精品课程电动力学知识梳理
初中物理电动力学知识点总结与梳理

初中物理电动力学知识点总结与梳理电动力学是物理学中的一个重要分支,研究电荷和电流在电场和磁场中的相互作用关系。
初中物理学习的重点之一就是电动力学,本文将对初中物理电动力学的知识点进行总结与梳理。
1. 电荷和电流电荷是物质的基本性质之一,有正电荷和负电荷之分。
同种电荷相互之间发生排斥,异种电荷相互之间发生吸引。
电子是负电荷的基本粒子,负电荷的基本单位是电子电荷e。
正电荷的基本单位与负电荷相同。
电流是电荷在单位时间内通过导体横截面的数量,单位是安培(A)。
2. 电路中的基本元件电路中常见的基本元件有导体、电阻、电容和电感。
导体是电流可以通过的物质,如金属线。
电阻是阻碍电流通过的元件,其单位是欧姆(Ω)。
电容是储存电荷的元件,其单位是法拉(F)。
电感是储存磁能的元件,其单位是亨利(H)。
3. 电压和电动势电压是电源对电荷提供的能量,也称为电势差,其单位是伏特(V)。
电动势是电源的内部能量转化为电能的能力,单位也是伏特(V)。
电流的大小与电压和电阻的关系可以用欧姆定律来描述,即I=U/R,其中I为电流,U为电压,R为电阻。
4. 阻抗和电路分析阻抗是交流电路中电阻、电容和电感对电流的阻碍能力,其单位是欧姆(Ω)。
在交流电路中,电流的大小和相位差可以通过阻抗和电压的相位差来确定。
通过阻抗,可以对交流电路进行分析和计算。
5. 频率和周期频率是交流电流或电压波形中周期性事件的发生频率,单位是赫兹(Hz)。
周期是交流电流或电压波形中一个完整的周期所需要的时间。
频率和周期之间的关系是f=1/T,其中f为频率,T为周期。
6. 直流电路和交流电路直流电路中电流的方向是固定不变的,电源提供稳定的电压,如电池。
交流电路中电流的方向随时间改变,电源提供周期性变化的电压,如插座上的交流电源。
7. 磁场与电磁感应电流在导线周围产生磁场,磁场的方向可以用右手螺旋定则确定。
电磁感应是指磁场变化时产生感应电动势,导致电流产生的现象。
法拉第电磁感应定律描述了磁场变化引起的感应电动势的大小与变化率的关系,即感应电动势的大小与磁场变化率成正比。
电动力学知识总结

电动力学知识总结电动力学是研究电荷在电场和磁场中受力和运动规律的物理学分支。
它是物理学的重要分支之一,也是现代科学和技术的基础之一、本文将对电动力学的基本概念、电场和电势、电场中的运动粒子、电磁感应和Maxwell方程等进行总结。
1.电动力学的基本概念:电荷:电动力学研究的基本对象,分为正电荷和负电荷。
电场:电荷周围产生的物理量,具有方向和大小,可以产生力。
磁场:由电流产生,具有方向和大小,可以对电流和磁矩产生力。
电场强度和电势差:描述电场的强弱和方向,单位为伏特/米;电势差是单位正电荷从一个点移动到另一点时的势能变化,单位为伏特。
2.电场和电势:电场是描述电荷间相互作用的物理量,通过电荷间的距离和电荷量来计算,符合库仑定律。
电势表示单位正电荷在电场中具有的势能,可以通过电场强度的积分得到电势差。
3.电场中的运动粒子:电荷在电场中受到电场力的作用,根据洛仑兹力公式可以求得电荷的受力情况。
在静电场中,电荷受到恒定电场力的作用,可以进行直线运动或是等速圆周运动。
在匀强磁场中,电荷受到洛仑兹力和离心力的作用,可以进行圆周运动。
4.电磁感应:电磁感应是指磁场变化引起电场和电流产生的现象。
法拉第电磁感应定律描述了磁通量变化产生的电动势大小和方向。
楞次定律描述了电流的变化对磁场的影响。
5. Maxwell方程组:Maxwell方程组总结了电动力学的基本规律,包括电场和磁场的生成与变化规律。
Gauss定理给出了电场通量的计算方法。
Faraday定律描述了电磁感应现象。
然而,由于主观引力逐步修正地在该理论中作为基本引力,并由Lorentz力和Maxwell的第四个方程修正磁力,所以它似乎是一个非常复杂的理论。
电动力学的发展对于现代科学和技术的发展起到了重要的推动作用。
它不仅解释了电荷间的相互作用规律,还解释了电场和磁场的产生与变化规律。
电动力学的研究为电子学、通信、能源等领域的发展提供了理论基础,并在现代物理学的发展中起到了重要的引领作用。
电动力学重点知识总结(期末复习必备)

电动力学重点知识总结(期末复习必备)电动力学重点知识总结(期末复习必备)电动力学是物理学的重要分支之一,研究电荷之间相互作用导致的电场和磁场的规律。
在这篇文章中,我们将整理电动力学的重点知识,以帮助大家进行期末复习。
一、库仑定律库仑定律是描述电荷之间相互作用的基本定律。
根据库仑定律,电荷之间的力与它们的电量大小和距离的平方成正比。
即$$ F = k\frac{q_1q_2}{r^2} $$其中$F$为电荷之间的力,$q_1$和$q_2$分别为两个电荷的电量,$r$为它们之间的距离,$k$为库仑常数。
二、电场电场是描述电荷对周围空间产生影响的物理量。
任何一个电荷在其周围都会产生一个电场,其他电荷受到这个电场的力作用。
1. 电场强度电场强度$E$定义为单位正电荷所受到的电场力。
即$$ E =\frac{F}{q} $$电场强度的方向与电场力方向相同。
2. 电荷在电场中的受力当一个电荷$q$在电场中时,它受到的电场力$F$为$F = qE$,其中$E$为电场强度。
3. 电场线电场线是一种用于表示电场分布的图形。
电场线从正电荷发出,或者进入负电荷。
电场线的密度表示电场强度大小,电场线越密集,电场强度越大。
三、高斯定律高斯定律是用于计算电场分布的重要工具。
它描述了电场与通过闭合曲面的电通量之间的关系。
1. 电通量电通量是电场通过曲面的总电场线数。
电通量的大小等于电场强度与曲面垂直方向的投影之积。
电通量的计算公式为$$ \Phi = \int \mathbf{E} \cdot \mathbf{dA} $$其中$\mathbf{E}$为电场强度,$\mathbf{dA}$为曲面元。
2. 高斯定律高斯定律表示电通量与包围曲面内所有电荷之和的比例关系。
即$$ \Phi = \frac{Q_{\text{内}}}{\epsilon_0} $$其中$\Phi$为通过曲面的电通量,$Q_{\text{内}}$为曲面内的总电荷,$\epsilon_0$为真空介电常数。
最新电动力学重点知识总结

最新电动力学重点知识总结电动力学是物理学的一个重要分支,研究带电粒子在电场和磁场中的运动规律及其相互作用。
以下是最新的电动力学重点知识总结:1.库仑定律:库仑定律描述了两个点电荷之间的电荷间相互作用力的大小和方向。
它以电荷的量及其相对距离为参数,公式为F=k*q1*q2/r^2,其中F是作用力,q1和q2分别是两个电荷的电量,r是两个电荷之间的距离,k是库仑常数。
2.电场强度:电场强度描述了空间中各点受电场力的大小和方向。
电场强度与点电荷的大小和距离成反比,可以用公式E=k*q/r^2表示,其中E是电场强度,q是点电荷的电量,r是点电荷与观察点之间的距离。
3. 电通量:电通量是电场线通过单位面积的数量。
如果一个闭合曲面上的电通量为零,那么在该曲面上没有净电荷。
电通量可以用公式Φ=E*A*cosθ表示,其中Φ是电通量,E是电场强度,A是曲面的面积,θ是电场线与曲面法线之间的夹角。
4.高斯定律:高斯定律是描述电场的一个基本定律,它表明电场的总通量与包围该电场的闭合曲面上的净电荷成正比。
数学表达式为Φ=Q/ε₀,其中Φ是闭合曲面上的电通量,Q是闭合曲面内的净电荷,ε₀是真空的介电常数。
5.电势能:电荷在电场中具有电势能。
电势能是一个量值,并且仅依赖于电荷和它在电场中的位置。
电势能可以用公式U=q*V表示,其中U是电势能,q是电荷的电量,V是电势。
6. 电势差:电势差是单位正电荷从一个点到另一个点的电势能的差值,也可以看作是电场力对单位正电荷所做的功。
电势差可以用公式ΔV=∫E·dl来计算,其中ΔV是电势差,∫E·dl是电场强度在路径上的线积分。
7.电容器:电容器是一种可以存储电荷的装置。
它由两个导体板和介质组成,其中导体板上的电荷存储在电场中。
电容器的电容可以用公式C=Q/V表示,其中C是电容,Q是电荷的量,V是电势差。
8.电流:电流是单位时间内通过导体横截面的电荷量。
电流可以用公式I=ΔQ/Δt表示,其中I是电流,ΔQ是通过导体横截面的电荷量,Δt是时间。
电动力学_知识点总结

电动力学_知识点总结电动力学是物理学的一个重要分支,研究电荷、电场、电流、磁场等现象和它们之间的相互作用。
下面是电动力学的一些重要知识点的总结。
1.库仑定律:库仑定律描述了两个点电荷之间的力,它与它们之间的距离成反比,与它们的电荷量成正比。
该定律为电场的基础,用数学公式表示为F=k(q1*q2)/r^2,其中F是电荷之间的力,k是库仑常数,q1和q2是电荷量,r是两个电荷之间的距离。
2.电场:电场是指任何点周围的电荷所受到的力的效果。
电场可以通过电场线来表示,电场线从正电荷出发,指向负电荷。
电场线的密度表示了电场的强度,而电场线的形状表示了电场的方向。
3.电势能:电势能是指一个电荷在电场中具有的能量。
电荷在电场中移动时,会因电场做功而改变其势能。
电势能可以表示为U=qV,其中U是电势能,q是电荷量,V是电势。
4.电势:电势是一种描述电场中电场强度的物理量。
电势可以通过电势差来表示,电势差是指两个点之间的电势差异。
电势差可以表示为ΔV=W/q,其中ΔV是电势差,W是从一个点到另一个点所做的功,q是电荷量。
5.高斯定理:高斯定理是描述电场和电荷之间关系的一个重要定律。
它表明,穿过一个闭合曲面的电场通量等于该曲面内部的总电荷除以真空介电常数。
数学表达式为Φ=∮E*dA=Q/ε0,其中Φ是电场通量,E是电场强度,dA是曲面的微元面积,Q是曲面内的电荷,ε0是真空介电常数。
6. 安培定律:安培定律是描述电流和磁场之间关系的一个重要定律。
它表明,通过一个闭合回路的磁场强度等于该回路内部的总电流除以真空中的磁导率。
数学表达式为∮B * dl = μ0I,其中∮B * dl是磁通量,B是磁场强度,dl是回路的微元长度,I是回路内的电流,μ0是真空中的磁导率。
7. 法拉第定律:法拉第定律描述了电磁感应现象。
它表明,当一个导体中的磁通量发生变化时,该导体内产生的电动势与磁通量的变化率成正比。
数学表达式为ε = -dΦ/dt,其中ε是产生的电动势,dΦ是磁通量的变化量,dt是时间的微元。
电动力学重点知识总结

电动力学重点知识总结电动力学是物理学中的一个重要分支,主要研究电荷和电场、电流和磁场之间的相互作用关系。
以下是电动力学的重点知识总结。
1.静电场:静电场是指没有电流的情况下,电荷和电场之间的相互作用。
通过电场线和电势的概念,可以描述电荷的分布和电场强度的分布。
2.高斯定律:高斯定律是描述电场的一个重要定律,它表明通过一个闭合曲面的电通量等于这个曲面内的电荷。
3.电势:电势是描述电荷在电场中的势能,它是标量量,通过定义电势差和电势能,可以计算电场强度。
4.电势差:电势差是指两点之间的电势差异,用于描述电荷在电场中的势能变化。
电势差等于单位正电荷在电场中所受的力做功。
5.电场强度:电场强度是描述电场的物理量,它是一个矢量。
电场强度的方向指向电荷正电荷所受的力的方向。
6.静电力:静电力是电荷和电场之间的相互作用力,它满足库伦定律。
库伦定律表明,电荷之间的相互作用力是与电荷的大小和距离平方成反比的。
7.电容器:电容器是一种储存电荷的装置,由两个导体板和介质构成。
电容器的电容量等于装满电荷后的电压与电荷量的比值。
8.电流:电流是电荷的流动,是电荷通过导体的数量。
电流的方向是正电荷流动的方向。
9.安培定律:安培定律描述了电流和磁场之间的相互作用。
根据安培定律,电流所产生的磁场强度是与电流强度成正比的。
10.磁场:磁场是由电流产生的,它是一个矢量量。
磁场的方向可以通过安培定律的右手定则确定。
11.洛伦兹力:洛伦兹力是带电粒子在磁场中所受的力,它与电荷的速度和磁场强度有关。
洛伦兹力的方向是垂直于电流方向和磁场方向的。
12.法拉第电磁感应定律:法拉第电磁感应定律描述了磁场变化对电路中电流的影响。
根据这个定律,磁场的变化会在电路中产生感应电动势。
13.自感和互感:自感是指电流变化时导线本身所产生的感应电动势,而互感是指两个线圈之间由于磁场变化而产生的感应电动势。
14. Maxwell方程组:Maxwell方程组是电动力学的基础方程,它描述了电场和磁场的变化规律。
电动力学基本内容复习提纲
电动力学基本内容复习提纲电动力学(Electrodynamics)是物理学中研究电荷、电场、电流和磁场之间相互作用的分支学科。
下面是电动力学的基本内容复习提纲:一、电荷和电场的基本概念1.电荷的基本特性和定义2.电荷守恒定律及其应用3.质点电荷和连续分布电荷的电场计算4.电势的定义和性质5.电场和电势的关系二、电场的基本性质和电场的运动1.电场强度的定义和性质2.电场线的性质和规律3.正电荷和负电荷在电场中的运动4.点电荷在电场中受力的性质和计算三、电场的高斯定律1.高斯定律的基本概念和表述2.高斯定律的应用:计算电场和电势3.高斯定律在导体中的应用四、电势与电势能1.电势能的概念和计算2.连续分布电荷系统的电势计算3.轴对称电荷分布的电势计算五、电场中的静电力1.静电力的基本概念和性质2.电场中两个点电荷互相作用的力计算3.连续分布电荷系统的静电力计算六、电荷在电场中的运动1.电场中带电微粒的加速和速度计算2.电场中带电微粒的轨迹和运动方程3.带电粒子在均匀磁场中的运动七、导体中的静电平衡1.导体的基本性质和导体中的电荷分布2.导体中电荷的自由移动和静电平衡条件3.导体表面电荷密度和电势的分布八、电流和电阻1.电流和电流密度的概念和计算2.电阻和电导的概念和性质3. Ohm定律及其应用九、电路和电动势1.串联和并联电路的电流和电压计算2.电动势的概念和性质3. Kirchhoff定律的应用十、磁场和电磁感应1.磁场的基本概念和性质2.安培定律和洛伦兹力的计算3.静磁场和恒定磁场4.电磁感应的基本概念和现象十一、电磁感应和电磁波1.法拉第电磁感应定律的应用2.涡旋感应和电磁感应的计算3.麦克斯韦方程组的基本概念和应用4.电磁波的基本性质和特点以上提纲主要囊括了电动力学的基本内容,希望对你的复习有所帮助。
如果还有其他问题,请随时追加提问。
《电动力学》知识点归纳及典型例题分析(学生版)-精品.pdf
《电动力学》知识点归纳及典型例题分析一、知识点归纳知识点1:一般情况下,电磁场的基本方程为:.0;;BD J t D Ht B E(此为麦克斯韦方程组);在没有电荷和电流分布(的情形0,0J)的自由空间(或均匀介质)的电磁场方程为:.0;0;BD t D H t B E(齐次的麦克斯韦方程组)知识点2:位移电流及与传导电流的区别。
答:我们知道恒定电流是闭合的:恒定电流.0J在交变情况下,电流分布由电荷守恒定律制约,它一般不再闭合。
一般说来,在非恒定情况下,由电荷守恒定律有.0tJ现在我们考虑电流激发磁场的规律:@.0J B取两边散度,由于0B ,因此上式只有当0J时才能成立。
在非恒定情形下,一般有0J,因而@式与电荷守恒定律发生矛盾。
由于电荷守恒定律是精确的普遍规律,故应修改@式使服从普遍的电荷守恒定律的要求。
把@式推广的一个方案是假设存在一个称为位移电流的物理量D J ,它和电流J 合起来构成闭合的量*,0D J J并假设位移电流D J 与电流J 一样产生磁效应,即把@修改为D J JB。
此式两边的散度都等于零,因而理论上就不再有矛盾。
由电荷守恒定律.0t J电荷密度与电场散度有关系式.0E两式合起来得:.00tEJ与*式比较可得D J 的一个可能表示式.tE J D 位移电流与传导电流有何区别:位移电流本质上并不是电荷的流动,而是电场的变化。
它说明,与磁场的变化会感应产生电场一样,电场的变化也必会感应产生磁场。
而传导电流实际上是电荷的流动而产生的。
知识点3:电荷守恒定律的积分式和微分式,及恒定电流的连续性方程。
答:电荷守恒定律的积分式和微分式分别为:tJdVt dsJSV恒定电流的连续性方程为:J知识点4:在有介质存在的电磁场中,极化强度矢量p 和磁化强度矢量M 各的定义方法;P 与P;M 与j ;E 、D 与p 以及B 、H 与M 的关系。
答:极化强度矢量p :由于存在两类电介质:一类介质分子的正电中心和负电中心不重和,没有电偶极矩。
电动力学知识总结.
第一章电磁现象的普遍规律§1.1 电荷与电场1、库仑定律(1)库仑定律如图1-1-1所示,真空中静止电荷Q'对另一个静止电荷Q的作用力F为F=14πε0Q'Q ' (1.1.1) '3r-rr-r()式中ε0是真空介电常数。
(2)电场强度E静止的点电荷Q在真空中所产生的电场强度E为 'E=14πε0Q'r-r'3 (r-r) (1.1.2)'(3)电场的叠加原理rN个分立的点电荷在处产生的场强为NE=∑i=1Qi'4πε0r-ri'3 (r-r) (1.1.3)'i体积V内的体电荷分布ρ(r')所产生的场强为E=14πε0⎰ρ(r')dV' 'r-r'3 V (r-r) (1.1.4)' rr式中为源点的坐标,为场点的坐标。
2、高斯定理和电场的散度高斯定理:电场强度E穿出封闭曲面S的总电通量等于S内的电荷的代数和(∑Qi)除以ε0。
用公式表示为i或 S 1E⋅dS=ε0∑Qii (分离电荷情形)(1.1.5)S 1E⋅dS=ε0⎰V ρdV (电荷连续分布情形)(1.1.6)其中V为S所包住的体积,dS为S上的面元,其方向是外法线方向。
应用积分变换的高斯公式 SE ⋅dS =⎰V∇⋅E dV由(1.1.6)式可得静电场的散度为∇⋅E =1ερ3. 静电场的旋度由库仑定律可推得静电场E 的环量为 LE ⋅dl =0应用积分变换的斯托克斯公式 LE ⋅dl =⎰S∇⨯E ⋅dS从(1.1.8)式得出静电场的旋度为∇⨯E =0 1.1.7) 1.1.8) 1.1.9)(((§1.2 电流和磁场1、电荷守恒定律不与外界交换电荷的系统,其电荷的代数和不随时间变化。
对于体积为V,边界面为S的有限区域内,有d J⋅dS=-ρdV (1.2.1)S⎰Vdt或∂ρ ∇⋅J+=0 (1.2.2)∂t这就是电荷守恒定律的数学表达式。
电动力学知识总结
电动力学知识总结第一篇:电动力学知识总结第一章电磁现象的普遍规律一、主要内容:电磁场可用两个矢量—电场强度和磁感应强度,来完全描写,这一章的主要任务是:在实验定律的基础上找出所满足的偏微分方程组—麦克斯韦方程组以及洛仑兹力公式,并讨论介质的电磁性质及电磁场的能量。
在电磁学的基础上从实验定律出发运用矢量分析得出电磁场运动的普遍规律;使学生掌握麦克斯韦方程的微分形式及物理意义;同时体会电动力学研究问题的方法,从特殊到一般,由实验定律加假设总结出麦克斯韦方程。
完成由普通物理到理论物理的自然过渡。
二、知识体系:三、内容提要:1.电磁场的基本实验定律:(1)库仑定律:对个点电荷在空间某点的场强等于各点电荷单独存在时在该点场强的矢量和,即:(2)毕奥——萨伐尔定律(电流决定磁场的实验定律)(3)电磁感应定律①生电场为有旋场(又称漩涡场),与静电场本质不同。
②磁场与它激发的电场间关系是电磁感应定律的微分形式。
(4)电荷守恒的实验定律, ①反映空间某点与之间的变化关系,非稳恒电流线不闭合。
② 若空间各点与无关,则,为稳恒电流,电流线闭合。
均与无关,它产生的场也与无关。
稳恒电流是无源的(流线闭合),2、电磁场的普遍规律—麦克斯韦方程其中:1是介质中普适的电磁场基本方程,适用于任意介质。
2当,过渡到真空情况:3当时,回到静场情况:4有12个未知量,6个独立方程,求解时必须给出介质中:3、介质中的电磁性质方程若为非铁磁介质1、电磁场较弱时:与,与的关系。
均呈线性关系。
向同性均匀介质:,2、导体中的欧姆定律在有电源时,电源内部,为非静电力的等效场。
4.洛伦兹力公式考虑电荷连续分布,单位体积受的力:洛伦兹认为变化电磁场上述公式仍然成立,近代物理实验证实了它的正确。
说明:①②5.电磁场的边值关系其它物理量的边值关系:恒定电流:6、电磁场的能量和能流能量密度:能流密度:三.重点与难点1.概念:电场强度、磁感应强度、电流密度、极化强度、磁化强度、能流密度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章、电磁现象的普遍规律一、主要内容:电磁场可用两个矢量—电场强度和磁感应强度来完全描写,这一章的主要任务是:在实验定律的基础上找出, 所满足的偏微分方程组—麦克斯韦方程组以及洛仑兹力公式,并讨论介质的电磁性质及电磁场的能量。
在电磁学的基础上从实验定律出发运用矢量分析得出电磁场运动的普遍规律;使学生掌握麦克斯韦方程的微分形式及物理意义;同时体会电动力学研究问题的方法,从特殊到一般,由实验定律加假设总结出麦克斯韦方程。
完成由普通物理到理论物理的自然过渡。
二、知识体系:三、内容提要:1.电磁场的基本实验定律:(1)库仑定律:对个点电荷在空间某点的场强等于各点电荷单独存在时在该点场强的矢量和,即:(2)毕奥——萨伐尔定律(电流决定磁场的实验定律)(3)电磁感应定律①生电场为有旋场(又称漩涡场),与静电场本质不同。
②磁场与它激发的电场间关系是电磁感应定律的微分形式。
(4)电荷守恒的实验定律,①反映空间某点与之间的变化关系,非稳恒电流线不闭合。
② 若空间各点与无关,则为稳恒电流,电流线闭合。
稳恒电流是无源的(流线闭合),,均与无关,它产生的场也与t无关。
2、电磁场的普遍规律—麦克斯韦方程其中:1是介质中普适的电磁场基本方程,适用于任意介质。
2当,过渡到真空情况:3当时,回到静场情况:4有12个未知量,6个独立方程,求解时必须给出与,与的关系。
介质中:3、介质中的电磁性质方程若为非铁磁介质1、电磁场较弱时:均呈线性关系。
向同性均匀介质:,,2、导体中的欧姆定律在有电源时,电源内部,为非静电力的等效场。
4.洛伦兹力公式考虑电荷连续分布,单位体积受的力:洛伦兹认为变化电磁场上述公式仍然成立,近代物理实验证实了它的正确。
说明:①②5.电磁场的边值关系其它物理量的边值关系:恒定电流:6、电磁场的能量和能流能量密度:能流密度:第二章、静电场一、主要内容:应用电磁场基本理论解决最简单的问题:电荷静止或电荷分布不随时间变化,产生的场不随时间变化的静电场问题。
二、知识体系:1.静电场的微分方程:边值关系:静电场的能量:2.静电边值问题的构成:3.静电边值问题的基本解法:(1)镜像法(2)分离变量法条件:电势满足拉普拉斯方程:(3)电多极矩(4) 格林函数法三、内容提要:1.静电场的电势引入标量函数即静电势后空间两点电势差:参考点:(1)电荷分布在有限区域,通常选无穷远为电势参考点(2)电荷分布在无限区域不能选无穷远点作参考点,否则积分将无穷大。
连续分布电荷:无穷远处为参考点2.电势满足的微分方程泊松方程:其中仅为自由电荷分布,适用于均匀各向同性线性介质。
对的区域:电势满足拉普拉斯方程:3.边值关系①.两介质界面上边值关系②.导体与介质界面上的边值关系③.导体与导体界面上的边值关系其中是导体的电导率4.静电场的能量用电势表示:注意:①不是静电场的能量密度; 是自由电荷密度,而则是空间所有电荷的电势,②只适用于静电场。
5.唯一性定理:①均匀单一介质当区域V内自由电荷分布已知,满足,若V边界上已知,或V边界上已知,则V内场(静电场)唯一确定。
②均匀单一介质中有导体当区域V内有导体存在,给定导体之外的电荷分布,当1或已知,每个导体电势或带电量,则内电场唯一确定。
四、.静电边值问题的基本解法:1.镜像法:理论依据:唯一性定理,采用试探解的方法。
镜像法:用假想点电荷来等效地代替导体或介质边界面上的未知面电荷分布,然后用空间点电荷和等效点电荷迭加给出空间电势分布。
条件:①所求区域内只能有少许几个点电荷(只有点电荷产生的感应电荷才能用点电荷代替。
)或是简单的连续分布。
②导体边界面形状规则,具有一定对称性。
③给定边界条件。
要求:①做替代时,不能改变原有电荷分布(即自由点电荷位置、Q大小不能变)。
泊松方程不能改变。
所以假想电荷必须放在所求区域之外。
②不能改变原有边界条件,通过边界条件确定假想电荷的大小和位置。
③一旦用了假想等效电荷,不能再考虑边界面上的电荷分布。
④坐标系根据边界形状来选择。
2.分离变量法:条件:电势满足拉普拉斯方程:①空间处处,自由电荷只分布在某些介质(如导体)表面上,将这些表面视为区域边界,可以用拉普拉斯方程。
②在所求区域介质中有自由电荷分布,若这个自由电荷分布在真空中,产生的势为已知,则区域V中电势可表示为两部分的和不满足,但表面上的电荷产生的电势使满足,仍可用拉普拉斯方程求解。
注意:边值关系还要用而不能用。
拉普拉斯方程的通解:轴对称通解:为勒让德函数,…球对称通解:若与均无关,即具有球对称性,则通解为:解题步骤①选择坐标系和电势参考点坐标系选择主要根据区域中分界面形状参考点主要根据电荷分布是有限还是无限②分析对称性,分区域写出拉普拉斯方程在所选坐标系中的通解③根据具体条件确定常数外边界条件:电荷分布有限导体边界可视为外边界,给定,或给定总电荷Q ,或给定(接地)一般在均匀场中,:(直角坐标或柱坐标)内部边值关系:介质分界面上(表面无自由电荷)3.电多极矩讨论电荷分布在小区域内,而场点又距电荷分布区较远,即l <<r电势的多极展开:小区域电荷体系在外电场中的相互作用能是点电荷在外电其中场中的相互作用能是电偶极子在外电场中的相互作用能是电四极子在外电场中的相互作用能电偶极子在外电场中受的力若外电场均匀: 电偶极子在外电场中受的力矩第三章、稳恒电流的磁场一、主要内容:在给定自由电流分布及介质分布的情况下如何求解稳恒磁场。
由于稳恒磁场的基本方程是矢量方程,求解很难,并不直接求解的稳恒磁场磁感应强度,一般是通过磁场的矢势来求解。
在一定条件下,可以引入磁标势及磁标势满足的方程来求解。
我们先引入静磁场的矢势,导出矢势满足的微分方程,然后再讨论磁标势及其微分方程,最后讨论磁多极展开。
二、知识体系:1.矢势法:基本方程:边值关系:静磁场的能量:① 能量分布在磁场内,不仅仅是分布在电流区.②不是能量密度2.磁标势法引入磁标势的条件:求解区域内作任意的闭合回路L,闭合回路L内都无电流穿过,即,即引入区域为无自由电流分布的单连通域。
基本方程:边值关系:解法:当时,,用分离变量法求解,解法与第二章相同.3.磁矢势多极展开:电磁波:随时间变化的运动电荷和电流辐射电磁场,电磁场在空间互相激发,在空间以波动的形式存在,就是电磁波。
一、主要内容:研究电磁场在空间存在一定介质和导体的情况下的波动情况;在真空与介质,介质与介质,介质与导体的分界面上,电磁波会产生反射、折射、衍射和衰减等,这些本质上是边值问题。
电磁波在空间传播有各种各样的形式,最简单、最基本的波型是平面电磁波。
二、知识体系:1.自由空间(介质):指,的无限大充满均匀空间.-定态波亥姆霍兹方程基本解:,性质:(1)与的关系:,构成右手螺旋关系(2)与同位相;(3),振幅比为波速(因为相互垂直,)。
(4)平面电磁波的能量和能流● 能量密度:,电场能等于磁场能,能量密度平均值为● 能流密度:(为方向上的单位矢量)平均值:2.良导体:,基本解:,其中。
3.电磁波在界面反射和折射4.谐振腔定态波边值问题:在求解中主要用到解为:两个独立常数由激励谐振的信号强度来确定。
谐振频率:(1)给定一组,解代表一种谐振波型(本征振荡, 在腔内可能存在多种谐振波型的迭加);只有当激励信号频率时,谐振腔才处于谐振态。
(2)不存在中两个为零的波型,若,则。
(3)对每一组值,有两个独立偏振波型,这是因为对于确定的可以分解到任意两个方向。
(4)最低频率的谐振波型假定,则最低谐振频率为该波型为(1,1,0)型,,所以,,,为横电磁波。
但是在一般情况下,。
5.矩形波导管矩形波导管由四个壁构成的金属管,四个面为一般情况下让电磁波沿轴传播,对理想导体:,理想导体边界条件:满足方程:,其解:其中,的解由确定截止频率:最低截止频率为:(),();最高截止波长为: ,一般把波长的波,称为超短波即微波。
第五章、电磁波的辐射一、主要内容:本章讨论高频交变电流辐射的电磁场的规律。
二、知识体系:其解:设电荷、电流分布为随时间做正弦或余弦变化,即:将此式代入推迟势的公式后得到():令则:如果讨论的区域有关系式:。
三、电偶极辐射:当时,,上式可以仅取积分中的第一项,有:,此式代表的是偶极辐射。
由此我们得到在条件下偶极辐射的磁感应强度:利用得到偶极辐射的磁感应强度:若选球坐标,让沿轴,则:(1)电场沿经线振荡,磁场沿纬线振荡,传播方向、电场方向、磁场方向相互正交构成右手螺旋关系;(2)电场、磁场正比于,因此它是空间传播的球面波,且为横电磁波,在时可以近似为平面波;(3)要注意如果()不能被满足,可以证明电场不再与传播方向垂直,即电力线不再闭合,但是磁力线仍闭合。
这时传播的是横磁波(TM波)辐射能流、角分布和辐射功率平均能流密度矢量:平均功率:P==,平均功率与电磁波的频率4次方成正比。
第六章、狭义相对论主要内容:讨论局限于惯性系的狭义相对论的时空理论,相对论电动力学以及相对论力学一.狭义相对论基本原理:1、相对性原理(伽利略相对性原理的自然扩展)(1)物理规律对于所有惯性系都具有完全相同的形式。
(2)一切惯性系都是等价的,不存在绝对参照系。
2、光速不变原理真空中光速相对任何惯性系沿任何一个方向大小恒为c,且与光源运动速度无关。
二.洛仑兹变换:坐标变换:逆变换:速度变换:,,三.狭义相对论的时空理论:1.同时是相对的:在某一贯性参考系上对准的时钟,在另一相对运动的贯性参考系观察是不对准的。
2.运动长度缩短:沿运动方向尺度收缩。
其中是物体相对静止系的速度;3.运动时钟延缓:运动物体内部发生的自然过程比静止的钟测到的静止物体内部自然过程经历的时间延缓。
⑴ 运动时钟延缓:只与速度有关,与加速度无关;⑵ 时钟延缓是相对的,但在广义相对论中延缓是绝对的;⑶ 时钟延缓是时空的另一基本属性,与钟的内部结构无关;⑷ 它与长度收缩密切相关。
四.电磁场的洛仑兹变换:五.相对论力学:1.运动质量:2.相对论动量:3.质能关系:物体具有的能量为4.相对论动能:5.相对论力学方程:。