BC 边上运动的过程中,以点P 、A 、D 、E 为顶点的四边形能否构成菱形?试说明理由.
例2、如图,在等边△ABC 中,点D 是BC 边的中点,以AD 为边作等边△ADE . (1)求∠CAE 的度数;
(2)取AB 边的中点F ,连结CF 、CE ,试证明四边形AFCE 是矩形.
例3、矩形ABCD 中,AC 、BD 相交于点O ,E 为矩形 ABCD 外一点,若AE ⊥CE ,求证BE ⊥DE .
第4题图
B
D
A
D
M
N
B
C
例4、点D 是等腰Rt △ABC 的直角边BC 上一点,AD 的中垂线EF 分别交AC 、AD 、AB 于E 、O 、F ,且BC =2.
①当CD =2时,求AE ;
②当CD =2(2-1)时,试证明四边形AEDF 是菱形.
练习1、如图,在矩形ABCD 中,E 、F 分别是边BC 、AB 上的点,且EF =ED ,EF ⊥ED .试说明AE 平分∠BAD .
练习2、在△ABC 中, AB =2AC ,AF =
4
1
AB ,D 、E 分别为AB 、BC 的中点,EF 与CA 的延长线交于点G ,求证:AF =AG .
练习3、如图:梯形ABCD 中,AD ∥BC ,S △ADC :S △ABC =2:3,而对角线中点M 、N 的连线段为10cm ,
求梯形两底的长.
D
A
B
C
E
F G
A
B
C
D
E
E
练习4、△ABC 中E 是AB 的中点,CD 平分∠ACD ,AD ⊥CD 与点D ,求证:DE =2
1
(BC -AC ).
练习5、如图,将正方形ABCD 中的△ABD 绕对称中心O 旋转至△GEF 的位置,EF 交AB 于M ,GF 交BD 于N .请
猜想BM 与FN 有怎样的数量关系,并说明你的理由.
例5、如图:AE 是正方形ABCD 中∠BAC 的平分线,AE 分别交BD 、BC 于OF =
2
1
CE .

例6、(1)如图①,在正方形ABCD 中,点E ,F 分别在边BC ,CD 上,AE 、BF 交于点O ,∠AOF =90°.试说明:BE
=CF .
(2)如图②,在正方形ABCD 中,点E ,H ,F ,G 分别在边AB ,BC ,CD ,DA 上,EF 、GH 交于点O ,∠FOH
=90°,EF =4.求GH 的长.
(3)已知点E ,H ,F ,G 分别在矩形ABCD 的边AB ,BC ,CD ,DA 上,EF 、GH 交于点O ,∠FOH =90°,EF =
4.直接写出下列两题的答案:
①如图③,矩形ABCD 由2个全等的正方形组成,求GH 的长;
②如图④,矩形ABCD 由n
个全等的正方形组成,求GH 的长(用n 的代数式表示).
例7:(2010山东青岛)问题再现现实生活中,镶嵌图案在地面、墙面乃至于服装面料设计中随处可见.在八年级课题学习“平面图形的镶嵌”中,对于单种多边形的镶嵌,主要研究了三角形、四边形、正六边形的镶嵌问
题.今天我们把正多边形
....的镶嵌作为研究问题的切入点,提出其中几个问题,共同来探究.
我们知道,可以单独用正三角形、正方形或正六边形镶嵌平面.如右图中,用正方形镶嵌平面,可以
发现在一个顶点O周围围绕着4个正方形的内角.
试想:如果用正六边形来镶嵌平面,在一个顶点周围应该围绕着个正六边形的内角.
问题提出如果我们要同时用两种不同的正多边形镶嵌平面,可能设计出几种不同的组合方案?
问题解决猜想1:是否可以同时用正方形、正八边形两种正多边形组合进行平面镶嵌?
分析:我们可以将此问题转化为数学问题来解决.从平面图形的镶嵌中可以发现,解决问题的关键在于分析能同时用于完整镶嵌平面的两种正多边形的内角特点.具体地说,就是在镶嵌平面时,一个顶点周围围绕的各个正多边形的内角恰好拼成一个周角.
验证1:在镶嵌平面时,设围绕某一点有x个正方形和y个正八边形的内角可以拼成一个周角.根据题意,可得方
程:
()
82180
90360
8
x y
-⨯
+ =
,整理得:238
x y
+=,正整数解为
1
2
x
y
=


=


结论1:镶嵌平面时,在一个顶点周围围绕着1个正方形和2个正八边形的内角可以拼成一个周角,所以同时用正方形和正八边形两种正多边形组合可以进行平面镶嵌.
猜想2:是否可以同时用正三角形和正六边形两种正多边形组合进行平面镶嵌?若能,请按照上述方法进行验证,并写出所有可能的方案;若不能,请说明理由.
验证2:
结论2:
上面,我们探究了同时用两种不同的正多边形组合镶嵌平面的部分情况,仅仅得到了一部分组合方案,相信同学们用同样的方法,一定会找到其它可能的组合方案.
问题拓广请你仿照上面的研究方式,探索出一个同时用三种不同的正多边形组合进行平面镶嵌的方案,并写出验证过程.
猜想3:。

验证3:
结论3:
O。

相关文档
最新文档