电动力学复习提纲及复习习题参考答案..

合集下载

电动力学期末考试复习知识总结及试题

电动力学期末考试复习知识总结及试题

电动力学期末考试复习知识总结及试题第一章电磁现象的普遍规律一、主要内容:电磁场可用两个矢量—电场强度和磁感应强度来完全描写,这一章的主要任务是:在实验定律的基础上找出, 所满足的偏微分方程组—麦克斯韦方程组以及洛仑兹力公式,并讨论介质的电磁性质及电磁场的能量。

在电磁学的基础上从实验定律出发运用矢量分析得出电磁场运动的普遍规律;使学生掌握麦克斯韦方程的微分形式及物理意义;同时体会电动力学研究问题的方法,从特殊到一般,由实验定律加假设总结出麦克斯韦方程。

完成由普通物理到理论物理的自然过渡。

二、知识体系:三、内容提要:1.电磁场的基本实验定律:(1)库仑定律:对个点电荷在空间某点的场强等于各点电荷单独存在时在该点场强的矢量和,即:(2)毕奥——萨伐尔定律(电流决定磁场的实验定律)(3)电磁感应定律①生电场为有旋场(又称漩涡场),与静电场本质不同。

②磁场与它激发的电场间关系是电磁感应定律的微分形式。

(4)电荷守恒的实验定律,①反映空间某点与之间的变化关系,非稳恒电流线不闭合。

② 若空间各点与无关,则为稳恒电流,电流线闭合。

稳恒电流是无源的(流线闭合),,均与无关,它产生的场也与无关。

2、电磁场的普遍规律—麦克斯韦方程其中:1是介质中普适的电磁场基本方程,适用于任意介质。

2当,过渡到真空情况:3当时,回到静场情况:4有12个未知量,6个独立方程,求解时必须给出与,与的关系。

介质中:3、介质中的电磁性质方程若为非铁磁介质1、电磁场较弱时:均呈线性关系。

向同性均匀介质:,,2、导体中的欧姆定律在有电源时,电源内部,为非静电力的等效场。

4.洛伦兹力公式考虑电荷连续分布,单位体积受的力:洛伦兹认为变化电磁场上述公式仍然成立,近代物理实验证实了它的正确。

说明:①②5.电磁场的边值关系其它物理量的边值关系:恒定电流:6、电磁场的能量和能流能量密度:能流密度:三.重点与难点1.概念:电场强度、磁感应强度、电流密度、极化强度、磁化强度、能流密度。

电动力学复习总结第四章 电磁波的传播2012答案

电动力学复习总结第四章 电磁波的传播2012答案

第四章 电磁波的传播一、 填空题1、 色散现象是指介质的( )是频率的函数. 答案:,εμ2、 平面电磁波能流密度s 和能量密度w 的关系为( )。

答案:S wv =3、 平面电磁波在导体中传播时,其振幅为( )。

答案:0x E e α-⋅4、 电磁波只所以能够在空间传播,依靠的是( )。

答案:变化的电场和磁场相互激发5、 满足条件( )导体可看作良导体,此时其内部体电荷密度等于( ) 答案:1>>ωεσ, 0, 6、 波导管尺寸为0.7cm ×0.4cm ,频率为30×109HZ 的微波在该波导中能以( )波模传播。

答案: 10TE 波7、 线性介质中平面电磁波的电磁场的能量密度(用电场E 表示)为( ),它对时间的平均值为( )。

答案:2E ε,2021E ε 8、 平面电磁波的磁场与电场振幅关系为( )。

它们的相位( )。

答案:E vB =,相等9、 在研究导体中的电磁波传播时,引入复介电常数='ε( ),其中虚部是( )的贡献。

导体中平面电磁波的解析表达式为( )。

答案: ωσεεi +=',传导电流,)(0),(t x i x e e E t x E ωβα-⋅⋅-= ,10、 矩形波导中,能够传播的电磁波的截止频率=n m c ,,ω( ),当电磁波的频率ω满足( )时,该波不能在其中传播。

若b >a ,则最低截止频率为( ),该波的模式为( )。

答案: 22,,)()(b n a m n m c +=μεπω,ω<n m c ,,ω,μεπb ,01TE11、 全反射现象发生时,折射波沿( )方向传播.答案:平行于界面 12、 自然光从介质1(11με,)入射至介质2(22με,),当入射角等于( )时,反射波是完全偏振波.答案:201n i arctgn = 13、 迅变电磁场中导体中的体电荷密度的变化规律是( ). 答案:0teσερρ-=二、 选择题1、 电磁波波动方程22222222110,0E B E B c t c t∂∂∇-=∇-=∂∂,只有在下列那种情况下成立( )A .均匀介质 B.真空中 C.导体内 D. 等离子体中 答案: A2、 电磁波在金属中的穿透深度( )A .电磁波频率越高,穿透深度越深 B.导体导电性能越好, 穿透深度越深 C. 电磁波频率越高,穿透深度越浅 D. 穿透深度与频率无关 答案: C3、 能够在理想波导中传播的电磁波具有下列特征( ) A .有一个由波导尺寸决定的最低频率,且频率具有不连续性 B. 频率是连续的 C. 最终会衰减为零 D. 低于截至频率的波才能通过. 答案:A4、 绝缘介质中,平面电磁波电场与磁场的位相差为( )A .4π B.π C.0 D. 2π答案:C5、 下列那种波不能在矩形波导中存在( )A . 10TE B. 11TM C. mn TEM D. 01TE 答案:C6、 平面电磁波E 、B、k 三个矢量的方向关系是( )A .B E ⨯沿矢量k 方向 B. E B⨯沿矢量k 方向 C.B E ⨯的方向垂直于k D. k E ⨯的方向沿矢量B的方向答案:A7、 矩形波导管尺寸为b a ⨯ ,若b a >,则最低截止频率为( )A .μεπa B. μεπb C.b a 11+μεπ D. a2μεπ答案:A8、 亥姆霍兹方程220,(0)E k E E ∇+=∇⋅=对下列那种情况成立( ) A .真空中的一般电磁波 B. 自由空间中频率一定的电磁波C. 自由空间中频率一定的简谐电磁波D. 介质中的一般电磁波 答案:C9、 矩形波导管尺寸为b a ⨯ ,若b a >,则最低截止频率为( )A .μεπa B. μεπb C.b a 11+μεπ D. a2μεπ答案:A三、 问答题1、 真空中的波动方程,均匀介质中的定态波动方程和亥姆霍兹方程所描述的物理过程是什么?从形式到内容上试述它们之间的区别和联系。

电动力学-郭硕鸿-第三版-课后题目整理(复习备考专用).

电动力学-郭硕鸿-第三版-课后题目整理(复习备考专用).

电动力学答案第一章 电磁现象的普遍规律1. 根据算符∇的微分性与向量性,推导下列公式:BA B A A B A B B A )()()()()(∇⋅+⨯∇⨯+∇⋅+⨯∇⨯=⋅∇AA A A )()(221∇⋅-∇=⨯∇⨯A2. 设u 是空间坐标z y x ,,的函数,证明:u uf u f ∇=∇d d )(,uu u d d )(A A ⋅∇=⋅∇,uu u d d )(AA ⨯∇=⨯∇证明:3. 设222)'()'()'(z z y y x x r -+-+-=为源点'x 到场点x的距离,r 的方向规定为从源点指向场点。

(1)证明下列结果,并体会对源变量求微商与对场变量求微商的关系:r r r /'r =-∇=∇ ; 3/)/1(')/1(r r r r -=-∇=∇ ;0)/(3=⨯∇r r ;0)/(')/(33=⋅-∇=⋅∇r r r r , )0(≠r 。

(2)求r ⋅∇ ,r ⨯∇ ,r a )(∇⋅ ,)(r a ⋅∇ ,)]sin([0r k E ⋅⋅∇及)]sin([0r k E ⋅⨯∇ ,其中a 、k 及0E 均为常向量。

4. 应用高斯定理证明fS f ⨯=⨯∇⎰⎰SVV d d ,应用斯托克斯(Stokes )定理证明⎰⎰=∇⨯LSϕϕl S d d5. 已知一个电荷系统的偶极矩定义为 'd '),'()(V t t Vx x p ⎰=ρ,利用电荷守恒定律0=∂∂+⋅∇tρJ 证明p 的变化率为:⎰=V V t td ),'(d d x J p6. 若m 是常向量,证明除0=R 点以外,向量3/R )(R m A ⨯=的旋度等于标量3/R R m ⋅=ϕ的梯度的负值,即ϕ-∇=⨯∇A ,其中R 为坐标原点到场点的距离,方向由原点指向场点。

7. 有一内外半径分别为1r 和2r 的空心介质球,介质的电容率为ε,使介质球内均匀带静止自由电荷f ρ,求:(1)空间各点的电场;(2)极化体电荷和极化面电荷分布。

电动力学复习提纲及复习习题参考答案

电动力学复习提纲及复习习题参考答案

2011级电动力学复习提纲数学准备理解散度、旋度、梯度的意义,熟悉矢量的梯度、散度、旋度在直角、球、圆柱坐标系中的运算,以及散度定理(高斯定理)、旋度定理(斯托克斯定理)。

章后练习1、2。

第1章理解全章内容,会推导本章全部公式。

重点推导麦克斯韦方程组,以及用积分形式的麦克斯韦方程组推出边值关系。

章后练习1、2、5、9、10、12第2章能推导能量转化与守恒定律,并且能说明各物理量及定律的物理意义。

能认识电磁场动量及动量转化和守恒定律,并且能说明各物理量及定律的物理意义。

了解电磁场的角动量,理解电磁场有角动量且角动量转化和守恒的意义。

P35例题,书后练习2、3第3章理解静电场和静磁场的势函数,为什么可以提出,在求解静电磁场时有什么意义。

势的方程和边值关系及推导。

深入理解唯一性定理,能应用其解释电磁现象,比如静电屏蔽现象。

熟悉电磁能量势函数表达式及意义。

会独立完成P48例题1,,P55例1、例2,P57例5,。

练习1、3、6、7第4章掌握静像法、简单情形下的分离变量法;理解多极矩法,掌握电偶极矩的势、场,以及能量、受力等;知道电四极矩的表示,计算。

了解磁偶极矩的表示、能量。

熟悉超导的基本电磁性质及经典电磁理论的解释。

会独立熟练计算P62例题1、P64例2及相关讨论;P69例1、P72例3;P74例1、例2。

练习3、4、5、7、10、12第5章1、理解如何由麦克斯韦方程推导自由空间的波动方程,理解其意义。

2、能推出电场和磁场的定态方程(亥姆霍兹方程),熟练掌握自由空间平面电磁波表达式,并且能应用其证明平面电磁波性质;3、能推导反射、折射定律、费涅尔公式,并且能应用其讨论布儒斯特定律、半波损失等常见现象;4、理解全反射现象,知道什么情形下发生全反射,折射波表示,透射深度;5、熟悉电磁波在导体空间表达式,理解其物理意义、理解良导体条件及物理意义;能推导导体中电荷密度;知道导体内电场和磁场的关系;理解趋肤效应,计算趋肤深度;理想导体的边值关系;6、理解波导管中电磁波的求解过程和结果,知道结构。

电动力学习题答案

电动力学习题答案

电动力学习题答案电动力学是物理学中研究电荷、电场、磁场和它们之间相互作用的分支。

以下是一些典型的电动力学习题及其答案。

# 习题一:库仑定律的应用问题:两个点电荷,一个带电为+3μC,另一个为 -5μC,它们之间的距离为 2m。

求它们之间的静电力大小。

解答:根据库仑定律,两个点电荷之间的静电力 \( F \) 由下式给出:\[ F = k \frac{|q_1 q_2|}{r^2} \]其中 \( k \) 是库仑常数,\( q_1 \) 和 \( q_2 \) 是电荷量,\( r \) 是它们之间的距离。

代入给定的数值:\[ F = 8.9875 \times 10^9 \frac{N \cdot m^2}{C^2} \times\frac{3 \times 10^{-6} C \times (-5 \times 10^{-6} C)}{(2 m)^2} \]\[ F = 37.5 N \]# 习题二:电场强度的计算问题:一个无限大均匀带电平面,电荷面密度为 \( \sigma \)。

求距离平面\( d \) 处的电场强度。

解答:对于无限大均匀带电平面,电场强度 \( E \) 垂直于平面,大小为:\[ E = \frac{\sigma}{2\epsilon_0} \]其中 \( \epsilon_0 \) 是真空电容率。

# 习题三:电势能的计算问题:一个点电荷 \( q \) 位于另一个点电荷 \( Q \) 产生的电场中,两者之间的距离为 \( r \)。

求点电荷 \( q \) 在该电场中的电势能。

解答:点电荷 \( q \) 在由点电荷 \( Q \) 产生的电场中的电势能 \( U \) 为:\[ U = -k \frac{qQ}{r} \]# 习题四:洛伦兹力的计算问题:一个带电粒子,电荷量为 \( q \),以速度 \( v \) 进入一个垂直于其运动方向的磁场 \( B \) 中。

电动力学课后习题解答(参考)

电动力学课后习题解答(参考)

∂ ∂y
∂ ∂z
=
(
∂Az ∂y

∂Ay ∂z
)ex
+
(
∂Ax ∂z

∂Az ∂x
)ey
+
(
∂Ay ∂x

∂Ax ∂y
)ez
Ax(u) Ay(u) Az(u)
=
(
∂Az du
∂u ∂y

∂Ay du
∂u ∂z
)ex
+
(
∂Ax du
∂u ∂z

∂Az du
∂ ∂
u x
)ey
+
(
∂Ay du
∂u ∂x

(dl2
·
dl1)
11、平行板电容器内有两层介质,它们的厚度分别为l1和l2,电容率为ε1和ε2,今在两板接上电 动势为E的的电池,求
(1)电容器两板上的自由电荷密度ωf (2)介质分界面上的自由电荷密度ωf 若介质是漏电的,电导率分别为σ1和σ2,当电流达到恒定时,上述问题的结果如何? 解:在相同介质中电场是均匀的,并且都有相同指向,
[∇
1 r
·
∇]m
=
−(m
·
∇)∇
1 r
∴ ∇ × A = −∇ϕ
7、有一个内外半径分别为r1和r2的空心介质球,介质的电容率为ε,使介质内均匀带静止自由 电荷ρf ,求 (1)空间各点的电场 (2)极化体电荷和极化面电荷分布 解:1) S D · dS = ρf dV ,(r2 > r > r1)
R
)
=
(∇
·
m)∇
1 r
+(m源自·m)∇1 r

电动力学复习总结电动力学复习总结答案

1第二章 静 电 场一、 填空题1、若一半径为R 的导体球外电势为b a b ra ,,+=f 为非零常数,球外为真空,则球面上的电荷密度为 。

答案: 02aR e2、若一半径为R 的导体球外电势为3002cos cos =-+E R E r r f q q ,0E 为非零常数,球外为真空,则球面上的电荷密度为 . 球外电场强度为 .答案:003cos E e q ,303[cos (1)sin ]=-+- r R E E e e rq q q3、均匀各向同性介质中静电势满足的微分方程是 ;介质分界面上电势的边值关系是 和 ;有导体时的边值关系是 和 。

答案: s f ef s f e f e f f er f -=¶¶=-=¶¶-¶¶=-=Ñnc n n ,,,,11222124、设某一静电场的电势可以表示为bz y ax -=2f ,该电场的电场强度是该电场的电场强度是_____________________。

答案:z y x e b e ax e axy+--225、真空中静场中的导体表面电荷密度、真空中静场中的导体表面电荷密度_____________________。

答案:0nj s e ¶=-¶6、均匀介质内部的体极化电荷密度p r 总是等于体自由电荷密度f r __________的倍。

的倍。

答案: -(1-e e)7、电荷分布r 激发的电场总能量1()()8x x W dv dv r r r pe¢¢=òò的适用于 情形.答案:全空间充满均匀介质全空间充满均匀介质8、无限大均匀介质中点电荷的电场强度等于、无限大均匀介质中点电荷的电场强度等于_____________________。

答案: 34qRR pe9、接地导体球外距球心a 处有一点电荷q, 导体球上的感应电荷在球心处产生的电势为等于 .答案:04qa pe1010、无电荷分布的空间电势、无电荷分布的空间电势、无电荷分布的空间电势 极值极值.(.(.(填写“有”或“无”填写“有”或“无”填写“有”或“无”) )答案:无 1111、镜象法的理论依据是、镜象法的理论依据是、镜象法的理论依据是_____________________,象电荷只能放在,象电荷只能放在,象电荷只能放在_____________________区域。

电动力学复习提纲

电动力学第一章 电磁现象的普遍规律第一节电荷和电场1. 库仑定理和电场强度(1) 定理的表示形式及其物理解释;(2) 电荷激发电场的形式及其计算(点电荷、点电荷系、一定形状分布的电荷体系) (点电荷) (点电荷系) ()30()4V x r E x dV r ρπε''=⎰ (体电荷分布) (面电荷分布) ()30()4L x r E x dl r λπε''=⎰ (线电荷分布) 2. 高斯定理和电场的散度(1)高斯定理的形式及其意义S Q E dS ε⋅=⎰ ()VQ x dV ρ''=⎰ (2)静电场的散度及其物理意义E ρε∇⋅= 意义:电荷是电场的源,电场线从正电荷发出终止于负电荷。

反应了局域性:空间某点邻域上场的散度只和该点上的电荷有关,而和其他地点的电荷分布无关;电荷只直接激发其邻近的场,而远处的场则是通过场本身的内部作用传递出去的。

3. 静电场的旋度()0L S E dl E dS ⋅=∇⨯⋅=⎰⎰ ,0E ∇⨯= (环路定理) 书本例题(p7)第二节 电流和磁场1. 电荷守恒定律电流密度(矢量)的定义J ,电荷守恒定律的微分积分形式:2014QQ F r r πε'= 30()4F Q r E x Q r πε==' 3110()4n n i i i i i i Q r E x E r πε====∑∑()30()4S x r E x dS r σπε''=⎰S V J dS dV t ρ∂⋅=-∂⎰⎰ (积分形式)0J tρ∂∇⋅+=∂ (微分形式,也称电流连续性方程) 2. 毕奥—萨伐尔定律034Idl r dB r μπ⨯= ,034L Idl r B rμπ⨯=⎰ (闭合导线情形下,毕—萨定律的积分微分表示式) 034Jdv r dB r μπ⨯= ,034V J r B dV r μπ⨯=⎰ (闭合导体情形下,毕—萨定律的积分微分表示式) 掌握定理的内容及用此定理求电流分布激发的磁场。

电动力学习题集答案-1

电动力学第一章习题及其答案1. 当下列四个选项:(A.存在磁单级, B.导体为非等势体, C.平方反比定律不精确成立,D.光速为非普适常数)中的_ C ___选项成立时,则必有高斯定律不成立.2. 若a为常矢量, k z z j y y i x x r )'()'()'(-+-+-=为从源点指向场点的矢量,k E,0为常矢量,则)(2a r ⋅∇=a r a r a r a r a r r r dr dr ⋅=⋅=⋅∇=⋅∇=⋅∇22))()(222,=⨯∇r0'''=---∂∂∂∂∂∂z z y y x x e e e zyxxxx, 3)z'-(z )y'-(y )x'-(x =++=⋅∇∂∂∂∂∂∂z y x r ,)()(=⨯∇⋅=⨯⋅∇r a r a ,0)(3211=⨯=⨯=⨯∇+⨯∇=⨯∇∇r r r r r r r r r rrr,a k j i r a za ya xa z y x =++=⋅∇∂∂∂∂∂∂)]z'-(z [)]y'-(y [)]x'-(x [)(,r r rr r rrr r r r 23113=+⋅-=⋅∇+⋅∇=⋅∇ ,=⨯∇⋅∇)(A __0___. =⋅⋅∇)]sin([0r k E )cos(0r k E k ⋅⋅, 当0≠r 时,=⨯∇)/(3r r __0__. =⋅∇⋅)(0r k i e E )exp(0r k i E k i ⋅⋅, =⨯∇)]([r f r _0_. =⋅∇)]([r f r dr r df r r f )()(3+3. 矢量场f的唯一性定理是说:在以s 为界面的区域V 内,若已知矢量场在V 内各点的旋度和散度,以及该矢量在边界上的切向或法向分量,则f在V内唯一确定.4. 电荷守恒定律的微分形式为0=∂∂+⋅∇tJ ρ,若J为稳恒电流情况下的电流密度,则J满足0=⋅∇J.5. 场强与电势梯度的关系式为,ϕ-∇=E.对电偶极子而言,如已知其在远处的电势为)4/(30r r P πεϕ ⋅=,则该点的场强为()⎪⎪⎭⎫ ⎝⎛-⋅=350341r P rr r P Eπε.6. 自由电荷Q 均匀分布于一个半径为a 的球体内,则在球外)(a r >任意一点D的散度为 0,内)(a r <任意一点D的散度为 34/3a Q π.7. 已知空间电场为b a rrb r r a E ,(32 +=为常数),则空间电荷分布为______.8. 电流I 均匀分布于半径为a 的无穷长直导线内,则在导线外)(a r >任意一点B的旋度的大小为 0 , 导线内)(a r <任意一点B的旋度的大小为20/a Iπμ.9. 均匀电介质(介电常数为ε)中,自由电荷体密度为f ρ与电位移矢量D的微分关系为f D ρ=⋅∇ , 束缚电荷体密度为Pρ与电极化矢量P 的微分关系为P P ρ-=⋅∇,则P ρ与f ρ间的关系为fP ρρεεε0--=.10. 无穷大的均匀电介质被均匀极化,极化矢量为P,若在介质中挖去半径为R 的球形区域,设空心球的球心到球面某处的矢径为R,则该处的极化电荷面密度为R R P /⋅-.11. 电量为q的点电荷处于介电常数为ε的均匀介质中,则点电荷附近的极化电荷为q )1/(0-εε.12. 某均匀非铁磁介质中,稳恒自由电流密度为f J,磁化电流密度为M J ,磁导率μ,磁场强度为H ,磁化强度为M ,则=⨯∇H f J ,=⨯∇M M J ,M J 与f J 间的关系为()f M J J1/0-=μμ.13. 在两种电介质的分界面上,E D ,所满足的边值关系的形式为()f D D n σ=-⋅12,()012=-⨯E E n.14. 介电常数为ε的均匀各向同性介质中的电场为E . 如果在介质中沿电场方向挖一窄缝,则缝中电场强度大小为E . 15. 介电常数为ε的无限均匀的各项同性介质中的电场为E ,在垂直于电场方向横挖一窄缝,则缝中电场强度大小为RR P P P P n n P ⋅-=--=--=)0cos ()(12θ,/0sin 00011201212εεθεετττE E E E E E E E D D n n =⇒⎩⎨⎧===⇒⎩⎨⎧=-=-缝缝. 16. 在半径为R 的球内充满介电常数为ε的均匀介质,球心处放一点电荷,球面为接地导体球壳,如果挖去顶点在球心的立体角等于2的一圆锥体介质,则锥体中的场强与介质中的场强之比为_1:1_.17. 在半径为R 的球内充满介电常数为ε的均匀介质,球心处放一点电荷,球面为接地导体球壳,如果挖去顶点在球心的立体角等于2的一圆锥体介质,锥体处导体壳上的自由电荷密度与介质附近导体壳上的自由电荷密度之比为εε/0.18. 在两种磁介质的分界面上, B H,所满足的边值关系的矢量形式为()fH H n α=-⨯12,()012=-⋅B B n.19. 一截面半径为b 无限长直圆柱导体,均匀地流过电流I ,则储存在单位长度导体内的磁场能为__________________.20. 在同轴电缆中填满磁导率为21,μμ的两种磁介质,它们沿轴各占一半空间。

电动力学基本内容复习提纲

电动力学基本内容复习提纲电动力学(Electrodynamics)是物理学中研究电荷、电场、电流和磁场之间相互作用的分支学科。

下面是电动力学的基本内容复习提纲:一、电荷和电场的基本概念1.电荷的基本特性和定义2.电荷守恒定律及其应用3.质点电荷和连续分布电荷的电场计算4.电势的定义和性质5.电场和电势的关系二、电场的基本性质和电场的运动1.电场强度的定义和性质2.电场线的性质和规律3.正电荷和负电荷在电场中的运动4.点电荷在电场中受力的性质和计算三、电场的高斯定律1.高斯定律的基本概念和表述2.高斯定律的应用:计算电场和电势3.高斯定律在导体中的应用四、电势与电势能1.电势能的概念和计算2.连续分布电荷系统的电势计算3.轴对称电荷分布的电势计算五、电场中的静电力1.静电力的基本概念和性质2.电场中两个点电荷互相作用的力计算3.连续分布电荷系统的静电力计算六、电荷在电场中的运动1.电场中带电微粒的加速和速度计算2.电场中带电微粒的轨迹和运动方程3.带电粒子在均匀磁场中的运动七、导体中的静电平衡1.导体的基本性质和导体中的电荷分布2.导体中电荷的自由移动和静电平衡条件3.导体表面电荷密度和电势的分布八、电流和电阻1.电流和电流密度的概念和计算2.电阻和电导的概念和性质3. Ohm定律及其应用九、电路和电动势1.串联和并联电路的电流和电压计算2.电动势的概念和性质3. Kirchhoff定律的应用十、磁场和电磁感应1.磁场的基本概念和性质2.安培定律和洛伦兹力的计算3.静磁场和恒定磁场4.电磁感应的基本概念和现象十一、电磁感应和电磁波1.法拉第电磁感应定律的应用2.涡旋感应和电磁感应的计算3.麦克斯韦方程组的基本概念和应用4.电磁波的基本性质和特点以上提纲主要囊括了电动力学的基本内容,希望对你的复习有所帮助。

如果还有其他问题,请随时追加提问。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2011级电动力学复习提纲数学准备理解散度、旋度、梯度的意义,熟悉矢量的梯度、散度、旋度在直角、球、圆柱坐标系中的运算,以及散度定理(高斯定理)、旋度定理(斯托克斯定理)。

章后练习1、2。

第1章理解全章内容,会推导本章全部公式。

重点推导麦克斯韦方程组,以及用积分形式的麦克斯韦方程组推出边值关系。

章后练习1、2、5、9、10、12第2章能推导能量转化与守恒定律,并且能说明各物理量及定律的物理意义。

能认识电磁场动量及动量转化和守恒定律,并且能说明各物理量及定律的物理意义。

了解电磁场的角动量,理解电磁场有角动量且角动量转化和守恒的意义。

P35例题,书后练习2、3第3章理解静电场和静磁场的势函数,为什么可以提出,在求解静电磁场时有什么意义。

势的方程和边值关系及推导。

深入理解唯一性定理,能应用其解释电磁现象,比如静电屏蔽现象。

熟悉电磁能量势函数表达式及意义。

会独立完成P48例题1,,P55例1、例2,P57例5,。

练习1、3、6、7第4章掌握静像法、简单情形下的分离变量法;理解多极矩法,掌握电偶极矩的势、场,以及能量、受力等;知道电四极矩的表示,计算。

了解磁偶极矩的表示、能量。

熟悉超导的基本电磁性质及经典电磁理论的解释。

会独立熟练计算P62例题1、P64例2及相关讨论;P69例1、P72例3;P74例1、例2。

练习3、4、5、7、10、12第5章1、理解如何由麦克斯韦方程推导自由空间的波动方程,理解其意义。

2、能推出电场和磁场的定态方程(亥姆霍兹方程),熟练掌握自由空间平面电磁波表达式,并且能应用其证明平面电磁波性质;3、能推导反射、折射定律、费涅尔公式,并且能应用其讨论布儒斯特定律、半波损失等常见现象;4、理解全反射现象,知道什么情形下发生全反射,折射波表示,透射深度;5、熟悉电磁波在导体空间表达式,理解其物理意义、理解良导体条件及物理意义;能推导导体中电荷密度;知道导体内电场和磁场的关系;理解趋肤效应,计算趋肤深度;理想导体的边值关系;6、理解波导管中电磁波的求解过程和结果,知道结构。

能计算截止频率。

了解谐振腔中的电磁场解,理解且求解共振频率。

7、独立计算P103,P111,P120例1、P121的例2、例3。

练习5、7、8、9,10第6章1、熟悉并且理解时变电磁场的电磁势及与电磁场的关系;2、什么是规范变换和规范不变性,熟悉库仑规范和洛仑兹规范;3、熟悉达朗贝尔方程,理解什么是近区、感应区、辐射区及特点;了解多极展开方法的应用;理解什么是推迟势,物理意义和表达式;4、熟悉电偶极辐射的电磁场及性质特点、偶极辐射的功率特点。

5、独立完成练习2第7章1、了解狭义相对论的产生过程,对电磁学发展的意义;2、熟练掌握狭义相对论的原理;洛仑兹变换式、间隔的概念及表示;3、熟悉物理量按变换性质分类;理解如何得到协变物理量、判断物理规律的协变性、熟悉教材给出的四维物理量、洛伦兹变换矩阵;4、熟练掌握相对论的多普勒效应及特点;5、了解协变的电动力学规律;6、熟悉如何求解以匀速运动的带电粒子的势函数、电磁场及特点;7、独立完成P159例4、P162例1、P164例2,P165例3、例4,练习2、8,9,11,12第8章1、理解相对论的时空效应,能用洛仑兹变换式推出同时的相对性,长度收缩,动钟变慢,因果律及光速极限,并且能够应用计算;2、理解相对论的时空结构;熟悉速度变换式并且能应用计算;3、熟悉质能关系式并且理解怎么提出的,深入理解静能、动能的概念。

4、独立完成P171例1,P173例2,P177例3,P180例1,P181例2,P182例3. 练习1、2、5、7、8、10、11 第9章了解运动带电粒子的电磁场,什么时候能产生辐射;了解经典电动力学的适用范围。

注:1、课堂上的补充例题及课堂练习要求掌握;2、考题形式有填空22分,选择填空18分,证明10分,计算50分;3、总成绩100分,平时作业20%(包括作业和课堂练习),考勤10%,期末70%。

部分习题答案习题一(1、2、12自己证明)1.用静电场的高斯定理说明电力线总是从正电荷发出,止于负电荷,且静电场线不可能是闭合的。

2.用磁场的高斯定理说明磁力线总是闭合的。

5.试证明:在均匀介质内部,极化电荷密度P ρ与自由电荷密度ρ的关系为ρεερ⎪⎭⎫⎝⎛-=10P ,其中ε是介质的电容率. 证明:因为E D ε=,电容率ε与坐标无关,由P E D+=0ε,和f D ρ=⋅∇ ,得()()()fP D ED P ρεεεεερ/1/1000--=⋅∇--=-⋅-∇=⋅-∇=一般介质0εε>,因此P ρ与f ρ符号相反。

9.平行板电容器内有两层介质,它们的厚度分别为1l 和2l ,电容率为1ε和2ε.今在两极板间接上电动势为E 的电池,求⑴ 电容器两板上的自由电荷面密度; ⑵ 介质分界面上的自由电荷面密度.若分界面是漏电的,电导率分别为1σ和2σ,当电流达到恒定时,上述两问题的结果如何?解 (1)求两板上自由电荷面密度1f σ和2f σ,在介质绝缘情况下,电容器内不出现电流.22211122110D l D l l E l E V εε+=+= (1)边值关系为 σ=-⋅)(21D D n , (2)在两种绝缘介质的分界面上,没有自由电荷分布,03=f σ∴ 0)(12=-⋅D D n 12D D = (3)因为两极板中(导体中)电场为0,;在导体和介质的分界面2处有212)(f σ-=-⋅D D n得 22f D σ=-在另一导体与介质的分界面1处有f σ=-⋅-)(12D D n (4)f D σ==-⋅-11)(D n 联立解得221101εεσl l V f +=221102εεσl l V f +-=可见,整个电容器保持0321=++f f f σσσ(电中性)(2)当介质略为漏电,并达到稳恒时,要保持电流连续性条件成立0)(12=-⋅J J n 即 n n 21J J =21J J =在两介质界面上有自由电荷积累,此时21D D ≠,应有J J J ==21 ∴ J E E ==2211σσ∵ 极板的电导率远大于1σ和2σ,故极板中电场近似为0 ∴ )(22211122110σσf l f l l E l E V +=+=J )2(211σσl l +=∴ 22110σσl l J J +=211220σσσl l V E +=2112102σσσl l V E +=根据边值关系最后得出,各交界面上自由电荷面密度为21120211σσσεσl l V f +=, 21120122σσσεσl l V f +-= ,2112021123)(σσσεσεσl l V f +-=10.试用边值关系证明:在绝缘介质与导体的分界面上,在静电情况下,导体外的电场线总是垂直于导体表面;在恒定电流情况下,导体内电场线总是平行于导体表面.证明:因为 t t E E 21=,导体内(1)电场为0,所以导体外(2)电场的切向分量为0,电场线总是垂直于导体表面。

在恒定电流情况下,0=⋅∇J ,则有0=n J ,又由欧姆定律E Jσ= 故导体中0=n E ,所以电场仅有切向分量,电场线平行于导体表面。

12.用静电场的环路定理说明,电力线不可能是闭合曲线。

习题二2.内外半径分别为a 和b 的无限长圆柱形电容器,单位长度荷电为f λ,板间填充电导率为σ的非铁磁物质.⑴证明在介质中任何一点传导电流与位移电流严格抵消.因此内部无磁场.⑵求f λ随时间的衰减规律.⑶求与轴相距为r 的地方的能量耗散功率密度.⑷求长度为l 的一段介质总的能量耗散功率,并证明它等于这段的静电能减少率.解:⑴由高斯定理可得r f e r D ˆ2πλ= ,则.ˆ2r f e rD E πελε==由欧姆定律微分形式.ˆ2r ff e r E J πεσλσ== 而位移电流密度.ˆ21r fD e tr t D J ∂∂=∂∂=λπ ,对其两边求散度 又由f D ρ=⋅∇ ,0=∂∂+⋅∇tJ ff ρ 得f f tλεσλ-=∂∂,所以 0=∂∂+tDJ f 。

因为介质是非铁磁性的,即H Bμ=,故任意一点,任意时刻有000=⎪⎪⎭⎫⎝⎛∂∂+=⨯∇=⨯∇t D J H B fμμ⑵由f f tλεσλ-=∂∂,解这个微分方程得 ()tf et εσλλ-=0⑶功率密度()222/r E E J p ff πελσσ==⋅=⑷长度为l 的一段介质耗散的功率为.ln 222222a b l rldr r f baf πελσππελσ=⎪⎪⎭⎫⎝⎛⎰ 能量密度()22/,21r tw D E w f πελσ-=∂∂⋅=长度为l 的一段介质内能量减少率为.ln 2222ab l rldr t wf baπελσπ⎰=∂∂-3.一很长的直圆筒,半径为R ,表面上带有一层均匀电荷,电荷量的面密度为σ.在外力矩的作用下,从0=t 时刻开始,以匀角加速度α绕它的几何轴转动,如图所示.⑴试求筒内的磁感应强度B;⑵试求筒内接近内表面处的电场强度E和玻印廷矢量S ;⑶试证明:进入这圆筒长为l 一段的S 的通量为⎪⎪⎭⎫⎝⎛2022B l R dt d μπ..解:⑴单位面电流ωσσπR lTRl i ==2 ωσμμR ei B z 00ˆ== ⑵在圆筒的横截面内,以轴线为心,r 为半径作一圆,通过这圆面积的磁通量为ωσμπR r S d B s02=⋅=Φ⎰由法拉第定律,得 .21210dtd Rr dt d r E ωσμπ-=Φ-=因为 t αω=所以ασμrR E 021-= 考虑到方向,则有z r e erR E ˆˆ210⨯=ασμ 在筒内接近表面处,z r e eR E ˆˆ2120⨯=ασμ 该处的能流密度为()()z z r R R R e R e eR H E S ˆˆˆ2120ωσασμ⨯⨯=⨯= r et R ˆ212320ασμ-= 负号表明,S 垂直于筒表面指向筒内。

⑶进入这圆筒长为l 一段的S 的通量为lt R Rl S R s 24202ασπμπ=⋅=Φ而lt R dt dB B l R B l R dt d 2420022022ασπμμπμπ==⎪⎪⎭⎫ ⎝⎛ 所以⎪⎪⎭⎫⎝⎛=Φ2022B l R dt d S μπ 讨论:此结果表明,筒内磁场增加的能量等于S 流入的能量。

由于筒未转动时,筒内磁场为零,磁场能量为零,磁场能都是经过玻印廷矢量由表面输入的。

习题三1.试证明,在两种导电介质的分界面上,.01122=∂∂-∂∂n n ϕσϕσ ()21指向由n. 证明:因为0=⋅⎰⎰SS d j所以,n n j j 21= 又, nE j n n ∂∂==ϕσσ 即 .01122=∂∂-∂∂nn ϕσϕσ3. 试论证:在没有电荷的地方,电势既不能达到极大值,也不能达到极小值.(提示:分真空和均匀介质空间,用泊松方程证明.) 证明:由02ερϕ-=∇ (1) 没有电荷的地方0222222=∂∂+∂∂+∂∂z y x ϕϕϕ (2) 如果ϕ为极大,则022<∂∂x ϕ,022<∂∂yϕ,022<∂∂z ϕ,这不满足(2)式,可见没有电荷处,ϕ不能为极大。

相关文档
最新文档