电动力学数学全
电动力学常用数学公式

垐,,AA AAA A A A===(单位矢量)在坐标系中 31i ii A Ae ==∑ 直角系 z yz A A i Aj A k =++方向余弦:cos ,cos cos cos cos x y z Ax Ay Az Ae e e A Aβγαβγ===++321(A A =+二.矢量运算加法: A B B A +=+ 交换律 ()()A B C A B C ++=++ 结合律 31()iiii A B A B e =+=+∑ 满足平行四边形法则标量积:31cos i ii A B A BAB θ=⋅==∑A B B A ⋅=⋅ 交换律()A B C A B A C ⋅+=⋅+⋅ 分配律123123123sin n e e e A B AB e A A A B B B θ⨯== ()A B C A B A C ⨯+=⨯+⨯ 分配律A B B A ⨯=-⨯ 不满足交换律 123123123()()()A A A A B C B C A C A B B B B C C C ⋅⨯=⋅⨯=⋅⨯=3乘2,点2乘3)()()A B C A B C ⨯⨯≠⨯⨯三.矢量微分ˆˆdA dA dAA A dt dt dt=+ ()A B dB dAA B dt dt dt ⋅=⋅+⋅ ()A B dB dAA B dt dt dt⨯=⨯+⨯ 四.并矢与张量并矢: AB (一般 AB BA ≠),有九个分量。
若某个量有九个分量,它被称为张量33,1,i i ijij i ji j i jT AB A B e e T e e====∑∑ i j e e 为单位并矢,矢量与张量的矩阵表示:123,i iA A Ae A A A ⎛ == ⎝∑1211223(,B AB A A A B A B A B ⎛⎫==++T AB = T T T T ⎛ = ⎝单位张量:31i j i e e ==∑0100 = ⎝,i j()()()()AB C A B C A C B AC BC B A C BAB C A B CA⋅=⋅=⋅=⋅=⋅=⋅=⋅=⋅()()()C AB C A B B C A B A C BA C ⋅=⋅=⋅=⋅=⋅与矢量叉乘:()()AB C A B C C AB C A B ⎧⨯=⨯⎪⎨⨯=⨯⎪⎩并矢并矢两并矢点乘:()()()AB CD A B C D A B C AD CD AB ⋅=⋅=⋅≠⋅ (并矢) 两并矢二次点乘: ()():AB CD B C A D =⋅⋅ 标量与单位张量点乘:C C C ⋅=⋅=AB AB AB ⋅=⋅=:AB A B =⋅15-20分钟))()A B A B +⨯- ()()2B A =⨯ ()()M b a c a b c =⋅-⋅与矢量C 垂直。
(完整word)论动体的电动力学(中文版)

论动体的电动力学大家知道,麦克斯韦电动力学-—象现在通常为人们所理解的那样——应用到运动的物体上时,就要引起一些不对称,而这种不对称似乎不是现象所固有的。
比如设想一个磁体同一个导体之间的电动力的相互作用。
在这里,可观察到的现象只同导休和磁体的相对运动有关,可是按照通常的看法,这两个物体之中,究竟是这个在运动,还是那个在运动,却是截然不同的两回事。
如果是磁体在运动,导体静止着,那么在磁体附近就会出现一个具有一定能量的电场,它在导体各部分所在的地方产生一股电流。
但是如果磁体是静止的,而导体在运动,那么磁体附近就没有电场,可是在导体中却有一电动势,这种电动势本身虽然并不相当于能量,但是它——假定这里所考虑的两种情况中的相对运动是相等的--却会引起电流,这种电流的大小和路线都同前一情况中由电力所产生的一样。
堵如此类的例子,以及企图证实地球相对于“光煤质"运动的实验的失败,引起了这样一种猜想:绝对静止这概念,不仅在力学中,而且在电动力学中也不符合现象的特性,倒是应当认为,凡是对力学方程适用的一切坐标系,对于上述电动力学和光学的定律也一样适用,对于第一级微量来说,这是已经证明了的。
我们要把这个猜想(它的内容以后就称之为“相对性原理”)提升为公设,并且还要引进另一条在表面上看来同它不相容的公设:光在空虚空间里总是以一确定的速度 C 传播着,这速度同发射体的运动状态无关。
由这两条公设,根据静体的麦克斯韦理论,就足以得到一个简单而又不自相矛盾的动体电动力学。
“光以太”的引用将被证明是多余的,因为按照这里所要阐明的见解,既不需要引进一个共有特殊性质的“绝对静止的空间",也不需要给发生电磁过程的空虚实间中的每个点规定一个速度矢量。
这里所要闸明的理论——象其他各种电动力学一样—-是以刚体的运动学为根据的,因为任何这种理论所讲的,都是关于刚体(坐标系)、时钟和电磁过程之间的关系.对这种情况考虑不足,就是动体电动力学目前所必须克服的那些困难的根源。
电动力学知识的总结

第一章 电磁现象的普遍规律§1.1 电荷与电场1、库仑定律(1)库仑定律如图1-1-1所示,真空中静止电荷'Q 对另一个静止电荷Q 的作用力F 为()'3''041r r rr Q Q F --=πε (1.1.1)式中0ε是真空介电常数。
(2)电场强度E静止的点电荷'Q 在真空中所产生的电场强度E为()'3''41r r r r Q E --=πε (1.1.2)(3)电场的叠加原理N 个分立的点电荷在r 处产生的场强为()'13'0'4iNi i i r r r r Q E --=∑=πε (1.1.3)体积V 内的体电荷分布()'rρ所产生的场强为()()'3'''041r r r r dV r E V--=⎰ρπε (1.1.4)式中'r 为源点的坐标,r为场点的坐标。
2、高斯定理和电场的散度高斯定理:电场强度E穿出封闭曲面S 的总电通量等于S 内的电荷的代数和)(∑ii Q 除以0ε。
用公式表示为∑⎰=⋅iiSQS d E 01ε (分离电荷情形) (1.1.5)或⎰⎰=⋅VSdV S d E ρε01(电荷连续分布情形) (1.1.6)其中V 为S 所包住的体积,S d为S 上的面元,其方向是外法线方向。
应用积分变换的高斯公式⎰⎰⋅∇=⋅VSdV E S d E(1.1.7)由(1.1.6)式可得静电场的散度为ρε01=⋅∇E 3. 静电场的旋度由库仑定律可推得静电场E的环量为0=⋅⎰Ll d E(1.1.8)应用积分变换的斯托克斯公式⎰⎰⋅⨯∇=⋅SLS d E l d E从(1.1.8)式得出静电场的旋度为0=⨯∇E(1.1.9)§1.2 电流和磁场1、电荷守恒定律不与外界交换电荷的系统,其电荷的代数和不随时间变化。
对于体积为V ,边界面为S 的有限区域内,有⎰⎰-=⋅V S dV dtdS d J ρ (1.2.1) 或0=∂∂+⋅∇tJ ρ(1.2.2)这就是电荷守恒定律的数学表达式。
电动力学复习

电动⼒学复习第⼀章电磁现象的基本规律1、描写静电场的基本⽅程(积分与微分),各⾃反映静电场的什么性质,以及微分⽅程反映场的局域性质的意义。
2、描写静磁场的基本⽅程(积分与微分),各⾃反映静磁场的什么性质,以及微分⽅程反映场的局域性质的意义。
3、电荷守恒定律的微分形式;欧姆定律的微分形式4、电荷系统单位体积所受电磁场作⽤的⼒密度(即洛伦兹⼒公式)5、1)电介质极化,极化体束缚电荷密度与极化强度的关系,极化⾯电荷密度与极化强度的关系;引⼊辅助量,电位移⽮量,电位移⽮量的定义式;对各向同性线性介质,电位移⽮量的表达式;如:均匀介质内部的体极化电荷密度p ρ总是等于体⾃由电荷密度f ρ的)1(0εε--倍。
2)磁介质磁化,引⼊辅助量,磁场强度,磁场强度的定义式;对各向同性⾮铁磁质,磁场强度的表达式6、电磁场边值关系如:1)介电常数分别为ε1和ε2两种绝缘介质的分界⾯上不带⾃由电荷时,分界⾯上电场线的曲折满⾜什么关系2)⽤边值关系证明:在绝缘介质与导体的分界⾯上,在静电情况下,导体外的电场线总是垂直于导体表⾯,在恒定电流的情况下,导体内电场线总是平⾏于导体表⾯。
7、麦克斯韦⽅程组,两个基本假设:感⽣电场和位移电流。
其中位移电流如何产⽣,位移电流与传导电流的共同点与不同点。
8、1)电磁场和电荷系统的能量转化和守恒定律的微分形式;2)电磁场的能量密度和能流密度表达式9、结合场的微分⽅程的数学上的散度、旋度的计算(如P34 习题3)如:已知电位移⽮量z y x e z e y e x D323++=,求电荷密度;已知电极化强度,求极化电荷密度;x e y e B y x+=是否为能表⽰磁感应强度的⽮量函数;若给出磁感强度为,求m 的值;⽮量是否可能是静电场的解第⼆章静电场1、在静电场中,电场强度 E和电位 ? 之间的关系;如:已知电势222z y x -=?,求电场强度;已知电势,求电场强度等2、静电势的微分⽅程和边值关系(注意导体的静电条件)3、⽤电荷密度和电势表⽰的静电场能量(注意只对总能量计算有意义,不能当做能量密度看待),如计算带电量Q﹑半径为a 的导体球的静电场总能量; 4、唯⼀性定理是解静电学问题的理论基础5、分离变量法解拉普拉斯⽅程(球坐标系下通解的形式,以及问题具有轴对称性以及球对)()23(3mzy e z y e x e B z y x +--+=(2)xyzE yz x e xze xye=-++称性下的简化形式)如:P49-51 例题 2 与例题3补充习题:1)真空中半径为R 的带电球⾯,其电荷⾯密度为σ =σ0cos θ(σ0为常数),试⽤分离变量法求球⾯内外的电势分布。
电动力学——精选推荐

电动⼒学电动⼒学第⼀章静电场⼀、考核知识点1、真空与介质中静电场场⽅程,场的性质、物理特征。
2、电场的边值关系、在两种介质分界⾯上电场的跃变性质。
3、由场⽅程、边值关系,通过电荷分布确定场分布及极化电荷的分布。
4、静电场的势描述。
由势分布确定场分布、荷分布;通过静电势的定解问题,确定静电势的分布、场分布及介质极化性质的讨论。
⼆、考核要求(⼀)、场⽅程、场的确定1、场⽅程,场的边值关系,体、⾯极化电荷密度的确定式等规律的推导。
2、识记:(1)、真空与介质静电场⽅程。
(2)、电场的边值关系。
(3)、体、⾯极化电荷密度的确定式。
3、领会与理解:(1)、静电场的物理特征。
12(2)、P D E ,,与电荷的关系,⼒线分布的区别与联系。
(3)、在介质分界⾯上场的跃变性质。
4、应⽤:通过对称性分析,运⽤静电场的⾼斯定理确定场,讨论介质的极化,正确地由电荷分布画出场的⼒线分布。
(⼆)、静电势1、静电势⽅程、边值关系的推导。
2、识记:静电势的积分表述、势⽅程、势的边值关系、势的边界条件、唯⼀性定理。
3、领会与理解:势的边值关系与边界条件,荷、势与场的关系,解的维数的确定,电像法的指导思想与像电荷的确定。
4、应⽤:求解静电势定解问题的⽅法(分离变量法、电像法)的掌握及应⽤,求解的准确性,场的特征分析及由势对介质极化问题的讨论。
第⼆章稳恒磁场⼀、考核知识点1、电荷守恒定律。
2、稳恒磁场场⽅程,场的性质特点。
3、由场⽅程,通过流分布确定场分布与磁化流。
4、磁场的边值关系。
5、稳恒磁场的⽮势。
6、由磁标势法确定场。
3⼆、考试要求1、规律的推导:真空、介质中稳恒磁场场⽅程,电荷守恒定律的微分表述,体、⾯磁化电流密度的确定式,磁场的边值关系,⽮势⽅程及其积分解,磁标势⽅程和边值关系等。
2、识记:电荷守恒定律,稳恒磁场场⽅程,体、⾯磁化电流密度的确定式,⽮势引⼊的定义式,磁标势引⼊条件,磁场的边值关系,0=f α情况磁标势的边值关系。
电动力学公式总结

电动力学公式总结电动力学是物理学中研究电荷间相互作用及其相关现象的分支学科。
电动力学公式是描述电场、电势、电流、电荷等电动力学量之间关系的数学表达式。
本文将总结常见的电动力学公式,并进行简要解释。
1. 库仑定律(Coulomb's Law)库仑定律用于描述两个电荷之间的相互作用力。
假设两个电荷分别为q1和q2,它们之间的作用力F由以下公式给出:F = k * (q1 * q2) / r^2其中,k为库仑常数,r为两个电荷间的距离。
2. 电场强度(Electric Field Strength)电场强度描述在给定点附近单位正电荷所受到的力的大小和方向。
电场强度E由以下公式给出:E =F / q其中,F为单位正电荷所受的力,q为正电荷的大小。
3. 电势差(Electric Potential Difference)电势差描述电场对电荷进行的功所引起的状态变化。
电势差V由以下公式给出:V = W / q其中,W为电场对电荷进行的功,q为电荷的大小。
4. 高斯定理(Gauss's Law)高斯定理是一个描写电场线分布和电荷分布之间关系的重要定理。
它表示电场的流出和流入电荷的总和等于电荷总量除以真空介电常数ε0。
该定理由以下公式给出:∮E · dA = (1 / ε0) * Q_enclosed其中,E为电场强度,dA为微元的面积矢量,Q_enclosed为电荷的总量。
5. 法拉第电磁感应定律(Faraday's Law of Electromagnetic Induction)法拉第电磁感应定律描述通过磁场的变化引起的电场变化。
它由以下公式给出:ε = -dΦ/dt其中,ε代表感应电动势,dΦ/dt为磁通量的变化率。
6. 奥姆定律(Ohm's Law)奥姆定律描述了电流、电压和电阻之间的关系。
根据奥姆定律,电流I等于电压V与电阻R的比值,即:I = V / R其中,I为电流,V为电压,R为电阻。
电动力学电动力学二五(格林函数)

a RdR
0
2 0
d1
3 2
R2
2RRcos
R2 z2
15 8
R2
2RRcos
R2 z2 2
2
V0a2 2
R2
z z2
32
1
3 4
a2 R2
z2
15R 2a 2 8 R2 z2
2
21
17
例 在无穷大导体平面上有半径为a 的圆,圆内和圆外用极狭窄的绝缘 环绝缘。设圆内电势为V0,导体板 其余部分电势为0,求上半空间的电 势。
18
解
以圆心为柱坐标系原点,z轴与平板 垂直,R为空间点到z轴的距离。上 半空间的格林函数用柱坐标表出为
G
x,
x
1
1
4 0 R2 z2 R2 z2 2zz 2RRcos -
R2 R2 2RRcos
1
RR R0 2 R02 2RRcos
13
三、格林公式和边值问题的解
先考虑第一类边值问题 ,设V内有电荷分 布ρ,边界S上给定电势|s ,求V内的电势 (x)。
设区域内有两个函数(x) 和 (x) ,有格林公式
2 2 dV dS
x
dS
对第二类边值问题,由于 G(x,x’)是点上单位点电荷 所产生的电势,其电场通 量在边界面S上应等于1/0 ,即
S
n
G x ,
x dS
1
0
满足上式的最简单的 边界条件是
Gx, x 1
n
xS
0S
第二类边值问题的解
x
V
G
x,
x
x
dV
0
S
G
x,
x
电动力学(数学基础)

散的度强的弱重程要 度性 ,在 当于div,A可 用0 表,征表空示间该各点点有矢散量发场通发量散
的正源;当div A 0 ,表示该点有吸收通量的
负源;当div
A
0
,表示该点为无源场。
在直角坐标系中:
divA A Ax Ay Az x y z
例:设u是空间坐 标A(xu,)y,z的u函数dA,(u证) 明
Operator
设有一标量函数 r x, y, z
d dx dy dz
x y z
x
i
y
j
z
k
dxi dyj dzk
Gx,
y,
z dl
G
n dl
p
n
dn θ
p dl
p
l
0
方向导数:
l
G n el
G
c
os
n
e
G cos
G
l max
n
引进梯度(Gradient)概念:
6 0, A 0
证明:
( )
(
)
ex
x
(
)
ey
y
(
)
ez
z
(
)
ex (
x
x
)
ey (
y
y
)
ez (
z
z
)
(ex
x
ey
y
ez
)
z
(ex x
ey y
ez
) z
§0-5 二阶微分算符
Second-order Differentiation Operator
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(5)ar
r (b
ar
),
(4)(kˆ iˆ) ˆj
2、证明
ar
r (b
cr
)
r b
(cr
ar )
cr
(ar
r b
)
0
13
【计算】
混合积
a
(b
c)
b
(c
a)
c
(a
b)
(1)
rr A B
rr A B
=
(
Ar +Br)
Ar-
(
Ar +Br)
r B
=
r A
rr A+B
Ar-
r A
uv B
ddtuAvguBv
(6)
dt d(uAv
uv B)
dt
uv A
d
uv B
dt d
uv A
uv B
dt
dt dt
uv uv (7)若A A(u),而u u(t),则有 d A d A du
dt du dt
12
1、计算
补充练习题
(1 )
r A
Br
r A
r B
(2)ar
(ar
r b
)
(3)( ˆj iˆ) kˆ,
a1( b1c1 c2b2 b3c3 ) b1( c1a1 c2a2 c3a3 )
a1( c • b ) b1( c • a )
7
所以
r rr r rr
f cd d ab
f1 c2d3 c3d2
a1(
c•
b)
b1(
c•
a)
同理
f2 a2 (c • b ) b2 (c • a )
(2)基矢的标积 (3)偏导数
eˆi eˆ j ij
xi x j
ij
9
小结
矢量代数中的两个重要公式
混合积
a
(b
c)
b
(c
a)
c
(a
b)
双重矢量积
a
(b
c)
(a
c)b
(a b)c
符号
ij
1 0
i=j i j
10
3、矢量微分
uv A( t
)
Ax (
t
)iˆ
Ay (
[abc]
(a
b)
c
ax bx
ay by
az bz
cx cy cz
混合积的坐标表达式
4
关于混合积的说明:
(1)向量混合积的几何意义:
[abc向]量(a的混b)合 c积是这样
a
b
c
的 表示 一以 个向 数量 ,它 a、的b绝、对c值 为
a
b
棱的平行六面体的体积.
(2)
[abc]
(a
b)
c
(b
(ar
r b
)ar
a
(b
c)
(a
c)b
(a
b)c
14
【证明】
ar
r (b
cr
)
r b
(cr
ar )
cr
(ar
r b
)
0
双重矢量积
a
(b
c)
(a
c)b
(a
b)c
Q
(ar
cr
r )b
(ar
r b
)cr
r (b
ar )cr
r (b
cr )ar
(cr
r b
)ar
(cr
ar
r )b
Br-
r B
r B
2
rr B A
(2)ar
(ar
r b
)
r =b
(ar
ar
)
0
(3)( ˆj iˆ) kˆ = (iˆ ˆj) kˆ = kˆ kˆ 1
(4)(kˆ iˆ) ˆj = ˆj ˆj 1
(5)ar
r (b
ar ),
双重矢量积
(ar
ar
r )b
(ar
r b
)ar
r a2b
c)
a
(c
a)
b.
混合积 a (b c) b (c a) (3)三向量a、b 、c 共面
[cab(ca]b)0.
5
三矢量的矢量积
c(
a
b)
c (ab ) c d (d ab )
d
a
d b
令f
c
d
且f必
在a,b构
成
的
平
面
内
则f d
所
以f (
c
d )可
ar
r (b
cr
)
r b
(cr
ar )
cr
(ar
r b
)
0
15
4、场论基础(梯度、矢量场的散度和旋度)
场的概念 ( The Concept of Field )
2
一、矢量代数和场论基础 1、矢量代数 2、 符号 3、矢量微分 4、场论基础(梯度、矢量场的散度和旋度)
5、积分变换公式
3
1、矢量代数
矢量的混合积
定义称为这设三已个知向三量个的向混量合a积 、,b记、为c[,ab数c量].(a
b)
c
设
cacaxxiicay
yj azk, j czk,
b bxi by j bzk,
t
) ˆj
Az (
t
)kˆ
r
dA( t ) dAx ( t ) iˆ dAy ( t ) ˆj dAz ( t ) kˆ
dt
dt
dt
dt
d
r (A
r B)
r A
r dB
r dA
r B
dt
dt dt
r d(A
r B)
r A
r dB
r dA
r B
dt
dt dt
导矢在几何上为一 切向矢量。
导矢在该处的切线 上,其方向指向 t 增 大的方向。
注意顺序 不能颠倒
11
➢矢性函数的导数公式
(1)
d
uv C
0,
(Cuv为常矢量)
dt
(2)
d(uAv
uv B)
d
uv A
d
uv B
dt
dt dt
(3)
d(kuAv)
k
d
uv A, (k为常量)
dt
dt
(4)
d(u
uv A)
du
uv A
u
uv dA
(5)
dt d(uAvguBv)
dt uAvgd
可 见c点 乘 远 的 是 正 的; c点 乘 近 的 是 负 的;
8
2、 符号
克罗内克符号的定义
ij
1 0
i = j 式中i , j 为所有正整数。
i j
(1)符号的挑选性
j
Aj ij A0 i0 A1 i1 L Ai ii L Ai
j0
—— 符号挑选出和式中作和变量j = i 的那一项。
以用
的a,b线
性组
合
表示
f ?
6
i j k f c d c1 c2 c3
d1 d2 d3
i j k d a b a1 a2 a3
b1 b2 b3
f1 c2d3 c3d2
c2( a1b2 a2b1 ) c3( a3b1 a1b3 ) a1(c2b2 b3c3 ) b1(c2a2 c3a3 ) (a1b1c1 a1b1c1 Preliminary Knowledge in mathematics
第一讲 绪论 第二讲 数学准备知识 第三讲 习题课
1
第二讲 数学准备知识
Preliminary Knowledge in mathematics
矢量场论复习、提高
一、矢量代数和场论基础 二、算符()运算 三、并矢和张量 矢量场的Helmholtz定理
f3 a3 (c • b) b3 (c • a)
f
f1eˆ1
f2eˆ2
f3eˆ3
a(c • b) b(c • a)
c
(
a
b
)
a(
c
b
)
b(
c
a
)
可 见c点 乘 远 的 是 正 的; c点 乘 近 的 是 负 的;
(a
b)
c
?
( a b ) c [ c ( a b )] b( c a ) a( c b )