电动力学总复习
电动力学期末考试复习知识总结及试题

电动力学期末考试复习知识总结及试题第一章电磁现象的普遍规律一、主要内容:电磁场可用两个矢量—电场强度和磁感应强度来完全描写,这一章的主要任务是:在实验定律的基础上找出, 所满足的偏微分方程组—麦克斯韦方程组以及洛仑兹力公式,并讨论介质的电磁性质及电磁场的能量。
在电磁学的基础上从实验定律出发运用矢量分析得出电磁场运动的普遍规律;使学生掌握麦克斯韦方程的微分形式及物理意义;同时体会电动力学研究问题的方法,从特殊到一般,由实验定律加假设总结出麦克斯韦方程。
完成由普通物理到理论物理的自然过渡。
二、知识体系:三、内容提要:1.电磁场的基本实验定律:(1)库仑定律:对个点电荷在空间某点的场强等于各点电荷单独存在时在该点场强的矢量和,即:(2)毕奥——萨伐尔定律(电流决定磁场的实验定律)(3)电磁感应定律①生电场为有旋场(又称漩涡场),与静电场本质不同。
②磁场与它激发的电场间关系是电磁感应定律的微分形式。
(4)电荷守恒的实验定律,①反映空间某点与之间的变化关系,非稳恒电流线不闭合。
② 若空间各点与无关,则为稳恒电流,电流线闭合。
稳恒电流是无源的(流线闭合),,均与无关,它产生的场也与无关。
2、电磁场的普遍规律—麦克斯韦方程其中:1是介质中普适的电磁场基本方程,适用于任意介质。
2当,过渡到真空情况:3当时,回到静场情况:4有12个未知量,6个独立方程,求解时必须给出与,与的关系。
介质中:3、介质中的电磁性质方程若为非铁磁介质1、电磁场较弱时:均呈线性关系。
向同性均匀介质:,,2、导体中的欧姆定律在有电源时,电源内部,为非静电力的等效场。
4.洛伦兹力公式考虑电荷连续分布,单位体积受的力:洛伦兹认为变化电磁场上述公式仍然成立,近代物理实验证实了它的正确。
说明:①②5.电磁场的边值关系其它物理量的边值关系:恒定电流:6、电磁场的能量和能流能量密度:能流密度:三.重点与难点1.概念:电场强度、磁感应强度、电流密度、极化强度、磁化强度、能流密度。
电动力学总复习[1]
![电动力学总复习[1]](https://img.taocdn.com/s3/m/0a00df856529647d2728521f.png)
D E 0
E
D E 在各向同性介质中
基本解 为
泊松方程
x
1 4
x dV
r
2、 稳恒电流电磁场
j 0 0 t
E 0 t B 0 t D 0 t
B E t D D H j t B 0
3) 电像法 4)格林函数法
5) 泰勒展开法
2) 积分法
若电场已知
1 2 E dl
1
2
4、电磁场能量
1 静电场中的能量 wE 2 E D
1 1 WE E DdV dV 2 2
稳恒电流磁场的能量
1 wB B H 2
W x e x dV
dV
W0 Qe 0
W1 P Ee 0 P e 0
三、 电磁波的传播
1、平面电磁波
1) 真空中电磁场的波动方程
B E t E B 0 0 t
B 0 E 0
1 2 B B 2 2 0 c t
2、电磁波的反射和折射
1) 入射角、反射角、折射角
k
n E2 E1 0
E(r , t ) E0 exp[i(k r t )]
n
入射
y
2
反射 E' (r , t ) E'0 exp[i(k ' r t )]
1
k
x 折射 E'' (r , t ) E''0 exp[i(k '' r t )]
2 2 1 E 2 E 2 2 0 c t
电动力学重点的知识地总结

电动力学重点的知识地总结电动力学是物理学的一个分支,主要研究带电粒子受力和电磁场的相互作用。
以下是电动力学的重点知识总结,供期末复习必备。
1.库仑定律库仑定律描述了两个电荷之间的相互作用力,它与电荷之间的距离成反比,与电荷的大小成正比。
库仑定律可以表示为:F=k*(q1*q2)/r^2其中,F是两个电荷之间的相互作用力,k是库仑常数,q1和q2是两个电荷的大小,r是两个电荷之间的距离。
2.电场电场是电荷周围空间的属性,描述了电荷对其他电荷施加的力的结果。
电场可以通过电场强度来描述,表示为E。
电场强度的大小是电场力对单位正电荷的大小。
电场强度的方向指向力的方向,因为正电荷会受到力的作用向电场强度的方向移动,而负电荷则相反。
3.电场线和等势线电场线是描述电场分布的曲线,它是指电场强度方向的切线。
电场线的特点是从正电荷发出,朝着负电荷流动,并且彼此之间不会交叉。
等势线是与电场线垂直的曲线,它表示了电势相同的点的集合。
4.电势能电势能是指电荷由于存在于电场中而具有的能量。
电荷在电场中移动时会改变其电势能。
电场中的电势能与电荷的位置和电势有关。
5.电势差和电势电势差是指单位正电荷从一个点移动到另一个点时电场力所做的功。
电势差可以通过下式计算:∆V = - ∫ E * dl其中,∆V是电势差,E是电场强度,dl是电场强度方向的位移。
电势是电势差的比例,可以表示为V = ∆V / q,其中V是电势,q是电荷大小。
电势是标量,单位为伏特(Volt)。
6.静电场中的电势对于一个静电场中的电势,可以通过电场强度的分布来计算。
电势的分布可以通过库仑定律计算。
对于一个点电荷,其电势可以表示为:V=k*q/r7.平行板电容器和电容平行板电容器是由两个平行的金属板组成的,中间有绝缘介质隔开。
在平行板电容器中,当两个电容板分别带有正负电荷时,会形成电场,电场的强度在电容器中是均匀的。
电容是指在一定电势差下,存储在平行板电容器中的电荷量的比例,可以表示为C = q / V,其中C是电容,q是电荷量,V是电势差。
电动力学重点知识总结(期末复习必备)

电动力学重点知识总结(期末复习必备)电动力学重点知识总结(期末复习必备)电动力学是物理学的重要分支之一,研究电荷之间相互作用导致的电场和磁场的规律。
在这篇文章中,我们将整理电动力学的重点知识,以帮助大家进行期末复习。
一、库仑定律库仑定律是描述电荷之间相互作用的基本定律。
根据库仑定律,电荷之间的力与它们的电量大小和距离的平方成正比。
即$$ F = k\frac{q_1q_2}{r^2} $$其中$F$为电荷之间的力,$q_1$和$q_2$分别为两个电荷的电量,$r$为它们之间的距离,$k$为库仑常数。
二、电场电场是描述电荷对周围空间产生影响的物理量。
任何一个电荷在其周围都会产生一个电场,其他电荷受到这个电场的力作用。
1. 电场强度电场强度$E$定义为单位正电荷所受到的电场力。
即$$ E =\frac{F}{q} $$电场强度的方向与电场力方向相同。
2. 电荷在电场中的受力当一个电荷$q$在电场中时,它受到的电场力$F$为$F = qE$,其中$E$为电场强度。
3. 电场线电场线是一种用于表示电场分布的图形。
电场线从正电荷发出,或者进入负电荷。
电场线的密度表示电场强度大小,电场线越密集,电场强度越大。
三、高斯定律高斯定律是用于计算电场分布的重要工具。
它描述了电场与通过闭合曲面的电通量之间的关系。
1. 电通量电通量是电场通过曲面的总电场线数。
电通量的大小等于电场强度与曲面垂直方向的投影之积。
电通量的计算公式为$$ \Phi = \int \mathbf{E} \cdot \mathbf{dA} $$其中$\mathbf{E}$为电场强度,$\mathbf{dA}$为曲面元。
2. 高斯定律高斯定律表示电通量与包围曲面内所有电荷之和的比例关系。
即$$ \Phi = \frac{Q_{\text{内}}}{\epsilon_0} $$其中$\Phi$为通过曲面的电通量,$Q_{\text{内}}$为曲面内的总电荷,$\epsilon_0$为真空介电常数。
电动力学复习

电动⼒学复习第⼀章电磁现象的基本规律1、描写静电场的基本⽅程(积分与微分),各⾃反映静电场的什么性质,以及微分⽅程反映场的局域性质的意义。
2、描写静磁场的基本⽅程(积分与微分),各⾃反映静磁场的什么性质,以及微分⽅程反映场的局域性质的意义。
3、电荷守恒定律的微分形式;欧姆定律的微分形式4、电荷系统单位体积所受电磁场作⽤的⼒密度(即洛伦兹⼒公式)5、1)电介质极化,极化体束缚电荷密度与极化强度的关系,极化⾯电荷密度与极化强度的关系;引⼊辅助量,电位移⽮量,电位移⽮量的定义式;对各向同性线性介质,电位移⽮量的表达式;如:均匀介质内部的体极化电荷密度p ρ总是等于体⾃由电荷密度f ρ的)1(0εε--倍。
2)磁介质磁化,引⼊辅助量,磁场强度,磁场强度的定义式;对各向同性⾮铁磁质,磁场强度的表达式6、电磁场边值关系如:1)介电常数分别为ε1和ε2两种绝缘介质的分界⾯上不带⾃由电荷时,分界⾯上电场线的曲折满⾜什么关系2)⽤边值关系证明:在绝缘介质与导体的分界⾯上,在静电情况下,导体外的电场线总是垂直于导体表⾯,在恒定电流的情况下,导体内电场线总是平⾏于导体表⾯。
7、麦克斯韦⽅程组,两个基本假设:感⽣电场和位移电流。
其中位移电流如何产⽣,位移电流与传导电流的共同点与不同点。
8、1)电磁场和电荷系统的能量转化和守恒定律的微分形式;2)电磁场的能量密度和能流密度表达式9、结合场的微分⽅程的数学上的散度、旋度的计算(如P34 习题3)如:已知电位移⽮量z y x e z e y e x D323++=,求电荷密度;已知电极化强度,求极化电荷密度;x e y e B y x+=是否为能表⽰磁感应强度的⽮量函数;若给出磁感强度为,求m 的值;⽮量是否可能是静电场的解第⼆章静电场1、在静电场中,电场强度 E和电位 ? 之间的关系;如:已知电势222z y x -=?,求电场强度;已知电势,求电场强度等2、静电势的微分⽅程和边值关系(注意导体的静电条件)3、⽤电荷密度和电势表⽰的静电场能量(注意只对总能量计算有意义,不能当做能量密度看待),如计算带电量Q﹑半径为a 的导体球的静电场总能量; 4、唯⼀性定理是解静电学问题的理论基础5、分离变量法解拉普拉斯⽅程(球坐标系下通解的形式,以及问题具有轴对称性以及球对)()23(3mzy e z y e x e B z y x +--+=(2)xyzE yz x e xze xye=-++称性下的简化形式)如:P49-51 例题 2 与例题3补充习题:1)真空中半径为R 的带电球⾯,其电荷⾯密度为σ =σ0cos θ(σ0为常数),试⽤分离变量法求球⾯内外的电势分布。
电动力学期终总复习及试题

《电动力学》试题(A )一. 单选题(每题3分,共24分)1.洛伦兹变换是同一事件在两个惯性系中的时空坐标变换;2.介质内极化电荷体密度决定于极化强度P的散度;4.带电粒子辐射电磁波的必要条件是粒子具有加速度; 7.若μA 是四维矢量,则μμx A ∂∂是四维标量;8.在不同介质分界面处,磁场边值关系:磁感应强度的法向分量是连续的; 二. 填空题(每小题4分,共24分)1.电磁波入射到导体表面时,透入深度随频率增大而____减小___________.2.用电导率σ、介电常数ε和电磁波的频率ω来区分物质的导电性能,当满足_______1〉〉ωεσ_________条件时是良导体.3.当振荡电偶极子的频率变为原来的2倍时,辐射功率将变成原来的__16____倍.4.对不同的惯性系,电荷是守恒量,由此可得出结论,当电荷作高速运动时,其体积__缩小_,电荷密度_______变大_______.5. 真空中平面z=0为带电平面,电荷密度为σ,则在z=0处电势应满足边值关系 21ϕϕ=和12εσϕϕ-=∂∂-∂∂z z . 6.不同频率的电磁波在同一介质中具有不同的传播速度,就表现为_______色散____现象.三.(13分)利用真空中的麦克斯韦方程组和电磁势的定义推导电磁势A满足的达朗贝尔方程:j tA c A 022221μ-=∂∂-∇ 解:把电磁势的定义: A B ⨯∇=和tAE ∂∂--∇=ϕ代入真空中的场方程(4分)tE J B ∂∂+=⨯∇000εμμ得:)(000tAt J A ∂∂+∇∂∂-=⨯∇⨯∇ϕεμμ (2分)注意到:A A A 2)(∇-⋅∇∇=∇⨯∇ 及2001c =εμ 将上式整理后得:J t cA t A c A 022222)1(1μϕ-=∂∂+⋅∇∇-∂∂-∇ (4分)利用洛伦兹条件:012=∂∂+⋅∇tc A ϕ,得:J tAc A 022221μ-=∂∂-∇ (3分)四.(20分)设有平面电磁波:x t z i e e E)102102(62100⨯-⨯-=ππ V/m,求:1. 圆频率、波长、介质中的波速、电矢量的偏振方向和波的传播方向;2. 若该介质的磁导率7104-⨯=πμ HM -1,问它的介电常数ε是多少解:1)圆频率Hz 6102⨯=πω (1分)波长)(100102222M k =⨯==-πππλ (2分) 介质中的波速kv ω=(2分))/(10102102826S M =⨯⨯=-ππ (1分) 电矢量的偏振方向为x 方向(1分),波传播方向是z 轴正向.(1分)2)由με1=v 得21vμε=(3分) 287)10(1041⨯⨯=-π =π4109- (F/M)≈7.96×10-11F/M (2分) 五.(13分)真空中有一个半径为R 0的带电球面,面电荷密度为θσσcos 0=(其中σ0为常数),试用分离变量法求空间的电势分布.解:设球内外空间的电势分别为φ1和φ2在球内外均有ρ=0,故φ1和φ2都满足拉氏方程. (2分)显然本问题是轴对称的,以球心为坐标原点,以θ=0的方向为z 轴,建立球坐标系. (1分)考虑到边界条件: R →0时, φ1有限R →∞时,φ2→0 (2分) 可令尝试解为:)(cos 1101θϕRP a a +=;)(cos 12102θϕP R b R b +=(2分)由边值关系当R=R0时, φ1=φ2 ;θσϕεϕεcos 01020-=∂∂-∂∂R R (2分)得:)(cos )(cos 1201001010θϑP R bR b P R a a +=+ ;)(cos )(cos )(cos 2101113120θεσθθP P a P R b R b -=---(2分)比较方程两边Pn(cos θ)多项式的系数,可得:00==b a ;0013εσ=a , 3013R b εσ= (2分)于是: θεσϕcos 3001R =;θεσϕcos 3230002R R =从解题过程中可看出, φ1与φ2满足本问题的所有边界条件及边值关系,是本问题唯一正确的解.(2分)《电动力学》试题(B )3.辐射功率P 与距离无关,能量可以电磁波的形式传播到远处.4.在相对论中空间距离是不变的;5.在介质分界面上电磁场发生突变:电场强度E的法向分量突变是由总电荷面密度σ引起的;A. 6. 电磁场能量传播的方向既垂直于电场又垂直于磁场的方向; 7.电磁波能在矩形波导内传播的条件是a 2<λA. 8.通过洛伦兹变换不能改变无因果关系的两事件的先后次序; 三. 填空题(每小题4分,共24分)1.麦克斯韦方程组的微分形式在____两种介质的分界面处___不适用.2.在导体中的电磁波是衰减的,导体的电导率愈__大___,衰减得愈快.3.当振荡电偶极子的振幅变为原来的2倍时,辐射功率将变成原来的__4___倍.4.当满足条件_______ v<<c_____时,洛伦兹变换将回到伽利略变换.5.边界条件σ=-⋅)(12D D n ,可用电势φ表示为_______σϕεϕε-=∂∂-∂∂n n 1122______.6.光子的静止质量为零,光子的能量和动量之间的关系是_____ E=cP___.三(13分)证明:当电势作下列规范变换ψ∇+=→A A A' , 时,电磁场保持不变.解:1)ψψ∇⨯∇+⨯∇=∇+⨯∇=⨯∇A A A )(' (2分)B A=⨯∇ (3分)0≡∇⨯∇ψ∴ B A=⨯∇' (3分)2))()(''ψψϕϕ∇+∂∂-∂∂--∇=∂∂-∇-A tt t A(2分)t∂∂-=→ψϕϕϕ't A∂∂--∇= ϕ E=(3分)四. (13分)真空中的平面电磁波:)(5.2)1062(8y x t z i e e e H +=⨯-πππA/m,求:1. 频率、波长、波速和波的传播方向;2. 相应的磁场E;解:1)由H 的表达式知:8810321062⨯=⨯==πππωf (Hz ) (2分) π2=k (m-1),12==k πλ (m) (2分)8103⨯=v (m/s) (1分)波传播方向为Z 轴负方向。
最新电动力学重点知识总结

最新电动力学重点知识总结电动力学是物理学的一个重要分支,研究带电粒子在电场和磁场中的运动规律及其相互作用。
以下是最新的电动力学重点知识总结:1.库仑定律:库仑定律描述了两个点电荷之间的电荷间相互作用力的大小和方向。
它以电荷的量及其相对距离为参数,公式为F=k*q1*q2/r^2,其中F是作用力,q1和q2分别是两个电荷的电量,r是两个电荷之间的距离,k是库仑常数。
2.电场强度:电场强度描述了空间中各点受电场力的大小和方向。
电场强度与点电荷的大小和距离成反比,可以用公式E=k*q/r^2表示,其中E是电场强度,q是点电荷的电量,r是点电荷与观察点之间的距离。
3. 电通量:电通量是电场线通过单位面积的数量。
如果一个闭合曲面上的电通量为零,那么在该曲面上没有净电荷。
电通量可以用公式Φ=E*A*cosθ表示,其中Φ是电通量,E是电场强度,A是曲面的面积,θ是电场线与曲面法线之间的夹角。
4.高斯定律:高斯定律是描述电场的一个基本定律,它表明电场的总通量与包围该电场的闭合曲面上的净电荷成正比。
数学表达式为Φ=Q/ε₀,其中Φ是闭合曲面上的电通量,Q是闭合曲面内的净电荷,ε₀是真空的介电常数。
5.电势能:电荷在电场中具有电势能。
电势能是一个量值,并且仅依赖于电荷和它在电场中的位置。
电势能可以用公式U=q*V表示,其中U是电势能,q是电荷的电量,V是电势。
6. 电势差:电势差是单位正电荷从一个点到另一个点的电势能的差值,也可以看作是电场力对单位正电荷所做的功。
电势差可以用公式ΔV=∫E·dl来计算,其中ΔV是电势差,∫E·dl是电场强度在路径上的线积分。
7.电容器:电容器是一种可以存储电荷的装置。
它由两个导体板和介质组成,其中导体板上的电荷存储在电场中。
电容器的电容可以用公式C=Q/V表示,其中C是电容,Q是电荷的量,V是电势差。
8.电流:电流是单位时间内通过导体横截面的电荷量。
电流可以用公式I=ΔQ/Δt表示,其中I是电流,ΔQ是通过导体横截面的电荷量,Δt是时间。
电动力学复习题库

一、单项选择题1.学习电动力学课程的主要目的有下面的几条,其中错误的是(D) A.把握电磁场的基本规律,深入对电磁场性质和时空概念的理解B.获得本课程领域内分析和处理一些基本问题的初步力量,为以后解决实际问题打下基础C.更深刻领悟电磁场的物质性,深入辩证唯物主义的世界观D.物理理论是否定之否定,没有肯定的真理,世界是不行知的 2.V∙(A×B)=(C ) A.A∙(V×B)+B∙(V×A) B.A(VxB)-B(VxA) C.B∙(V×A)-A∙(V×B) D.(V∙A)×B3.下列不是恒等式的为(CA.V×=OB.V∙V×/=0C.V ∖7φ=QD.V ∖7φ=V 2φ 4.设-=J(X 一f)2+(y-y ,)2+(z 一z ,)2为源点到场点的距离,「的方向规定为从源点指向场点,则(B)o B.Vr=- C.V7=0D.Vr=-5.若所为常矢量,矢量H=卑K 标量8=等,则除R=O 点外,Z 与。
应满意关系(A) A.V×A=V φB.V×A=-VφC.A=VφD.以上都不对6. 设区域V 内给定自由电荷分布夕(X),S 为P 的边界,欲使V 的电场唯一确定,则需要给定(A )。
A.0∣s 或?ISB.OlSC 后的切向重量D.以上都不对7. 设区域V 内给定自由电荷分布P(X),在V 的边界S 上给定电势时$或电势的法向导数器,则V 内 的电场(A) A.唯一确定B.可以确定但不唯一C.不能确定D.以上都不对8. 导体的静电平衡条件归结为以下几条,其中错误的是(C) A.导体内部不带电,电荷只能分布于导体表面 B.导体内部电场为零 C.导体表面电场线沿切线方向D.整个导体的电势相等9. 一个处于元'点上的单位点电荷所激发的电势族(五)满意方程(C) A.V 2ι∕∕(x)=0C.^72ψ(x)= ------------ δ{x -x ,)⅞10 .对于匀称带电的球体,有(C)OA.电偶极矩不为零,电四极矩也不为零 C.电偶极矩为零,电四极矩也为零11 .对于匀称带电的长形旋转椭球体,有(BA.电偶极矩不为零,电四极矩也不为零C.电偶极矩为零,电四极矩也为零12 .对于匀称带电的立方体,则(C)A.Vr = OB.V 2ι∕∕(x) =-1 / D. V 2ψ(x) = --δ(x ,) εoB.电偶极矩为零,电四极矩不为零 D.电偶极矩不为零,电四极矩为零B.电偶极矩为零,电四极矩不为零 D.电偶极矩不为零,电四极矩为零A.电偶极矩不为零,电四极矩为零 C.电偶极矩为零,电四极矩也为零 13 .电四极矩有几个独立重量?(C )A.9个B.6个C.5个14 .平面电磁波的特性描述如下:电磁波为横波,后和月都与传播方向垂直后和后相互垂直,后X 月沿波矢E 方向 □卢和方同相,振幅比为V 以上3条描述正确的个数为(D ) A.O 个B.1个C.2个15 .关于全反射下列说法正确的是(D )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
笛卡儿坐标系中拉普拉斯方程及其解
2
2 x2
2 y 2
2 z 2
0
(5)
(x, y, z) eikx ex iky ey ikz z ; 球坐标系中拉普拉斯方程及其解
(k 2
kx2
k
2 y
kz2 )
(6)
2
1 r2
r
(r 2
r
B i E
(5)
-8-
电动力学复习提要——丁留贯
2
B
k
2
B
0
B 0
E i B
解
EB ((xx
t) t)
BE00eeii((kkxxtt))
波矢、电场强度和磁感应强度间的关系
姆霍兹方程解出有关波模;或者反过来,根据给定的波模,提供能够保证这种波
模传播的介质和边界条件。此外,电磁波在介质界面上的反射和折射行为等。
学习目的:掌握单色平面电磁波的微分方程及其性质;理解平面电磁波在有导体
存在空间中传播的特殊性质;能够分析谐振腔和波导中的电磁波特性。
重点:单色平面电磁波的波动方程及其性质;谐振腔和波导中电磁波及其性质。
k
E 0
B 0
菲涅耳公式
E 0 E0
sin( sin(
) )
E0 E0
2 cos sin sin( )
波导中电磁波 矩形波导中电磁波 波动方程
E0|| E0||
tg( tg(
) )
E0|| E0||
S
f
(3)
唯一性定理:
介质中
设区域 V 内给定自由电荷分布 (x) , 在 V 的边界 S 上给定:(i)电势或 S (ii)
电势的法向导数 ,则 V 内的电场唯一地被确定。 n S
导体存在的情况 A类问题:已知区域V中电荷分布 (x) ,及所有体的形状和排列;每个导体的电
)
1 r2 sin
(sin
)
r2
1 sin2
2 2
0
(7)
轴对称系统
(r, ,)
n,m
( Anmr n
Bnm r n1
)Pnm (cos
) cos(m)
n,m
(Cnmr n
Dnm r n1
)Pnm (cos
) sin(m)
Hn
S
m n
;c)
S
磁场强度的切向分量 H t
。
S
磁偶极矩标势
(1) m
m R 4 R3
(15)
-7-
电动力学复习提要——丁留贯
第四章
电磁波的传播
当电荷电流分布随时间变化时,所激发出来的电场和磁场,亦随时间而变动。
在激发区之外,变动着的电场和磁场相互激发,形成在空间中传播的电磁波。波
(2 ) 1,并且只有 2 偶数 才能用镜像法求解,其中 α 为两导体平面间夹
角。 电多极矩法 应用条件:原点大小 r 远小于场点到原点的距离 r 。 零级电势
Q V (r)dV
(11)
一级电势
(0)
Q 4 0 R
P V (r)rdV
2 cos sin sin( ) cos( )
2 2
E B
k k
2 2
E B
0 0
边界条件 电磁波
nˆ nˆ
((EH22
EH1
)
1
0 )
E E
x y
ቤተ መጻሕፍቲ ባይዱ
( Asin k x x B cos k x x)(C sin k y y ( Asin k x x Bcos k x x)(Csin k y y
主要内容
磁矢势
稳恒电流和电场之间关系
j c E
(1)
定义
B A
(2)
矢势和磁感应强度之间关系
B ds ( A) ds A dl
(3)
物理意义
沿任一闭合回路的环量代表通过以该回路为界的任一曲面的磁通量。
微分方程
2 (
如何求解空间中的磁场和电流分布,以及电流系统在外场中的能量,它受到的作
用力和作用力矩等。
学习目的:掌握磁矢势和磁标势概念以及他们相关微分方程;理解矢势和标势的
边值关系;了解静磁能的表达式以及电流系统和外磁场间的相互作用。
重点:磁矢势和磁标势的概念、微分方程、边值关系。
难点:磁矢势和磁标势的表达式、边值关系。
f
(11) (12) (13)
-2-
能量密度: 能流密度:
电动力学复习提要——丁留贯
D E B H j E
0 0EHP0
M
(14)
w 1 (E D H B) 2 S E H
(15) (16)
D cos k y y)ei(kz zt) D cos k y y)ei(kzzt)
Ez ( Asin k x x B cos k x x)(Csin k y y D cos k y y)ei(kzzt)
截止频率
c.mn
m a
-3-
电动力学复习提要——丁留贯
第二章 静电场
本章讨论的问题是:以唯一性定理为依托,在给定的自由电荷分布以及周围 空间介质和导体分布的情况下,求解电场。静电场:①电荷静止,即: v 0 ;
②电场不随时间变化,即:
E t
0 。主要方法有①分离变量法;②镜像法。
学习目的:掌握电标势概念及其微分方程(泊松方程);理解掌握唯一性定理、
分离变量法、镜像法。
重点:电标势概念及其微分方程,唯一性定理、分离变量法、镜像法。
难点:电多极矩法。
主要内容
电标势概念及其微分方程:
概念
E
(1)
微分方程
边界关系
2 f f p
0
(2)
2 S 1 S
2
2 n
S
1
1 n
S
B
ds
L H dl
S S
D B
ds ds
If Qf 0
d dt
S
D
ds
nˆ nˆ nˆ nˆ
((((BDHE2222BDEH111))1))00f
矢量 K 的方向表征了电磁波的传播方向。波的传播方向和场量 E 和 B 的偏振特
性(偏振方向及其振幅特性)则表明了电磁波的传播模式(波模,或称波型)。
主要讨论了定态波,定态波是仅含单一频率成分的电磁波,主要内容是亥姆霍兹
方程的推得和求解。
有关电磁波传播的主要问题,是如何根据给定的介质特性和边界条件,从亥
(2)
麦克斯韦方程组
E iH iB
H i E 0 H 0
E
(3)
亥姆霍兹方程
k 2 E k 2 E 0 2 H k 2 H 0
(4)
2
E
k
2 E
0
E 0
难点:谐振腔和波导中电磁波及其性质。
主要内容
平面电磁波
波动方程
2
E
2
B
1 C2
1 C2
2 E 2tB2 t 2
0 0
(1)
时谐平面电磁波(单色电磁波)
EB((xx
t) t)
E ( x )e it B ( x )e it
A j A 0)
特解
A ( x )
4
V
j (x) r
d
边值关系 或
nˆ nˆ
( ( 1
2
A2 A2
A1 ) 1 1
0
A1
)
f
A2 S A1 S
能量 多极矩
W
1 2
(1)
1 4 0
P
|
R1
|
P R 4 0 R3
(12) (12) (13)
-5-
第三章
静磁场
稳恒电流激发静磁场。在稳恒流动情况下,导电介质内及其周围空间中,也
存在静电场,但是,静电场与静磁场之间并无直接联系。本章与静电问题类似,
静磁问题中最基本的问题是:在给定电流分布(或给定外场)和介质分布情况下,
库仑定律: 安培定律: 毕奥——萨伐尔定律:
S
j
ds
d dt
V
d
j
t
0
F
1 4 0
V1 V2
1 2 r3
rd1d 2
F21
0 4
I 2dl2 (I1dl1 r21 )
12
r231
B(x) 0
-1-
介质中
边界关系 介质中电磁性质方程:
电动力学复习提要——丁留贯
BEE00Bt
B