高一数学中心投影和平行投影2

合集下载

高一数学空间几何体的三视图知识点归纳

高一数学空间几何体的三视图知识点归纳

高一数学空间几何体的三视图知识点归纳高一数学空间几何体的三视图知识点归纳知识点是知识、理论、道理、思想等的相对独立的最小单元。

下面是店铺给大家带来的高一数学空间几何体的三视图知识点归纳,希望能帮到大家!光由一点向外散射形成的投影叫做中心投影,其投影的大小随物体与投影中心间距离的变化而变化。

平行投影:在一束平行光线照射下形成的投影叫做平行投影。

在平行投影中,投影线正对着投影面时,叫做正投影,否则叫做斜投影。

空间几何体的`三视图:光线从几何体的前面向后面正投影,得到投影图,叫做几何体的正视图;光线从几何体的左面向右面正投影,得到投影图,叫做几何体的侧视图;从几何体的上面向下面正投影,得到投影图,高考地理,叫做几何体的俯视图。

几何体的正视图、侧视图、俯视图统称为几何体的三视图。

注:正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度;俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度;侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。

平行投影与中心投影的区别和联系:①平行投影的投射线都互相平行,中心投影的投射线是由同一个点发出的.如图所示,②平行投影是对物体投影后得到与物体等大小、等形状的投影;中心投影是对物体投影后得到比原物体大的、形状与原物体的正投影相似的投影.③中心投影和平行投影都是空间图形的基本画法,平行投影包括斜二测画法和三视图.中心投影后的图形与原图形相比虽然改变较多,但直观性强,看起来与人的视觉效果一致,最像原来的物体.④画实际效果图时,一般用中心投影法,画立体几何中的图形时一般用平行投影法.画三视图的规则:①画三视图的规则是正侧一样高,正俯一样长,俯侧一样宽.即正视图、侧视图一样高,正视图、俯视图一样长,俯视图、侧视图一样宽;②画三视图时应注意:被挡住的轮廓线画成虚线,能看见的轮廓线和棱用实线表示,不能看见的轮廓线和棱用虚线表示,尺寸线用细实线标出;D表示直径,R表示半径;单位不注明时按mm计;③对于简单的几何体,如一块砖,向两个互相垂直的平面作正投影,就能真实地反映它的大小和形状.一般只画出它的正视图和俯视图(二视图).对于复杂的几何体,三视图可能还不足以反映它的大小和形状,还需要更多的投射平面.【高一数学空间几何体的三视图知识点归纳】。

教学设计8:1.2.1 中心投影与平行投影~1.2.2 空间几何体的三视图

教学设计8:1.2.1 中心投影与平行投影~1.2.2 空间几何体的三视图

1.2.1 中心投影与平行投影~1.2.2 空间几何体的三视图知识一中心投影与平行投影 [导入新知] 1.投影的定义由于光的照射,在不透明物体后面的屏幕上可以留下这个物体的影子,这种现象叫做投影.其中,把光线叫做投影线,把留下物体影子的屏幕叫做投影面. 2.中心投影与平行投影投影 定义特征 分类 中心投影 光由一点向外散射形成的投影 投影线交于一点平行投影 在一束平行光线照射下形成的投影投影线互相平行正投影和斜投影[化解疑难]平行投影和中心投影都是空间图形的一种画法,但二者又有区别 (1)中心投影的投影线交于一点,平行投影的投影线互相平行.(2)平行投影下,与投影面平行的平面图形留下的影子,与这个平面图形的形状和大小完全相同;而中心投影则不同. 知识二 三 视 图 [导入新知] 三视图 概念规律正视图 光线从几何体的前面向后面正投影得到的投影图 一个几何体的正视图和侧视图高度一样,正视图和俯视图长度一样,侧视图与俯视图宽度一样侧视图 光线从几何体的左面向右面正投影得到的投影图 俯视图 光线从几何体的上面向下面正投影得到的投影图[化解疑难]1.每个视图都反映物体两个方向上的尺寸.正视图反映物体的上下和左右尺寸,俯视图反映物体的前后和左右尺寸,侧视图反映物体的前后和上下尺寸.2.画几何体的三视图时,能看见的轮廓线和棱用实线表示,看不见的轮廓线和棱用虚线表示. 题型一中心投影与平行投影 [例1] 下列说法中:①平行投影的投影线互相平行,中心投影的投影线相交于一点;②空间图形经过中心投影后,直线变成直线,但平行线可能变成了相交的直线;③两条相交直线的平行投影是两条相交直线.其中正确的个数为()A.0B.1C.2D.3【答案】B[类题通法]1.判定几何体投影形状的方法.(1)判断一个几何体的投影是什么图形,先分清楚是平行投影还是中心投影,投影面的位置如何,再根据平行投影或中心投影的性质来判断.(2)对于平行投影,当图形中的直线或线段不平行于投影线时,平行投影具有以下性质:①直线或线段的投影仍是直线或线段;②平行直线的投影平行或重合;③平行于投影面的线段,它的投影与这条线段平行且等长;④与投影面平行的平面图形,它的投影与这个图形全等;⑤在同一直线或平行直线上,两条线段平行投影的比等于这两条线段的比.2.画出一个图形在一个平面上的投影的关键是确定该图形的关键点,如顶点、端点等,方法是先画出这些关键点的投影,再依次连接各投影点即可得此图形在该平面上的投影.[活学活用]如图所示,在正方体ABCD ­A′B′C′D′中,E,F分别是A′A,C′C的中点,则下列判断正确的序号是________.①四边形BFD′E在底面ABCD内的投影是正方形;②四边形BFD′E在平面A′D′DA内的投影是菱形;③四边形BFD′E在平面A′D′DA内的投影与在平面ABB′A内的投影是全等的平行四边形.【答案】①③题型二画空间几何体的三视图[例2]画出如右图所示的四棱锥的三视图.[解]几何体的三视图如下:[类题通法]画三视图的注意事项(1)务必做到长对正,宽相等,高平齐.(2)三视图的安排方法是正视图与侧视图在同一水平位置,且正视图在左,侧视图在右,俯视图在正视图的正下方.(3)若相邻两物体的表面相交,表面的交线是它们的分界线,在三视图中,要注意实、虚线的画法.[活学活用]沿一个正方体三个面的对角线截得的几何体如下图所示,则该几何体的侧视图为()【答案】B题型三由三视图还原空间几何体[例3]如下图所示的三视图表示的几何体是什么?画出物体的形状.(1)(2)(3)[解](1)该三视图表示的是一个四棱台,如右图.(2)由俯视图可知该几何体是多面体,结合正视图、侧视图可知该几何体是正六棱锥.如下图.(3)由于俯视图有一个圆和一个四边形,则该几何体是由旋转体和多面体拼接成的组合体,结合侧视图和正视图,可知该几何体上面是一个圆柱,下面是一个四棱柱,所以该几何体的形状如右图所示.[类题通法]由三视图还原几何体时,一般先由俯视图确定底面,由正视图与侧视图确定几何体的高及位置,同时想象视图中每一部分对应实物部分的形状.[活学活用]如图①、图②、图③、图④为4个几何体的三视图,根据三视图可以判断这四个几何体依次分别为()A.三棱台、三棱柱、圆锥、圆台B.三棱台、三棱锥、圆锥、圆台C.三棱柱、正四棱锥、圆锥、圆台D.三棱柱、三棱台、圆锥、圆台【答案】C易错易误辨析画几何体的三视图常见误区[典例]某几何体及其俯视图如下图所示,下列关于该几何体正视图和侧视图的画法正确的是()[解析]该几何体是由圆柱切割而得,由俯视图可知正视方向和侧视方向,进一步可画出正视图和侧视图(如图所示),故选A.[答案]A[易错防范]1.易忽视该组合体的结构特征是由圆柱切割而得到,对正视方向与侧视方向的判断不正确而出错.2.三种视图中,可见的轮廓线都画成实线,存在但不可见的轮廓线一定要画出,但要画成虚线.画三视图时,一定要分清可见轮廓线与不可见轮廓线,避免出现错误.[成功破障]沿圆柱体上底面直径截去一部分后的物体如右图所示,它的俯视图是()【答案】D当堂检测1.4个直立在地面上的字母广告牌在不同情况下,在地面上的投影(阴影部分)效果如图,则在字母L,K,C的投影中,与字母N属同一种投影的有()【答案】A2.将长方体截去一个四棱锥,得到的几何体如图所示,则该几何体的侧视图为()【答案】D3.已知正方体的棱长为1,其俯视图是一个面积为1的正方形,侧视图是一个面积为2的矩形,则该正方体的正视图的面积等于________.【答案】24.如图甲所示,在正方体ABCD ­A1B1C1D1中,E,F分别是AA1,C1D1的中点,G是正方形BCC1B1的中心,则四边形AGFE在该正方体的各个面上的投影可能是图乙中的________.【答案】(1)(2)(3)5.如下图所示,画出下列组合体的三视图.解:三视图如图①、图②所示.6.某组合体的三视图如下图所示,试画图说明此组合体的结构特征.解:该三视图表示的是组合体,如右图所示,是7个小正方体拼接而成的组合体.。

1.2.1中心投影-平行投影ppt

1.2.1中心投影-平行投影ppt
3、身高相同的甲、乙两人分别距同一路灯2 米、3米,路灯亮时,甲的影子比乙的影子 __短____(填“长”或“短”)
当堂检测
4、下列四幅图形中,表示两颗小树在同 一时刻阳光下的影子的图形可能是( D )
A
B.
C.
D.
5、在同一时刻的阳光下,小明的影子比小强的影子长,那么在
同一路灯下( D )
A 小明的影子比小强的影子长 B 小明的影长比小强的影子短 C 小明的影子和小强的影子一样长 D 无法判断谁的影子长
D
C
A
B
D
A
C
B
D A
C B
D*
C*
D*
C*
D*(C*)
A*
B*
Q
(1)
A*
B*
(2)
A*(B*) (3)
正方形 平行四边形 一条线段
归纳:
不同位置
物体平行于投 物体倾斜于投 物体垂直于
物体
影面
影面
投影面
线段
形状、大小不 变(全等)
大小变化


形状、大小不 形状、大小
变(全等)
均变化
线段
中心投影与平行投影的区别与联系
投影线
投影
投影面
练习
把下列物体与它们的投影用线连接起来:
结论:投影与物体的形状有密切的关系
手电筒、路灯和台灯的光线 可以看成是从一点出发的,像 这样的光线所形成的投影称为 中心投影
(centralprojection).
灯光可看成是从一点发出的光线,像这 样的光线照射到物体上形成的投影与原
物体是 相似 的.
若两直线相交,则为中心投影, 其交点就是光源的位置.

1.2.1 中心投影与平行投影 1.2.2 空间几何体的三视图

1.2.1 中心投影与平行投影  1.2.2 空间几何体的三视图

2-2:如图,在正方体ABCD-A1B1C1D1中,E为棱BB1的中点,用过点A,E,C1的平 面截去该正方体的上部分,则剩余几何体的正视图为( )
解析:设过点A,E,C1的截面与棱DD1相交于点F,则F是棱DD1的中点,截去 正方体的上部分,剩余几何体的直观图如图所示,则其正视图为C.故选C.
题型三 由三视图还原几何体 【例3-1】 如图所示为一个简单几何体的三视图,则其对应的实物图是 ()
自我检测(教师备用)
1.已知△ABC,选定的投影面与△ABC所在的平面平行,则经过中心投影后
(投影线与投影面相交)所得的三角形与△ABC( B )
(A)全等
(B)相似
(C)不相似
(D)以上均有可能
2.在三棱锥、正方体、长方体、圆柱、圆锥、圆台、球中,正视图、俯视
图、侧视图都相同的几何体有( B )
3-3:某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为( )
(A)1
(B) 2
(C) 3
(D)2
解析:该几何体是底面为正方形,一侧棱垂直于底面的四棱锥,最长棱的 棱长为 12 12 12 = 3 ,故选C.
点击进入 课时作业
解析:根据三种视图的对角线的位置,可以判断A是正确的.故选A.
变式探究:本例中三视图对应的几何体是一个什么样的组合体?
解:因为实物图为A,所以该几何体是由一个直三棱柱和一个四棱锥组成的.
【3-2】 某多面体的三视图如图所示,其中正视图和侧视图都由正方形 和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该 多面体的各个面中有若干个是梯形,这些梯形的面积之和为( )
(A)10 (B)12 (C)14 (D)16
解析:由三视图可知该多面体是一个组合体,下面是一个底面是等腰直角三角形 的直三棱柱,上面是一个底面是等腰直角三角形的三棱锥,等腰直角三角形的腰 长为 2,直三棱柱的高为 2,三棱锥的高为 2,易知该多面体有 2 个面是梯形,这些

2020-2021学年高一数学人教A版高中数学必修2第一章1.2.1中心投影与平行投影课件

2020-2021学年高一数学人教A版高中数学必修2第一章1.2.1中心投影与平行投影课件

探究二 :空间几何体的三视图 长
正视图





侧 视

c(高)

b(宽)
a(长)
俯视图
三视图能反映物体真实的形状和长、宽、高.

视 图
c(高)
a(长)
高 平
长对正 齐

c(高)
视 图
b(宽)

a(长)

b(宽)

宽相等
c(高)
b(宽)
a(长)
正侧俯 视视视 图图图 反反反 映映映 了了了 物物物 体体体 的的的 高高长 度度度 和和和 长宽宽 度度度
(D)三棱柱
2020-2021学年高一数学人教A版高中 数学必 修2第一 章1.2. 1中心 投影与 平行投 影课件 【精品 】
2020-2021学年高一数学人教A版高中 数学必 修2第一 章1.2. 1中心 投影与 平行投 影课件 【精品 】
5、一空间几何体的三视图如图所示, 则该几何体是___
巩固提高:简单组合体的三视图
例2:画出下面几何体的三视图。
正视图
侧视图
俯视图 注意:不可见的轮廓线,用虚线画出。
正视图
侧视图
俯视图
正视图
侧视图
俯视图
2020-2021学年高一数学人教A版高中 数学必 修2第一 章1.2. 1中心 投影与 平行投 影课件 【精品 】
例3:(1)一个几何体的三视图如下,你 能说出它是什么立体图形吗?
2020-2021学年高一数学人教A版高中 数学必 修2第一 章1.2. 1中心 投影与 平行投 影课件 【精品 】
俯视图
2020-2021学年高一数学人教A版高中 数学必 修2第一 章1.2. 1中心 投影与 平行投 影课件 【精品 】

高一数学必修二 1.2.1 中心投影与平行投影 1.2.2 空间几何体的三视图

高一数学必修二 1.2.1  中心投影与平行投影  1.2.2  空间几何体的三视图

1. 位置 正视图 侧视图
俯视方向
俯视图
侧视方向
2.运用长对正、高平齐、宽
相等的原则画出其三视图.
正视图
侧视图
正视方向
俯视图
三视图表达的意义 从前面正对着物体观察,画出正视图,正视图 反映了物体的长和高及前后两个面的投影. 从上向下正对着物体观察,画出俯视图,布置在 正视图的正下方,俯视图反映了物体的长和宽及上下 两个面的投影. 从左向右正对着物体观察,画出侧视图,布置在 正视图的正右方,侧视图反映了物体的宽和高及左右 两个面的投影.
几何体的正视图、侧视图、俯视图统称为几何体的
三视图.
根据长方体的模型,请你画出它的三视图, 并观察三种图形之间有什么关系?
正视图 俯视图
高平齐
正视图
侧视图

视 图
长对正 长度
高度
宽相等
宽度
俯视图
一般地,一个几何体的正视图和侧视图的高度
一样,俯视图和正视图的长度一样,侧视图和俯
视图的宽度一样.
正侧等高, 俯正等长, 侧俯等宽。
例2 画出下面几何体的三视图.
正视图 俯视图
侧视图
【变式练习】 画出下面正三棱锥的三视图.


正视图
侧视图
正三棱锥
俯视图
例3 画下面几何体的三视图.
正视图
侧视图
俯视图
绘制三视图时,要注意: 1. 正、俯视图长对正;正、侧视图高平齐;俯、侧 视图宽相等,前后对应. 2. 在三视图中,需要画出所有的轮廓线,其中,看 见的轮廓线画实线,看不见的轮廓线画虚线.
3. 同一物体放置的位置不同,所画的三视图可能不 同. 4. 清楚简单组合体是由哪几个基本几何体组成的,并 注意它们的组成方式,特别是它们的交线位置.

1.2.1 中心投影与平行投影1.2.2空间几何体的三视图

1.2.1 中心投影与平行投影1.2.2 空间几何体的三视图教学分析在上一节认识空间几何体结构特征的基础上,本节来学习空间几何体的表示形式,以进一步提高对空间几何体结构特征的认识.主要内容是:画出空间几何体的三视图.比较准确地画出几何图形,是学好立体几何的一个前提.因此,本节内容是立体几何的基础之一,教学中应当给以充分的重视.画三视图是立体几何中的基本技能,同时,通过三视图的学习,可以丰富学生的空间想象力.“视图”是将物体按正投影法向投影面投射时所得到的投影图.光线自物体的前面向后投影所得的投影图称为“正视图”,自左向右投影所得的投影图称为“侧视图”,自上向下投影所得的投影图称为“俯视图”.用这三种视图即可刻画空间物体的几何结构,这种图称之为“三视图”.教科书从复习初中学过的正方体、长方体……的三视图出发,要求学生自己画出球、长方体的三视图;接着,通过“思考”提出了“由三视图想象几何体”的学习任务.进行几何体与其三视图之间的相互转化是高中阶段的新任务,这是提高学生空间想象力的需要,应当作为教学的一个重点.三视图的教学,主要应当通过学生自己的亲身实践,动手作图来完成.因此,教科书主要通过提出问题,引导学生自己动手作图来展示教学内容.教学中,教师可以通过提出问题,让学生在动手实践的过程中学会三视图的作法,体会三视图的作用.对于简单几何体的组合体,在作三视图之前应当提醒学生细心观察,认识了它的基本结构特征后,再动手作图.教材中的“探究”可以作为作业,让学生在课外完成后,再把自己的作品带到课堂上来展示交流.值得注意的问题是三视图的教学,主要应当通过学生自己的亲身实践、动手作图来完成.另外,教学中还可以借助于信息技术向学生多展示一些图片,让学生辨析它们是平行投影下的图形还是中心投影下的图形.三维目标1.掌握平行投影和中心投影,了解空间图形的不同表示形式和相互转化,发展学生的空间想象能力,培养学生转化与化归的数学思想方法.2.能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,并能识别上述三视图表示的立体模型,会用材料(如纸板)制作模型,提高学生识图和画图的能力,培养其探究精神和意识.重点难点教学重点:画出简单组合体的三视图,给出三视图和直观图,还原或想象出原实际图的结构特征.教学难点:识别三视图所表示的几何体.课时安排1课时教学过程导入新课思路1.能否熟练画出上节所学习的几何体?工程师如何制作工程设计图纸?我们常用三视图和直观图表示空间几何体,三视图是观察者从三个不同位置观察同一个几何体而画出的图形;直观图是观察者站在某一点观察几何体而画出的图形.三视图和直观图在工程建设、机械制造以及日常生活中具有重要意义.本节我们将在学习投影知识的基础上,学习空间几何体的三视图.教师指出课题:投影和三视图.思路2.“横看成岭侧成峰”,这说明从不同的角度看同一物体视觉的效果可能不同,要比较真实地反映出物体的结构特征,我们可从多角度观看物体,这堂课我们主要学习空间几何体的三视图.在初中,我们已经学习了正方体、长方体、圆柱、圆锥、球的三视图(正视图、侧视图、俯视图),你能画出空间几何体的三视图吗?教师点出课题:投影和三视图.推进新课新知探究提出问题①如图1所示的五个图片是我国民间艺术皮影戏中的部分片断,请同学们考虑它们是怎样得到的?图1②通过观察和自己的认识,你是怎样来理解投影的含义的?③请同学们观察图2的投影过程,它们的投影过程有什么不同?图2④图2(2)(3)都是平行投影,它们有什么区别?⑤观察图3,与投影面平行的平面图形,分别在平行投影和中心投影下的影子和原图形的形状、大小有什么区别?图3活动:①教师介绍中国的民间艺术皮影戏,学生观察图片.②从投影的形成过程来定义.③从投影方向上来区别这三种投影.④根据投影线与投影面是否垂直来区别.⑤观察图3并归纳总结它们各自的特点.讨论结果:①这种现象我们把它称为是投影.②由于光的照射,在不透明物体后面的屏幕上可以留下这个物体的影子,这种现象叫做投影.其中,我们把光线叫做投影线,把留下物体影子的屏幕叫做投影幕.③图2(1)的投影线交于一点,我们把光由一点向外散射形成的投影称为中心投影;图2(2)和(3)的投影线平行,我们把在一束平行光线照射下形成投影称为平行投影.④图2(2)中,投影线正对着投影面,这种平行投影称为正投影;图2(3)中,投影线不是正对着投影面,这种平行投影称为斜投影.⑤在平行投影下,与投影面平行的平面图形留下的影子和原平面图形是全等的平面图形;在中心投影下,与投影面平行的平面图形留下的影子和原平面图形是相似的平面图形.以后我们用正投影的方法来画出空间几何体的三视图和直观图.知识归纳:投影的分类如图4所示.图4提出问题①在初中,我们已经学习了正方体、长方体、圆柱、圆锥、球的三视图,请你回忆三视图包含哪些部分?②正视图、侧视图和俯视图各是如何得到的?③一般地,怎样排列三视图?④正视图、侧视图和俯视图分别是从几何体的正前方、正左方和正上方观察到的几何体的正投影图,它们都是平面图形.观察长方体的三视图,你能得出同一个几何体的正视图、侧视图和俯视图在形状、大小方面的关系吗?讨论结果:①三视图包含正视图、侧视图和俯视图.②光线从几何体的前面向后面正投影,得到的投影图叫该几何体的正视图(又称主视图);光线从几何体的左面向右面正投影,得到的投影图叫该几何体的侧视图(又称左视图);光线从几何体的上面向下面正投影,得到的投影图叫该几何体的俯视图.③三视图的位置关系:一般地,侧视图在正视图的右边;俯视图在正视图的下边.如图5所示.图5④投影规律:(1)正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度;俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度;侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度.(2)一个几何体的正视图和侧视图高度一样,正视图和俯视图长度一样,侧视图和俯视图宽度一样,即正、俯视图——长对正;主、侧视图——高平齐;俯、侧视图——宽相等.画组合体的三视图时要注意的问题:(1)要确定好主视、侧视、俯视的方向,同一物体三视的方向不同,所画的三视图可能不同.(2)判断简单组合体的三视图是由哪几个基本几何体生成的,注意它们的生成方式,特别是它们的交线位置.(3)若相邻两物体的表面相交,表面的交线是它们的分界线,在三视图中,分界线和可见轮廓线都用实线画出,不可见轮廓线,用虚线画出.(4)要检验画出的三视图是否符合“长对正、高平齐、宽相等”的基本特征,即正、俯视图长对正;正、侧视图高平齐;俯、侧视图宽相等,前后对应.由三视图还原为实物图时要注意的问题:我们由实物图可以画出它的三视图,实际生产中,工人要根据三视图加工零件,需要由三视图还原成实物图,这要求我们能由三视图想象它的空间实物形状,主要通过主、俯、左视图的轮廓线(或补充后的轮廓线)还原成常见的几何体,还原实物图时,要先从三视图中初步判断简单组合体的组成,然后利用轮廓线(特别要注意虚线)逐步作出实物图.应用示例思路1例1 画出圆柱和圆锥的三视图.活动:学生回顾正投影和三视图的画法,教师引导学生自己完成.解:图6(1)是圆柱的三视图,图6(2)是圆锥的三视图.(1) (2)图6点评:本题主要考查简单几何体的三视图和空间想象能力.有关三视图的题目往往依赖于丰富的空间想象能力.要做到边想着几何体的实物图边画着三视图,做到想图(几何体的实物图)和画图(三视图)相结合.变式训练说出下列图7中两个三视图分别表示的几何体.(1) (2)图7答案:图7(1)是正六棱锥;图7(2)是两个相同的圆台组成的组合体.例2 试画出图8所示的矿泉水瓶的三视图.活动:引导学生认识这种容器的结构特征.矿泉水瓶是我们熟悉的一种容器,这种容器是简单的组合体,其主要结构特征是从上往下分别是圆柱、圆台和圆柱.图8 图9解:三视图如图9所示.点评:本题主要考查简单组合体的三视图.对于简单空间几何体的组合体,一定要认真观察,先认识它的基本结构,然后再画它的三视图.变式训练画出图10所示的几何体的三视图.图10 图11答案:三视图如图11所示.思路2例1 (2007安徽淮南高三第一次模拟,文16)如图12甲所示,在正方体ABCD—A1B1C1D1中,E、F分别是AA1、C1D1的中点,G是正方形BCC1B1的中心,则四边形AGFE在该正方体的各个面上的投影可能是图12乙中的____________.甲乙图12活动:要画出四边形AGFE在该正方体的各个面上的投影,只需画出四个顶点A、G、F、E 在每个面上的投影,再顺次连接即得到在该面上的投影,并且在两个平行平面上的投影是相同的.分析:在面ABCD和面A1B1C1D1上的投影是图12乙(1);在面ADD1A1和面BCC1B1上的投影是图12乙(2);在面ABB1A1和面DCC1D1上的投影是图12乙(3).答案:(1)(2)(3)点评:本题主要考查平行投影和空间想象能力.画出一个图形在一个平面上的投影的关键是确定该图形的关键点,如顶点等,画出这些关键点的投影,再依次连接即可得此图形在该平面上的投影.如果对平行投影理解不充分,做该类题目容易出现不知所措的情形,避免出现这种情况的方法是依据平行投影的含义,借助于空间想象来完成.变式训练如图13(1)所示,E、F分别为正方体面ADD′A′、面BCC′B′的中心,则四边形BFD′E 在该正方体的各个面上的投影可能是图13(2)的___________.(1) (2)图13分析:四边形BFD′E在正方体ABCD—A′B′C′D′的面ADD′A′、 面BCC′B′上 的投影是C;在面DCC′D′上的投影是B;同理,在面ABB′A′、面ABCD、面A′B′C′D′上的投影也全是B.答案:B C例2 (2007广东惠州第二次调研,文2)如图14所示,甲、乙、丙是三个立体图形的三视图,甲、乙、丙对应的标号正确的是()甲乙丙图14①长方体②圆锥③三棱锥④圆柱A.④③②B.②①③C.①②③D.③②④分析:由于甲的俯视图是圆,则该几何体是旋转体,又因正视图和侧视图均是矩形,则甲是圆柱;由于乙的俯视图是三角形,则该几何体是多面体,又因正视图和侧视图均是三角形,则该多面体的各个面都是三角形,则乙是三棱锥;由于丙的俯视图是圆,则该几何体是旋转体,又因正视图和侧视图均是三角形,则丙是圆锥.答案:A点评:本题主要考查三视图和简单几何体的结构特征.根据三视图想象空间几何体,是培养空间想象能力的重要方式,这需要根据几何体的正视图、侧视图、俯视图的几何特征,想象整个几何体的几何特征,从而判断三视图所描述的几何体.通常是先根据俯视图判断是多面体还是旋转体,再结合正视图和侧视图确定具体的几何结构特征,最终确定是简单几何体还是简单组合体.变式训练1.图15是一几何体的三视图,想象该几何体的几何结构特征,画出该几何体的形状.图15 图16分析:由于俯视图有一个圆和一个四边形,则该几何体是由旋转体和多面体拼接成的组合体,结合侧视图和正视图,可知该几何体是上面一个圆柱,下面是一个四棱柱拼接成的组合体. 答案:上面一个圆柱,下面是一个四棱柱拼接成的组合体.该几何体的形状如图16所示.2.(2007山东高考,理3)下列几何体各自的三视图中,有且仅有两个视图相同的是()图17A.①②B.①③C.①④D.②④分析:正方体的三视图都是正方形,所以①不符合题意,排除A、B、C.答案:D点评:虽然三视图的画法比较繁琐,但是三视图是考查空间想象能力的重要形式,因此是新课标高考的必考内容之一,足够的空间想象能力才能保证顺利解决三视图问题.知能训练1.下列各项不属于三视图的是()A.正视图B.侧视图C.后视图D.俯视图分析:根据三视图的规定,后视图不属于三视图.答案:C2.两条相交直线的平行投影是()A.两条相交直线B.一条直线C.两条平行直线D.两条相交直线或一条直线图18分析:借助于长方体模型来判断,如图18所示,在长方体ABCD—A1B1C1D1中,一束平行光线从正上方向下照射.则相交直线CD1和DC1在面ABCD上的平行投影是同一条直线CD,相交直线CD1和BD1在面ABCD上的平行投影是两条相交直线CD和BD.答案:D3.甲、乙、丙、丁四人分别面对面坐在一个四边形桌子旁边,桌上一张纸上写着数字“9”,如图19所示.甲说他看到的是“6”,乙说他看到的是“ 6”,丙说他看到的是“ 9”,丁说他看到的是“9”,则下列说法正确的是()图19A.甲在丁的对面,乙在甲的左边,丙在丁的右边B.丙在乙的对面,丙的左边是甲,右边是乙C.甲在乙的对面,甲的右边是丙,左边是丁D.甲在丁的对面,乙在甲的右边,丙在丁的右边分析:由甲、乙、丙、丁四人的叙述,可以知道这四人的位置如图20所示,由此可得甲在丁的对面,乙在甲的右边,丙在丁的右边.图20答案:D4.(2007广东汕头模拟,文3)如果一个空间几何体的正视图与侧视图均为全等的等边三角形,俯视图为一个圆及其圆心,那么这个几何体为()A.棱锥B.棱柱C.圆锥D.圆柱分析:由于俯视图是一个圆及其圆心,则该几何体是旋转体,又因正视图与侧视图均为全等的等边三角形,则该几何体是圆锥.答案:C5.(2007山东青岛高三期末统考,文5)某几何体的三视图如图21所示,那么这个几何体是()图21A.三棱锥B.四棱锥C.四棱台D.三棱台分析:由所给三视图可以判定对应的几何体是四棱锥.答案:B6.(2007山东济宁期末统考,文5)用若干块相同的小正方体搭成一个几何体,该几何体的三视图如图22所示,则搭成该几何体需要的小正方体的块数是()图22A.8B.7C.6D.5分析:由正视图和侧视图可知,该几何体有两层小正方体拼接成,由俯视图,可知最下层有5个小正方体,由侧视图可知上层仅有一个正方体,则共有6个小正方体.答案:C7.画出图23所示正四棱锥的三视图.图23分析:正四棱锥的正视图与侧视图均为等腰三角形,俯视图为正方形,对角线体现正四棱锥的四条侧棱.答案:正四棱锥的三视图如图24.图24拓展提升问题:用数个小正方体组成一个几何体,使它的正视图和俯视图如图25所示,俯视图中小正方形中的字母表示在该位置的小立方体的个数.(1)你能确定哪些字母表示的数?(2)该几何体可能有多少种不同的形状?图25分析:解决本题的关键在于观察正视图、俯视图,利用三视图规则中的“在三视图中,每个视图都反映物体两个方向的尺寸.正视图反映物体的上下和左右尺寸,俯视图反映物体的前后和左右尺寸,侧视图反映物体的前后和上下尺寸”.又“正视图与俯视图长对正,正视图与侧视图高平齐,俯视图与侧视图宽相等”,所以,我们可以得到a=3,b=1,c=1,d,e,f中的最大值为2.解:(1)面对数个小立方体组成的几何体,根据正视图与俯视图的观察我们可以得出下列结论:①a=3,b=1,c=1;②d,e,f中的最大值为2.所以上述字母中我们可以确定的是a=3,b=1,c=1.(2)当d,e,f中有一个是2时,有3种不同的形状;当d,e,f有两个是2时,有3种不同的形状;当d,e,f都是2时,有一种形状.所以该几何体可能有7种不同的形状.课堂小结本节课学习了:1.中心投影和平行投影.2.简单几何体和组合体的三视图的画法及其投影规律.3.由三视图判断原几何体的结构特征.作业习题1.2 A组第1、2题.设计感想本节课的教学,以课程标准为指南,结合学生的已有知识和经验而设计.设计时考虑到课程标准和高考要求,重点讲解由三视图判断几何体的结构特征,也就是画三视图时,尺寸不作严格要求.教学设计中使用了大量图片,建议在实际应用时尽量使用信息技术,让学生从动态过程获得三视图的感性认识,以便从整体上把握三视图的画法.。

1.2.1中心投影和平行投影1.2.2空间几何体的三视图

长对正
错误的三视图 —长未对正1
错误的三视图 —长未对正2
错误的三视图 —高不平齐1
错误的三视图 —高不平齐2
错误的三视图 —宽不相等1
错误的三视图 —宽不相等1
错误的三视图
例题 例2
画出如图所示正四棱锥的三视图.
正视图
侧视图
俯视图
由三视图,描述物体形状
正 左
正 左


棱柱的三视图
合作 探究:
S
请同学们观察下列的 投影的现象 , 它们的投影 过程有何不同?
投 射 方 向
中心投影
投影中心
S
投影线
投影
投影特性:投射中心、 物体、投影面三者之间 的相对位置改变时,投 影的大小和形状也改变 . 主要用途: 主要运用 于绘画领域,也常用 于概括的描绘一个结 构或产品的外貌.
投影面
2.平行投影
那什么是空间图形的三视图呢?
概念:视图是指将物体按正投影向投影面 投射所得到的图形. 1.光线自物体的前面向后投射所得 三 到的投影称为主视图或正视图. 视 2.自上向下的称为俯视图. 图 3. 自左向右的称为左视图.
视图:是指将物体按正投影向投影面投射所得的 图形。光线自物体的前面向后投射所得的投影称为主 视图或正视图,自上向下的称为俯视图,自左向右的 称为左视图,用这三种视图刻画空间的物体结构,称 之为三视图
楼三视图如下图所示,试问: 1.该楼有几层? 2.最高一层的房间在什么位置? 3.该楼可以有多少个房间?
3层 左后
10间
例题 例1 画出如图1和图2所示的正方体和圆柱的三视图.
1
2 左 视 图 正 视 图 左 视 图
正 视 图
俯 视 图

人教版高中数学第一章第2节《平行投影与中心投影空间几何体的三视图》(共54张PPT)教育课件

不要一味的坚持自己的看法,试着从别人的角度 去看看,也许你会有不一样的认识!
三视图有关概念
“视图”是将物体按正投影法向投影面投射 时所得到的投影图.
光线自物体的前面向后投影所得的投影图称 为“正视图” ,自左向右投影所得的投影图称 为“侧视图”,自上向下投影所得的投影图称 为“俯视图”.
用这三种视图即可刻划空间物体的几何结构, 这种图称之为“三视图”.即向三个互相垂直 的投影面分别投影,所得到的三个图形摊平在 一个平面上,则就是三视图.
A
B
C
三视图的作图步骤
1.确定视图方向 2.画出能反映物体真实形状的一个视图
3.运用长对正、高平齐、宽相等的原 则画出其它视图
4.检查,加深
巩固提高:
组合体的三视图
10
6 12
8
知识探究:画简单几何体的三视图
思考:如图所示,将一 个长方体截去一部分, 这个几何体的三视图是 什么?
正视图
侧视图
正视
正视图
侧视图
俯视图
知识探究:将三视图还原成几何体
一个空间几何体都对应一组三视图, 若已知一个几何体的三视图,我们如何 去想象这个几何体的原形结构,并画出 其示意图呢?
由三视图想象几何体
下面是一些立体图形的三视图,请根据视 图说出立体图形的名称:
正视图
侧视图
俯视图
四棱柱
由三视图想象几何体
下面是一些立体图形的三视图,请根据视 图说出立体图形的名称:
三视图的形成
V
V正立投影面 H水平投影面 W侧立投影面
三视图的形成
V
H
W
V正视图 H俯视图 W侧视图
三视图的形成
正 视 图
侧视图

1.2.1中心投影与平行投影 1.2.2 空间几何体的三视图

投影面
A
投射线
B
D
C 特点: 特点:中心投影的投影大小与物体和 投影面之间的距离有关. 投影面之间的距离有关
二、平行投影: 平行投影:
在一束平行光线照射下形 成的投影,叫做平行投影 成的投影,叫做平行投影. 平行投影
1.正投影:投影线与投影面垂直 正投影: 正投影 2.斜投影:投影线与投影面斜交 斜投影: 斜投影
基本几何体的三视图: 基本几何体的三视图
棱柱的三视图: 棱柱的三视图


正三棱锥的三视图: 正三棱锥的三视图


思考: 侧视图是等腰三角形吗?
正四棱锥的三视图: 正四棱锥的三视图


思考: • 1.它的正视图是等腰三角形吗? • 2.它的正视图和侧视图一样吗?
思考:先画出三视图, 思考:先画出三视图, 你能否作出一个截面使它与正视图相同? 你能否作出一个截面使它与正视图相同? 你能否作出一个截面使它与侧面相同? 你能否作出一个截面使它与侧面相同?
回忆初中已经学过的正方体、长方体、 回忆初中已经学过的正方体、长方体、 圆柱、圆锥、球的三视图. 圆柱、圆锥、球的三视图.
正方体的三视图: 正方体的三视图


圆柱的三视图: 圆柱的三视图


圆锥的三视图: 圆锥的三视图


球的三视图: 球的三视图



正视图
方 体 的 三 视


c(高) 高 b(宽) 宽 a(长) 长
圆台的三视图: 圆台的三视图


圆台的三视图: 圆台的三视图


三视图的作图原则: 三视图的作图原则:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§1.1.3 中心投影和平行投影
教学目标:
1.了解中心投影和平行投影的原理。

2.能利用正投影绘制空间图形的三视图,并能根据所给出的三视图说出该几何体由哪些简单多面体构成。

3.提高学生的空间想象能力。

教学重点:
投影的概念及三视图的画法。

教学难点:
三视图的画法。

教学过程:
1.投影
投影是光线(投射线)通过物体,向选定的面(投影面)投影,并在该面上得到图形的方法。

生活中有许多投影的例子,如手影游戏、皮影戏等。

2.中心投影与平行投影
中心投影:投射线交于一点。

平行投影:投射线互相平行。

按投射方向是否正对着投影面,可分为斜投影和正投影。

3.三视图
视图是指将物体按正投影向投影面投射所得到的图形。

光线自物体的前面向后投射所得的投影称为主视图或正视图,自上向下的成为俯视图,自左向右的称为左视图,用这三种视图刻画空间物体的结构,我们称为三视图。

画三视图的注意点:
(1)主视图与左视图高要保持平齐(高平齐),主视图与俯视图长要对正(长对正),俯视图与左视图的宽度要相等(宽相等)。

(2)三视图中,主视图在上,俯视图在下,左视图在右。

(3)被遮挡的轮廓线画为虚线。

4.例题讲解
例1:(课本第12页例1)画出下列几何体的三视图。

正前方正前方
3
4.23
1.50.90.9
1.51.5正前方例2:(课本第13页例题2)如下图,设所给的方向为物体的正前方,试画出它的三视图.
5.课堂小结
(1)中心投影和平行投影的概念及原理。

(2)画三视图时注意:“高平齐、长对正、宽相等”。

相关文档
最新文档