《电动力学》知识点归纳及典型试题分析

合集下载

电动力学知识点总结及试题

电动力学知识点总结及试题

洛仑兹力密度< f=/«+^x§三.内容提要:1. 电磁场的基本实捡定律, (1)库仑定律*二、知识体躺库仑定理'脸订警壬电童■应定体毎事孑―半丄@・抜/尸n 涡険电场假设介质的极化焕律,0=#“V*fi = p ▽4遁at仪鲁电涛fit 设 比真#伐尔定律,s= 介M»4tM 律: ft^~aCon Vxff = J + — a能童守恒定律缢性介JR 能*««> 能淹密度:S^ExH対可个点电荷e 空间块点的场强爭丁各点电佔单越力在时徃该点场强的伕城和,(2)毕臭一萨伐尔定律(电沱决崔感场的实於疋律)(3)电耐应定律£& -<tf<£?Vxfl=-—2① 生电场为冇旋场(4又称漩涡场儿%电场&彳、质不同。

② 曉场与它激发的电场间关系足电磁感应定律的微分形式。

(4)电药守恒的实U 定律[J •点=-J 詈"V-J = -—① 反映空间某点£ 9 7之间的变化关痪,#稳班电流线不闭介.竺0卩儿0② 若空间并点•二与f 无応 則N为稳恫电朮 电流线闭介.隐恒电注是无源的(流线闭合人巴了均与『无关,它产生的场也与/无关。

2、电It 场的普連規律一麦克斯韦方程Wi 分形式血&』=Z +^J D -dtf札眾4?・0UJvUP :积分形式其中:几1址介质中普适的41底场钛木方用.适用于任盘介丿鼠 2当14=0=0.过渡到真空怙况:-affat +«e —J dt v 7 5=02o£o3当N N 时.回到挣场惜况:扭方=0£b •恣=J 妙F护云=0I 有12个未知塑.6个独立方秤,求解时必须给出二与M, 2与«的关系。

介时:3、介贯中的电恿性廣方程若为却铁雄介质I 、电哦场较弱时"与丘&与臣b 与2万与"均呈线性关系.向同性均匀介质,P=Q=岭耳992、导体中的欧姆定律在存电源时•电源内部亠㊇海•)•直•为怖电力的等效场,4. 洛伦兹力公式II7xfl = O 7xH=/Q ・D 0p 7ft =单位体积受的力:-t r r rf=pE^JxB洛伦兹认为变化电tti 场上述公式仍然成立,近代物理实齡证实了它的匸确”靳才f 以边度P 运动的点电药g说明:对于连«J沁电背 囲电淹乙冲曲 c»J»发的电建场.乍対于咸电UtlWSL 冲韵&麻&含的场5. 电磁场的边值关糸积分形式 血臣心L 鲁必血乃龙“+£加廳 血D 必 耐込0其它物理hl的边值关系:<血氏岳・一JxyN =录(酉一彳).p.S F巾&応卩. <£§ n E X (E ・£)讥X9p.盗■-壬"rfv => Q (Ji7j"寻恒定电流:*-{^-A)=°6、电恋场的和館流三.重灯与难戌诡■密度,F ・flxA边值关系=> 方(0—QJ"=> «x(j¥J -^1)=a=> 沁(&・& )= 0n n ^S 2-B^ = 01. 槪念^电场强度、磁感应强度、电流密度、极化强度.感化强度、能滾密度。

电动力学知识点归纳

电动力学知识点归纳

《电动力学》知识点归纳一、试题结构 总共四个大题:1.单选题('210⨯):主要考察基本概念、基本原理和基本公式,及对它们的理解。

2.填空题('210⨯):主要考察基本概念和基本公式。

3.简答题 ('35⨯):主要考察对基本理论的掌握和基本公式物理意义的理解。

4. 证明题 (''78+)和计算题(''''7689+++):考察能进行简单的计算和对基本常用的方程和原理进行证明。

例如:证明泊松方程、电磁场的边界条件、亥姆霍兹方程、长度收缩公式等等;计算磁感强度、电场强度、能流密度、能量密度、波的穿透深度、波导的截止频率、空间一点的电势、矢势、以及相对论方面的内容等等。

二、知识点归纳知识点1:一般情况下,电磁场的基本方程为:⎪⎪⎪⎩⎪⎪⎪⎨⎧=∙∇=∙∇+∂∂=⨯∇∂∂-=⨯∇.0;;B D J t D H t BEρ(此为麦克斯韦方程组);在没有电荷和电流分布(的情形0,0==Jρ)的自由空间(或均匀介质)的电磁场方程为:⎪⎪⎪⎩⎪⎪⎪⎨⎧=∙∇=∙∇∂∂=⨯∇∂∂-=⨯∇.0;0;B D t D H t B E(齐次的麦克斯韦方程组)知识点2:位移电流及与传导电流的区别。

答:我们知道恒定电流是闭合的: ()恒定电流.0=⋅∇J在交变情况下,电流分布由电荷守恒定律制约,它一般不再闭合。

一般说来,在非恒定情况下,由电荷守恒定律有.0≠∂∂-=⋅∇t J ρ现在我们考虑电流激发磁场的规律:()@.0J B μ=⨯∇ 取两边散度,由于0≡⨯∇⋅∇B ,因此上式只有当0=⋅∇J 时才能成立。

在非恒定情形下,一般有0≠⋅∇J ,因而()@式与电荷守恒定律发生矛盾。

由于电荷守恒定律是精确的普遍规律,故应修改()@式使服从普遍的电荷守恒定律的要求。

把()@式推广的一个方案是假设存在一个称为位移电流的物理量D J ,它和电流J 合起来构成闭合的量 ()()*,0=+⋅∇D J J 并假设位移电流D J 与电流J 一样产生磁效应,即把()@修改为 ()D J J B +=⨯∇0μ。

电动力学重点知识总结(期末复习必备)

电动力学重点知识总结(期末复习必备)

电动力学重点知识总结(期末复习必备)电动力学重点知识总结(期末复习必备)电动力学是物理学的重要分支之一,研究电荷之间相互作用导致的电场和磁场的规律。

在这篇文章中,我们将整理电动力学的重点知识,以帮助大家进行期末复习。

一、库仑定律库仑定律是描述电荷之间相互作用的基本定律。

根据库仑定律,电荷之间的力与它们的电量大小和距离的平方成正比。

即$$ F = k\frac{q_1q_2}{r^2} $$其中$F$为电荷之间的力,$q_1$和$q_2$分别为两个电荷的电量,$r$为它们之间的距离,$k$为库仑常数。

二、电场电场是描述电荷对周围空间产生影响的物理量。

任何一个电荷在其周围都会产生一个电场,其他电荷受到这个电场的力作用。

1. 电场强度电场强度$E$定义为单位正电荷所受到的电场力。

即$$ E =\frac{F}{q} $$电场强度的方向与电场力方向相同。

2. 电荷在电场中的受力当一个电荷$q$在电场中时,它受到的电场力$F$为$F = qE$,其中$E$为电场强度。

3. 电场线电场线是一种用于表示电场分布的图形。

电场线从正电荷发出,或者进入负电荷。

电场线的密度表示电场强度大小,电场线越密集,电场强度越大。

三、高斯定律高斯定律是用于计算电场分布的重要工具。

它描述了电场与通过闭合曲面的电通量之间的关系。

1. 电通量电通量是电场通过曲面的总电场线数。

电通量的大小等于电场强度与曲面垂直方向的投影之积。

电通量的计算公式为$$ \Phi = \int \mathbf{E} \cdot \mathbf{dA} $$其中$\mathbf{E}$为电场强度,$\mathbf{dA}$为曲面元。

2. 高斯定律高斯定律表示电通量与包围曲面内所有电荷之和的比例关系。

即$$ \Phi = \frac{Q_{\text{内}}}{\epsilon_0} $$其中$\Phi$为通过曲面的电通量,$Q_{\text{内}}$为曲面内的总电荷,$\epsilon_0$为真空介电常数。

电动力学知识点归纳

电动力学知识点归纳

电动力学知识点归纳电动力学是物理学的一个分支,研究电荷和电流以及它们与电场和磁场之间的相互作用。

电动力学是现代工程学和科学研究的基础,也是解释电子、电力、磁性材料、光学和无线通信等现象的关键。

以下是电动力学的几个重要知识点的归纳:1.库仑定律:描述了两个电荷之间的作用力,称为电场力。

它表明,两个电荷之间的作用力正比于它们的电荷量的乘积,反比于它们之间距离的平方。

2.电场:由电荷产生的电场是描述电荷周围的空间的力场。

电场可以通过电场线来可视化,箭头指向正电荷,箭头离开负电荷,线的密度表示电场的强度。

3.电势能和电势差:电势能是一个电荷在电场中的能量,它与电荷量、电场强度和距离之间都有关系。

电势差是沿电场中两点之间的电势能变化,用来描述电荷从一个点移动到另一个点时的能量变化。

4.电流和电阻:电流是电荷在单位时间内通过导体的量,通常用安培(A)来衡量。

电阻是导体对电流的阻碍,其大小与导体材料的特性有关。

欧姆定律描述了电流、电势差和电阻之间的关系,即电流等于电势差与电阻的比值。

5.麦克斯韦方程组:麦克斯韦方程组是描述电磁场行为的一组方程,它们是电动力学的核心。

方程组包括四个方程,分别是高斯定律、法拉第电磁感应定律、安培环路定律和高斯磁定律。

这些方程描述了电荷和电流如何产生电场和磁场,以及电场和磁场之间如何相互作用。

6.磁场:磁场是由电流产生的,可以通过磁感线来可视化,箭头指向磁南极,箭头离开磁北极。

磁场对运动带电粒子施以洛伦兹力,使其偏离原来的轨道。

7.麦克斯韦-安培定理:描述了电流生成的磁场的环路积分等于通过环路的总电流的情况。

它建立了电流与磁场之间的关系。

8.电感和电容:电感是储存电磁能的元件,通过存储磁场的能量来抵抗电流变化。

电容是储存电荷的元件,通过储存电场的能量来抵抗电压变化。

以上只是电动力学领域中的一些重要概念和原理,还有很多细节和衍生知识需要进一步学习和理解。

电动力学的应用也非常广泛,例如电路设计、电子设备制造、电力输送、无线通信等领域都离不开电动力学的原理。

电动力学知识点总结

电动力学知识点总结

电动力学知识点总结引言电动力学是物理学的一个分支,研究电荷和电流在电磁场中的相互作用。

在现代科技的发展中,电动力学扮演着重要的角色。

本文将总结一些电动力学的基本知识点,帮助读者更好地理解与应用电动力学。

一、库仑定律库仑定律是电动力学中最基本的定律之一,描述了两个电荷之间的相互作用。

其数学表达式为:F = k * (q1 * q2) / r^2,其中F为电荷间的力,q1和q2分别为两个电荷的量,r为两个电荷之间的距离,k为库仑常数。

根据库仑定律,同性电荷相互排斥,异性电荷相互吸引。

二、电场和电场强度电场是指电荷周围的空间中存在的一种物理场。

每一个电荷都会在周围产生一个电场,电场的强度用电场强度表示,记作E。

电场强度的大小与电荷的量和距离有关,可以通过以下公式计算:E = k * (q /r^2),其中E为电场强度,q为电荷的量,r为电荷所在位置与计算点之间的距离。

三、电势差和电势能电势差是指单位正电荷从一个位置移动到另一个位置时所经历的力学功。

电势差的大小与电场强度和距离有关。

记电势差为V,单位为伏特(V)。

电势差的计算公式为:V = W / q,其中V为电势差,W 为电场力对单位正电荷所作的功,q为单位正电荷的量。

电势能是指电荷由于在电场中而具有的能量。

电势能与电势差之间的关系为:ΔU = q * ΔV,其中ΔU为电势能的变化量,q为电荷的量,ΔV为电势差的变化量。

四、电场线为了更好地描述电场的分布情况,人们引入了电场线的概念。

电场线是用来表示电场的方向和强弱的曲线,在电场中总是从正电荷指向负电荷。

而电场线的密度越大,表示电场的强度越大。

五、电容和电容器电容是指导体存储电荷的能力,通常用符号C表示,单位为法拉(F)。

电容的大小与导体的形状、材料以及介质的性质有关。

电容器是用来存储电荷的设备,是电路中重要的元件之一。

常见的电容器有电解电容器、电容规和平板电容器等。

六、电阻和电路电阻是指电流在导体中传播时遇到的阻碍。

电动力学知识点归纳

电动力学知识点归纳

电动力学知识点归纳在物理学中,电动力学是研究电荷与电场、电磁场相互作用的学科。

它关注着电场、电荷、电容、电流和电磁感应等概念及其相互关系。

本文旨在对电动力学的相关知识点进行归纳,帮助读者更好地了解电动力学的核心概念和基本原理。

一、电荷与电场在电动力学中,电荷是一种基本粒子,具有正电荷和负电荷两种属性。

同种电荷相互排斥,异种电荷相互吸引。

电场则是由电荷产生的物理量,指的是某一点的电荷所具有的作用力。

电场的强度用电场强度表示,它是单位正电荷所受的力。

二、电势与电势差电势是描述电场中各点电能状态的物理量。

电势差指的是两个点之间电势的差异,常用符号∆V表示。

电势差可以通过电场强度的积分来计算,即∆V = ∫E·dl,其中E为电场强度,dl为路径微元。

三、电容与电容器电容指的是储存电荷的能力,是电容器的重要性质之一。

电容器由两个导体之间的介质隔开,其中一个导体带正电荷,另一个导体带负电荷,二者之间形成电场。

四、电流与电路电流是单位时间内通过某一截面的电荷量。

它是电荷在导体中的流动导致的。

电路则是由电源、导线和负载组成的。

电流在电路中的流动受到欧姆定律的控制,该定律表明电流与电压成正比,与电阻成反比。

五、电磁感应与法拉第定律当导体穿过磁场时,会在其两端产生感应电动势。

这个现象称为电磁感应。

根据法拉第定律,感应电动势的大小与导体在磁场中移动的速度和磁场强度的乘积成正比。

六、麦克斯韦方程组麦克斯韦方程组是描述电磁场的基本方程组,它由四个方程组成,分别是高斯定律、安培环路定理、法拉第电磁感应定律和非电磁场的推广定律。

通过这四个方程,我们可以全面地描述电场和磁场的产生、变化和相互作用。

综上所述,电动力学是研究电荷与电场、电磁场相互作用的学科。

电动力学的核心概念包括电荷与电场、电势与电势差、电容与电容器、电流与电路、电磁感应与法拉第定律以及麦克斯韦方程组。

了解这些知识点能够帮助我们深入理解电动力学的基本原理和应用。

电动力学_知识点总结

电动力学_知识点总结

电动力学_知识点总结电动力学是物理学的一个重要分支,研究电荷、电场、电流、磁场等现象和它们之间的相互作用。

下面是电动力学的一些重要知识点的总结。

1.库仑定律:库仑定律描述了两个点电荷之间的力,它与它们之间的距离成反比,与它们的电荷量成正比。

该定律为电场的基础,用数学公式表示为F=k(q1*q2)/r^2,其中F是电荷之间的力,k是库仑常数,q1和q2是电荷量,r是两个电荷之间的距离。

2.电场:电场是指任何点周围的电荷所受到的力的效果。

电场可以通过电场线来表示,电场线从正电荷出发,指向负电荷。

电场线的密度表示了电场的强度,而电场线的形状表示了电场的方向。

3.电势能:电势能是指一个电荷在电场中具有的能量。

电荷在电场中移动时,会因电场做功而改变其势能。

电势能可以表示为U=qV,其中U是电势能,q是电荷量,V是电势。

4.电势:电势是一种描述电场中电场强度的物理量。

电势可以通过电势差来表示,电势差是指两个点之间的电势差异。

电势差可以表示为ΔV=W/q,其中ΔV是电势差,W是从一个点到另一个点所做的功,q是电荷量。

5.高斯定理:高斯定理是描述电场和电荷之间关系的一个重要定律。

它表明,穿过一个闭合曲面的电场通量等于该曲面内部的总电荷除以真空介电常数。

数学表达式为Φ=∮E*dA=Q/ε0,其中Φ是电场通量,E是电场强度,dA是曲面的微元面积,Q是曲面内的电荷,ε0是真空介电常数。

6. 安培定律:安培定律是描述电流和磁场之间关系的一个重要定律。

它表明,通过一个闭合回路的磁场强度等于该回路内部的总电流除以真空中的磁导率。

数学表达式为∮B * dl = μ0I,其中∮B * dl是磁通量,B是磁场强度,dl是回路的微元长度,I是回路内的电流,μ0是真空中的磁导率。

7. 法拉第定律:法拉第定律描述了电磁感应现象。

它表明,当一个导体中的磁通量发生变化时,该导体内产生的电动势与磁通量的变化率成正比。

数学表达式为ε = -dΦ/dt,其中ε是产生的电动势,dΦ是磁通量的变化量,dt是时间的微元。

电动力学知识点总结

电动力学知识点总结

第一章电磁现象的普遍规律 一、 主要内容:电磁场可用两个矢量一电场强度电Z,zQ 和磁感应强度B{x r y r zfy 来完全 描写,这一章的主要任务是:在实验定律的根底上找出丘,歹所满足的偏微分方程组 一麦克斯韦方程组以及洛仑兹力公式,并讨论介质的电磁性质及电磁场的能量。

在电 磁学的根底上从实验定律岀发运用矢量分析得出电磁场运动的普遍规律:使学生掌握 麦克斯韦方程的微分形式及物理意义;同时体会电动力学研究问题的方法,从特殊到 一般,由实验定律加假设总结出麦克斯韦方程。

完成由普通物理到理论物理的自然过 渡。

二、 知识体系:介质磁化规律:能量守恒定律n 线性介质能量密度:I 能流密度:洛仑兹力密度;宇二应+" x B三、内容提要:1. 电磁场的根本实验定律:(1) 库仑定律:库仑定理:壮丿=[*虫1厶电磁感应定律:市总•屋=-—[B-dSdV f區 dt k涡旋电场假设 介质的极化规律:V- 5 = /? VxZ=比奥-萨伐尔逹律: D = s Q S + PJdVxr边值关系位移电流假设V-> = 0J+ —B =其中:第2页,共37页对E 个点电荷在空间某点的场强等于各点电荷单独存在时在该点场强的矢量和, 即:〔2〕毕奥——萨伐尔定律〔电流决定磁场的实验定律〕B = ^[^L〔3〕电磁感应定律②磁场与它激发的电场间关系是电磁感应定律的微分形式。

〔4〕电荷守恒的实验定律①反映空间某点Q 与了之间的变化关系,非稳恒电流线不闭合。

空二0月•了二0②假设空间各点Q 与£无关,那么別为稳恒电流,电流线闭合。

稳恒电流是无源的〔流线闭合〕,°, 7均与北无关,它产生的场也与上无关。

2、电磁场的普遍规律一麦克斯韦方程微分形式di——diV • D = p方二勺宜+戶,H = —-MAo积分形式[f] E dl =-\ --dSSJs 冼[fl H-df = I + -\D -d§S念J血Q/40①生电场为有旋场〔鸟又称漩涡场〕,与静电场堤本质不同。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《电动力学》知识点归纳及典型试题分析
一、知识点归纳
知识点1:一般情况下,电磁场的基本方程为:⎪⎪⎪⎩
⎪⎪⎪⎨⎧=•∇=•∇+∂∂=⨯∇∂∂-=⨯∇.0;;B D J t D H t B E ρρρρρρρρ(此为麦克斯韦方程组);在没有电荷和电流分布(的情形0,0==J ρρ)的自由空间(或均匀介质)的电磁场方程为:⎪⎪⎪⎩
⎪⎪⎪⎨⎧=•∇=•∇∂∂=⨯∇∂∂-=⨯∇.0;0;B D t D H t B E ρρρρρρ(齐次的麦克斯韦方程组) 知识点2:位移电流及与传导电流的区别。

答:我们知道恒定电流是闭合的:
()恒定电流.0=⋅∇J
在交变情况下,电流分布由电荷守恒定律制约,它一般不再闭合。

一般说来,在非恒定情况下,由电荷守恒定律有 .0≠∂∂-=⋅∇t
J ρ 现在我们考虑电流激发磁场的规律:()@.0J B μ=⨯∇ 取两边散度,由于0≡⨯∇⋅∇B ,因此上式只有当0=⋅∇J 时才能成立。

在非恒定情形下,一般有0≠⋅∇J ,因而()@式与电荷守恒定律发生矛盾。

由于电荷守恒定律是精确的普遍规律,故应修改()@式使服从普遍的电荷守恒定律的要求。

把()@式推广的一个方案是假设存在一个称为位移电流的物理量D J ,它和电流J 合起来构成闭合的量 ()()*,0=+⋅∇D J J 并假设位移电流D J 与电流J 一样产生磁效应,即把()@修改为 ()D J J B +=⨯∇0μ。

此式两边的散度都等于零,因而理论上就不再有矛盾。

由电荷守恒定律
.0=∂∂+
⋅∇t J ρ电荷密度ρ与电场散度有关系式 .0ερ=⋅∇E 两式合起来
得:.00=⎪⎭⎫ ⎝
⎛∂∂+⋅∇t E J ε与()*式比较可得D J 的一个可能表示式 .0
t
E J D ∂∂=ε 位移电流与传导电流有何区别:
位移电流本质上并不是电荷的流动,而是电场的变化。

它说明,与磁场的变化会感应产生电场一样,电场的变化也必会感应产生磁场。

而传导电流实际上是电荷的流动而产生的。

知识点3:电荷守恒定律的积分式和微分式,及恒定电流的连续性方程。

答:电荷守恒定律的积分式和微分式分别为:0=∂∂+•∇∂∂-=•⎰⎰t J dV t ds J S V ρρρρ 恒定电流的连续性方程为:0=•∇J
知识点4:在有介质存在的电磁场中,极化强度矢量p 和磁化强度矢量M 各的定义方法;P 与P ρ;M 与j ;E 、D 与p 以及B 、H 与M 的关系。

答:极化强度矢量p :由于存在两类电介质:一类介质分子的正电中心和负电中心不重和,没有电偶极矩。

另一类介质分子的正负电中心不重和,有分子电偶极矩,但是由于分子热运动的无规性,在物理小体积内的平均电偶极矩为零,因而也没有宏观电偶极矩分布。

在外场的作用下,前一类分子的正负电中心被拉开,后一类介质的分子电偶极矩平均有一定取向性,因此都出现宏观电偶极矩分布。

而宏观电偶极矩分布用电极化强度矢量P 描述,它等于物理小体积V ∆内的
总电偶极矩与V ∆之比,.V p
P i ∆=∑ρi p 为第i 个分子的电偶极矩,求和符号表示
对V ∆内所有分子求和。

磁化强度矢量M :
介质分子内的电子运动构成微观分子电流,由于分子电流取向的无规性,没有外场时一般不出现宏观电流分布。

在外场作用下,分子电流出现有规则取向,形成宏观磁化电流密度M J 。

分子电流可以用磁偶极矩描述。

把分子电流看作载有电流i 的小线圈,线圈面积为a ,则与分子电流相应的磁矩为:
.ia m =
介质磁化后,出现宏观磁偶极矩分布,用磁化强度M 表示,它定义为物理小体积V ∆内的总磁偶极矩与V ∆之比,
.V m
M i ∆=∑
M B H P E D M j P M P ρρρρρρρρρ-=+=⨯∇=•∇=0
0,,,μερ。

相关文档
最新文档