电动力学知识点归纳

合集下载

初中物理电动力学知识点总结与梳理

初中物理电动力学知识点总结与梳理

初中物理电动力学知识点总结与梳理电动力学是物理学中的一个重要分支,研究电荷和电流在电场和磁场中的相互作用关系。

初中物理学习的重点之一就是电动力学,本文将对初中物理电动力学的知识点进行总结与梳理。

1. 电荷和电流电荷是物质的基本性质之一,有正电荷和负电荷之分。

同种电荷相互之间发生排斥,异种电荷相互之间发生吸引。

电子是负电荷的基本粒子,负电荷的基本单位是电子电荷e。

正电荷的基本单位与负电荷相同。

电流是电荷在单位时间内通过导体横截面的数量,单位是安培(A)。

2. 电路中的基本元件电路中常见的基本元件有导体、电阻、电容和电感。

导体是电流可以通过的物质,如金属线。

电阻是阻碍电流通过的元件,其单位是欧姆(Ω)。

电容是储存电荷的元件,其单位是法拉(F)。

电感是储存磁能的元件,其单位是亨利(H)。

3. 电压和电动势电压是电源对电荷提供的能量,也称为电势差,其单位是伏特(V)。

电动势是电源的内部能量转化为电能的能力,单位也是伏特(V)。

电流的大小与电压和电阻的关系可以用欧姆定律来描述,即I=U/R,其中I为电流,U为电压,R为电阻。

4. 阻抗和电路分析阻抗是交流电路中电阻、电容和电感对电流的阻碍能力,其单位是欧姆(Ω)。

在交流电路中,电流的大小和相位差可以通过阻抗和电压的相位差来确定。

通过阻抗,可以对交流电路进行分析和计算。

5. 频率和周期频率是交流电流或电压波形中周期性事件的发生频率,单位是赫兹(Hz)。

周期是交流电流或电压波形中一个完整的周期所需要的时间。

频率和周期之间的关系是f=1/T,其中f为频率,T为周期。

6. 直流电路和交流电路直流电路中电流的方向是固定不变的,电源提供稳定的电压,如电池。

交流电路中电流的方向随时间改变,电源提供周期性变化的电压,如插座上的交流电源。

7. 磁场与电磁感应电流在导线周围产生磁场,磁场的方向可以用右手螺旋定则确定。

电磁感应是指磁场变化时产生感应电动势,导致电流产生的现象。

法拉第电磁感应定律描述了磁场变化引起的感应电动势的大小与变化率的关系,即感应电动势的大小与磁场变化率成正比。

电动力学知识点总结

电动力学知识点总结

第一章电磁现象的普遍规律一、主要内容:电磁场可用两个矢量—电场强度和磁感应强度来完全描写,这一章的主要任务是:在实验定律的基础上找出, 所满足的偏微分方程组—麦克斯韦方程组以及洛仑兹力公式,并讨论介质的电磁性质及电磁场的能量。

在电磁学的基础上从实验定律出发运用矢量分析得出电磁场运动的普遍规律;使学生掌握麦克斯韦方程的微分形式及物理意义;同时体会电动力学研究问题的方法,从特殊到一般,由实验定律加假设总结出麦克斯韦方程。

完成由普通物理到理论物理的自然过渡。

二、知识体系:三、内容提要:1.电磁场的基本实验定律:(1)库仑定律:对个点电荷在空间某点的场强等于各点电荷单独存在时在该点场强的矢量和,即:(2)毕奥——萨伐尔定律(电流决定磁场的实验定律)(3)电磁感应定律①生电场为有旋场(又称漩涡场),与静电场本质不同。

②磁场与它激发的电场间关系是电磁感应定律的微分形式。

(4)电荷守恒的实验定律,①反映空间某点与之间的变化关系,非稳恒电流线不闭合。

② 若空间各点与无关,则为稳恒电流,电流线闭合。

稳恒电流是无源的(流线闭合),,均与无关,它产生的场也与无关。

2、电磁场的普遍规律—麦克斯韦方程其中:1是介质中普适的电磁场基本方程,适用于任意介质。

2当,过渡到真空情况:3当时,回到静场情况:4有12个未知量,6个独立方程,求解时必须给出与,与的关系。

介质中:3、介质中的电磁性质方程若为非铁磁介质1、电磁场较弱时:均呈线性关系。

向同性均匀介质:,,2、导体中的欧姆定律在有电源时,电源内部,为非静电力的等效场。

4.洛伦兹力公式考虑电荷连续分布,单位体积受的力:洛伦兹认为变化电磁场上述公式仍然成立,近代物理实验证实了它的正确。

说明:①②5.电磁场的边值关系其它物理量的边值关系:恒定电流:6、电磁场的能量和能流能量密度:能流密度:三.重点与难点1.概念:电场强度、磁感应强度、电流密度、极化强度、磁化强度、能流密度。

2.麦克斯韦方程、电荷守恒定律、边值关系、极化强度与极化电荷的关系、磁化强度与磁化电流的关系、应用它们进行计算和证明。

电动力学公式总结

电动力学公式总结

电动力学公式总结电动力学是物理学中的一个重要分支,研究电荷在电场和磁场中的行为规律。

本文将对电动力学中常见的几个重要公式进行总结和介绍。

库仑定律库仑定律是电动力学中最基本的定律之一,描述了两个电荷之间的相互作用力的大小。

库仑定律公式如下:F=k⋅q1⋅q2 r2其中,F表示电荷间的作用力,q1和q2分别表示两个电荷的大小,r表示它们之间的距离,k是库仑常数。

电场强度电场强度描述了单位正电荷在电场中所受到的力,电场强度的大小与电场中的电荷量有关。

电场强度E与电场中的电荷q之间的关系可以用如下公式表示:E=F q其中,F为电荷所受力,q为电荷量。

高斯定律高斯定律是描述电场的一项基本定律,它规定了电场通过一个封闭曲面的电场通量与内部电荷量的比值。

高斯定律可以用如下公式表示:Φ=Q enc ε0其中,Φ表示电场通过曲面的电场通量,Q enc表示曲面内的电荷量,ε0是真空介电常数。

安培环路定理安培环路定理描述了电流在产生的磁场中所受的力。

根据安培环路定理,磁场力与电流及它们之间的关系可以用如下公式表示:F=B⋅l⋅I⋅sin(θ)其中,F表示力的大小,B表示磁场强度,l表示电流元长度,I表示电流强度,θ表示磁场与电流元之间的夹角。

洛伦兹力洛伦兹力是描述带电粒子在电场和磁场中所受合力的物理定律。

洛伦兹力F对带电粒子的加速度a描述如下:F=q(E+v×B)其中,q为电荷量,E为电场强度,v为带电粒子的速度,B为磁场强度。

以上就是电动力学中的几个重要公式的简要总结,这些公式在电场和磁场的研究中具有重要作用,有助于我们理解电荷之间、电流与磁场之间的相互作用规律。

电动力学_知识点总结

电动力学_知识点总结

第一章电磁现象的普遍规律一、主要内容:电磁场可用两个矢量—电场强度和磁感应强度来完全描写,这一章的主要任务是:在实验定律的基础上找出, 所满足的偏微分方程组—麦克斯韦方程组以及洛仑兹力公式,并讨论介质的电磁性质及电磁场的能量。

在电磁学的基础上从实验定律出发运用矢量分析得出电磁场运动的普遍规律;使学生掌握麦克斯韦方程的微分形式及物理意义;同时体会电动力学研究问题的方法,从特殊到一般,由实验定律加假设总结出麦克斯韦方程。

完成由普通物理到理论物理的自然过渡。

二、知识体系:三、内容提要:1.电磁场的基本实验定律:(1)库仑定律:对个点电荷在空间某点的场强等于各点电荷单独存在时在该点场强的矢量和,即:(2)毕奥——萨伐尔定律(电流决定磁场的实验定律)(3)电磁感应定律①生电场为有旋场(又称漩涡场),与静电场本质不同。

②磁场与它激发的电场间关系是电磁感应定律的微分形式。

(4)电荷守恒的实验定律,①反映空间某点与之间的变化关系,非稳恒电流线不闭合。

② 若空间各点与无关,则为稳恒电流,电流线闭合。

稳恒电流是无源的(流线闭合),,均与无关,它产生的场也与无关。

2、电磁场的普遍规律—麦克斯韦方程其中:1是介质中普适的电磁场基本方程,适用于任意介质。

2当,过渡到真空情况:3当时,回到静场情况:4有12个未知量,6个独立方程,求解时必须给出与,与的关系。

介质中:3、介质中的电磁性质方程若为非铁磁介质1、电磁场较弱时:均呈线性关系。

向同性均匀介质:,,2、导体中的欧姆定律在有电源时,电源内部,为非静电力的等效场。

4.洛伦兹力公式考虑电荷连续分布,单位体积受的力:洛伦兹认为变化电磁场上述公式仍然成立,近代物理实验证实了它的正确。

说明:①②5.电磁场的边值关系其它物理量的边值关系:恒定电流:6、电磁场的能量和能流能量密度:能流密度:三.重点与难点1.概念:电场强度、磁感应强度、电流密度、极化强度、磁化强度、能流密度。

2.麦克斯韦方程、电荷守恒定律、边值关系、极化强度与极化电荷的关系、磁化强度与磁化电流的关系、应用它们进行计算和证明。

电动力学公式总结

电动力学公式总结

电动力学公式总结电动力学是物理学中研究电荷间相互作用及其相关现象的分支学科。

电动力学公式是描述电场、电势、电流、电荷等电动力学量之间关系的数学表达式。

本文将总结常见的电动力学公式,并进行简要解释。

1. 库仑定律(Coulomb's Law)库仑定律用于描述两个电荷之间的相互作用力。

假设两个电荷分别为q1和q2,它们之间的作用力F由以下公式给出:F = k * (q1 * q2) / r^2其中,k为库仑常数,r为两个电荷间的距离。

2. 电场强度(Electric Field Strength)电场强度描述在给定点附近单位正电荷所受到的力的大小和方向。

电场强度E由以下公式给出:E =F / q其中,F为单位正电荷所受的力,q为正电荷的大小。

3. 电势差(Electric Potential Difference)电势差描述电场对电荷进行的功所引起的状态变化。

电势差V由以下公式给出:V = W / q其中,W为电场对电荷进行的功,q为电荷的大小。

4. 高斯定理(Gauss's Law)高斯定理是一个描写电场线分布和电荷分布之间关系的重要定理。

它表示电场的流出和流入电荷的总和等于电荷总量除以真空介电常数ε0。

该定理由以下公式给出:∮E · dA = (1 / ε0) * Q_enclosed其中,E为电场强度,dA为微元的面积矢量,Q_enclosed为电荷的总量。

5. 法拉第电磁感应定律(Faraday's Law of Electromagnetic Induction)法拉第电磁感应定律描述通过磁场的变化引起的电场变化。

它由以下公式给出:ε = -dΦ/dt其中,ε代表感应电动势,dΦ/dt为磁通量的变化率。

6. 奥姆定律(Ohm's Law)奥姆定律描述了电流、电压和电阻之间的关系。

根据奥姆定律,电流I等于电压V与电阻R的比值,即:I = V / R其中,I为电流,V为电压,R为电阻。

电动力学知识点总结

电动力学知识点总结

电动力学知识点总结电动力学是物理学中的一个重要分支,研究电荷和电场之间的相互作用,以及电流和磁场之间的相互作用。

在电动力学中,我们需要了解一些基本的知识点,下面我将对电动力学的一些重要知识点进行总结。

首先,我们来看电荷和电场的关系。

电荷是物质所具有的一种基本属性,它可以分为正电荷和负电荷。

同种电荷相互之间会发生排斥,异种电荷相互之间会发生吸引。

而电场是由电荷产生的,它是描述电荷对周围空间产生影响的物理量。

在电场中,电荷会受到电场力的作用,这个力的大小与电荷的大小和电场的强度有关。

其次,我们需要了解电场的概念和性质。

电场是一种物理场,它可以用矢量来描述。

在电场中,电荷会受到电场力的作用,这个力的方向与电场的方向相同或者相反,力的大小与电荷的大小和电场的强度有关。

电场还具有叠加原理,即如果有多个电荷在同一点产生的电场,那么这些电场的效果可以叠加。

接下来,我们来讨论电场的高斯定律。

高斯定律是描述电场分布的一个重要定律,它表明电场通过一个闭合曲面的通量与这个闭合曲面内的电荷量成正比。

这个定律可以用来计算电场的分布,从而帮助我们理解电场的性质和行为。

另外,我们还需要了解电势和电势能的概念。

电势是描述电场中某一点的电能与单位正电荷之间的关系,它是标量,可以用来描述电场的强弱。

而电势能则是电荷在电场中具有的能量,它与电荷的大小和电势的大小有关。

最后,我们需要了解电流和磁场的关系。

电流是电荷的流动,它在导体中形成的磁场称为安培环路定理。

磁场是由电流产生的,它可以用磁感应强度来描述,磁场中的电流会受到洛伦兹力的作用,这个力的大小与电流的大小和磁感应强度有关。

总的来说,电动力学是一个重要的物理学分支,它涉及到电荷、电场、电势、电势能、电流和磁场等多个重要概念。

通过对这些知识点的深入了解,我们可以更好地理解电动力学的原理和应用,为我们的学习和科研工作提供帮助。

希望本文的内容能够对大家有所帮助。

电动力学复习总结提纲.doc

电动力学复习总结提纲.doc

矢量分析重点内容:三矢量的混合积.叉乘及顺序;nabla算和矢量性; 拉普拉斯算符;各种矢量公式的推导;符和梯度.散度.旋度的定义;nabla算符的微分特度场和旋度场的重要性质。

电磁场的普遍规律重点内容:电场磁场的定义,以及散度旋度性质的推导;位移电流;各种情况下的麦克斯韦方程组(必考);边界条件;电荷守恒定律;本构关系;能量守恒定律, 能流密度,能量密度。

重点内容:静电场的散度旋度方程,和边界条件;静电势的泊松方程和拉普拉斯方程,及边界条件(分电介质和导体情况);唯一性定理所对应的两种边界条件;本征函数展开法的物理根据,和用此法求解电势(必考);镜像法求解电势(必考)。

重点内容:重点掌握概念和定义,如下。

静磁场的散度旋度方程,和边界条件;矢势的泊松方程,及边界条件;磁标势的适用条件,方程和边界条件电磁波传播重点内容:从麦克斯韦方程组推导波动方程,以及波动方程的物理意义;如何从波动方程得到Helmholtz 方程(Helmholtz方程要配合V • D = 0和V • B = 0—起使用);电磁波在均匀的各向同性且无衰减介质中的色散关系;如何通过= 0和V B = 0 (横波条件)得出电磁波是否为TE 波和TM波;求得电场后,如何通过法拉第关系得到磁场H,以及电磁波的手性问题; 介质的折射率和阻抗的定义;电磁波的偏振;斯涅尔定律的物理意义;从界面处切向波矢守恒的角度讨论全反射和倏逝波问题;菲涅耳公式中的TE (s波)和TM (p波)如何区分,以及界面处入射光反射和透射光的偏振示意图(菲涅耳公式不用记);Brewster角;导体的趋肤效应;完美金属边界条件;从驻波的角度得到谐振腔的本征振荡模式满足的条件,并理解其物理意义,以及从驻波条件得出谐振腔的所允许的】振荡频率;从驻波的角度得到波导的本征传播模式满足的条件,并理解其物理意义,以及从驻波条件理解波导的最低截止频率及意义(即最低传播频率);波导内传播模式的偏振特点。

最新电动力学重点知识总结

最新电动力学重点知识总结

最新电动力学重点知识总结电动力学是物理学的一个重要分支,研究带电粒子在电场和磁场中的运动规律及其相互作用。

以下是最新的电动力学重点知识总结:1.库仑定律:库仑定律描述了两个点电荷之间的电荷间相互作用力的大小和方向。

它以电荷的量及其相对距离为参数,公式为F=k*q1*q2/r^2,其中F是作用力,q1和q2分别是两个电荷的电量,r是两个电荷之间的距离,k是库仑常数。

2.电场强度:电场强度描述了空间中各点受电场力的大小和方向。

电场强度与点电荷的大小和距离成反比,可以用公式E=k*q/r^2表示,其中E是电场强度,q是点电荷的电量,r是点电荷与观察点之间的距离。

3. 电通量:电通量是电场线通过单位面积的数量。

如果一个闭合曲面上的电通量为零,那么在该曲面上没有净电荷。

电通量可以用公式Φ=E*A*cosθ表示,其中Φ是电通量,E是电场强度,A是曲面的面积,θ是电场线与曲面法线之间的夹角。

4.高斯定律:高斯定律是描述电场的一个基本定律,它表明电场的总通量与包围该电场的闭合曲面上的净电荷成正比。

数学表达式为Φ=Q/ε₀,其中Φ是闭合曲面上的电通量,Q是闭合曲面内的净电荷,ε₀是真空的介电常数。

5.电势能:电荷在电场中具有电势能。

电势能是一个量值,并且仅依赖于电荷和它在电场中的位置。

电势能可以用公式U=q*V表示,其中U是电势能,q是电荷的电量,V是电势。

6. 电势差:电势差是单位正电荷从一个点到另一个点的电势能的差值,也可以看作是电场力对单位正电荷所做的功。

电势差可以用公式ΔV=∫E·dl来计算,其中ΔV是电势差,∫E·dl是电场强度在路径上的线积分。

7.电容器:电容器是一种可以存储电荷的装置。

它由两个导体板和介质组成,其中导体板上的电荷存储在电场中。

电容器的电容可以用公式C=Q/V表示,其中C是电容,Q是电荷的量,V是电势差。

8.电流:电流是单位时间内通过导体横截面的电荷量。

电流可以用公式I=ΔQ/Δt表示,其中I是电流,ΔQ是通过导体横截面的电荷量,Δt是时间。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《电动力学》知识点归纳一、试题结构 总共四个大题:1.单选题('210⨯):主要考察基本概念、基本原理和基本公式,及对它们的理解。

2.填空题('210⨯):主要考察基本概念和基本公式。

3.简答题 ('35⨯):主要考察对基本理论的掌握和基本公式物理意义的理解。

4. 证明题 (''78+)和计算题(''''7689+++):考察能进行简单的计算和对基本常用的方程和原理进行证明。

例如:证明泊松方程、电磁场的边界条件、亥姆霍兹方程、长度收缩公式等等;计算磁感强度、电场强度、能流密度、能量密度、波的穿透深度、波导的截止频率、空间一点的电势、矢势、以及相对论方面的内容等等。

二、知识点归纳知识点1:一般情况下,电磁场的基本方程为:⎪⎪⎪⎩⎪⎪⎪⎨⎧=∙∇=∙∇+∂∂=⨯∇∂∂-=⨯∇.0;;B D J t D H t BEρ(此为麦克斯韦方程组);在没有电荷和电流分布(的情形0,0==Jρ)的自由空间(或均匀介质)的电磁场方程为:⎪⎪⎪⎩⎪⎪⎪⎨⎧=∙∇=∙∇∂∂=⨯∇∂∂-=⨯∇.0;0;B D t D H t B E(齐次的麦克斯韦方程组)知识点2:位移电流及与传导电流的区别。

答:我们知道恒定电流是闭合的: ()恒定电流.0=⋅∇J在交变情况下,电流分布由电荷守恒定律制约,它一般不再闭合。

一般说来,在非恒定情况下,由电荷守恒定律有.0≠∂∂-=⋅∇t J ρ现在我们考虑电流激发磁场的规律:()@.0J B μ=⨯∇ 取两边散度,由于0≡⨯∇⋅∇B ,因此上式只有当0=⋅∇J 时才能成立。

在非恒定情形下,一般有0≠⋅∇J ,因而()@式与电荷守恒定律发生矛盾。

由于电荷守恒定律是精确的普遍规律,故应修改()@式使服从普遍的电荷守恒定律的要求。

把()@式推广的一个方案是假设存在一个称为位移电流的物理量D J ,它和电流J 合起来构成闭合的量 ()()*,0=+⋅∇D J J 并假设位移电流D J 与电流J 一样产生磁效应,即把()@修改为 ()D J J B +=⨯∇0μ。

此式两边的散度都等于零,因而理论上就不再有矛盾。

由电荷守恒定律 .0=∂∂+⋅∇t J ρ电荷密度ρ与电场散度有关系式 .0ερ=⋅∇E 两式合起来得:.00=⎪⎭⎫ ⎝⎛∂∂+⋅∇t E J ε与()*式比较可得D J 的一个可能表示式.0tEJ D ∂∂=ε 位移电流与传导电流有何区别:位移电流本质上并不是电荷的流动,而是电场的变化。

它说明,与磁场的变化会感应产生电场一样,电场的变化也必会感应产生磁场。

而传导电流实际上是电荷的流动而产生的。

知识点3:电荷守恒定律的积分式和微分式,及恒定电流的连续性方程。

答:电荷守恒定律的积分式和微分式分别为:0=∂∂+∙∇∂∂-=∙⎰⎰t J dV t ds J S Vρρ恒定电流的连续性方程为:0=∙∇J知识点4:在有介质存在的电磁场中,极化强度矢量p 和磁化强度矢量M 各的定义方法;P 与P ρ;M 与j ;E 、D 与p 以及B 、H 与M 的关系。

答:极化强度矢量p :由于存在两类电介质:一类介质分子的正电中心和负电中心不重和,没有电偶极矩。

另一类介质分子的正负电中心不重和,有分子电偶极矩,但是由于分子热运动的无规性,在物理小体积内的平均电偶极矩为零,因而也没有宏观电偶极矩分布。

在外场的作用下,前一类分子的正负电中心被拉开,后一类介质的分子电偶极矩平均有一定取向性,因此都出现宏观电偶极矩分布。

而宏观电偶极矩分布用电极化强度矢量P 描述,它等于物理小体积V ∆内的总电偶极矩与V ∆之比,.VpP i∆=∑i p 为第i 个分子的电偶极矩,求和符号表示对V ∆内所有分子求和。

磁化强度矢量M :介质分子内的电子运动构成微观分子电流,由于分子电流取向的无规性,没有外场时一般不出现宏观电流分布。

在外场作用下,分子电流出现有规则取向,形成宏观磁化电流密度M J 。

分子电流可以用磁偶极矩描述。

把分子电流看作载有电流i 的小线圈,线圈面积为a ,则与分子电流相应的磁矩为: .ia m =介质磁化后,出现宏观磁偶极矩分布,用磁化强度M 表示,它定义为物理小体积V ∆内的总磁偶极矩与V ∆之比,.Vm M i∆=∑M BH P E D M j P M P -=+=⨯∇=∙∇=00,,,μερ知识点5:导体表面的边界条件。

答:理想导体表面的边界条件为:.,0α=⨯=⨯H n E n ⎪⎪⎭⎫⎝⎛=∙=∙.0,B n D n σ。

它们可以形象地表述为:在导体表面上,电场线与界面正交,磁感应线与界面相切。

知识点6:在球坐标系中,若电势ϕ不依赖于方位角φ,这种情形下拉氏方程的通解。

答:拉氏方程在球坐标中的一般解为:()()()φθφθφθϕm P R d R c m P R b R a R m n m n n nm nnm m n mn n nm n nm sin cos cos cos ,,,1,1∑∑⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+=++ 式中nm nm nm nm d c b a 和,,为任意的常数,在具体的问题中由边界条件定出。

()θcos m n P 为缔合勒让德函数。

若该问题中具有对称轴,取此轴为极轴,则电势ϕ不依赖于方位角φ,这球形下通解为:()()θθϕc o s ,c o s 1n n n n n n n P P R b R a ∑⎪⎭⎫ ⎝⎛++=为勒让德函数,n n b a 和是任意常数,由边界条件确定。

知识点7:研究磁场时引入矢势A 的根据;矢势A 的意义。

答:引入矢势A 的根据是:磁场的无源性。

矢势A 的意义为:它沿任一闭合回路的环量代表通过以该回路为界的任一曲面的磁通量。

只有A 的环量才有物理意义,而每点上的A (x )值没有直接的物理意义。

知识点8:平面时谐电磁波的定义及其性质;一般坐标系下平面电磁波的表达式。

答:平面时谐电磁波是交变电磁场存在的一种最基本的形式。

它是传播方向一定的电磁波,它的波阵面是垂直于传播方向的平面,也就是说在垂直于波的传播方向的平面上,相位等于常数。

平面时谐电磁波的性质:(1)电磁波为横波,E 和B 都与传播方向垂直; (2)E 和B 同相,振幅比为v ;(3 E 和B 互相垂直,E ×B 沿波矢k 方向。

知识点9:电磁波在导体中和在介质中传播时存在的区别;电磁波在导体中的透射深度依赖的因素。

答:区别:(1)在真空和理想绝缘介质内部没有能量的损耗,电磁波可以无衰减地传播(在真空和理想绝缘介质内部);(2)电磁波在导体中传播,由于导体内有自由电子,在电磁波电场作用下,自由电子运动形成传导电流,由电流产生的焦耳热使电磁波能量不断损耗。

因此,在导体内部的电磁波是一种衰减波(在导体中)。

在传播的过程中,电磁能量转化为热量。

电磁波在导体中的透射深度依赖于:电导率和频率。

知识点10:电磁场用矢势和标势表示的关系式。

答:电磁场用矢势和标势表示的关系式为:⎪⎩⎪⎨⎧∂∂--∇=⨯∇=t A E A B ϕ知识点11:推迟势及达朗贝尔方程。

答:推迟势为:()()''0'0',4,4,,dvrc r t x J t x A dv rc r t x t x ⎰⎰⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-=πμπερϕ达朗贝尔方程为:⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎭⎫⎝⎛=∂∂+∙∇-=∂∂-∇-=∂∂-∇011120222202222t c A t c Jt Ac A ϕερϕϕμ知识点12:爱因斯坦建立狭义相对论的基本原理(或基本假设)是及其内容。

答:(1)相对性原理:所有的惯性参考系都是等价的。

物理规律对于所有惯性参考系都可以表为相同的形式。

也就是不论通过力学现象,还是电磁现象,或其他现象,都无法觉察出所处参考系的任何“绝对运动”。

相对性原理是被大量实验事实所精确检验过的物理学基本原理。

(2)光速不变原理:真空中的光速相对于任何惯性系沿任一方向恒为c ,并与光源运动无关。

知识点13:相对论时空坐标变换公式(洛伦兹变换式)和速度变换公式。

答:坐标变换公式(洛伦兹变换式):222'''22'11cv x c vt t zz yy cv vt x x --===--=洛伦兹反变换式:22'2'''22''11cv x c v t t z z y y cv vt x x -+===-+=速度变换公式:⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧--=--=--=222'222'2'11111c vu c v u u c vu cv u u c vu v u u xz z xy y xx x知识点14:导出洛仑兹变换时,应用的基本原理及其附加假设;洛仑兹变换同伽利略变换二者的关系。

答:应用的基本原理为:变换的线性和间隔不变性。

基本假设为:光速不变原理(狭义相对论把一切惯性系中的光速都是c 作为基本假设,这就是光速不变原理)、空间是均匀的并各向同性,时间是均匀的、运动的相对性。

洛仑兹变换与伽利略变换二者的关系:伽利略变换是存在于经典力学中的一种变换关系,所涉及的速率都远小于光速。

洛仑兹变换是存在于相对论力学中的一种变换关系,并假定涉及的速率等于光速。

当惯性系'S (即物体)运动的速度c V <<时,洛伦兹变换就转化为伽利略变换,也就是说,若两个惯性系间的相对速率远小于光速,则它以伽利略变换为近似。

知识点15:四维力学矢量及其形式。

答:四维力学矢量为:(1)能量-动量四维矢量(或简称四维动量):⎪⎭⎫⎝⎛=W c i p p ,μ(2)速度矢量:dt dx d dx U μμμγτ==(3)动量矢量:μμU m p 0=(4)四维电流密度矢量:()ρρμμμic J J U J ,,0==(5)四维空间矢量:()ict x x ,=μ(6)四维势矢量:⎪⎭⎫⎝⎛=ϕμc i A A ,(7)反对称电磁场四维张量:νμμνμνx A x A F ∂∂-∂∂=(8)四维波矢量:⎪⎭⎫⎝⎛=c w i k k ,μ知识点16:事件的间隔:答:以第一事件P 为空时原点(0,0,0,0);第二事件Q 的空时坐标为:(x,y,z,t ),这两事件的间隔为:为两事件的空间距离。

=式中的222222222222r z y x r t c z y x t c s ++-=---= 两事件的间隔可以取任何数值。

在此区别三种情况:(1)若两事件可以用光波联系,有r =ct ,因而02=s (类光间隔); (2)若两事件可用低于光速的作用来联系,有ct r <,因而有02>s (类时间隔);(a )绝对未来;(b )绝对过去。

相关文档
最新文档